ON THE THEORY OF DIOPHANTINE APPROXIMATIONS. I ${ }^{\text { }}$ (ON A PROBLEM OF A. OSTROWSKI)

By

VERA T. SÓS (Budapest)
(Presented by A. Renvi)

In what follows we denote by $\langle x\rangle$ the fractional part of the positive x; and by a any number with $0<\alpha<1$. As well known,

$$
\lim _{x \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\langle n c\rangle=\frac{1}{2} .
$$

We put for an a

$$
\sum_{n=1}^{N}\langle n c\rangle-\frac{N}{2}=C_{a}(N)
$$

As A. Ostrowski [1] has shown, for any irrational \boldsymbol{a} the quantity $C_{\alpha}(N)$ is unbounded. In the same paper he raised the question whether or not $C_{\alpha}(N)$ can for an appropriate \boldsymbol{a} be onesidedly bounded. In this paper we are going to give to this question an affirmative answer, i. e. to prove the following

Theorem. There is an irrational a and a constant C such that for $N=1,2, \ldots$ the inequality

$$
C_{a}(N)>C
$$

holds.
A slight modification of our construction gives at the same time the existence of a set of such a 's having the power of the continuum.

As A. Renvi remarked, the constant C of our theorem cannot be $\geqq 0$; a slight modification of our construction would show that for \mathcal{C} we could prescribe any negative number. We shall omit this modification.

In the proof we start from a geometrical interpretation of continued fractions which is applicable also to other questions of diophantine approximations. So I intend to return in this sequence of papers to a theorem of A. Khintchine, i. e. to the lower estimation of

$$
\sup _{\beta}^{\beta} \inf _{\substack{x \geq 0 \\ y, x \text { integers }}} x|\alpha x+\beta-y|
$$

[^0]investigated previously by A. Khintchine [2], S. Fukasawa [3], H. DavenPORT [4] and A. V. Prasad [5], and to the upper estimation of
$$
\inf _{\substack{\alpha \\ x, y \text { ininegers }}}^{\operatorname{inff}_{\substack{n \geq 0\\}} x|\alpha x+\beta-y|, ~}
$$
investigated by J. W. S. Cassels [6]. Further applications I shall publish elsewhere.

In $\S 1$ of this paper we give this geometrical interpretation of continued fractions and announce some lemmas whose proof will be postponed owing to their general character to the Appendix. In $\S 2$ we deduce from it an "exact formula" for $\sum_{n=1}^{N}\langle n c\rangle$ (Main Lemma). In $\S 3$ we prove the announced theorem.

§ 1

Starting from a fixed point O of the periphery of a circle E with unity periphery we put up in positive direction the arc with the length $a(0<c<1)$ once, twice,...,n-times, \ldots. The endpoints of these arcs we shall call the "nc-points" ($n=1,2, \ldots$). We need the following

Definition. We call the $s \kappa$-point "adjacent to $O^{\prime \prime}$, and the corresponding s an "adjacent multiplum of $O^{\prime \prime}$, if no $n c(-$ point with $0<n<s$ is contained in one of the two closed arcs determined by O and the s c-point.

So we obtained to our fixed a a sequence

$$
\begin{equation*}
0=s_{0}, 1=s_{1}<s_{2}<s_{3}<\cdots \tag{1.1}
\end{equation*}
$$

of adjacent multipla ; we shall denote the "empty" open arc corresponding to the $s_{r} \alpha$-point by \mathcal{A}_{ν}, the length of this arc by $\bar{\delta}_{r}$. We shall use also the directed "empty" arc between O and the $s_{\nu} \alpha$-point, the sign of its length being positive and negative, respectively, according to the direction in which the $\operatorname{arc} \Delta_{\nu}$ starts from O. This length with sign we shall denote by δ_{γ}.

Particularly important are those s_{ν}-multipla from (1.1) for which δ_{ν} and δ_{r+1} have different signs. We shall call these $s_{r_{1}}, s_{r_{2}}, \ldots, s_{v_{r}}, \ldots$, forming a subsequence of the sequence $s_{1}, s_{2}, \ldots, s_{v}, \ldots$, the "jumping-multipla" and denote them by

$$
\begin{equation*}
q_{1}, q_{2}, \ldots, q_{k}=s_{v_{k}}, \ldots \tag{1,2}
\end{equation*}
$$

In the case when $\frac{1}{2}<\omega<1$, the definition needs an additional remark, it is suitable to define $q_{2}=q_{1}=1$. If $k>1$, then $q_{k+1} \geq q_{k}$. The corresponding quantities $\bar{\delta}_{v_{k}}$ and $\delta_{v_{i}}$ we shall denote simply by \bar{d}_{k} and d_{i}, respectively.

