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Intersection Properties of Subsets of Integers 

MIKLOS SIMONOVITS AND VERA T. SOS 

Let {AI. . .. , AN} be a family of subsets of {1, 2, ... , n}. For a fixed integer k we assume that 
AinAj is an arithmetic progression of ~k elements for every 1,,;;;i<j,,;;;N. We would like to 
determine the maximum of N. For k = 0, R. L. Graham and the authors have proved that 

For k ~ 2, the extremal and asymptotically extremal systems have 

For k = 1, the maximum is between 

and 

We conjecture that the lower bound is sharp. 

( 
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INTRODUCTION 

Intersection properties of sets have been widely investigated by many authors. One 
type of theorems proved for them has the following form [9]. Let S be an n-element 
set and AI. ... , AN £ S, 1 £ [1, n]. Assume that IAi I1Ajl E 1 for 1,,;;;; i <j ,,;;;;N. How large 
can N be under this condition, depending on n and I? Thus, e.g., the de Bruijn-Erdos 
theorem [1] asserts that if IAi I1Ajl = 1 for all i ~ j, then N,,;;;; n. There are different 
extremal systems in the de Bruijn-Erdos theorem, but all they are known. 

Another typical example of intersection theorems is the well known result of Erdos, 
Ko and Rado [2]: If IAil = k and 

assuming that n ~ 2k. 
In these and many other similar examples S has no structure. We were looking for 

intersection theorems where S is endowed with some structure and Ai I1Aj has some 
prescribed substructure: instead of having conditions on the cardinality of Ai I1Aj we 
have conditions on its structure [4,5,6]. * Thus in [5, 6] we had graphs on S and assumed 
that, e.g., Oi 11 OJ is a path or a cycle, ... and so on. Here we assume that S = {l, 2, ... , n} 
and that Ai I1Aj is an arithmetic progression-the simplest non-trivial structure on the 
integers. Let IPk denote the family of arithmetic progressions of at least k elements. 

PROBLEM. If k is fixed and AI. ... ,AN £ {1, 2, ... ,n} := [1, n] and if Ai I1Aj E IPk' 
how large can N be? The maximum N is denoted by fen, IP k ) and the systems attaining 
the maximum are called extremal. (In heuristic arguments, if N is near to the maximum, 
then AI. . .. , AN will be called almost extremal.) 

* See also our survey paper [8]. 
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For k = 0, R. L. Graham and the authors [4] proved that 

fen, Po) = G) + G) + (~) + 1 

and the only extremal system consists of the subsets of [1, n] of at most three elements. 
Here the intersections have at most two elements. If we wish to have non-degenerate 
arithmetic progressions as intersections, we have to assume that k;;3 3. Surprisingly, 
fen, Pk ) depends on k very weakly if k ;;3 2. 

THEOREM 1. Let k ;;3 2 be fixed and A!, . .. , AN S; [1, n]. Let Ai n Ai E Pk for every 
1:o;;,.i<j:o;;,.N. Then 

and (1) is sharp,for any k;;3 2. 

REMARK 1. Let A!, . .. , AN be arithmetic progressions of form 

Ai = {[i] + jd: j = -a, -a + 1, ... , -1, 0,1,2, ... , b} 

(1) 

for some d:o;;,.n~, .J;;:o;;,.b:o;;,.n/2d and a:o;;,.n-1/2d. Obviously, AinAi is an arithmetic 
1 

progression with ;;3n 6 elements and 

N = :2 (~:2+ 0 (1)) = (;; +0(l))n2, (2) 

showing that (1) is sharp. 
In the above example we constructed a system of subsets where the intersections were 

arithmetic progressions just because the sets themselves were also arithmetic progressions. 
What happens, if we exclude this? The next theorem shows that in any almost extremal 
system almost all the sets are arithmetic progressions, the number of non-arithmetic 
progressions is O(n~ log3 n). Even more, if we have a system of subsets of [1, n], say 
A I. ... ,AM, no one of which is an arithmetic progression and the intersection of any 
two of which is an arithmetic progression, then M = O(n~ log3 n), even if these sets do 
not belong to an almost extremal system. 

