# Intersection Properties of Subsets of Integers 

Miklós Simonovits and Vera T. Sós

Let $\left\{A_{1}, \ldots, A_{N}\right\}$ be a family of subsets of $\{1,2, \ldots, n\}$. For a fixed integer $k$ we assume that $A_{i} \cap A_{i}$ is an arithmetic progression of $\geqslant k$ elements for every $1 \leqslant i<j \leqslant N$. We would like to determine the maximum of $N$. For $k=0, \mathrm{R}$. L. Graham and the authors have proved that

$$
N \leqslant\binom{ n}{3}+\binom{n}{2}+\binom{n}{1}+1
$$

For $k \geqslant 2$, the extremal and asymptotically extremal systems have

$$
\left(\frac{\pi^{2}}{24}+o(1)\right) n^{2} \text { sets. }
$$

For $k=1$, the maximum is between

$$
\binom{n}{2}+1 \text { and }\left(\frac{\pi^{2}}{24}+\frac{1}{2}+o(1)\right) n^{2} .
$$

We conjecture that the lower bound is sharp.

## Introduction

Intersection properties of sets have been widely investigated by many authors. One type of theorems proved for them has the following form [9]. Let $S$ be an $n$-element set and $A_{1}, \ldots, A_{N} \subseteq S, I \subseteq[1, n]$. Assume that $\left|A_{i} \cap A_{j}\right| \in I$ for $1 \leqslant i<j \leqslant N$. How large can $N$ be under this condition, depending on $n$ and $I$ ? Thus, e.g., the de Bruijn-Erdös theorem [1] asserts that if $\left|A_{i} \cap A_{j}\right|=1$ for all $i \neq j$, then $N \leqslant n$. There are different extremal systems in the de Bruijn-Erdös theorem, but all they are known.

Another typical example of intersection theorems is the well known result of Erdös, Ko and Rado [2]: If $\left|A_{i}\right|=k$ and

$$
A_{i} \cap A_{j} \neq \varnothing, \quad \text { then } N \leqslant\binom{ n-1}{k-1}
$$

assuming that $n \geqslant 2 k$.
In these and many other similar examples $S$ has no structure. We were looking for intersection theorems where $S$ is endowed with some structure and $A_{i} \cap A_{i}$ has some prescribed substructure: instead of having conditions on the cardinality of $A_{i} \cap A_{i}$ we have conditions on its structure [4, 5, 6].* Thus in [5, 6] we had graphs on $S$ and assumed that, e.g., $G_{i} \cap G_{j}$ is a path or a cycle, $\ldots$ and so on. Here we assume that $S=\{1,2, \ldots, n\}$ and that $A_{i} \cap A_{j}$ is an arithmetic progression-the simplest non-trivial structure on the integers. Let $\mathbb{P}_{k}$ denote the family of arithmetic progressions of at least $k$ elements.

Problem. If $k$ is fixed and $A_{1}, \ldots, A_{N} \subseteq\{1,2, \ldots, n\}:=[1, n]$ and if $A_{i} \cap A_{i} \in \mathbb{P}_{k}$, how large can $N$ be? The maximum $N$ is denoted by $f\left(n, \mathbb{P}_{k}\right)$ and the systems attaining the maximum are called extremal. (In heuristic arguments, if $N$ is near to the maximum, then $A_{1}, \ldots, A_{N}$ will be called almost extremal.)

[^0]For $k=0$, R. L. Graham and the authors [4] proved that

$$
f\left(n, \mathbb{P}_{0}\right)=\binom{n}{3}+\binom{n}{2}+\binom{n}{1}+1
$$

and the only extremal system consists of the subsets of $[1, n]$ of at most three elements. Here the intersections have at most two elements. If we wish to have non-degenerate arithmetic progressions as intersections, we have to assume that $k \geqslant 3$. Surprisingly, $f\left(n, \mathbb{P}_{k}\right)$ depends on $k$ very weakly if $k \geqslant 2$.

Theorem 1. Let $k \geqslant 2$ be fixed and $A_{1}, \ldots, A_{N} \subseteq[1, n]$. Let $A_{i} \cap A_{j} \in \mathbb{P}_{k}$ for every $1 \leqslant i<j \leqslant N$. Then

$$
\begin{equation*}
N \leqslant\left(\frac{\pi^{2}}{24}+o(1)\right) n^{2} \tag{1}
\end{equation*}
$$

and (1) is sharp, for any $k \geqslant 2$.
Remark 1. Let $\boldsymbol{A}_{1}, \ldots, A_{N}$ be arithmetic progressions of form

$$
A_{i}=\left\{\left[\frac{n}{2}\right]+j d: j=-a,-a+1, \ldots,-1,0,1,2, \ldots, b\right\}
$$

for some $d \leqslant n^{\frac{1}{3}}, \sqrt{n} \leqslant b \leqslant n / 2 d$ and $a \leqslant n-1 / 2 d$. Obviously, $A_{i} \cap A_{j}$ is an arithmetic progression with $\geqslant n^{\frac{1}{6}}$ elements and

$$
\begin{equation*}
N=\frac{n^{2}}{4}\left(\sum_{1}^{\infty} \frac{1}{d^{2}}+o(1)\right)=\left(\frac{\pi^{2}}{24}+o(1)\right) n^{2} \tag{2}
\end{equation*}
$$

showing that (1) is sharp.
In the above example we constructed a system of subsets where the intersections were arithmetic progressions just because the sets themselves were also arithmetic progressions. What happens, if we exclude this? The next theorem shows that in any almost extremal system almost all the sets are arithmetic progressions, the number of non-arithmetic progressions is $O\left(n^{\frac{3}{3}} \log ^{3} n\right)$. Even more, if we have a system of subsets of [1, $n$ ], say $A_{1}, \ldots, A_{M}$, no one of which is an arithmetic progression and the intersection of any two of which is an arithmetic progression, then $M=O\left(n^{\frac{5}{3}} \log ^{3} n\right)$, even if these sets do not belong to an almost extremal system.