We define $\bar{d}_{0}=1$. Next we define

$$
\begin{equation*}
a_{k}=\left[\frac{\bar{d}_{k-1}}{\bar{d}_{k}}\right] \quad(k=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

Lemma I. If the $s_{\nu} \alpha$-point is adjacent to O and from the opposite side of O the nearest to O among the $\alpha-, 2 \alpha_{-}, \ldots, s_{\nu} \alpha-$ points is the $s_{r-7} \alpha-$ point (l positive integer), then we have

$$
\begin{align*}
s_{\gamma+1} & =s_{y}+s_{\gamma_{-l}} \tag{1.4}\\
\delta_{\gamma+1} & =\delta_{\gamma}+\delta_{\gamma-i} . \tag{1.5}
\end{align*}
$$

The geometrical meaning of Lemma I is that one obtains the arc $A_{p r+1}$ from the arcs A_{y}, and $\Delta_{\gamma-1}$ in the following way: considering the larger of Δ_{v} and A_{v-l}, from its endpoint different from the point O we draw back the smaller of the arcs Δ_{ν} and Δ_{y-l}. This remark will be often used explicitly or implicitly.

Lemma II. We have for the above-defined quantities the recursive formulae for $k=1,2, \ldots$:

$$
\begin{align*}
& q_{k+1}=q_{k-1}+a_{k} q_{k} \tag{1.6}\\
& d_{k+1}=d_{k-1}+a_{k} d_{k}, \quad \bar{d}_{k+1}=\bar{d}_{k-1}-a_{k} \bar{d}_{k} \tag{1.7}\\
& \quad s_{v_{k}+r}=q_{k-1}+r q_{k} \tag{1.8}\\
& d_{\nu_{k}+r}=d_{k-1}+r d_{k}, \quad \bar{d}_{v_{k}+r}=\bar{d}_{k-1}-r \bar{d}_{k} \quad\left\{\quad\left(0<r<a_{k}\right)\right. \tag{1.9}
\end{align*}
$$

$$
\begin{equation*}
q_{k+1} \bar{d}_{k}+q_{k} \bar{d}_{k+1}=1 \tag{1.10}
\end{equation*}
$$

Lemma III. If the positive integer n is not an sfrom (1.1), then there exists an s_{y} with $s_{r}<n$ and

$$
\begin{equation*}
s_{v} \overline{\delta_{r}}<n t_{n} \tag{1.11}
\end{equation*}
$$

where

$$
t_{n}=\min (\langle n c\rangle, 1-\langle n c\rangle) .
$$

Further, if s_{v} is not a q_{k} from (1.2), then there is a $q_{k i}<s_{v}$ such that and

$$
q_{k}<s_{r}<q_{k+1}
$$

$$
\begin{equation*}
q_{i+1} \bar{d}_{k+1}<s_{\nu} \bar{\delta}_{2} \tag{1.12}
\end{equation*}
$$

The proof of these lemmas will follow in the Appendix. This shows that the s_{r}-multipla in (1.1) are identical with the set of all denominators and by-denominators (Neben-Nenner) of the convergents of the continued fraction of $\boldsymbol{\alpha}$, whereas the q-multipla in (1.2) are the denominators of its convergents and the a_{k} 's its digits. ${ }^{\circ}$

[^1]Moreover we shall need the following special
Lemma IV. An arbitrary positive integer N can be represented in the form

$$
\begin{equation*}
N=s_{\mu_{1}}+s_{\mu_{2}}+\cdots+s_{\mu_{k}} \tag{1.13}
\end{equation*}
$$

where the $s_{u_{j}}$-numbers are the adjacent multipla of an arbitrarily prescribed irrational α in the sense of (1.1), further

$$
\mu_{1}>\mu_{2}>\cdots>\mu_{k}
$$

and ${ }^{4}$

$$
\begin{equation*}
n_{j} \equiv N-\sum_{i=1}^{j} s_{u_{i}}<s_{u_{j}-1} \quad(j=1,2, \ldots, k) . \tag{1.14}
\end{equation*}
$$

Proof. Is N one of our s_{v}-numbers, we have nothing to prove. If not, then there is an index μ_{1} with

$$
s_{\mu_{1}}<N<s_{\mu_{1}+1} .
$$

Owing to (1.4) we have

$$
n_{1}=N-s_{\mu_{1}}<s_{\mu_{1}+1}-s_{\mu_{1}}=s_{\mu_{1}-7} \leqq s_{\mu_{1}-1} .
$$

Next there is an index μ_{2} with $\mu_{2}<\mu_{1}$ and

$$
s_{l_{2}} \leqq n_{1}<s_{\mu_{2}+1} .
$$

Again we have, using (1.4),

$$
n_{2}=n_{1}-s_{\mu_{2}}<s_{\mu_{2}+1}-s_{\mu_{2}} \leqq s_{\mu_{2}-1}
$$

and this process is obviously finished after a finite number of steps.