THEOREM 2. Let k;;32 and AI. ... , AN S; [1, n]. Assume that no Ai is an arithmetic 
progression but Ai n Ai E Pk for every 1:0;;,. i < j:o;;,. k. Then 

5 3 
N = O(n' log n). (3) 

Here (3) can be improved but since we do not know whether the exponent ~ is sharp 
or not, we do not care about getting rid of log3 n. On the other hand we did care about 
getting n ~ instead of n ~+e: some tricks in the proof were needed just for this purpose. 

It would be interesting to know what happens if we allow IAi nAil = 1. It is natural 
to conjecture that one extremal system for Pi is the system of sets of form {c, x, y} where 
c is fixed; c, x, y E [1, n] are not necessarily different. This construction yields that 

fen, Pi);;3(n ~ 1) +n = G) + 1. (4) 

There exist some other equally good constructions, given at the end of this paper. 
Therefore, if we have equality in (4), then there are many extremal systems. Unfortu
nately, we can prove only a weaker bound on fen, Pi), namely, the following theorem. 
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THEOREM 3. 

REMARK 2. We can improve the upper bound in Theorem 3, but we cannot prove _ 
the conjecture stated above. * 

The following theorem is slightly technical. Its main point is that if Ais are not too 
large and their intersection is empty, then Theorem 3 can be improved in term of the 
upper bound on lAd. 

THEOREM 4. Let Ah ... ,AN <;; [1, N], IAil ~ a for i = 1,2, ... ,n, and assume also 
that no Ai is an arithmetic progression. If the intersection Ai n Aj is always an arithmetic 
progression (1 ~ i < j ~ N) and n:-:, 1 Ai = 0, then 

(a) 5 3 N ~ an - 2 + O(n'log n). (6) 

Now, our plan is the following: first we prove Theorem 4, then observe that Theorem 
2 follows by exactly the same argument. To prove Theorem 1 we shall separate the 
arithmetic progressions and estimate their number by 1r2/24 . n 2 + O(n . log n). Finally 
we prove Theorem 3 using Theorem 4. In this last step we shall restrict our considerations 

2 

primarily to those Ais which have at most n 3" elements. Then Theorem 4 (applied with 
a = n~) yields an O(n j log3 n) term. This is why we needed it. 

PROOF OF THEOREM 4 

Our basic tool is the notion of the v and 8-triplets. 

DEFINITION 1. Given a system AI, . .. ,AN <;; [1, n], triplet {x, y, z} is called determin
ing or 8-triplet if it belongs to exactly one Ai. Otherwise it is a non-determining, or 
v- triplet. 

LEMMA 1. Let 1> c > 0 be fixed and A h ... , AM <;; [1, n] be given sets. Let Ai n Aj E 

!PI for 1 ~ i <j ~M. If IA11 = h > n C
, then for every x EA1 and t~ h/20 (torn> no(c» either 

(i) A 1 contains an arithmetic progression of at least n - t elements or 
(ii) A 1 contains at least th/50 log h 8-triplets of form {x, y, z}. 

PROOF. Let Al = {Uh U2, ••• , Uh} where U1 < U2 < ... < Uh. If x = Uio' we may assume 
that io < h/2, that is, at least h/2 elements of A 1 are above x. Now these elements are 
split into three segments: 

A'={ui: io<i~~h}, 

A" = {Ui: ~h < i ~-loh}, 
I A' 

i ••••• ( tr ••• ) 
A" AlII 

.l(e •••• , 

A ",-{ . ·>.Lh} - Ui. I 10 • 

1 x II =15 

(a) If for every Yo E A" there are at least h/log h 8-triplets of form (x, Yo, z), then we 
have at least k (h 2/1og h) 8-triplets and we are home. 