Theorem 2. Let $k \geqslant 2$ and $A_{1}, \ldots, A_{N} \subseteq[1, n]$. Assume that no $A_{i}$ is an arithmetic progression but $A_{i} \cap A_{j} \in \mathbb{P}_{k}$ for every $1 \leqslant i<j \leqslant k$. Then

$$
\begin{equation*}
N=O\left(n^{\frac{5}{3}} \log ^{3} n\right) \tag{3}
\end{equation*}
$$

Here (3) can be improved but since we do not know whether the exponent $\frac{5}{3}$ is sharp or not, we do not care about getting rid of $\log ^{3} n$. On the other hand we did care about getting $n^{\frac{5}{3}}$ instead of $n^{\frac{5}{3}+\varepsilon}$ : some tricks in the proof were needed just for this purpose.

It would be interesting to know what happens if we allow $\left|\boldsymbol{A}_{i} \cap \boldsymbol{A}_{j}\right|=1$. It is natural to conjecture that one extremal system for $\mathbb{P}_{1}$ is the system of sets of form $\{c, x, y\}$ where $c$ is fixed; $c, x, y \in[1, n]$ are not necessarily different. This construction yields that

$$
\begin{equation*}
f\left(n, \mathbb{P}_{1}\right) \geqslant\binom{ n-1}{2}+n=\binom{n}{2}+1 \tag{4}
\end{equation*}
$$

There exist some other equally good constructions, given at the end of this paper. Therefore, if we have equality in (4), then there are many extremal systems. Unfortunately, we can prove only a weaker bound on $f\left(n, \mathbb{P}_{1}\right)$, namely, the following theorem.

Theorem 3. If $A_{1}, \ldots, A_{N} \subseteq[1, n]$ and $A_{i} \cap A_{j} \in \mathbb{P}_{1}$ for every $1 \leqslant i<j \leqslant N$, then

$$
\begin{equation*}
N \leqslant\binom{ n-1}{2}+\frac{\pi^{2}}{24} \cdot n^{2}+O\left(n^{\frac{5}{3}} \log ^{3} n\right) \tag{5}
\end{equation*}
$$

Remark 2. We can improve the upper bound in Theorem 3, but we cannot prove the conjecture stated above.*

The following theorem is slightly technical. Its main point is that if $A_{i} \mathrm{~s}$ are not too large and their intersection is empty, then Theorem 3 can be improved in term of the upper bound on $\left|\boldsymbol{A}_{\boldsymbol{i}}\right|$.

Theorem 4. Let $A_{1}, \ldots, A_{N} \subseteq[1, N],\left|A_{i}\right| \leqslant a$ for $i=1,2, \ldots, n$, and assume also that no $A_{i}$ is an arithmetic progression. If the intersection $A_{i} \cap A_{j}$ is always an arithmetic progression $(1 \leqslant i<j \leqslant N)$ and $\bigcap_{i=1}^{N} A_{i}=\varnothing$, then

$$
\begin{equation*}
N \leqslant a n-\binom{a}{2}+O\left(n^{\frac{5}{3}} \log ^{3} n\right) \tag{6}
\end{equation*}
$$

Now, our plan is the following: first we prove Theorem 4, then observe that Theorem 2 follows by exactly the same argument. To prove Theorem 1 we shall separate the arithmetic progressions and estimate their number by $\pi^{2} / 24 \cdot n^{2}+O(n \cdot \log n)$. Finally we prove Theorem 3 using Theorem 4. In this last step we shall restrict our considerations primarily to those $A_{i} \mathrm{~s}_{5}$ which have at most $n^{\frac{2}{3}}$ elements. Then Theorem 4 (applied with $\left.a=n^{\frac{2}{3}}\right)$ yields an $O\left(n^{\frac{3}{3}} \log ^{3} n\right)$ term. This is why we needed it.

## Proof of Theorem 4

Our basic tool is the notion of the $\nu$ and $\delta$-triplets.
Definition 1. Given a system $A_{1}, \ldots, A_{N} \subseteq[1, n]$, triplet $\{x, y, z\}$ is called determining or $\delta$-triplet if it belongs to exactly one $A_{i}$. Otherwise it is a non-determining, or $\nu$-triplet.

Lemma 1. Let $1>c>0$ be fixed and $A_{1}, \ldots, A_{M} \subseteq[1, n]$ be given sets. Let $A_{i} \cap A_{j} \in$ $\mathbb{P}_{1}$ for $1 \leqslant i<j \leqslant M$. If $\left|A_{1}\right|=h>n^{c}$, then for every $x \in A_{1}$ and $t \leqslant h / 20\left(\right.$ for $n>n_{0}(c)$ ) either
(i) $A_{1}$ contains an arithmetic progression of at least $n-t$ elements or
(ii) $A_{1}$ contains at least th $/ 50 \log h \delta$-triplets of form $\{x, y, z\}$.

Proof. Let $A_{1}=\left\{u_{1}, u_{2}, \cdots, u_{h}\right\}$ where $u_{1}<u_{2}<\cdots<u_{h}$. If $x=u_{i_{0}}$, we may assume that $i_{0}<h / 2$, that is, at least $h / 2$ elements of $A_{1}$ are above $x$. Now these elements are split into three segments:

$$
\begin{aligned}
& A^{\prime}=\left\{u_{i}: i_{0}<i \leqslant \frac{3}{5} h\right\}, \\
& A^{\prime \prime}=\left\{u_{i}: \frac{3}{5} h<i \leqslant \frac{7}{10} h\right\}, \\
& A^{\prime \prime \prime}=\left\{u_{i}: i>\frac{7}{10} h\right\} .
\end{aligned}
$$


(a) If for every $y_{0} \in A^{\prime \prime}$ there are at least $h / \log h \delta$-triplets of form $\left(x, y_{0}, z\right)$, then we have at least $\frac{1}{20}\left(h^{2} / \log h\right) \delta$-triplets and we are home.
(b) Assume that there is a $y_{0} \in A^{\prime \prime}$ for which all but $(h / \log h) z$ define a $\nu$-triplet $\left(x, y_{0}, z\right)$. Then all but $h / \log h$ integers $z \in\left[x, y_{0}\right]$ can be covered by at most $n^{\varepsilon}$ arithmetic progressions

