# Optimal Sequencing of Items In a Consecutive-2-out-of- $n$ System 

V.K. Wei, Member IEEE<br>Bell Laboratories, Murray Hill<br>F.K. Hwang<br>Bell Laboratories, Murray Hill<br>V.T. Sös<br>Eötvos Lorand University, Budapest

Key Words—Consecutive-2-out-of- $n$ system, Optimal sequence.

Reader Aids-
Purpose: Widen state of the art
Special math required for explanations: Elementary probability Special math needed to use results: None
Results useful to: Reliability analysis and theoreticians


#### Abstract

A consecutive-2-out-of-n system is an array of $n$ items in a line such that the system fails if and only if two consecutive items both fail. Suppose that the items have different probabilities of failing and that the system can be arranged into any sequence of the $n$ items. Which sequence minimizes the probability of a system failure? It has been conjectured that the best sequence is one which essentially interlaces the more reliable items with the less reliable items. This paper partially supports the conjecture by proving it for the case that: a) the $n$ probabilities take on only two distinct values, and b) the $n$ probabilities take on only three distinct values, including either a zero or a one.


## 1. INTRODUCTION

A consecutive-2-out-of- $n$ system [1] is an array of $n$ items in a line such that the system fails if and only if two consecutive items fail. An example of such a system is a broadcasting network consisting of relay stations. Suppose that the stations are lined up and the signal broadcast from one station is only strong enough to reach the next two stations. Then the relay can be interrupted if and only if two consecutive stations fail simultaneously. Now for a given set of $n$ items with known but unequal working probabilities, what is the best way to arrange them into a sequence so that the probability of system failure is minimized? Derman et al. [2] conjectured that the best sequence is one which essentially interlaces the more reliable items with the less reliable items. This paper partially supports the conjucture by proving it for the two special cases:
a. There are two types of working probabilities.
b. There are three types of working probabilities one of which is either zero or one.

The assumption of a "zero" or "one" for working probability may sound unrealistic. But case $b$ is studied for two purposes. Mathematically, it is a nontrivial extention of the 2-class case towards the final goal of $n$ distinct probabilities. Practically it is the limiting case for three genuine probabilities with one of them approaching zero or one.

## 2. NOTATION

$I_{i} \quad$ item $i$
$p_{i} \quad$ working probability for item $i$
$S^{*} \quad$ the conjectured optimum sequence $I_{i_{1}}, I_{i_{n}}, I_{i_{3}}$,
$I_{i_{n-2}}, \ldots, I_{i_{n-3}}, I_{i_{4}}, I_{i_{n-1}}, I_{i_{2}}$ where $p_{i_{1}} \leqslant p_{i_{2}} \leqslant \ldots \leqslant$ $p_{i_{n}}$
$S \quad$ the sequence $I_{1}, I_{2}, \ldots, I_{n}$
$S_{i j} \quad$ the sequence $I_{1}, I_{2}, \ldots, I_{i-1}, I_{j}, I_{j-1}, \ldots, I_{i}, I_{j+1}, \ldots$, $I_{n}$ (defined for $i<j$ and obtained from $S$ by reversing the subsequence $\mathrm{I}_{i}, I_{i+1}, \ldots, I_{j-1}, I_{j}$ )
$P\left(S^{\prime}\right)$ the probability that the sequence $S^{\prime}$ does not contain two consecutive failing items
$x_{1} \quad P\left(I_{1}, I_{2}, \ldots, I_{i-1} \mid I_{i-1}\right.$ works $) p_{i-1}\left(1-p_{j+1}\right) P\left(I_{j+1}\right.$, $I_{j+2}, \ldots, I_{n} \mid I_{j+1}$ fails)
$x_{2} \quad P\left(I_{1}, I_{2}, \ldots, \mathrm{I}_{i-1} \mid I_{i-1}\right.$ fails $)\left(1-p_{i-1}\right) p_{j+1} P\left(I_{j+1}\right.$, $I_{j+2}, \ldots, I_{n} \mid I_{j+1}$ works)
$y_{1} \quad p_{i} P\left(I_{i}, I_{i+1}, \ldots, I_{j} \mid I_{i}\right.$ works, $I_{j}$ fails) (1-p$)$
$y_{2} \quad\left(1-p_{i}\right) P\left(I_{i}, I_{i+1}, \ldots, I_{j} \mid I_{i}\right.$ fails, $I_{j}$ works $) p_{j}\left(\mathrm{x}_{1}, x_{2}\right.$, $y_{1}$ and $y_{2}$ are defined for $1 \leqslant \mathrm{i}<j \leqslant n$ )
$[u]^{+} \quad$ the largest integer not greater than $u$
[ $]^{-} \quad$ the smallest integer not less than $u$.