§ 2

Let N be a positive integer, a a positive irrational number and we represent N in the form (1.13). Then we assert the following

Main Lemma. ${ }^{5}$ With the notation of $\S 1$ and the representation (1.13) the formula

$$
C_{a}(N) \equiv \sum_{n=1}^{Y}\langle n a\rangle-\frac{N}{2}=\left(\bar{\delta}_{\mu_{k}} \frac{s_{\mu_{k}}+1}{2}-\frac{1}{2}\right) \operatorname{sign} \delta_{\mu_{k}}+
$$

$$
\begin{equation*}
+\sum_{j=1}^{k-1}\left\{\bar{\delta}_{\mu_{j}}\left(\frac{s_{\mu_{j}}+1}{2}+s_{\mu_{j+1}}+\cdots+s_{\mu_{k}}\right)-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu_{j}} \tag{2.1}
\end{equation*}
$$

holds.

[^2]For the proof we shall need the following lemmas:
Lemma V. The Main Lemma is true in case of $k=1$, i.e.

$$
\sum_{n=1}^{s_{\mu}}\langle n c\rangle=\frac{s_{\mu}}{2}+\left\{\bar{\delta}_{\mu} \frac{s_{\mu}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu}
$$

Proof. The $n a$-points ($n=0,1,2, \ldots, s_{k}$) divide the periphery of the circle E into $\left(s_{\mu}+1\right)$ disjunct arcs; starting from the point O in positive direction we denote the length of these arcs by $t_{0}, t_{1}, \ldots, t_{s_{\mu}}$, respectively. Since the arcs with the length $\langle n a\rangle$ put up on E from O in positive direction $\left(n=0,1, \ldots, s_{\mu}\right)$ cover the arc with the length $t_{i}\left(l=0,1, \ldots, s_{\mu}\right)$ obviously ($s_{\mu}-l$)-times, we have on the one hand

$$
\begin{equation*}
\sum_{n=1}^{s_{\mu}}\langle n a\rangle=\sum_{l=0}^{s_{\mu}}\left(s_{u}-l\right) t_{l} \tag{2.2}
\end{equation*}
$$

On the other hand, we can determine the sum on the left side putting up the arcs $\varepsilon, 2 c, \ldots, s_{\mu} c$ in the negative direction, starting from the $s_{\mu} \varepsilon$-point. These points in their totality coincide obviously with the $n c$-points ($n=0,1, \ldots, s_{\mu}$). Thus now the $s_{\mu} \alpha$-point plays the role of O and we have to sum the distances of our points from the $s_{\mu} c$-point.

Case I. $\delta_{\mu}>0$ (i. e. $\delta_{\mu}=t_{0}$). Then expressing our sum again by means of the t_{l} 's we obviously get

$$
\begin{equation*}
\sum_{n=1}^{s_{\mu}}\langle n c\rangle=s_{\mu} t_{0}+\left(s_{\mu}-1\right) t_{s_{\mu}}+\left(s_{\mu}-2\right) t_{s_{\mu}-1}+\cdots+2 t_{3}+t_{2} . \tag{2.3}
\end{equation*}
$$

Adding (2.2) and (2.3) we obtain

$$
\begin{equation*}
\sum_{n=1}^{s_{\mu}}\langle n c\rangle=s_{\mu} t_{0}+\frac{s_{\mu}-1}{2}\left(t_{1}+t_{2}+\cdots+t_{s_{\mu}}\right) . \tag{2.4}
\end{equation*}
$$

Since

$$
t_{0}+t_{1}+\cdots+t_{s_{k}}==1,
$$

(2.4) gives

$$
\begin{gathered}
\sum_{n=1}^{s_{\mu}}\langle n \boldsymbol{\sigma}\rangle=\frac{1}{2}\left(s_{\mu}-1+\left(s_{\mu}+1\right) t_{0}\right)= \\
=\frac{s_{\mu}}{2}+\left\{\bar{\delta}_{\mu} \frac{s_{\mu}+1}{2}-\frac{1}{2}\right\}=\frac{s_{\mu}}{2}+\left\{\bar{\delta}_{\mu} \frac{s_{\mu}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu} .
\end{gathered}
$$