[^1]$P_{1}, \ldots, P_{\lambda}$ for $\varepsilon=c / 10$ and $n$ sufficiently large. Indeed, since $\left(x, y_{0}, z\right)$ is a $\nu$-triplet, $x, y_{0}$ and $z$ are contained not only by $A_{1}$ but also by some other $\boldsymbol{A}_{i(z)}, i(z) \neq 1$. Therefore, if
$P(u, v, w)$ denotes the minimal arithmetic progression containing $u, v$ and $w$,
then $P\left(x, y_{0}, z\right) \subseteq A_{1} \cap A_{i(z)} \subseteq A_{1}$. The segment $P\left(x, y_{0}, z\right) \cap\left[x, y_{0}\right]$ is also an arithmetic progression with fixed endpoints $x$ and $y_{0}$, therefore it is determined by its difference $d$. Since $x-y_{0}$ has at most $n^{\varepsilon}$ divisors (if $n$ is sufficiently large) [3], the assertion is proved.
(c) Now we shall construct many $\delta$-triplets $(x, y, z)$ by taking large arithmetic progressions $R_{i} \subseteq A_{i}$, containing $x$, a $z \notin R_{i}$ and $y=x+p d_{1}$, where $d_{1}$ is the difference of $R_{1}$ and $p$ is coprime with $z-x$. Two cases will be distinguished: first we consider the case when $\boldsymbol{A}_{1}$ contains a relatively long arithmetic progression, then the situation when it does not.

Assume that $Q_{1} \in \mathbb{P}_{1}, Q_{1} \subseteq A_{1}, \min Q_{1}=x$, and $\left|Q_{1}\right| \geqslant h / 20$. Let the difference $d_{1}$ of $Q_{1}$ be the minimum under these conditions. Let $R_{1}$ be a maximal arithmetic progression in $A_{1}$ containing $Q_{1}$. We shall prove that
if $z \in A_{1}-R_{1}, p>h / 40$ and $p$ is coprime with $z-x$, then $\left(x, x+p d_{1}, z\right)$ is a $\delta$-triplet, ( $p \leqslant h / 20$ !).

Assume the contrary. Then the induced arithmetic progression $Q^{\prime}=P\left(x, x+p d_{1}, z\right)$ is in $A_{1}$. Let $d^{\prime}$ be the difference of $Q^{\prime}$. We know that $d^{\prime} \neq d_{1}$, since $z \in Q^{\prime}$ but $z \notin R_{1}$. Further, $d^{\prime} \mid d_{1}$, since $x, x+p d_{1} \in Q^{\prime}$, that is, $p d_{1}=q d^{\prime}$, but $p$ is relative prime to $z-x=k d^{\prime}$. Hence $d^{\prime} \leqslant \frac{1}{2} d_{1}$, and therefore $Q^{\prime \prime}=\left\{x+j d^{\prime}: j=0,1,2, \ldots,[h / 20]\right\} \subseteq A_{1}$ : Indeed, it is at least twice as dense as $Q_{1}$, and contains $y=x+p d_{1}=x+r d^{\prime}$ for $p>h / 40$, that is, for $r>h / 20$. This is a contradiction: $Q^{\prime \prime}$ should have been chosen instead of $Q_{1}$.

Let us count these $\delta$-triplets. If $\left|A_{1}-R_{1}\right|=t$, then for each $z \in A_{1}-R_{1}$ we exclude $O(\log n)$ primes dividing $z-x$ and $\leqslant h / 35 \log h$ other primes. However, we still have at least $h / 50 \log h$ primes for which $\left(x, x+p d_{1}, z\right)$ is a $\delta$-triplet. This proves the assertion.
(d) Assume now that each arithmetic progression containing $x$ has at most $h / 20$ elements from $[x, n]$. In (b) we have covered all but at most $h / \log h$ elements of $\left[x, y_{0}\right.$ ] by at most $n^{\varepsilon}$ arithmetic progressions $P_{1}, \ldots, P_{\lambda}$. We may assume that none of these $P_{i} \mathrm{~s}$ is contained in some other $P_{i}$. Some of them may be extended beyond [ $x, y_{0}$ ]: let $R_{j}$ be the maximal arithmetic progression in $[x, n]$ containing $P_{j}$. If $s$ is the minimum integer for which

$$
\begin{equation*}
\left|R_{1} \cup R_{2} \cup \cdots \cup R_{s}\right| \geqslant \frac{h}{20}, \tag{7}
\end{equation*}
$$

then for $A^{+}:=A^{\prime \prime \prime}-\bigcup_{j \geqslant s} R_{i}$ we know that

$$
\begin{equation*}
\left|A^{+}\right| \geqslant \frac{h}{5} \tag{8}
\end{equation*}
$$

since $\left|R_{1} \cup R_{2} \cup \cdots \cup R_{j}\right|$ increases by at most $h / 20$ when we pass from $j$ to $j+1$, and hence $\left|\bigcup_{j \leqslant s} R_{i}\right| \leqslant h / 10$; further, $\left|A^{\prime \prime \prime}\right| \geqslant \frac{3}{10} h$.

Take all the triplets $\left(x, x+p d_{j}, z\right)$ for $j=1, \ldots, s, z \in A^{+}$, where $d_{j}$ is the difference of $R_{j}$ and $p$ is a prime not dividing $y_{0}-x$ and $z-x$.