(b) Assume that there is a Yo E A" for which all but (h/log h) z define a v-triplet (x, Yo, z). 
Then all but h/log h integers z E [x, Yo] can be covered by at most n e arithmetic progressions 

* In [7], overlooking a term, we stated that we can. 
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Ph . .. ,p" for e = ella and n sufficiently large. Indeed, since (x, Yo, z) is a v-triplet, 
x, Yo and z are contained not only by A 1 but also by some other Ai(z), i (z) ,e 1. Therefore, 
if 

P(u, v, w) denotes the minimal arithmetic progression containing u, v and w, 

then P(x, Yo, z) s;; Al n Ai(z) S;; A 1. The segment P(x, Yo, z) n [x, Yo] is also an arithmetic 
progression with fixed endpoints x and Yo, therefore it is determined by its difference 
d. Since x - Yo has at most n E divisors (if n is sufficiently large) [3], the assertion is proved. 

(c) Now we shall construct many 8-triplets (x, y, z) by taking large arithmetic pro
gressions R j S;; A j, containing x, a z ~ R j and y = x + pd 10 where d 1 is the difference of R 1 

and p is coprime with z - x. Two cases will be distinguished: first we consider the case 
when Al contains a relatively long arithmetic progression, then the situation when it 
does not. 

Assume that 01 E IP'h 01 S;; A 10 min 01 = x, and 1011;;:. h120. Let the difference d 1 of 
01 be the minimum under these conditions. Let R 1 be a maximal arithmetic progression 
in Al containing 01. We shall prove that 

if z E Al - R 10 P > hi 40 and p is coprime with z - x, then (x, x + pdh z) is a 8-triplet, 
(p,,;;;; hI20!). 

Assume the contrary. Then the induced arithmetic progression 0' = P(x, x + pd 10 z) is 
in AI. Let d' be the difference of 0'. We know that d',ed h since ZEO' but Z~R1' 
Further, d'ld h since x, x +pd1 EO', that is, pd1 = qd', butp is relative prime to z -x = kd'. 
Hence d',,;;;; !dh and therefore 0" = {x + jd': j = 0, 1, 2, ... , [hI20]} S;; AI: Indeed, it is at 
least twice as dense as 010 and contains y = x + pd1 = X + rd' for p > hi 40, that is, for 
r> h120. This is a contradiction: 0" should have been chosen instead of 01. 

Let us count these 8- triplets. If IA 1 - R 11 = t, then for each z E Al - R 1 we exclude 
O( log n) primes dividing z - x and,,;;;; h/35 log h other primes. However, we still have 
at least hl50 log h primes for which (x, x + pdh z) is a 8-triplet. This proves the assertion. 

(d) Assume now that each arithmetic progression containing x has at most hl20 
elements from [x, n]. In (b) we have covered all but at most hllog h elements of [x, Yo] 
by at most n E arithmetic progressions Ph ... ,P". We may assume that none of these 
PjS is contained in some other Pj. Some of them may be extended beyond [x, Yo]: let R j 
be the maximal arithmetic progression in [x, n] containing Pj' If s is the minimum integer 
for which 

h 
IR1 uR2 u'" uRsl;;:. 20' 

then for A + := Am - Uj;.,s R j we know that 

IA+I;;:.~, 

(7) 

(8) 

since IR1 u R2 u' .. u Rjl increases by at most hl20 when we pass from j to j + 1, and 
hence IUj<>sRjl,,;;;;h/10; further, IA"'I;;:.!oh. 

Take all the triplets (x, x + pdj, z) for j = 1, ... , s, Z E A +, where dj is the difference of 
R j and p is a prime not dividing Yo - x and z - x. 

We show that these triplets are all 8-triplets, each counted only once and that their 
number is at least 

(9) 

(i) Indeed, a slight modification of the argument of (c) yields that they are all 
8-triplets: if not, then we would get a 0" := {x + ld': I = 0,1,2, ... } joining x to 
Yo, and containing Pj and being at least twice as dense. 
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(ii) In theory it could happen that 

(x, x + pdi, z) = (x, x + p' db z) (i -,t j). 