## 3. MAIN RESULTS

Assumptions: The independent case of a linear consecutive-2-out-of- $n$ system.

Consider the sequence $S$, and the sequence $S_{i j}$ which is obtained from $S$ by reversing the subsequence $I_{i}, I_{i+1}, \ldots, I_{j}$. We shall derive a sufficient condition for $S_{i j}$ to be better than $S$. By repeated applications of this kind of reversals, we arrive at the optimum arrangement in the 2-probability case. Proofs of all theorems and lemmas are in the appendix.

Let $S$ and $S_{i j}$ both be augmented by a starting item $I_{0}$ and an ending item $I_{n+1}$ where $p_{0}=p_{n+1}=1$ by definition. The augmentation does not affect the comparison of $S$ and $S_{i j}$.

Lemma 1. $P\left(S_{i j}\right)-P(S)=\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)$.
Next we give sufficient conditions for determining the signs of $x_{1}-x_{2}$ and $y_{1}-y_{2}$.

Lemma 2. Let $m=[(j-i+1) / 2]^{+}$, then we have $y_{1} \leqslant y_{2}$ if both:
$p_{i+k} \leqslant p_{j-k}$, for all even $k, 0 \leqslant k \leqslant m$,
$p_{i+k} \geqslant p_{j-k}$, for all odd $k, 0 \leqslant k \leqslant m$,
(we have $y_{1} \geqslant y_{2}$ if the words 'even'' and 'odd'' are interchanged.)

Remark: Assume $0<p_{l}<1$ for all $l, i \leqslant l \leqslant j$. If at least one strict inequality in (1) holds, then $y_{1}<y_{2} \cdot\left(y_{1}>y_{2}\right.$ if the words "even'" and 'odd" in (1) are interchanged).

Lemma 3. Let $i-1 \leqslant n-j$. If:
$p_{k} \geqslant p_{j+i-k}$, for all even $k, 0 \leqslant k \leqslant i-1$,
$p_{k} \leqslant p_{j+i-k}$, for all odd $k, 0 \leqslant k \leqslant i-1$,
then we have
$x_{1} \geqslant x_{2}$, if $i$ odd,
$x_{1} \leqslant x_{2}$, if $i$ even.
Remark: An analogous statement holds when $i-1 \geqslant n-$ $j$. This can be best visualized by looking at $S$ backwards.

Remark: Assume $0<p_{l}<1$ for all $l, 1 \leqslant l<i$ or $j<l \leqslant n$. Then the strict inequality in (3) holds if at least one strict inequality in (2) holds. An analogous statement holds when $i-1 \geqslant n-j$.

Combining lemmas $1-3$, we obtain a sufficient condition for $S_{i j}$ to be better than $S$.

Theorem 1. Let $i-1 \leqslant n-j$ and $m=[(j-i+1) / 2]^{+}$. For odd $i$ we have $P\left(S_{i j}\right) \geqslant P(S)$ if both:
$p_{i-k} \geqslant p_{j+k}$, for odd $k, 1 \leqslant k \leqslant i$,
$p_{i-k} \leqslant p_{j+k}$, for even $k, 1 \leqslant k \leqslant i$,
$p_{i+k} \geqslant p_{j-k}$, for all even $k, 0 \leqslant k \leqslant m$,
$p_{i+k} \leqslant p_{j-k}$, for all odd $k, 0 \leqslant k \leqslant m$.
For even $i$, we have $P\left(S_{i j}\right) \geqslant P(S)$ if the words 'even'" and "odd" in (4) and (5) are interchanged.