We show that these triplets are all $\delta$-triplets, each counted only once and that their number is at least

$$
\begin{equation*}
\left(\frac{1}{100}-o(1)\right) \cdot \frac{h^{2}}{\log h} \tag{9}
\end{equation*}
$$

(i) Indeed, a slight modification of the argument of (c) yields that they are all $\delta$-triplets: if not, then we would get a $Q^{\prime \prime}:=\left\{x+l d^{\prime}: l=0,1,2, \ldots\right\}$ joining $x$ to $y_{0}$, and containing $P_{i}$ and being at least twice as dense.
(ii) In theory it could happen that

$$
\left(x, x+p d_{i}, z\right)=\left(x, x+p^{\prime} d_{j}, z\right) \quad(i \neq j)
$$

However, this would imply that $p d_{i}=p^{\prime} d_{j}$. If $p=p^{\prime}$, then $d_{i}=d_{j}$, therefore $i=j$, and we are home. If $p \neq p^{\prime}$, then, by symmetry, we may assume that $p \mid d_{j}$. But we know that $d_{j} \mid y_{0}-x$ and we assumed that $p$ is relative prime to $y_{0}-x$, a contradiction.
(iii) Each $R_{j}$ with $k_{j}:=\left|R_{i}\right|$ elements yields $(1-o(1)) k_{j} / \log k_{j}$ primes $p$, by the prime number theorem $(j=1,2, \ldots, s)$. This is the point where we use (b): since the number of $P_{j}$ s covering $\left[x, y_{0}\right.$ ] is only $o(h)$, we may easily see that $\left|P_{j}\right| \rightarrow \infty$ for $j \leqslant s$, if, e.g., we take that very permutation of $P_{1}, \ldots, P_{\lambda}$, for which the size is decreasing. If $\left|P_{j}\right| \rightarrow \infty$, then the prime number theorem can be applied. Thus, we get altogether at least

$$
\begin{equation*}
(1-o(1)) \frac{h}{5} \sum \frac{k_{j}}{\log k_{j}} \geqslant(1-o(1)) \frac{h}{5} \cdot \frac{1}{\log h} \sum k_{j} \tag{10}
\end{equation*}
$$

$\delta$-triplets: $z \in A^{+}$can be chosen in at least $h / 5$ ways, and excluding the primes dividing $y_{0}-x$ or $z-x$ means only excluding $2 \cdot \log n=o\left(k_{i} / \log k_{i}\right)$ primes. (This is, where we use that $h>n^{c}$ ). Since $k_{1}+\cdots+k_{s} \geqslant h / 20,(10)$ immediately implies (9). This completes the proof of the lemma.

Lemma 2. Let $A_{1}, \ldots, A_{M} \subseteq[1, n]$, and assume that no $A_{i}$ is an arithmetic progression but $\boldsymbol{A}_{i} \cap \boldsymbol{A}_{j}$ is an arithmetic progression, $1 \leqslant i<j \leqslant M$. Assume that there is an integer $c \in[1, n]$ contained by each $A_{i}$ and an s-element set $S \subseteq[1, n]-\{c\}$, such that $S \cap A_{i} \neq \varnothing$ $i=1,2, \ldots, M$. Then for every $\varepsilon>0$

$$
\begin{equation*}
M \leqslant s n-\binom{s}{2}+O\left(n^{1+\varepsilon}\right) \tag{11}
\end{equation*}
$$

We need the following definition.
Definition 2. Let $P \subseteq A$ be a maximal arithmetical progression (with respect to $\subseteq$ ) and $z \in A-P$. We denote the infinite extension of $P$ by $P^{\infty}(P)$ and call $z$ external or internal according to whether $z \in P^{\infty}(P)$ or not.

Remark. Observe that if $z \in P^{\infty}$, then we call it external. The reason for this is, that in this case it makes no real trouble. We could say that it does not belong to $P$ only because we have forgotten some elements of $A$. The following example illustrates the definition:
$A=\{1,3,4,5,7,15,20\}$ and $P=\{1,3,5,7\}$. Now 15 is external, 20 and 4 are internal.
Proof. We shall subdivide $\mathbb{F}=\left\{A_{1}, \ldots, A_{M}\right\}$ into four subfamilies $\mathbb{F}_{1}, \mathbb{F}_{2}, \mathbb{F}_{3}$ and $\mathbb{F}_{4}$ as follows:
$\mathbb{F}_{1}$ is the family of $\boldsymbol{A}_{i}$ s containing a maximal arithmetic progression $P_{i} \ni c$ and an external $z_{i}$.
For all the other $A_{i}$ s we fix a $y_{i} \in A_{i} \cap S$.
$\mathbb{F}_{2}=\left\{A_{i} \in \mathbb{F}-\mathbb{F}_{1}\right.$ : there exists a $z_{i} \in A_{i}-\left\{y_{i}, c\right\}$ such that $\left(c, y_{i}, z_{i}\right)$ form a $\delta$-triplet for $\left.\mathbb{F}\right\}$.
$\mathbb{F}_{3}=\left\{A_{i} \in \mathbb{F}-\mathbb{F}_{1}-\mathbb{F}_{2}: A_{i} \cap\left[c, y_{i}\right]\right.$ is an arithmetic progression and if $P_{i}$ denotes the maximal arithmetic progression containing $A_{i} \cap\left[c, y_{i}\right]$, then there is an internal $z_{i}$ for this $A_{i}$ and $P_{i}$ \}.
If $A_{i} \in \mathbb{F}_{3}$, let us fix a corresponding $P_{i}$ and a $z_{i}$. Finally,
$\mathbb{F}_{4}=\mathbb{F}-\mathbb{F}_{1}-\mathbb{F}_{2}-\mathbb{F}_{3}$.
(a) We give an upper bound on $\left|\mathbb{F}_{1}\right|$. Given $z_{i}$, the difference $d_{i}$ of $P_{i}$ divides $z_{i}-c$. We put $d_{i}<0$ if $c=\max P_{i}$ and $d_{i}>0$ otherwise. Clearly, $c, d_{i}$ and $z_{i}$ determine $A_{i}$ uniquely by $A_{i} \cap A_{i} \in \mathbb{P}_{1}$. Hence

$$
\left|\mathbb{F}_{1}\right| \leqslant 2 \sum_{k \leqslant n} d(k) \leqslant 2 n^{1+\varepsilon}
$$