However, this would imply that pdi = p'dj. If p = p', then di = db therefore i = j, 
and we are home. If p -,t p', then, by symmetry, we may assume that pldj. But 
we know that dj Iyo - x and we assumed that p is relative prime to Yo - x, a 
contradiction. 

(iii) Each R j with k j := IRjl elements yields (1- 0(1)) ki/log k j primes p, by the prime 
number theorem (j = 1, 2, ... ,s). This is the point where we use (b): since the 
number of PjS covering [x, Yo] is only o(h), we may easily see that IPJ-~oo for 
j:os; s, if, e.g., we take that very permutation of P1. ... , Ph' for which the size is 
decreasing. If IPjl ~ 00, then the prime number theorem can be applied. Thus, 
we get altogether at least 

h k j h 1 
(1- 0(1)):5 L log k j ;;. (1- 0(1)):5' log h L k j (10) 

o-triplets: Z E A + can be chosen in at least hiS ways, and excluding the primes 
dividing Yo-X or z-x means only excluding 2.logn=0(kj/logkj) primes. 
(This is, where we use that h > nC). Since kl + ... + ks ;;' h/20, (10) immediately 
implies (9). This completes the proof of the lemma. 

LEMMA 2. Let A 1. ... , AM <;; [1, n], and assume that no Ai is an arithmetic progression 
but Ai n Aj is an arithmetic progression, 1:os; i < j :os; M. Assume that there is an integer 
c E [1, n] contained by each Ai and an s-element set S <;; [1, n] - {c}, such that S n Ai -,t 0 
i = 1, 2, ... ,M. Then for every e > 0 

M:os;sn-G)+O(n1+E). (11) 

We need the following definition. 

DEFINITION 2. Let P <;; A be a maximal arithmetical progression (with respect to <;;) 

and Z E A - P. We denote the infinite extension of P by pOO(P) and call Z external or 
internal according to whether Z E pOO(P) or not. 

REMARK. Observe that if Z E p oo
, then we call it external. The reason for this is, that 

in this case it makes no real trouble. We could say that it does not belong to P only 
because we have forgotten some elements of A. The following example illustrates the 
definition: 

A = {1, 3, 4, 5, 7,15, 20} and P = {1, 3, 5, 7}. Now 15 is external, 20 and 4 are internal. 

PROOF. We shall subdivide IF = {A 1. ... , AM} into four subfamilies 1F1. 1F2' 1F3 and 1F4 
as follows: 

IF 1 is the family of Ais containing a maximal arithmetic progression Pi :3 C and an 
external Zi. 

For all the other Ais we fix a Yi E Ai n S. 
1F2 = {Ai E IF -IF 1: there exists a Zi E Ai - {Yi' c} such that (c, Yi, Zi) form a IS-triplet for IF}. 
1F3={AiEIF-1F1-1F2: Ain[c,Yi] is an arithmetic progression and if Pi denotes the 

maximal arithmetic progression containing Ai n [c, Yi], then there is an internal Zi 
for this Ai and PJ. 

If Ai E 1F3, let us fix a corresponding Pi and a Zi. Finally, 
1F4 =1F- IFI-1F2-1F3. 
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(a) We give an upper bound on IIF 11. Given Zi, the difference di of Pi divides Zi - e. We 
put di < 0 if e = max Pi and di > 0 otherwise. Clearly, e, di and Zi determine Ai uniquely 
by Ai I1Aj E [P't. Hence 

11F11::;;;2 L d(k)::;;;2n 1+e
, 

k~n 

where d(k) is the number of divisors of k. As a matter of fact, Lk"'n d(k) = 
O(n log n), [3]. 

(b) Let D(Ai) be a triple defined for each Ai E 1F2 U 1F3 as follows: 
if Ai E 1F2' we choose a determining triplet (e, Yi, Zi) for IF. This is D(Ai). 
If Ai E h, we choose a Pi and Zi according to the definition above. Again, D(Ai) = 
(e, Yi, Zi). 

