
SOME EXTREMAL PROBLEMS ON r-GRAPHS

W . G . Brown, P . Erdős, and V . T . Sós

1 . Introduction .

By an r-graph we mean a fixed set of vertices

together with a class of unordered subsets of this

fixed set, each subset containing exactly r elements

and called an r-tuple . In the language of Berge [2j

this is a simple uniform hypergraph of rank r . The

concept becomes interesting only for r > 1 : for

r = 2 we obtain ordinary (i .e ., Michigan) graphs .

We shall represent an r-graph by a capital Latin

letter followed by a superscripted (r), as H (r) .

If in some context this symbol is followed by (n) or

(n,m), as H (r) (n) or H (r) (n,m), this will mean that

`i` r) has exactly n vertices and, in the second case,

at least m r-tuples ; thus n will always be an inte-

ger, but m reed not be . Any of the foregoing nota-

tions, when applied to the symbol for a family of

r-graphs, will to intended to apply to all members

of the family : for example, if H (r) is a family of

r-graphs, and we write H (r) (n), we shall. b e saying
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that every member of H(r) has exactly n vertices .

The letter G will be reserved for a general r-graph :

in the sense that we may write "any G (r) (n ;m)" when

we mean "any r-graph having n vertices and at least

m r-tuples" ; it will not be used as the name of a

specific r-graph . As another example, if we use

the symbol fi` r '(n) defined above, we are saying

that every member of the family H (r) is a G (r) (n) .

The superscripted (r) will sometimes be omitted from

the symbol fc, , a family of r-graphs, but will nor-

mally be included in the symbol for a specific r-

graph -- except possibly when r = 2 .

For any fixed family H of r-graphs and any

positive integer n, the extremal number ex(n ; H )

is the largest: integer t for which there exists a

G (r) (n,t) containing no member of H as a sub-r-graph .

More precisely, H is a family of isomorphism

classes of r-graphs, none of which contains an r-

graph,which may be extended, possibly by adjoining

new vertices and,/or new r-tuples, to yield this

G (r) (n,t) . In the case of graphs, r = 2, much work

has been done on extremal numbers . As usual, Kt

denotes the complete graph with t vertices . Tu rán

[11] generalized a result of Mantel-Wythoff [,] by
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evaluating ex(n ; {K (2)(t,(2))}) for every t . Numer-

ous other results, both exact and asymptotic, have

since been discovered for graphs : indeed, for every

family H of graphs, n-2 ex(n ; H ) approaches a known

limit [8] as n approaches infinity, the value of the

limit depending only on the minimum of the chromatic

numbers of members of H ; descriptions of general

extremal results for graphs may be found in [5] etc .

In [4] we investigated several problems for r = 3 .

For example, we studied the asymptotic behavior of

ex(n ; Tl3)) where T(3) is the class of all tri-

angulations of the sphere -- thereby generalizing

the trivial statement that any graph G (2) (n ;n) con-

tains a polygon .

Let G(r) (n,m) denote the class of all G (r) (n,m) .

In this paper we shall denote ex(n ;G (r) (k,h)) by

f (r) (n ;k,s) - 1 . Thus f(r)(n ;k,s) denotes the

smallest t for which every G (r) (n,t) contains at

least one G (r) (k,s) . This problem was studied for

graphs in [5] and for r = 3 in [4] . In the former

case, many exact values are known, as well as asymp-

totic information ; in the latter case, there are

many gaps -- even for small values of k . We shall

give examples of some known results for r = 2 and
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r = 3 . The main result of this paper consists of

the determination of a lower bound for f (r) (n ;k,s) .

The method of proof is that called by one of us [6]

"probabilistic" -- we employ a counting argument to

prove the existence of r-graphs containing no

0 (r) (k,s) and having the desired number of r-tuples,

but we make no attempt to exhibit the r-graphs

explicitly . The bound we obtain is not always best

possible, but does in some cases improve on our

earlier results for r = 3 .

The letter c, possibly subscripted, will be

reserved for positive constants which appear in in-

equalities for extremal numbers . We shall not be

concerned with best possible values for such con-

starts .

2 . Some known values of f(2)(n ;k,s)

We shall not attempt an exhaustive discussion

here, but refer the reader to [51- remarking, however,

that some of the results there ;fated have been

improved upon by various authors .

the behavior when s < k .

First, for the range s < k,

s
f(2)(n ;k,s)

-
1
l 1 + [n(2s-k)/2s-k+13

	

k/2 < s < k .
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When s = k an exact result [9,11] is available

for k = 3, where

f(2)(n ;3,3) _ [n2 /4] + 1 .

Some information is available on the asymptotic

behavior of f(2)(n ;k,k) . When k = 4, it follows

from a previous result [3,7] that

limn~ n-3/`f 2 (n ;4,4) = 1/2 .

Erdös has proved the existence of positive con-

stants sk ,ak ,b k such that the inequality

akn l+ck < f(2) (n ;k,k) < b kn l+1/[k/2 ]

holds for all k : indeed, with ek = 1/[k/2] for

k < 5 at least . This stronger lower bound is easily

seen to be valid for k = 6,7 and for k = 10,11 using

graphs derived from families constructed by Benson

[1] and Singleton [10] .

3 . Some known values of f3',(n ;k,s) .