where $d(k)$ is the number of divisors of $k$. As a matter of fact, $\sum_{k \leqslant n} d(k)=$ $O(n \log n)$, [3].
(b) Let $D\left(A_{i}\right)$ be a triple defined for each $A_{i} \in \mathbb{F}_{2} \cup \mathbb{F}_{3}$ as follows:
if $A_{i} \in \mathbb{F}_{2}$, we choose a determining triplet $\left(c, y_{i}, z_{i}\right)$ for $\mathbb{F}$. This is $D\left(A_{i}\right)$.
If $A_{i} \in \mathbb{F}_{3}$, we choose a $P_{i}$ and $z_{i}$ according to the definition above. Again, $D\left(A_{i}\right)=$ (c, $y_{i}, z_{i}$ ).
We show that for $\mathbb{F}_{2} \cup \mathbb{F}_{3} D\left(A_{i}\right)$ is a determining triplet (though it may happen that for $A_{i} \in \mathbb{F}_{3} D\left(A_{i}\right)$ is not a $\delta$-triplet for the whole $\mathbb{F}$ ). The only case to be considered is when $A_{i}, A_{i} \in \mathbb{F}_{3}$. Clearly, if $y_{i}=y_{i}$, then $z_{i} \neq z_{j}$.

Indeed, if (as above), $P^{\infty}(P)$ denotes the doubly infinite extension of the arithmetic progression $P$, by definition

$$
z_{i} \notin P^{\infty}\left(P_{i}\right) \supseteq P^{\infty}\left(A_{i} \cap A_{i} \cap\left[c, y_{i}\right]\right) \supseteq A_{i} \cap A_{j} .
$$

The other case, $y_{i}=z_{j}, y_{j}=z_{i}$ can be eliminated as well: let $d^{*}$ be the difference of $P^{*}=A_{i} \cap A_{j}$. Then $d_{i} \mid d^{*}$, since, by definition, $\boldsymbol{A}_{j}$ is an arithmetic progression between $c$ and $y_{j}$, namely, $P_{j} \cap\left[c, y_{j}\right] \supseteq P^{*} \cap\left[c, y_{j}\right]$. But $d_{j} \mid d^{*}$ implies that $z_{j}=y_{i} \in P^{*}$ is external, a contradiction. Hence $D\left(A_{i}\right)=\left(c, y_{i}, z_{i}\right)$ is different for different is $\left(A_{i} \in \mathbb{F}_{2} \cup \mathbb{F}_{3}\right)$. Therefore

$$
\left|\mathbb{F}_{2} \cup \mathbb{F}_{3}\right| \leqslant s(n-1)-\binom{s}{2}
$$

(c) The basic idea we use to estimate $\left|\mathbb{F}_{4}\right|$ is that an $A_{i} \in \mathbb{F}_{4}$ is the union of arithmetic progressions and the set of their differences characterize $\boldsymbol{A}_{i}$.

Let $P_{i} \subseteq A_{i} \in \mathbb{F}_{4}$ be a naximal arithmetic progression joining $c$ and $y_{i}$ and having the smallest difference. Since $A_{i} \notin \mathbb{F}_{1}$, if $A_{i} \supseteq \tilde{P}_{i} \supseteq P_{i}$ is a maximal arithmetical progression, all $z \in A_{i}-\tilde{P}_{i}$ are internal. Since $A_{i} \notin \mathbb{F}_{2}$, all $z \in A_{i}-\tilde{P}_{i}$ yield $\nu$-triplets with $c$ and $y_{i}$. Since $A_{i} \notin \mathbb{F}_{3}, A_{i} \cap\left[c, y_{i}\right] \neq P_{i}$. Choose a $z_{i} \in A_{i} \cap\left[c, y_{i}\right]-P_{i}$. Now, $\left(c, y_{i}, z_{i}\right)$ is a $\nu$-triplet: there exists a maximal $P_{i}^{*} \in \mathbb{P}_{1}, P_{i}^{*} \subseteq A_{i}$, joining $c$ to $y_{i}$ through $z_{i}$. It is trivial that $\left(P_{i} \cup P_{i}^{*}\right) \cap$ [ $c, y_{i}$ ] cannot be contained by any arithmetic progression $\subseteq A_{i}$ which means that for given $y_{i} P_{i} \cap\left[c, y_{i}\right]$ and $P_{i}^{*} \cap\left[c, y_{i}\right]$ uniquely determine $A_{i} \in \mathbb{F}_{4}$. Since they are determined by the corresponding differences $d_{i}$ and $d_{i}^{*}$ which divide $y_{i}-c$, therefore

$$
\left|\mathbb{F}_{4}\right|=O\left(s n^{2 \varepsilon}\right) .
$$

Proof of Theorem 4. We split the $A_{i}$ s into the classes

$$
\begin{aligned}
& \mathbb{F}^{*}=\left\{A_{i}:\left|A_{i}\right| \leqslant n^{\frac{1}{3}}\right\} \\
& \mathbb{F}_{\nu}=\left\{A_{i}: 2^{\nu} \leqslant\left|A_{i}\right|<2^{\nu+1}\right\} \quad \text { if } n^{\frac{1}{3}}<2^{\nu}<n^{\frac{2}{3}}
\end{aligned}
$$

and

$$
\mathfrak{F}^{* * *}=\left\{\text { the other } A_{i} \mathrm{~s}\right\} \subseteq\left\{A_{i}:\left|A_{i}\right| \geqslant n^{\frac{2}{3}}\right\} .
$$

$\left(a_{1}\right)$ If each $A_{i} \in \mathbb{F}^{*}$ intersects $A_{1} \in \mathbb{F}^{*}$ in at least two points, then $\left|\mathbb{F}^{*}\right|=O\left(n^{\frac{5}{3}}\right)$. Indeed, we fix a $c_{j} \in A_{1}$ and put $S_{i}=A_{1}-\left\{c_{j}\right\}$. Then we apply Lemma 2 with this $c_{j}$ and $S_{j}$ and sum up the results. Each $A_{i} \in F^{*}$ is counted at least twice:

$$
\left|\mathbb{F}^{*}\right|<\left|A_{1}\right|\left(\left|A_{1}\right| n+O\left(n^{1+\varepsilon}\right)\right)=O\left(n^{\frac{5}{3}}\right)
$$