We show that for 1F2UIF3 D(Ai ) is a determining triplet (though it may happen that 
for Ai E IF 3 D (Ai) is not a 8- triplet for -the whole IF). The only case to be considered is 
when Ai, Aj E 1F3. Clearly, if Yi = Yio then Zi ~ Zj. 

Indeed, if (as above), pCO(P) denotes the doubly infinite extension of the arithmetic 
progression P, by definition 

Zi~ pCO(P;) 2. pCO(Ai I1A j 11 [e, Yi]) 2.Ai I1A j. 

The other case, Yi = Zio Yj = Zi can be eliminated as weB: let d* be the difference of 
p* = Ai 11 A j. Then djld*, since, by definition, Aj is an arithmetic progression between e 
and Yio namely, Pj 11 [e, Yj];;2 P* 11 [e, yJ. But djld* implies that Zj = Yi E p* is external, a 
contradiction. Hence D(Ai) = (e, Yi, Zi) is different for different is (Ai E 1F2 U 1F3)' Therefore 

(c) The basic idea we use to estimate 11F41 is that an Ai E 1F4 is the union of arithmetic 
progressions and the set of their differences characterize Ai. 

Let Pi £; Ai E IF 4 be a lnaximal arithmetic progression joining e and Yi and having the 
smallest difference. Since Ai ~ IF I. if Ai ;;2 Pi ;;2 Pi is a maximal arithmetical progression, 
all Z E Ai - Pi are internal. Since Ai~ 1F2' all Z E Ai - Pi yield v-triplets with e and Yi. Since 
Ai~1F3, Ail1[e, Yi]~Pi' Choose a Zi EAi l1[e, Yi]-Pi, Now, (e, Yi, Zi) is a v-triplet: there 
exists a maximal pt E PI. p t £; A i, joining e to Yi through Zi. It is trivial that (Pi U pt) 11 

[e, Yi] cannot be contained by any arithmetic progression £; Ai which means that for 
given Yi Pi 11 [e, Yi] and pt 11 [e, Yi] uniquely determine A i E IF 4. Since they are determined 
by the corresponding differences di and dt which divide Yi - e, therefore 

11F41 = O(sn2E). 

PROOF OF THEOREM 4. We split the Ais into the classes 

IF * = {Ai: IAil::;;; n ~}, 
1 1.. ~ 

IF v={Ai:2v::;;;IAd<2 V+} ifn 3 <2- <n 3 

and 

IF*** = {the other Ais} £; {Ai: lAd;;;. n i }. 

(al) If each Ai E IF* intersects Al E IF* in at least two points, then IIF*I = O(n~). Indeed, 
we fix a ej E Al and put Sj = Al - {cj}. Then we apply Lemma 2 with this e; and Sj and 
sum up the results. Each Ai E F* is counted at least twice : 

IIF*I < IAll (IAlln + O(n 1+E)) = O(n ~ ). 



Intersection properties of subsets of integers 369 

(a2) If on the other hand, e.g., IAI nA21 = 1 (At, A2E IF*), then we put {c} =AI nA2 
and choose an A3 ~ C ••• (A3 E IF* is not necessarily true). We apply Lemma 2 first to 
the Ais containing c, with S = A3: their number is at most 

an - (~) + O(n i). 

Then we apply Lemma 2 to each Ci E (A I U A 2) - {c} and Si = (A I U A 2) - {C, Ci} and 
get,;;; 2n~ + O(n 1+E) sets for each j. This yields altogether 

IIF*I,;;; an - (~) + O(n ~): 

each Ai E IF* was counted above at least once and, obviously, IA I U A 21,;;; 2n i. Thus the 
I 

ISiis and the number of js are ,;;;2n3. 
(b) We fix a /I E [t log2 n, ~ log2 n). Let HE IF V> h = IHI = maxA;EF.lAd and Xi E A j nH 

be fixed for each Ai E IF v' Let 

IF ~ =: {Ai E IF v: Ai contains ~ 10:: h 8- triplets (Xi, U, v)}, 

IF ~ =: IF v -IF ~. 