Remark: An analogous statement can be obtained for $i$ $1 \geqslant n-j$.

Remark: Assume $0<p_{l}<1$ for all $l, 1 \leqslant l \leqslant n$, and $i-1 \leqslant$ $n-j$. The strict inequality $P\left(S_{i j}\right)>P(S)$ holds if (4) and (5) hold, and at least one strict inequality holds in (4) and (5) each.

Assumptions: There are $a$ items, $A$, of working probability $p$ and $b$ items, $B$, of working probability $q$, where $a+b=$ $n$ and $p<q$. The sequence $S^{*}$ as defined in section 2 takes the form:

$$
\begin{array}{ccc}
A B \ldots A B & Z \ldots Z & B A \ldots B A \\
{[z / 2]^{-} \text {pairs of } A B} & z^{\prime}-z & {[z / 2]^{+} \text {pairs of } B A}
\end{array}
$$

where $z \equiv \min \{a, b\} ; z^{\prime} \equiv \max \{a, b\} ;$ and $Z=A$ if there are more $A$ 's than $B$ 's, $Z=B$ otherwise.

Let $S=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ be a sequence different from $S^{*}$ or its reverse. We shall show that $P\left(S_{i j}\right)>P(S)$ for some $i<$ $j$.

Let $i$ be the first position where $S$ and $S^{*}$ differ, and $n$ $+1-i^{\prime}$ the last position they differ in. Without loss of generality, assume $i \leqslant i^{\prime}$ (or else we deal with the reverse of $S$ ). Let $j$ be the first position after $i$ such that $I_{i}$ and $I_{j}$ are of different types.

Checking the conditions in theorem 1 carefully, we obtain:

Theorem 2. Let $S$ be a sequence different from $S^{*}$ or its reverse, and $i, j$ be defined as above, then $P\left(S_{i j}\right) \geqslant P(S)$ for $0 \leqslant p<q \leqslant 1$, and $P\left(S_{i j}\right)>P(S)$ for $0<p<q<1$.

Since any sequence other than $S^{*}$ and its reverse is "unstable", we establish $S^{*}$ and its reverse as the only optimum sequences.

We now give two results which extend the 2 -class case to some special 3-class cases.

Assumptions: There are $a$ of type $p, b$ of type $q$, and $c$ of type 1 with $a+b+c=n$.

Theorem 3. For $0 \leqslant p<q<1, \mathrm{~S}^{*}\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ is optimal.
Assumptions: There are $a$ of type $p, b$ of type $q$ and $c$ of type 0 with $a+b+c=n$.

Theorem 4. For $0<p<q \leqslant 1 S^{*}\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ is optimal.

## APPENDIX: The Proofs

Proof of lemma 1: Since $S_{i j}$ and $S$ will both fail if any of the pairs $\left(I_{t}, I_{t+1}\right), 1 \leqslant t<n, t \neq i-1, t \neq j$, fails, we assume that this is not the case. Then it suffices to study the following four scenarios.
i. $I_{i-1}, I_{i}, I_{j-1}$, work but $I_{j}, I_{j+1}$ fail. Then $S$ fails and $S_{i j}$ works. The probability of this occurring is $x_{1} y_{1}$.
ii. $I_{i+1}, I_{j}, I_{j+1}$ work but $I_{i-1}, I_{i}$ fail. Again, $S$ fails and $S_{i j}$ works. The probability of this occurring is $x_{2} y_{2}$.
iii. $I_{i}, I_{j-1}, I_{j+1}$ work but $I_{i-1}, I_{j}$ fail. Now $S$ works and $S_{i j}$ fails. The probability of this occurring is $x_{2} y_{1}$.
iv. $I_{i-1}, I_{i+1}, I_{j}$ work but $I_{i}, I_{j+1}$ fail. Again $S$ works and $S_{i j}$ fails. The probability of this occurring is $x_{1} y_{2}$.

