SOME EXTREMAL PROBLEMS ON r-GRAPHS

W. G, Brown, P, Erdos, and V. T. S6s

1. Introduction.

By an r-graph we mean a fixed set of vertices
together with a class of unordered subsets of this
fixed set, each subset contalning exactly r elements
and called an r-tuple. In the language of Berge [2]

this 1s a simple uniform hypergraph of rank r. The

concept becomes interesting only for r > 1: for

r = 2 we obtain ordinary (i.e., Michigan) graphs,

We shall represent an r-graph by a capltal Latin
letter followed by a superscripted (r), as H(r).

If in some context this symbol i1s followed by (n) or
(n,m), as BT (n) or B (n,m), this will mean that
H(r) has exactly n vertices and, in the second case,
at least m r-tuples; thus n wlll always be an inte-
ger, but m rneed not be. Any of the foregolng nota-
tions, when applied to the symbol for a family of
r~graphs, will be intended to apply to all members
of the family: for example, if H{r) is a family of

r-graphs, and we write H(r>(n), we shall be saylng
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that every member of H(T) nas exactly n vertices.
The letter G will be reserved for a general r-graph:
in the sense that we may write "any G(r)(n;m)“ when
we mean "any r-graph having n vertices and at least
m r-tuples"; it will not be used as the name cf a
specific r-graph. As another example, if we use
the symbol H{P}(n} defined above, we are saying
that every member of tne family H(P) is a G(P)(n).
The superscripted (r) will sometimes be omitted from
the symbol fcor & family of r-graphs, but will nor-
mally be included in the symbol for & specific r-
graph -- except possibly when r = 2.

For any fixed family H of r-graphs and any

positive integer n, the extremal number ex(nj; H )

is the largest integer t for which there exists a
G{r)(n,t) containing no member of H as a sub-r-graph.
More precisely, H 1s a family of isomorphism
classes of r-graphs, none of whilch contains an r-
graph, which may be extended, possiocly by adjoining
new vertices and/or new r-tuples, tc yleld this
G(r)(n,t}. in the case of graphs, r = 2, much work

has been dcocne on extremal numbers ., As usual, ¥

o Lo

denotes the complete graph with t vertices, Turan

[11] generalized a result of Mantel-Wythoff [3] by
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evaluating ex(n; {Kéa)(t,(g))}) for every t. Numer-
ous other results, both exact and asymptotic, have
since been discovered for graphs: indeed, for every
famlly H of graphs, n_2ex(n; H ) approaches a known
1imit [8] as n approaches infinity, the value of the
1imit depending only on the minimum of the chromatic
numbers of members of H ; descriptlions of general
extremal results for graphs may be found in [5] etc.
In [U4] we investigated several prcblems for r = 3.
For example, we studied the asymptotic behavier of
ex(n; T(3)) where T(3) is the class of all tri-
angulations of the sphere -- thereby generalizing

(2)(n;n) con-

the trivial statement that any graph G
tains a polygon.

Let G(r)(n,m} denote the class of all G(r)(n,m).
In this paper we shall denote ex(n;G(r}(k,h)) by
f(r)(n;k,s) - 1. Thus f(r)(n;k,s) denotes the
smallest t for which every G(r)(n,t) contains at
least one G'¥)(k,s). This problem was studied for
graphs in [5] and for r = 3 in [4]. In the former
case, many exact values are Known, as well as asymp=-
totiec information; in the latter case, there are

many gaps -- even for small values of k., We shall

give examples of some known results for » = 2 and
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r = 3. The malin result of thils paper consists of
the determination of a lower bound for f(r)(n;k,s).
The method of proof is that called by one of us [6]
"probabilistic" -- we employ a ccunting argument to
prove the existence of r-graphs containing no
G(r)(k,s) and having the desired number of r-tuples,
but we make no attempt to exhibit the r-graphs
explicitly. The tound we obtain is not always best
possible, but does in some cases improve on our
earlier results for r = 3.

The letter ¢, posslibly subscripted, will be
reserved for positive constants which appear in in-
equalities for extremal numbers. We shall not be
concerned with best possible values for such con-

stants.

(2)(

2. Some known values of f n;k,s)

We shall not attempt an exhaustive discussion
here, but refer the reader to [5] remarking, howeven
that some of the results there stated have been
improved upon by various authcrs., We discuss telow
the behavior when s < k.

First, for the range s < k,

s 8 < k/2

f(2)(n;k,s} = [
Ul + [n(2s=k)/2s=-x+1] k/2 < 5 < k,
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When s = k an exact result [9,11] is available

cnly for k = 3, where

£¢2)(n;3,3) = n2/8] + 1.

Scme information is avallable on the asymptotic
behavior of f(2)(n;k,k). When k = 4, it follows

from a previous result [3,7] that

1im n-3/2f(2)(n;ﬂ,ﬂ) = 1/2.

Tl =0

Erdos has proved the existence of positive con-

stants Ek’ak'bk such that the inequality

aknl+ek < f(z){n;k,k) < bknl+l/[k/2]

holds for all k: 1indeed, with g, = 1/[k/2] for

k < 5 at least. This stronger lower bound is easily
seen to be valld for k = 6,7 and for k = 10,11 using
graphs derived from familles constructed by Benson

[1] and Singleton [10].