Clearly, if i E H is fixed, we have at most 

(n-1)/~ = 0 (112 . log2 n) 
2 log2 h h 2

' 

Ai E IF ~ with Xi = i. Thus 

I 'I (n2 2) ~ 2 IF v = 0 h' log n = O(n 3 log n). (12) 

To estimate IIF ~I we apply Lemma 1 to each Ai E IF~, Xi E Ai n Hand t = [h/log3 
h]. Thus 

we get a maximal arithmetic progression Pi £; Ai with 

(13) 

By the way, P j is independent of Xi E Ai nH, since Ai can contain at most one such Pi. 
Let di > 0 denote the difference of Pi. We show that for given i and d there exist at most 
2n Ais for which Xi = Xi = i and di = di = d. 

Indeed, in this case we shall call a Pi "high" if at least half of its element are above 
i, otherwise Pi is "low". If, e.g., both Ai and Ai are "high", then 

(14) 

otherwise a Z E .:iii and Pi n Pi (both contained in Ai n Ai) would induce an arithmetic 
progression p* with difference ,;;;d/2. It is easy to see that this is impossible. Since 
Ai - Pi ¥- 0, we get at most n "high" Ais for each i and d. 

Unfortunately, we thus get only that 

(15) 

since i can be chosen in ~h ways, d in ,;;;2n/ h ways. To improve (12) we shall prove that 

One can choose Xi E Ai n H so that (Xi E Pi, (9) holds and) for each d ~ 2n/ hand 
for all but at most two X E H there are at most 4h As with Xi = i and d j = d. 

(*) 
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This will imply 

I "I 2n h 2n O( ~) IFv ~-,; •• 4h+-,;. 4n = n3 (16) 

since d and i can be chosen in ~2n/ h . h ways and then Ai can be chosen mostly in 
~4h ways. This yields the first term. The second one comes from the two exceptional 
id and id contained in at most 2n Ais. Clearly, (16) will suffice. 

(c) Assume, indirectl~, that (*) does not hold: for some d there are at least three 
exceptional xs say i, i, i. 

(CI) We may assume !hat at least 2h Ais in (*) are of the same type, e.g. for i and i 
the PiS are "high", for i "low". Thus for the index sets 

1= {i: Xi = i, di = d, Ai is "high"}, 

J = {i: Xi = i, di = d, Ai is "high"}, 

K = {i: Xi = 1. di = d, Ai is "low"}, 

we have III>2h, IJI>2h, IKI>2h. 
We prove that i == i == 1 (mod d). Assume the contrary, e.g. i=!= i (mod d). Hence 

PinPj = 0 if iEI,jEJ. 
Restricting ourselves to the set {i + jd: j = 0, ±1, ±2, ... } = 15, the sets Pi (i E 1) are 

subintervals of it and Ipil < h, Pi 3X. Hence IUiElPil ~2h -1. The sets Aj -Pj are pairwise 
disjoint while j EJ and IJI > 2h, hence we can find ajo EJ for which (A jo - Pjo) n (UiEIPi) = 
0. This means that Ajon(UiEIPi) = 0 (since PionPi = 0 by x=!=i (mod d)). Thus the 
III pairwise disjoint sets Ai - Pi (i E 1) do intersect A io' i.e. IAiol ~ III > 2h. This is a 
contradiction, proving that x == i == 1. We may assume that x < i < i. 

(C2) Observe that above we used only that 
(i) {Pi: i E I} consists of PiS of the same type: either they are all "high" or they 

are all "low". (This ensures that (Ai - Pi)s are disjoint.) Of course, we used this for 
J and K as well. 