Case II. $\delta_{\mu}<0$ (i. e. $\delta_{\mu}=-t_{s_{\mu}}$). Then the identity corresponding to (2.3) is

$$
\begin{equation*}
\sum_{n=1}^{s_{\mu}}\langle n c\rangle=s_{\mu} t_{s_{\mu}-1}+\left(s_{\mu}-1\right) t_{s_{\mu}-2}+\cdots+2 t_{1}+t_{0} . \tag{2.5}
\end{equation*}
$$

Adding (2.2) and (2.5) we obtain

$$
\begin{align*}
& \sum_{n=1}^{s_{\mu}}\langle n \alpha\rangle=\frac{s_{\mu}+1}{2}\left(t_{0}+\cdots+t_{s_{\mu}-1}\right)=\frac{s_{\mu}+1}{2}\left(1-t_{s_{\mu}}\right)= \tag{2.6}\\
& =\frac{s_{\mu}}{2}+\left\{\delta_{\mu} \frac{s_{\mu}+1}{2}+\frac{1}{2}\right\}=\frac{s_{\mu}}{2}+\left\{\delta_{\mu} \frac{s_{\mu}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \partial_{\mu} .
\end{align*}
$$

Further we need the simpler
Lemma VI. Let m, S be positive integers and let as consider the $(m+j) \alpha-$ points $(j=1,2, \ldots, S)$. If one of the arcs determined by O and the ma-point is empty and the directed length of this empty arc is $d(m)$, then we have

$$
\sum_{j=1}^{S}\langle(m+j) a\rangle=\sum_{j=1}^{S}\langle j a\rangle+S d(m)
$$

Proof. The directed distance from the $j \alpha$-point to the $(m+j) \alpha$-point on the circle is the same as between O and the $m \alpha$-point, i. e.

$$
\langle(m+j) c\rangle-\langle j a\rangle=d(m)
$$

from which summation for $j=1,2, \ldots, S$ already proves the lemma.
Finally we prove the
Lemma VIl. Using the representation (1.13) it holds for $j=1,2, \ldots, k$ that one of the two arcs of the circle E determined by O and the $\left(s_{\mu_{1}}+\cdots+s_{\mu_{j}}\right) \alpha_{-}$point does not contain any nc-point whenever

$$
\begin{equation*}
s_{\mu_{1}}+\cdots+s_{\mu_{j}}<n \leqq s_{\mu_{1}}+\cdots+s_{\mu_{j+1}} \tag{2.7}
\end{equation*}
$$

Proof. From the point O we can reach the $\left(s_{\mu_{1}}+s_{\mu_{2}}+\cdots+s_{\mu_{j}}\right) \alpha_{\text {- }}$-point starting from O going first to the $s_{\mu_{1}} \alpha$-point along the $\operatorname{arc} \Delta_{\mu_{1}}$, then from the $s_{\mu_{1}} \varepsilon$-point to the $\left(s_{\mu_{1}}+s_{\mu_{2}}\right) c$-point along the arc with the directed length $\delta_{\mu_{2}}$, and so forth, and finally from the $\left(s_{\mu_{1}}+\cdots+s_{\mu_{j-1}}\right) c$-point to the $\left(s_{\mu_{1}}+\cdots+s_{\mu_{j}}\right) \boldsymbol{\alpha}$-point along the arc with the directed length $\delta_{\mu_{j}}$. We shall prove our lemma a fortiori by showing that for the n 's in (2.7) no $n o$-points lie in these arcs with the directed length $\delta_{\mu_{1}}, \delta_{\mu_{2}}, \ldots, \delta_{\mu_{j}}$. First of all from (2.7) it follows that for $i=1,2, \ldots, j$

$$
\begin{equation*}
n>s_{\mu_{1}}+\cdots+s_{\mu_{i}} \tag{2.8}
\end{equation*}
$$

If for an n the $n \alpha$-point would lie on the above-mentioned arc with the: directed length $\delta_{\mu_{i+1}}$, then the ordering of the points

$$
\left(s_{\mu_{1}}+\cdots+s_{u_{i}}\right) c, n c,\left(s_{\mu_{t}}+\cdots+s_{\mu_{i+1}}\right) c
$$

would be the same as the ordering of the points

$$
O,\left(n-s_{\mu_{1}}-\cdots-s_{\mu_{i}}\right) c, s_{\mu_{i+1}} c .
$$

Taking into account (2.8) and the definition of $s_{\mu_{i+1}}$ it would follow

$$
n-s_{\mu_{1}}-\cdots-s_{\mu_{i}} \geqq s_{\mu_{i+1}+1},
$$

i. e.

$$
n \geqq s_{\mu_{1}}+\cdots+s_{\mu_{i}}+s_{u_{i+1}+1} .
$$

But owing to Lemma IV

$$
s_{\mu_{i+1}+1}>s_{\mu_{i+1}}+\cdots+s_{\mu_{k}},
$$

i. e. $n>N$ would follow, which is a contradiction.