Combining the four scenarios, we obtain lemma 1.
Proof of lemma 2: The proof is by induction on $m$. When $m=1$, we have either $j=i+1$ or $i+2$. In the former, we have:
$y_{1}-y_{2}=p_{i}\left(1-p_{j}\right)-\left(1-p_{i}\right) p_{j} \leqslant 0$.
In the latter, we have:
$y_{1}-y_{2}=p_{i} p_{i+1}\left(1-p_{j}\right)-\left(1-p_{i}\right) p_{i+1} p_{j} \leqslant 0$.

Assume lemma 2 true for $1,2, \ldots, m-1$. Rearranging, we have:

$$
\begin{gather*}
y_{1}=p_{i}\left(1-p_{j}\right)\left[P \left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right.\right. \text { works, } \\
\\
\left.I_{j-1} \text { works }\right) p_{i+1} p_{j-1}+P\left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right. \text { fails, } \\
\left.\left.I_{j-1} \text { works }\right)\left(1-p_{i+1}\right) p_{j-1}\right], \\
y_{2}= \\
\left(1-p_{i}\right) p_{j}\left[P \left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right.\right. \text { works, } \\
\left.I_{j-1} \text { works }\right) p_{i+1} p_{j-1}+P\left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right. \text { works, } \\
\\
\left.\left.I_{j-1} \text { fails }\right) p_{i+1}\left(1-p_{j-1}\right)\right], \\
y_{1}-y_{2}=\left[p_{i}\left(1-p_{j}\right)-\left(1-p_{i}\right) p_{j}\right] P\left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right. \\
\left.\quad \text { works, } I_{j-1} \text { works }\right) p_{i+1} p_{j-1}+p_{i}\left(1-p_{j}\right)  \tag{6}\\
{\left[P\left(\mathrm{I}_{i+1}, \ldots, I_{j-1} \mid I_{i+1} \text { fails, } I_{j-1} \text { works }\right)\left(1-p_{i+1}\right) p_{j-1}\right]} \\
\quad-\left(1-p_{i}\right) p_{j}\left[P \left(I_{i+1}, \ldots, I_{j-1} \mid I_{i+1}\right.\right. \text { works, } \\
\\
\left.\left.I_{j-1} \text { fails }\right) p_{i+1}\left(1-p_{j-1}\right)\right] .
\end{gather*}
$$

Since $p_{i} \leqslant p_{j}$, we have:
$p_{i}\left(1-p_{j}\right)-\left(1-p_{i}\right) p_{j} \leqslant 0$.
Letting $i^{\prime}=i+1, j^{\prime}=j-1, m^{\prime}=m-1$, we find:
$p_{i^{\prime}+k} \geqslant p_{j^{\prime}-k} \quad$ for all even $k, \quad 0 \leqslant k \leqslant m^{\prime}$,
$p_{i^{\prime}+k} \leqslant p_{j^{\prime}-k}, \quad$ for all odd $k, \quad 1 \leqslant k \leqslant m^{\prime}$.
The induction hypothesis implies:
$P\left(I_{i}^{\prime}, \ldots, I_{j}^{\prime} \mid I_{i}^{\prime}\right.$ fails, $I_{j}^{\prime}$ works $)\left(1-p_{i}\right) p_{j^{\prime}}$
$\leqslant P\left(I_{i}^{\prime}, \ldots, I_{j}^{\prime} \mid I_{i}^{\prime}\right.$ works, $I_{j^{\prime}}$ fails) $p_{i}\left(1-p_{j^{\prime}}\right)$.
Combining (6)-(8), we obtained the desired result.
Proof of lemma 3: Let $T$ be the following sequence of items:
$T=T_{1} T_{2} \ldots T_{t}=I_{j+1}, \ldots, I_{n}, J_{1}, J_{0}, J_{1}, \ldots, J_{0}, J_{1}, I_{1}, \ldots, I_{i-1}$.
The item $J_{1}$ always works and $J_{0}$ never works. A total of $n$ $-j+1 J_{1}$ 's is alternatively interlaced with $n-j J_{0}$ 's. The length of $T$ is $t=3(n-j)+i$. Note that:

$$
\begin{aligned}
x_{2}-x_{1} & =P\left(T \mid I_{j+1} \text { works, } I_{i-1} \text { fails }\right) p_{j+1}\left(1-p_{i-1}\right) \\
& -P\left(T \mid I_{j+1} \text { fails, } I_{i-1} \text { works) }\left(1-p_{j+1}\right) p_{i-1} .\right.
\end{aligned}
$$

Let $q_{l}$ denote the probability that $T_{l}$ works. For odd $i$ we have:
$q_{l}=p_{j+l} \leqslant p_{i-l}=q_{t+1-l}$, for odd $l, 1 \leqslant l \leqslant i-1$,
$q_{l}=p_{j+l} \geqslant p_{i-l}=q_{t+1-l}$, for even $l, 1 \leqslant l \leqslant i-1$,
$q_{l} \leqslant 1=q_{t+1-l}$, for odd $l, i \leqslant l \leqslant[t / 2]^{+}$,
$q_{l} \geqslant 0=q_{t+1-l}$, for even $l, i \leqslant l \leqslant[t / 2]^{+}$.
By lemma 2, we have:

$$
\begin{aligned}
& P\left(T \mid T_{1} \text { works, } T_{t} \text { fails }\right) q_{1}\left(1-q_{t}\right) \leqslant P\left(T \mid T_{1}\right. \text { fails, } \\
& \left.\quad T_{t} \text { works }\right)\left(1-q_{1}\right) q_{t}
\end{aligned}
$$

Therefore, for odd $i$, we have $x_{2}-x_{1} \leqslant 0$. Similarly, for even $i$, we have $x_{2}-x_{1} \geqslant 0$.

Proof of theorem 2: If $i$ is odd, then $p_{i}=q>p=p_{j}$. The fact that $p_{i+1}=p_{i+2}=\ldots=p_{j-1}=q$ makes it clear that the inequalities (5) in theorem 1 are satisfied. Furthermore,
$p_{0}=1 \geqslant p_{j+1}$
$p_{i-k}=q \geqslant p_{j+k}$ for $k$ odd, $1 \leqslant k<i-2$,
$p_{i-k}=p \leqslant p_{j+k}$ for $k$ even, $2 \leqslant k \leqslant i-1$.
So the inequalities (4) are also satisfied. It follows that $P\left(S_{i j}\right) \geqslant \mathrm{P}(S)$.

An analogous argument takes care of the even $i$ case. Further, we have:
$p_{0}=1>p_{j+i}$ and $p_{i}=q>p=p_{j}$.
Note that $p_{j+i}<1$ because $p_{j+i}=1$ implies $j+i=n+1$ and $S=$ reverse of $S^{*}$, a contradiction. By the remark following theorem 1, we obtain $P\left(S_{i j}\right)>P(S)$.