Much of [4] was devoted to a discussion of

other structural problems . But we did determine

asymptotic bounds for f(3)(n ;k,s) for k < 6 . We

reproduce here the list of inequalities proved in

`theorem 4 of that paper :
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Perhaps the most interesting question we were

unable to answer is whether f(3)(n ;6,3) = o(n 2 ) .

Our main result will provide improved lower bounds

for f(3)(n ;6,5) and f(3)(n ;6,6) ; also we shall be

able to generalize the pair of inequalities for

f(3)(n ;6,4) to f(3)(n ;k,k-2) .

5 8

limn- n-2f(3)(n ;4,2) = 1/6

c3n 3 < f(3)(n ;4,3) < f (3) (n ; 4, 4 )

f(3)(n ;5,2) _ [n/31 + 1

04 n2 < f(3)(n ;5,3) < c 5n 2

c6n5 /2 <f(3) (n ;5,4) < c7n5/2

c 8n 3 < f(3)(n ;5,5) < . . . < f(3)(n ;5,10)

f(3)(n ;6,2) = 2

e9n 3/2 <f(3) (n ;6,3)

c10n2 < f(3)(n ;6,4) < n2 /4

f(3)(n ;6,6) < ciln 5/2

f(3)(n ;6,8) < c 12
n 11/4

c13n,3 <f(3)(n ;6,9) < . . . < f(3)(n ;6,20)
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4 . A lower bound for f(r)(n ;k,s) .

Our main result is now stated .

Theorem . For integers k > r and s > 1 there exists

a positive constant ck s such that

f(r)(n ;k's) > c

	

n(rs-k)/(s-1)k,s

Before proceeding with the proof, which uses

the so-called "probabilistic" methods of [6], we

remark that the exponent of n in the above inequal-

ity is not always best possible . It can, however,

be shown to be best possible when s - 1 divides

rs - k . For example, when k = 5 and s = 4 we know

that

f 3'(n ;5,4) = O(n5/2 ), but here we obtain only

f(3)(n ;5,4) > cn7/3 .

Proof of the theorem . Let r,k,s be fixed integers

(k > r, s > 1) . Let n be any integer "sufficiently

large", and m an integer to be further specified in

inequality (1) below . Let V be a fixed set of car-

dinality n . The se`_ of r-graphs having vertex set

V and exactly m r-tuples will be denoted by M ; it

has exactly (r) members . For any r-graph H(r) in
m
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M .M, a subset K of V of cardinality

"H (r) -bad" if at least s r-tuples

tained in K . Denoting by b(H (r) )

bad subsets of V, we shall choose

following inequality will hold :

k is called

of H (r) are con-

the number of H (r )

m so that the

(1)

	

E b(H (r) )

	

_

	

(
n
r ) < m = 2 (r),

where the sum is taken over all H (r) e M, both in

(1) and below . Since the left member of this

inequality is just the average number of H (r) -bad

subsets in graphs in family M, (1) ensures that

there exists an r-graph H 0
(r) in M such that

b(H (r) ) < m/( T) . If we omit from Hór) every r-tuple

which occurs in an H

0

(r) -bad k-tuple we may construct

a G (r) (n,m) containing no H0
(r) -bad k-tuples hence

it will follow that

m

f(r)(n ;k,s) > m .

It remains to determine for given n the largest m

for which (1) holds . The total number of H (r) -bad

k-tuples can be counted in the following way : first

we fix a k-tuple K, then select s r-tuples consist-

ing entirely of vertices of K,'and m - s r-tuples

from among the remaining (r) - s . Thus
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E b(H (r) ) <

and hence

(2)

	

E

	

b(H(r) )

( n ) ~(r )

	

( r) - s
k

	

s

	

m - s)

n_ ( r )

	

< clnk
m

c k

m

in

	

(r)
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s
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k m
<

cln

	

(r)

< e 2m

(n) - s
m - s

s

where c l is a constant depending on k,r, and s . The

last inequality is a special case of the following :

If B < C < A then (C-i)/(A-i) is a decreasing

function of i and so

A - B
	C - B

( C )

Inequality (2) will imply (1),provided

C(C-1) . . .(C-B+1) < (C/A) .BA(A-1) . . .(A-B+1)

i .e ., ms-1 < c3nrs-k ; thus we may fix

m = cü n(rs-k)/(s-1) thereby proving the theorem .



5 . The orderofmagnitudeoff(3)(n ;k,k-2) .

By our theorem, f(3)(n ;k,k-2) > cn 2 . We prove

that (constant) x n2 triples suffice to ensure the

existence of a G(3)(k,k-2) . Let

G (3) = G (3) ( n,1 ( n [k-2 . (n-1)] + 1 )) .

Then some vertex x has the property that the pairs

of vertices which together with x constitute triples

of the 3-graph form a

G (2) (n-1, [k_2 (n-l)] + 1)

on the vertex set of our G (3) with x omitted . By a

result quoted in Section 2, such a graph must con-

tain a G(2)(k-l,k-2), hence G (3) contains a

G(3)(k,k-2) .

We conjecture that lim n-2f(3)(n ;k,k-2) exists,
n--

but have succeeded [4] in proving this only for

k = 4 .

Many interesting new problems arise if we

also consider the structure of the graphs G (r) (k •s )

and we have some very preliminary results ; but many

unsolved problems remain even for r = 2 .
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