From the above lemmas the proof of the Main Lemma can be completed as follows. We write

$$
\sum_{n=1}^{V}\langle n \omega\rangle=\sum_{n=1}^{s_{\mu_{1}}}\langle n \omega\rangle+\sum_{n=s_{\mu_{1}+1}}^{s_{\mu_{1}+s_{n_{2}}}}\langle n \omega\rangle+\cdots+\underbrace{s_{\mu_{1}+\cdots}+\cdots s_{\mu_{k}}}_{n=s_{\mu_{1}}+\cdots+s_{\mu_{k}-1}+1}\langle n\rangle .
$$

Owing to Lemma VII, Lemma VI is applicable; using also Lemma V we obtain

$$
\begin{align*}
\sum_{n=1}^{\mathrm{N}}\langle n a\rangle= & \frac{s_{\mu_{1}}}{2}+\left\{\left\{\bar{\delta}_{\mu_{1}} \frac{s_{\mu_{1}}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu_{1}}+\right. \\
& +\frac{s_{\mu_{2}}}{2}+\left\{\bar{\delta}_{\mu_{2}} \frac{s_{\mu_{2}}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu_{2}}+s_{\mu_{2}} d\left(s_{\mu_{1}}\right)+ \tag{2.9}\\
& \vdots \\
& +\frac{s_{\mu_{k}}}{2}+\left\{\bar{\delta}_{\mu_{k}} \frac{s_{\mu_{k}}+1}{2}-\frac{1}{2}\right\} \operatorname{sign} \delta_{\mu_{k}}+s_{\mu_{k}} d\left(s_{\mu_{1}}+\cdots+s_{\mu_{k}}\right) .
\end{align*}
$$

From what has been said in the proof of Lemma VII it follows

$$
d\left(s_{\mu_{1}}+\cdots+s_{\mu_{j}}\right)=\delta_{\mu_{1}}+\cdots+\delta_{\mu_{j}} .
$$

Putting it into (2.9) the proof of the Main Lemma is complete.

§ 3

We shall prove the announced theorem. We use again the representation (1.13) of N and divide the $s_{\mu_{j}}$'s into two classes according to the sign of the corresponding $\delta_{\mu_{j}}$. Let

$$
\begin{array}{ll}
s_{\mu_{j}}=s_{\mu_{j}}^{\prime}, & \delta_{\mu_{j}}=\delta_{\mu_{j}}^{\prime \prime} \text { for } \delta_{\mu_{j^{\prime}}>0,} \\
s_{\mu_{j}}=s_{\mu_{j}}^{\prime \prime} & \delta_{\mu_{j}}=d_{\mu_{j}}^{\prime \prime} \text { for } \tag{3.1}
\end{array} \delta_{\mu_{j}}<0 .
$$

Introducing this notation in the Main Lemma we get

$$
\begin{align*}
C_{a}(N) & =\sum_{j}\left\{\delta_{\mu_{j}}^{\prime}\left(\frac{s_{u_{j}}^{\prime}+1}{2}+\sum_{j_{\mu_{i}}<s_{\mu_{j}}^{\prime}} s_{\mu_{l}}\right)-\frac{1}{2}\right\}+ \\
& +\sum_{j}\left\{\frac{1}{2}-\delta_{\mu_{j}}^{\prime \prime}\left(\frac{s_{u_{j}}^{\prime \prime}+1}{2}+\sum_{s_{u_{l}}<s_{\mu_{j}}^{\prime \prime}} s_{\mu_{l}}\right)\right\} \equiv \Sigma_{1}+\Sigma_{2} . \tag{3.2}
\end{align*}
$$

Omitting from Σ_{1} the positive terms $\sum_{s_{\mu_{l}}<\mu_{\mu_{j}}} s_{\mu_{7}}$ and taking into account that from Lemma IV

$$
\sum_{s_{\mu_{l}}<s_{\mu_{j}}^{\prime \prime}} s_{\mu_{l}}<s_{\mu_{j}}^{\prime \prime}
$$

we obtain from (3.2)

$$
\begin{equation*}
C_{a}(N)>\frac{1}{2} \sum_{j}\left(\overline{\delta_{\mu_{j}}^{\prime}} s_{\mu_{j}}^{\prime}-1\right)-\frac{3}{2} \sum \delta_{\mu_{j}}^{\prime \prime} s_{\mu_{j}}^{\prime \prime} \equiv \Sigma_{1}^{\prime}+\Sigma_{2}^{\prime} \tag{3.3}
\end{equation*}
$$

This suggests as a guide for the choice of ε that for the $s_{\mu_{j}}^{\prime}$-multipla we should have $s_{\mu_{j}}^{\prime} \bar{\delta}_{\mu_{j}}^{\prime} \sim 1$ and, on the other hand, the products $s_{\mu_{j}}^{\prime \prime} \overline{\delta_{\mu_{j}}^{\prime \prime}}$ should be small, i. e. O should be approached "badly" from the positive side and well from the negative one.