Proof of theorem 3: We prove theorem 3 by induction on $n$. Theorem 3 is trivially true for $n=3$. For $n>3$ we assume that $a, b, c$ are all nonzero, for otherwise either theorem 3 is trivial or theorem 2 applies. Let $S=\left(I_{1}, I_{2}\right.$, $\ldots, I_{n}$ ) be an optimal sequence and again add two items $I_{0}$ and $I_{n+1}$ of type 1 to $S$. Let $I_{i_{0}}=I_{0}, I_{i_{1}}, I_{i_{2}}, \ldots, I_{i_{c}}, I_{i_{c+1}}=$ $I_{n+1}$ denote the $c+2$ items of type 1 . Let $S_{k}$ denote the sequence of items between $I_{i_{k-1}}$ and $I_{i_{k}}$ in $S$. Then-
$P(S)=\prod_{k=1}^{c+1} P\left(S_{k}\right)$.
Note that we can permute the $S_{k}$ 's without affecting $P(S)$.
We show that if $\left(p_{1}, p_{2}\right) \neq(p, 1)$ in $S$, then we can always find a sequence $S^{\prime}$ such that $\left(p_{1}^{\prime}, p_{2}^{\prime}\right)=(p, 1)$ and $P\left(S^{\prime}\right) \geqslant$ $P(S)$. Note that $S^{*}\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ is $\left(I_{i_{1}}, I_{i_{n}}\right)$ juxtaposed with $S$, where $S$ is the reverse of $S^{*}\left(I_{i_{2}}, I_{i_{3}}, \ldots, I_{i_{n-1}}\right)$. Now ( $p_{i_{1}}$, $\left.p_{i_{n}}\right)=(p, 1)$ and by the induction hypothesis $S$ is an optimal sequence for $n-2$ items consisting of $a-1$ items of type $p$, $b$ items of type $q$, and $c-1$ items of type 1 . Therefore-
$P\left(S^{*}\right) \geqslant P\left(S^{\prime}\right) \geqslant P(S) \geqslant P\left(S^{*}\right)$,
i.e., $S^{*}$ is an optimal sequence.

We now show the existence of $S^{\prime}$ with the specified properties.

Since $a \geqslant 1$ one of the $S_{k}$ must contain an object of type $p$. Since permuting $S_{k}$ 's does not affect $P(S)$, we may assume that $S_{1}$ contains an object of type $p$. Let $I_{11}, I_{12}, \ldots$ $I_{1 m}$ denote the items in $S_{1}$. From theorem 2 we may assume that $S_{1}=S^{*}\left(I_{11}, I_{12}, \ldots, I_{1 m}\right)$. Therefore $p_{1}=p$. Now if $I_{12}$ does not exist, i.e., $S_{1}=\left(I_{11}\right)$, then $I_{2}=1$ and we are through with $S^{\prime}=S$. If $I_{12}$ exists, define $I_{i}=I_{12}, I_{j}=I_{i_{1}}$ and $S^{\prime}=S_{i j}$. Then $p_{2}^{\prime}=1$. We show $P\left(S^{\prime}\right) \geqslant P(S)$.

First note that $i_{1}<n$ for otherwise we can interchange $I_{j-1}$ with $I_{j}$ and obtain a strict improvement. Hence $i-1 \leqslant$ $n-j$. Let $m=[(j-i+1) / 2]^{+}$. By using the definition of $S^{*}\left(I_{11}, I_{12}, \ldots, I_{1 m}\right)$, it is straightforward to verify that:
$p_{i}<1=p_{j}$
$p_{i+k} \geqslant p_{j-k}$ for $k$ odd, $0 \leqslant k \leqslant m$,
$p_{i+k} \leqslant p_{j-k}$ for $k$ even, $0 \leqslant k \leqslant m$.
Furthermore,
$p_{i-1}=p_{1}=p \leqslant p_{j+1}$,
$p_{i-2}=p_{0}=1 \geqslant p_{j+2}$.
It follows from Theorem 1 that $P\left(S^{\prime}\right) \geqslant P(S)$.
Proof of theorem 4: We prove theorem 4 again by induction on $n$. Theorem 4 is trivially true for $n \leqslant 3$. If $a, b$ and $c$ are not all positive, then again theorem 4 is either trivial or follows from theorem 2. Therefore we assume $n>3$ and $a$, $b, c$ are all positive.