( $\mathrm{a}_{2}$ ) If on the other hand, e.g., $\left|A_{1} \cap A_{2}\right|=1\left(A_{1}, A_{2} \in \mathbb{F}^{*}\right)$, then we put $\{c\}=A_{1} \cap A_{2}$ and choose an $A_{3} \nexists c \ldots\left(A_{3} \in \mathbb{F}^{*}\right.$ is not necessarily true). We apply Lemma 2 first to the $A_{i} \mathrm{~S}$ containing $c$, with $S=A_{3}$ : their number is at most

$$
a n-\binom{a}{2}+O\left(n^{\frac{5}{3}}\right)
$$

Then we apply Lemma 2 to each $c_{j} \in\left(A_{1} \cup A_{2}\right)-\{c\}$ and $S_{j}=\left(A_{1} \cup A_{2}\right)-\left\{c, c_{j}\right\}$ and get $\leqslant 2 n^{\frac{4}{3}}+\boldsymbol{O}\left(n^{1+\varepsilon}\right)$ sets for each $j$. This yields altogether

$$
\left|\mathbb{F}^{*}\right| \leqslant a n-\binom{a}{2}+O\left(n^{\frac{5}{3}}\right):
$$

each $A_{i} \in \mathbb{F}^{*}$ was counted above at least once and, obviously, $\left|A_{1} \cup A_{2}\right| \leqslant 2 n^{\frac{1}{3}}$. Thus the $\left|S_{j}\right| s$ and the number of $j$ s are $\leqslant 2 n^{\frac{1}{3}}$.
(b) We fix a $\nu \in\left[\frac{1}{3} \log _{2} n, \frac{2}{3} \log _{2} n\right)$. Let $H \in \mathbb{F}_{\nu}, h=|H|=\max _{A_{i} \in \mathbb{F}_{\nu}}\left|A_{i}\right|$ and $x_{i} \in A_{i} \cap H$ be fixed for each $A_{i} \in \mathbb{F}_{\nu}$. Let

$$
\begin{aligned}
& \mathbb{F}_{\nu}^{\prime}=:\left\{A_{i} \in \mathbb{F}_{\nu}: A_{i} \text { contains } \geqslant \frac{h^{2}}{\log ^{2} h} \delta \text {-triplets }\left(x_{i}, u, v\right)\right\}, \\
& \mathbb{F}_{\nu}^{\prime \prime}=: \mathbb{F}_{\nu}-\mathbb{F}_{\nu}^{\prime} .
\end{aligned}
$$

Clearly, if $\tilde{x} \in H$ is fixed, we have at most

$$
\binom{n-1}{2} / \frac{h^{2}}{\log ^{2} h}=O\left(\frac{n^{2} \cdot \log ^{2} n}{h^{2}}\right)
$$

$A_{i} \in \mathbb{F}_{\nu}^{\prime}$ with $x_{i}=\tilde{x}$. Thus

$$
\begin{equation*}
\left|\mathbb{F}_{\nu}^{\prime}\right|=O\left(\frac{n^{2}}{h} \cdot \log ^{2} n\right)=O\left(n^{\frac{5}{3}} \log ^{2} n\right) \tag{12}
\end{equation*}
$$

To estimate $\left|\mathbb{F}_{\nu}{ }_{\nu}^{\prime \prime}\right|$ we apply Lemma 1 to each $A_{i} \in \mathbb{F}_{\nu}^{\prime \prime}, x_{i} \in A_{i} \cap H$ and $t=\left[h / \log ^{3} h\right]$. Thus we get a maximal arithmetic progression $P_{i} \subseteq A_{i}$ with

$$
\begin{equation*}
\left|P_{i}\right| \geqslant\left|A_{i}\right|-\frac{h}{\log ^{2} h} \tag{13}
\end{equation*}
$$

By the way, $P_{i}$ is independent of $x_{i} \in A_{i} \cap H$, since $A_{i}$ can contain at most one such $P_{i}$. Let $d_{i}>0$ denote the difference of $P_{i}$. We show that for given $\tilde{x}$ and $d$ there exist at most $2 n A_{i}$ s for which $x_{i}=x_{j}=\tilde{x}$ and $d_{i}=d_{j}=d$.

Indeed, in this case we shall call a $P_{i}$ "high" if at least half of its element are above $\tilde{x}$, otherwise $P_{i}$ is "low". If, e.g., both $A_{i}$ and $A_{j}$ are "high", then

$$
\begin{equation*}
\Delta_{i j}=\left(A_{i}-P_{i}\right) \cap\left(A_{i}-P_{i}\right)=\varnothing \tag{14}
\end{equation*}
$$

otherwise a $z \in \Delta_{i j}$ and $P_{i} \cap P_{i}$ (both contained in $A_{i} \cap A_{j}$ ) would induce an arithmetic progression $P^{*}$ with difference $\leqslant d / 2$. It is easy to see that this is impossible. Since $A_{i}-P_{i} \neq \varnothing$, we get at most $n$ "high" $A_{i}$ s for each $\tilde{x}$ and $d$.

Unfortunately, we thus get only that

$$
\begin{equation*}
\left|\mathbb{F}_{\nu}\right| \leqslant h \frac{2 n}{h} \cdot 2 n=O\left(n^{2}\right) \tag{15}
\end{equation*}
$$

since $\tilde{x}$ can be chosen in $\leqslant h$ ways, $d$ in $\leqslant 2 n / h$ ways. To improve (12) we shall prove that
One can choose $x_{i} \in A_{i} \cap H$ so that ( $x_{i} \in P_{i}$, (9) holds and) for each $d \leqslant 2 n / h$ and for all but at most two $x \in H$ there are at most $4 h A \mathrm{~s}$ with $x_{i}=\tilde{x}$ and $d_{i}=d$.