The actual construction of such an ε can be performed as follows. Denoting the digits of the continued fraction of an a by a_{1}, a_{2}, \ldots,

$$
c=\frac{1}{a_{1}+} \frac{1}{a_{2}+} \frac{1}{a_{3}+\cdots},
$$

we define

$$
\left.\begin{array}{l}
a_{2 k-1}=1, j \tag{3.4}\\
a_{2 k}=k^{3}
\end{array}\right\} \quad(k=1,2, \ldots)
$$

owing to $a_{1}=1$ we have $\frac{1}{2}<c<1$ and owing to the additional remark on p. 462

$$
\begin{equation*}
q_{1}=q_{2}=1 . \tag{3.6}
\end{equation*}
$$

The formulae (1.6) and (1.7) give

$$
\begin{equation*}
q_{2 k}=q_{2 k-1}+q_{2 k-2} \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
q_{2 k+1}=q_{2 k-1}+k^{3} q_{2 k} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\bar{d}_{2 k}=\bar{d}_{2 k+1}+\bar{d}_{2 l+2} \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\bar{d}_{2 k+1}=k^{3} \bar{d}_{2 k+2}+\bar{d}_{2 k+3} \tag{3.10}
\end{equation*}
$$

From (1.10) and (3.8) we obtain

$$
\begin{equation*}
q_{2 k} \bar{d}_{2 k}=\frac{1}{\frac{q_{2 k+1}}{q_{2 k}}+\frac{\bar{d}_{2 k+1}}{\bar{d}_{2 k}}}<\frac{q_{2 k}}{q_{2 k+1}}<\frac{1}{k^{3}} . \tag{3.11}
\end{equation*}
$$

Again (1.10) gives

$$
\begin{equation*}
q_{2 k+1} \bar{d}_{2 k+1}=\frac{1}{\frac{q_{2 k+2}}{q_{2 k+1}}+\frac{\overline{\bar{d}}_{2 k+2}}{\bar{d}_{2 k+1}}} \tag{3.12}
\end{equation*}
$$

(3.10) gives at once

$$
\frac{\bar{d}_{2 k+2}}{\overline{\bar{d}}_{2 k+1}}<\frac{1}{k^{3}}
$$

and from (3.7) and (3.8)

$$
\frac{q_{2 k+2}}{q_{2 k+1}}=\frac{q_{2 k+1}+q_{2 k}}{q_{2 k+1}}<1+\frac{1}{k^{3}}
$$

putting this into (3.12)

$$
\begin{equation*}
q_{2 k+1} \bar{d}_{2 k+1}>\frac{1}{1+\frac{2}{k^{3}}}>1-\frac{2}{k^{3}} \tag{3.13}
\end{equation*}
$$

In order to extend the estimations (3.11) and (3.13) to all $s_{\mu} \bar{\delta}_{\mu}$'s we remark first that owing to (3.4) all $s_{\mu}^{\prime \prime \prime}$ s are at the same time q 's, i. e. also with some k

$$
\begin{equation*}
s_{\mu}^{\prime \prime} \bar{\delta}_{\mu}^{\prime \prime}=q_{2 k} \bar{d}_{2 k}<\frac{1}{k^{3}} . \tag{3.14}
\end{equation*}
$$

As to the s_{μ}^{\prime} 's (3.13) and Lemma III give for all $s_{\mu}^{\prime \prime}$'s with

$$
\begin{equation*}
q_{2 k}<s_{\mu}^{\prime}<q_{2 k+1} \tag{3.15}
\end{equation*}
$$

the estimation

$$
s_{\mu}^{\prime} \bar{\delta}_{\mu}^{\prime}>q_{2 k+1} \bar{d}_{2 k+1}>1-\frac{2}{k^{3}},
$$

i. e.

$$
\begin{equation*}
s_{\mu}^{\prime} \overline{\boldsymbol{\sigma}_{\mu}^{\prime}}-1>-\frac{2}{k^{3^{3}}} \tag{3.16}
\end{equation*}
$$

Now (3.14) and (3.3) give at once

$$
\begin{equation*}
\Sigma_{2}^{\prime}>-\frac{3}{2} \sum_{k=1}^{\infty} \frac{1}{k^{3}}>-3 \tag{3.17}
\end{equation*}
$$