Let $S=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ be an optimal sequence. We show that we may assume that $I_{1}$ is of type 0 . If not, let $I_{j}$ be the first item of type 0 . We assume $j \neq n$ for otherwise we will consider the reverse of $S$. Suppose that $I_{j+1}$ is of type $r^{\prime}$ where $r^{\prime}$ is either $p$ or $q$. Then since $I_{j+1}$ must work,

$$
\begin{aligned}
P(S) & =P\left(I_{1}, I_{2}, \ldots, I_{j}\right) r^{\prime} P\left(I_{j+2}, I_{j+3}, \ldots, I_{n}\right) \\
& \leqslant P\left(S^{*}\left(I_{1}, I_{2}, \ldots, I_{j}\right)\right) r^{\prime} P\left(I_{j+2}, I_{j+3}, \ldots, I_{n}\right) .
\end{aligned}
$$

Therefore we may assume that $\left(I_{1}, I_{2}, \ldots, I_{j}\right)=S^{*}\left(I_{1}, I_{2}\right.$, $\ldots, I_{j}$ ) and $I_{1}$ is of type 0 .

Suppose that $I_{2}$ is of type $r$. Since $I_{2}$ must work,

$$
\begin{aligned}
P(S) & =r P\left(I_{3}, I_{4}, \ldots, I_{n}\right) \\
& \leqslant r P\left(S^{*}\left(I_{3}, I_{4}, \ldots, I_{n}\right)\right) .
\end{aligned}
$$

Clearly, we may assume that $r$ is either $p$ or $q$. Suppose $r=$ $p$. Let $i=2$ and let $I_{j}$ be the first item of type $q$. By theorem 1, we can verify that $P\left(S_{i j}\right) \geqslant P(S)$ straightforwardly. Therefore, we may assume that $I_{2}$ is of type $q$. Since $S$ works only if $I_{2}$ works,

$$
\begin{aligned}
P(S) & =q P\left(I_{3}, I_{4}, \ldots, I_{n}\right) \\
& \leqslant q P\left(S^{*}\left(I_{3}, I_{4}, \ldots, I_{n}\right)\right)
\end{aligned}
$$

$$
=q P\left(\text { the reverse of } S^{*}\left(I_{3}, I_{4}, \ldots, I_{n}\right)\right)
$$

$$
=P\left(S^{*}\left(I_{1}, I_{2}, \ldots, I_{n}\right)\right)
$$

Therefore $S^{*}\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ is optimal.

## REFERENCES

[1] D.T. Chiang, S.C. Niu, "Reliability of consecutive- $k$-out-of- $n$ :F systems," IEEE Trans. Reliability, vol R-30, 1981 Apr, pp 87-89.
[2] C. Derman, G.J. Lieberman, S.M. Ross, "On the consecutive $k$-of-n system," Operations Research Center Report, Univ. Calif., Berkeley, ORC 80-25, November 1980. Also IEEE Trans. Reliability, vol R-31, 1980 Apr, pp 52-63.

## AUTHORS

F.K. Hwang; Bell Laboratories; Murray Hill, NJ 07974 USA.
F.K. Hwang received the BA (1960) from National Taiwan University and Ph.D. (1968) in Statistics from North Carolina State University. He has been a member of technical staff at the Mathematics and Statistics Research Center of Bell Laboratories since 1967. He is the author of more than a hundred technical papers in mathematics.
V.K. Wei; Bell Laboratories; Murray Hill, NJ 07974 USA.

Victor K. Wei is a member of technical staff at Bell Laboratories, Murray Hill, NJ. He received his BS in Electrical Engineering/Information Science (1976) from National Taiwan University and his Ph.D. in Electrical Engineering (1980) from the University of Hawaii. His research interests include Shannon-type information theories, error-correcting codes, and combinatorial mathematics. He is a member of IEEE and the Mathematical Association of America.

## V.T. Sös; Eötvös Loránd University; Budapest, HUNGARY.

V.T. Sös received her diploma in mathematics and physics, and her Ph.D. from the Eötvös Loránd University at Budapest in 1952 and 1957, respectively. She is now an associate professor at the same university and also head of the research group on combinatorics at the Mathematical Institute of the Hungarian Academy of Science. Her fields of research are combinatorial theory and diophantine approximation. She is currently on the editorial boards of many international journals in combinatorics. In 1975 she was rewarded the Tibor Szele Prize of the Bolyai Mathematical Society granted for creating scientific schools.

Manuscript TR82-81 received 1982 July 23; revised 1982 December 18.