A
3. Some known values of f(g’{n;k,s).

Much of [4] was deveoted to a discussion of
other structural problems. But we did determine
asymptotic bounds for f(B)(n;k,s) for k < 6, We
reproduce here the list of inequalilties proved in

Theorem U4 of that paper:
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1im n'zf(3)(n;h,2) = 1/6

=

c3n3 < f(B)(n;H,E) < r(3) (n;l,u)
£03)(n;5,2) = [n/3] + 1

cung < £3)(n;5,3) <

c6n5/2<f(3)(n;5,u) <

egnd < 13 (n;5,5) < ... < £33 (n;5,10)
£03)(n;6,2) = 2

c9n3/2<f(3)(n;6.3)

e, n° <f(3)(n;6,ﬂ) < n“/4

10
£(3)(n;6,6) <

f(3)(n;6,8) < lenll/u

¢y g <t3)(n;6,9) < ... < £3)(n;6,20)

Perhaps the most 1interesting questilion we were
unable to answer 1s whether f(3)(n;6,3) = o(nz).
Qur main result will provide improved lower bounds
for f(S)(n;G,S} and f(3)(n;6,6); alsoc we shall be
able to generallze the palr of inequalities for

f(3)(n;6,h) to f(B}(n;k,k-2).
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4, A lower bound for f(r)(n;klg).

Our main result is now stated.

Theorem. For integers k > r and s > 1 there exists

a positive constant Cy s such that
]

. n(rs-k)/(s-1)
=]

f(r)(n;k,s) >cC
Before proceeding with the proof, which uses
the so-called "probabilistic" methods of [6], we
remark that the exponent of n in the above inequal-
ity 1s not always best possible, It can, however,
be shown to be best possible when s - 1 divides

rs - k., For example, when k = 5 and s = 4 we know

that

3\
f(3’(n;5,h) = 0(n5/2), but here we obtain only

f(3)(n;5,ﬂ) > en'’3,

Proof of the thecrem. Let r,k,s be fixed integers

(k >r, s >1). Let n be any integer "sufficiently
large", and m an integer to be further specified in
inequality (1) below. Let V be a fixed set of car-
dinality n. The set of r-graphs having vertex set

V and exactly m r-tuples will be denoted by M; it

n (r') in

has exactly G]ng members. For any r-graph H

m
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M, a subset K of V of cardinality k is called

"H(r)-bad“ if at least s r=-tuples of H(r) are con-

tained in K. Denoting by b(H(r}) the number of H(rL
bad subsets of V, we shall choose m so that the

followlng inequality will hold:

n
(1) : vy s ((r)) <mt 2 (5,
- r
m
where the sum 1s taken over all H(r) e M, both in
(1) and below. Since the left member of this

(r) _paq

inequality is Just the average number of H
subsets in graphs in family M, (1) ensures that
there exists an r-graph Hér) in M such that

b(ng)) < m/(i). If we omit from Hér) every r-tuple
which occurs in an ng}—bad k-tuple we may construct
a G(r)(n,m) containing no Hér)-bad k-tuple: hence

it will follow that
f(r)(n;k,s) > m.

It remains to determine for given n the largest m
for which (1) holds. The total number of H'™)-bad
k-tuples can be counted in the followlng way: first
we fix a k-tuple K, then select s r-tuples consist-
ing entirely of vertices of K,"and m - s r-tuples

from among the remaining (g) - s. Thus
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k
r o)) < () ((r)) (‘?) - S)
s m =S

and hence
((2) - s)
g)) K m - s
(%)
m
s

clnk (_;rr:__
)

where cl 1s a constant depending on k,r, and s. The

| A

(2) © ob@'Fy ((

m

| A

last 1nequality 1s a speclal case of the following:
If B < C< A then (C-1)/(A-1) is a decreasing

functlon of 1 and so

A-B
cC -B

A C(C-l -aa(C-B"'l i (C/A)B.
4

AA"]. e A"' +1

Inequality (2) will imply (1), provided
s

Kk m
cln ( = ) < 02m
fod

t.e., m* 1t < C3nrs-k; thus we may fix

m = cy n{rs-k)/(s-1) thereby proving the theorem.
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5. The order of magnitude of f n;k,k=-2).

By our theorem, f(3)(n;k,k-2) > cn2. We prove
that (constant) x n2 triples suffice to ensure the

existence of a G(B)(k,k-E). Let
G(3) = G(B) ( n,% (n [%E% + (n=-1)] + 1)).

Then some vertex x has the property that the pairs
of vertices which together with x constiltute triples

of the 3-graph form a
(2) k=2
‘2 (n-1, (FE(n-1] + 1)

on the vertex set of our G(B) with x omitted. By a
result quoted in Section 2, such a graph must con-
tain a 62 (k-1,k-2), hence 63} contains a
6¢3) (k,k-2).

We conjecture that 1im n-2f(3)(n;k,k-2) exists,
but have succeeded [4] 12+;roving this only for

k = 1,

Many interesting new problems arise if we
also consider the structure of the graphs G(r)(k;s)
and we have some very preliminary results; but many

unsolved problems remain even for r = 2.
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