To obtain a lower bound for Σ_{1}^{\prime} by the aid of (3.16) we have to consider how many terms belong to the same k for any fixed k. The number of the $s_{\nu^{\prime}}$ "Neben-Nenner" satisfying (3.15) is owing to $a_{2 k}=k^{3}$ obviously k^{3}; we need only an upper bound for the number of those which beside fulfilling (3.15) also occur in the representation (1.13) of N. Let these $s_{\mu}^{\prime \prime \prime}$ s be

$$
s_{\mu_{1}, k}, s_{\mu_{2}, k}, \ldots, s_{\mu_{r}, k}
$$

where

$$
\begin{equation*}
s_{\mu_{i}, k}=q_{2 k-1}+\mu_{i} q_{2_{k}} \quad\left(\mu_{1}<\mu_{2}<\cdots<\mu_{r}\right) \tag{3.18}
\end{equation*}
$$

We have to find an upper bound for r. Owing to the representation (1.13) we have

$$
s_{\mu_{1}, k}+\cdots+s_{\mu_{r-1}, k}<s_{\mu_{r}, k} \leqq q_{2 k+1}=q_{2 k-1}+k^{3} q_{2 k}
$$

Using (3.18) this gives a fortiori

$$
\mu_{1}+\mu_{2}+\cdots+\mu_{r-1}<k^{3}
$$

Since

$$
\mu_{1}+\mu_{2}+\cdots+\mu_{r-1} \geqq 1+2+\cdots+(r-1)=\frac{r(r-1)}{2}
$$

we get

$$
k^{3}>\frac{r(r-1)}{2}, \quad r<3 k^{3 / 2}
$$

Hence, by (3.3) and (3.16), we obtain

$$
\Sigma_{1}^{\prime}>-\sum_{k=1}^{\infty} 3 k^{\beta_{2} / 2} \frac{1}{k^{3}}
$$

This and (3.17) complete the proof.

Appendix

As told in the introduction, we shall prove here the first three lemmas.
Proof of Lemma. I. We denote by Δ_{y} the arc with the endpoints O and the $s_{v} \alpha$-point; then owing to the definition of l, A_{y} and $\Delta_{1 \sim i}$ have no common point except O. Let the $m \alpha-$ point fall into $A_{v}+A_{\nu-l}$, then we have

$$
m>s_{\psi}
$$

Since the length of the arc $A_{y}+A_{\nu-l}$ is $\bar{\delta}_{y}+\bar{\delta}_{y-l}$, there are two possibilities.
Case I. The length of the arc with the endpoints $s_{\gamma} \alpha$-point and $m \alpha-$ point (within $A_{y}+A_{\nu-1}$) is $\leqq \bar{\delta}_{y,-1}$.

Case II. The length of the arc with the endpoints $s_{\gamma-l} \alpha-$ point and $m \sigma_{-}$ point (within $A_{\nu}+A_{\nu-1}$) is $\left\langle\overline{\delta_{v}}\right.$.

In Case I the directed distance from the $s_{\nu} c$-point to the $m c$-point on the circle is the same as that from O to the $\left(m-S_{r}\right) \alpha$-point and this last point lies on $\int_{y^{-b}}$ or in the $s_{\nu-1}$ c-endpoint. Owing to the definition of $s_{y^{\prime-6}}$ we have in this case $m-s_{\nu} \geqq s_{\nu-1}$, i. e.

$$
\begin{equation*}
m \geqq s_{\gamma}+s_{\nu-l} \tag{4.1}
\end{equation*}
$$

In Case II the analogous reasoning gives

$$
\begin{equation*}
m>s_{v}+s_{v-l} \tag{4.2}
\end{equation*}
$$

The smallest m for which the $m \alpha$-point falls into $A_{\nu}+A_{\nu-l}$ is, according to the definition, $s_{\nu+1}$; from (4.1) and (4.2) it follows that

$$
S_{y_{r i 1}} \geqq S_{y}+S_{y-l} .
$$

On the other hand, the $\left(s_{v}+s_{y^{-7}}\right) \alpha_{\text {- point }}$ lies on the $\operatorname{arc} A_{\nu}+A_{y-7}$, indeed,
since the directed are length on the circle from the $s_{y} \alpha$-point to the $\left(s_{v}+s_{v-l}\right) \alpha_{-}$ point is the same as that from O to the $s_{p-i} \alpha$-point. This proves (1.4) and (1.5) consequently.