(ii) Further, we used that if i E I an~ j E J, then Pi n Pi = 0. 
Now let us replace Xi = i and Xi = i by Xi = i whenever we can: if i E Pi. (The PiS 

remain unchanged, since they are uniquely determin~d by Ais as observed earlier.) After 
this step for every Pi and Pi corresponding to i and i respectively Pi n Pi = 0, since 

max Pi < i < min Pi' 

As we have mentioned, if even after the alteration both x and 1 remain exceptional, 
that is belong to ~4h Ais, then we may take 2h Ais corresponding to i and 2h AiS 
corresponding to 10f the same type ("high" or "low") ~nd repeat the argument of (CI). 

This contradiction shows that either x or 1 ceased to be exceptional after the alteration. 
We can iterate this step until at most two is are exceptional. This completes the proof 
of (16). 

(d) If IAi I ~ n~, then by Lemma 1 (applied with t = 1) Ai contains at least I~O n ~ flog n 
2 

8-triplets: for each X E Ai we have at least n3/100 log n 8-triplets. Since the total number 
of 8-triplets is at most G), the number of these Ais is ~20n~ log n. 

(e) Adding up the estimates in (a), (b) and (c) we obtain the upper bound needed. 

PROOFS OF THEOREMS 1 AND 2 

PROOF OF THEOREM 2. We can repeat the proof of Theorem 4 word by word with 
the only exception that in (a) we always have the first case: each Ai E IF* intersects Al 
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in at least two points. Thus 

To prove Theorem 1 we need the following lemma. 

LEMMA 3. If AI, . .. , AM E!P3 and Ai nAj ¥- 0, then 
2 

7T 2 
M~24 n +O(n logn). 

Obviously, Lemma 3 and Theorem 2 imply Theorem 1. 

371 

PROOF OF LEMMA 3. For a fixed d we consider the Ais with the difference d. Clearly, 
they belong to the same congruence class Id,a = {l E [1, n]: I == a (mod d)}, since Ai n Aj ¥-
0. In this Id = I d,a(d) each Ai is an interval, hence n Ai ¥- 0 for them. Let Cd E A j, then 
their number is at most t(IIdl + 1)2. Hence 

n 2 2 n 7T 2 
M ~t d2+ O(n log n)~24 n + O(n log n). 

PROOF OF THEOREM 3 
s 

In the proof of Theorem 4 (a2) is the only step allowing more than O(n' log n) Ais 
and all the Ais have a common element c. Thus we may neglect all the A j ~!P}, A j ~ C 

and restrict our considerations to the following two families: 

By Lemma 3, 

IFI =: {A j 3C: Aj~ !PI}, 

1F2 =: {A j : A j E !PI}' 

2 

11F21~;4 n2+0(n logn). 

IIF II will be estimated as follows: 
If A j E IF}, then C E A j. Let Ci E Ai be one of the neighbours of C (i.e. (c, Cj) nAj = 0). 

Let Pj s;;; A j be a maximal arithmetic progression of the form {c + l(cj -c)}. Since Aj~!P}, 
we can fix a Zj E A j - Pj. Trivially, {c, Cj, Zj} is a 8-triplet. Hence 

OPEN PROBLEMS 

Among the many open problems connected with these theorems two seem to be the 
most closely related to them. 

PROBLEM 1. Can one prove that N ~ (n ~ 1) + n in Theorem 3 if n > no? 

The estimate of Theorem 3 can easily be improved but we think one should be able 
to prove, that the best choice of A I, .•. , AN in Theorem 3 is if they are all the subsets 
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of [1, n] containing a fixed c and having at most three elements. If this is true, then 
there are other extremal systems as well, e.g. {c} can be replaced by [1, n]-{c} or some 
triplets {c, c + x, c + 4x} can be replaced by {c, c + x, c + 2x, c + 4x}, and some triplets 
{c - x, c, c + 2x} can be replaced by {c - x, c + x, c + 2x}. Probably these are all the 
extremal systems. 

PROBLEM 2. Let At. . .. ,AN be an extremal system for some d ~ 2 in Theorem 2. 
Is it true, that each Ai is in 1P'2? 
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