This will imply

$$
\begin{equation*}
\left|\mathbb{F}_{\nu}^{\prime \prime}\right| \leqslant \frac{2 n}{h} \cdot h \cdot 4 h+\frac{2 n}{h} \cdot 4 n=O\left(n^{\frac{5}{3}}\right) \tag{16}
\end{equation*}
$$

since $d$ and $\tilde{x}$ can be chosen in $\leqslant 2 n / h . h$ ways and then $A_{i}$ can be chosen mostly in $\leqslant 4 h$ ways. This yields the first term. The second one comes from the two exceptional $\tilde{x}_{d}$ and $\tilde{\tilde{x}}_{d}$ contained in at most $2 n A_{i}$ s. Clearly, (16) will suffice.
(c) Assume, indirectly, that (*) does not hold: for some $\tilde{d}$ there are at least three exceptional $x$ s say $\tilde{x}, \tilde{\tilde{x}}, \tilde{\tilde{x}}$.
( $\mathrm{c}_{1}$ ) We may assume that at least $2 h A_{i} \mathrm{~s}$ in $(*)$ are of the same type, e.g. for $\tilde{x}$ and $\tilde{\tilde{x}}$ the $P_{i}$ s are "high", for $\tilde{\tilde{\tilde{x}}}$ "low". Thus for the index sets

$$
\left.\begin{array}{rl}
I & =\left\{i: x_{i}=\tilde{x},\right.
\end{array} d_{i}=\tilde{d}, \quad A_{i} \text { is "high"' }\right\},
$$

we have $|I|>2 h,|J|>2 h,|K|>2 h$.
We prove that $\tilde{x} \equiv \tilde{\tilde{x}} \equiv \tilde{\tilde{x}}(\bmod \tilde{d})$. Assume the contrary, e.g. $\tilde{x} \neq \tilde{\tilde{x}}(\bmod \tilde{d})$. Hence $P_{i} \cap P_{j}=\varnothing$ if $i \in I, j \in J$.

Restricting ourselves to the set $\{\tilde{x}+j \tilde{d}: j=0, \pm 1, \pm 2, \ldots\}=\tilde{D}$, the sets $P_{i}(i \in I)$ are subintervals of it and $\left|P_{i}\right|<h, P_{i} \ni \tilde{x}$. Hence $\left|\bigcup_{i \in I} P_{i}\right| \leqslant 2 h-1$. The sets $A_{j}-P_{j}$ are pairwise disjoint while $j \in J$ and $|J|>2 h$, hence we can find a $j_{0} \in J$ for which $\left(A_{i_{0}}-P_{i_{0}}\right) \cap\left(\cup_{i \in I} P_{i}\right)=$ $\varnothing$. This means that $A_{i_{0}} \cap\left(\bigcup_{i \in I} P_{i}\right)=\varnothing\left(\right.$ since $P_{i_{0}} \cap P_{i}=\varnothing$ by $\left.\tilde{x} \neq \tilde{\tilde{x}}(\bmod \tilde{d})\right)$. Thus the $|I|$ pairwise disjoint sets $A_{i}-P_{i}(i \in I)$ do intersect $A_{j_{0}}$, i.e. $\left|A_{j_{0}}\right| \geqslant|I|>2 h$. This is a contradiction, proving that $\tilde{x} \equiv \tilde{\tilde{x}} \equiv \tilde{\tilde{x}}$. We may assume that $\tilde{x}<\tilde{\tilde{x}}<\tilde{\tilde{x}}$.
( $c_{2}$ ) Observe that above we used only that
(i) $\left\{P_{i}: i \in I\right\}$ consists of $P_{i}$ s of the same type: either they are all "high" or they are all "low". (This ensures that ( $A_{i}-P_{i}$ )s are disjoint.) Of course, we used this for $J$ and $K$ as well.
(ii) Further, we used that if $i \in I$ and $j \in J$, then $P_{i} \cap P_{j}=\varnothing$.

Now let us replace $x_{i}=\tilde{x}$ and $x_{i}=\tilde{\tilde{x}}$ by $x_{i}=\tilde{\tilde{x}}$ whenever we can: if $\tilde{\tilde{x}} \in P_{i}$. (The $P_{i} \mathrm{~s}$ remain unchanged, since they are uniquely determined by $A_{i} \mathrm{~s}$ as observed earlier.) After this step for every $P_{i}$ and $P_{i}$ corresponding to $\tilde{x}$ and $\tilde{\tilde{x}}$ respectively $P_{i} \cap P_{i}=\varnothing$, since

$$
\max P_{i}<\tilde{\tilde{x}}<\min P_{j}
$$

As we have mentioned, if even after the alteration both $\tilde{x}$ and $\tilde{\tilde{x}}$ remain exceptional, that is belong to $\geqslant 4 h A_{i} \mathrm{~s}$, then we may take $2 h A_{i} \mathrm{~s}$ corresponding to $\tilde{x}$ and $2 h A_{j} \mathrm{~s}$ corresponding to $\tilde{\tilde{\tilde{x}}}$ of the same type ("high" or "low") and repeat the argument of ( $\mathrm{c}_{1}$ ). This contradiction shows that either $\tilde{x}$ or $\tilde{\tilde{x}}$ ceased to be exceptional after the alteration. We can iterate this step until at most two $\tilde{x}$ s are exceptional. This completes the proof of (16).
(d) If $\left|A_{i}\right| \geqslant n^{\frac{2}{3}}$, then by Lemma 1 (applied with $t=1$ ) $A_{i}$ contains at least $\frac{1}{100} n^{\frac{4}{3}} / \log n$ $\delta$-triplets: for each $x \in A_{i}$ we have at least $n^{\frac{2}{3}} / 100 \log n \delta$-triplets. Since the total number of $\delta$-triplets is at most $\binom{n}{3}$, the number of these $A_{i} \mathrm{~S}$ is $\leqslant 20 n^{\frac{5}{3}} \log n$.
(e) Adding up the estimates in (a), (b) and (c) we obtain the upper bound needed.