Proof of Lemma II. It follows from the definition of the q_{k} 's that the arc of the circle E which is bordered by O and the $q_{k-1} \alpha$-point, contains none of the $\alpha-, 2 \alpha-, \ldots, q_{k} \alpha$-points. Hence, according to Lemma I,

$$
\begin{align*}
& S_{\nu_{k}+1}=q_{k-1}+q_{k}, \tag{4.3}\\
& \delta_{p_{k}+1}=d_{k-1}+d_{k} .
\end{align*}
$$

The remark after Lemma I in $\S 1$ and the definition (1.3) of the digits a_{k} give that on the one hand the $s_{\gamma_{k}+1} c_{-}, \ldots, s_{v_{k}+u_{k}} \alpha_{\text {- }}$-points lie on the same side of O as the $q_{k-1} \alpha$-point, and on the other hand the $s_{\eta_{\gamma_{i}}+\alpha_{k}+1} \alpha$-point on the opposite side, i. e.

$$
\begin{equation*}
q_{k+1}=s_{v_{l_{i}}+a_{k}} . \tag{4.4}
\end{equation*}
$$

(4.3) and the repeated use of Lemma I give already (1.3) and, as easy to see, also (1.9). Owing to (4.4) the special case $r=a_{1}$ gives already (1.6) and (1.7).

Since $q_{0}=0, q_{1}=1, d_{0}=1, d_{1}=a$ and from (1.6) and (1.7) $q_{2}=a_{1}$, $\bar{d}_{2}=1-a_{1} c$, we have

$$
q_{1} \bar{d}_{2}+q_{2} \bar{d}_{1}=1
$$

and (1.10) follows from (1.6) and (1.7) by an easy induction.
Proof of Lemma III. (1.11) follows clearly from the definition of the S_{r} 's, since if the $n \alpha-$ point is not adjacent to O, this gives the existence of an integer $1 \leqq s_{v}<n$ for which the $s_{r} \alpha$-point is nearer to O than the $n c$ point.
(1.12) follows from (1.8) and (1.9) in the following way:

$$
\begin{aligned}
\dot{s}_{\gamma} \bar{\delta}_{\gamma} & \equiv s_{\gamma_{k}+r}{\overline{\delta_{v_{k}}+r}}=\left(q_{k+1}-\left(a_{k}-r\right) q_{k}\right)\left(\bar{d}_{k+1}+\left(a_{k}-r\right) \bar{d}_{k}\right)= \\
& =q_{k+1} \bar{d}_{k+1}\left(1-\left(a_{k}-r\right) \frac{q_{k}}{q_{k+1}}\right)\left(1+\left(a_{k}-r\right) \frac{\bar{d}_{k}}{\bar{d}_{k+1}}\right)
\end{aligned}
$$

On account of $\overline{d_{k}}>\bar{d}_{k+1}, q_{k}<\frac{1}{a_{k}} q_{k+1}$ and $0<a_{k}-r<a_{k}$
indeed.

$$
s_{\nu} \overline{\boldsymbol{\partial}}_{\nu}>q_{k+1} \overline{\boldsymbol{\alpha}}_{k+1}
$$

Bibliography

[1] A. Ostrowski, Bemerkungen zur Theorie der diophantischen Approximationen, Abhandlangen des Mathematischen Seminars Hamburg, 1 (1921), pp. 77-98.
[2] A. Khintchine, Über eine Klasse linearer diophantischen Approximationen, Rendiconti di Palermo, 50 (1926), pp. 170-195.
[3] S. Fukasawa, Über die Größenordnung des absoluten Betrages von einer linearen inhomogenen Form. I, Jap. Journal of Math., 3 (1926), pp. 1-27.
[4] H. Davenport, On a theorem of Khintchine, Proc. London Math. Soc. (2), 52 (1950), pp. 66-80.
[5] A. V. Prasad, On a theorem of Khintchine, Proc. London Math. Soc. (2), 53 (1951), pp. 310-320.
[6] J. W. S. Cassels, Über $\underset{x \rightarrow+\infty}{\lim } x|\vartheta x+\alpha-y|$, Math. Annalen, 127 (1954), pp. 288-304.

[^0]: ${ }^{1}$ The results of this sequence of papers were contained in my dissertation, defended in June 1957, and I lectured on some parts of it in Lublin and Lodz in September 1956.
 ${ }^{2}$ The numbers in brackets refer to the Bibliography given at the end of the paper:

[^1]: ${ }^{3}$ In this paper we use the term "digit" instead of the usual "partial quotient".

[^2]: ${ }^{4}$ In the case when $\mu_{k}=1$, the last inequality for n_{k} must be dropped.
 5 An exact formula occurs also in Ostrowsn's paper [1]. His formula contains only the denominators of the convergents of the continued fraction of c.