## Proofs of Theorems 1 and 2

Proof of Theorem 2. We can repeat the proof of Theorem 4 word by word with the only exception that in (a) we always have the first case: each $A_{i} \in \mathbb{F}^{*}$ intersects $\boldsymbol{A}_{1}$
in at least two points. Thus

$$
\left|\mathbb{F}^{*}\right|=O\left(n^{\frac{5}{3}}\right)
$$

To prove Theorem 1 we need the following lemma.
Lemma 3. If $A_{1}, \ldots, A_{M} \in \mathbb{P}_{3}$ and $A_{i} \cap A_{j} \neq \varnothing$, then

$$
M \leqslant \frac{\pi^{2}}{24} n^{2}+O(n \log n)
$$

Obviously, Lemma 3 and Theorem 2 imply Theorem 1.
Proof of Lemma 3. For a fixed $d$ we consider the $A_{i} \mathrm{~s}$ with the difference $d$. Clearly, they belong to the same congruence class $I_{d, a}=\{l \in[1, n]: l \equiv a(\bmod d)\}$, since $A_{i} \cap A_{j} \neq$ $\varnothing$. In this $I_{d}=I_{d, a(d)}$ each $A_{i}$ is an interval, hence $\cap A_{i} \neq \varnothing$ for them. Let $c_{d} \in A_{i}$, then their number is at most $\frac{1}{4}\left(\left|I_{d}\right|+1\right)^{2}$. Hence

$$
M \leqslant \sum_{1}^{n} \frac{n^{2}}{d^{2}}+O(n \log n) \leqslant \frac{\pi^{2}}{24} n^{2}+O(n \log n)
$$

## Proof of Theorem 3

In the proof of Theorem $4\left(\mathrm{a}_{2}\right)$ is the only step allowing more than $O\left(n^{\frac{5}{3}} \log n\right) A_{i} \mathrm{~s}$ and all the $A_{i}$ s have a common element $c$. Thus we may neglect all the $A_{i} \notin \mathbb{P}_{1}, A_{i} \notin c$ and restrict our considerations to the following two families:

$$
\begin{aligned}
& \mathbb{F}_{1}=:\left\{A_{i} \ni c: A_{i} \notin \mathbb{P}_{1}\right\}, \\
& \mathbb{F}_{2}=:\left\{A_{i}: A_{i} \in \mathbb{P}_{1}\right\} .
\end{aligned}
$$

By Lemma 3,

$$
\left|\mathbb{F}_{2}\right| \leqslant \frac{\pi^{2}}{24} n^{2}+O(n \log n)
$$

$\left|\mathbb{F}_{1}\right|$ will be estimated as follows:
If $A_{i} \in \mathbb{F}_{1}$, then $c \in A_{i}$. Let $c_{i} \in A_{i}$ be one of the neighbours of $c$ (i.e. $\left(c, c_{i}\right) \cap A_{i}=\varnothing$ ). Let $P_{i} \subseteq A_{i}$ be a maximal arithmetic progression of the form $\left\{c+l\left(c_{i}-c\right)\right\}$. Since $A_{i} \notin \mathbb{P}_{1}$, we can fix a $z_{i} \in A_{i}-P_{i}$. Trivially, $\left\{c, c_{i}, z_{i}\right\}$ is a $\delta$-triplet. Hence

$$
\left|\mathbb{F}_{1}\right| \leqslant\binom{ n-1}{2} .
$$

## Open Problems

Among the many open problems connected with these theorems two seem to be the most closely related to them.

Problem 1. Can one prove that $N \leqslant\binom{ n-1}{2}+n$ in Theorem 3 if $n>n_{0}$ ?
The estimate of Theorem 3 can easily be improved but we think one should be able to prove, that the best choice of $A_{1}, \ldots, A_{N}$ in Theorem 3 is if they are all the subsets
of [ $1, n$ ] containing a fixed $c$ and having at most three elements. If this is true, then there are other extremal systems as well, e.g. $\{c\}$ can be replaced by $[1, n]-\{c\}$ or some triplets $\{c, c+x, c+4 x\}$ can be replaced by $\{c, c+x, c+2 x, c+4 x\}$, and some triplets $\{c-x, c, c+2 x\}$ can be replaced by $\{c-x, c+x, c+2 x\}$. Probably these are all the extremal systems.

Problem 2. Let $A_{1}, \ldots, A_{N}$ be an extremal system for some $d \geqslant 2$ in Theorem 2. Is it true, that each $A_{i}$ is in $\mathbb{P}_{2}$ ?

## References

1. N. G. de Bruijn and P. Erdös, On a combinatorial problem, Nederl. Akad. Wetensch. Proc. 51 (1948), 1277-1279.
2. P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1971.
4. R. L. Graham, M. Simonovits and V. T. Sós, A note on the intersection properties of subsets of integers, J. Combin. Theory Ser. A 28 (1980), 106-110.
5. M. Simonovits and V. T. Sós, Graph intersection theorems, Proc. Colloq. Combinatorics and Graph Theory, Orsay, Paris, 1976, 389-391.
6. M. Simonovits and V. T. Sós, Intersection theorems for graphs II, Colloq. Math. Soc. J. Bolyai, Combinatorics, Keszthely, Hungary 18 (1976), 1017-1030.
7. M. Simonovits and V. T. Sós, Intersection theorems for subsets of integers, Notices Amer. Math. Soc. 25 (1978), A-33.
8. M. Simonovits and V. T. Sós, Intersection theorems on structures, Combinatorial Mathematics, Optimal Design and their Applications, Ann. Discrete Math. 6 (1980), 301-314.
9. V. T. Sós, Some remarks on the connection of graph theory, finite geometry and block designs, Proc. Colloq. Int. Teorie Combinatorie, Roma, 1973, Accad. Naz. Lincei, 223-233.

Received 10 April 1981
M. Simonovits and V. T. Sós

Eötvös Loránd University, Analizis I, 1088 Budapest, Muzeum Krt 6-8, Hungary


[^0]:    * See also our survey paper [8].

[^1]:    * In [7], overlooking a term, we stated that we can.

