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Abstract. In the present work, we introduce and study the notion of statistical probability con-
vergence for sequences of random variables as well as the concept of statistical convergence for
sequences of real numbers, which are defined over a Banach space via product of deferred Cesàro
and deferred Nörlund summability means. We first establish a theorem presenting a connection
between them. Based upon our proposed method, we then prove a Korovkin-type approximation
theorem with algebraic test functions for a sequence of random variables on a Banach space and
demonstrate that our theorem effectively extends and improves most (if not all) of the previously
existing results (in classical as well as statistical versions). Finally, an illustrative example is
presented here by means of the generalized Meyer-König and Zeller operators for a positive se-
quence of random variables in order to demonstrate that our established theorem is stronger than
its traditional and statistical versions.
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1. INTRODUCTION AND MOTIVATION

In the study of sequence spaces, the classical convergence has got numerous ap-
plications where the convergence of a sequence requires that almost all elements are
to satisfy the convergence condition. This means that, all of the elements of the se-
quence need to be in an arbitrarily small neighborhood of the limit. However, such
restriction is relaxed in statistical convergence, where the validity of the convergence
condition is achieved only for a majority of elements. Subsequently, the notion of
statistical convergence was introduced by Fast [6] and Steinhaus [27]. Recently, stat-
istical probability convergence has been a dynamic research area due to the fact that it
is more general than the statistical convergence as well as the classical convergence.
Moreover, such theory is discussed in the study of Fourier Analysis, Number Theory
and Approximation Theory. For more details, see [9], [7] and [19].
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Let N be the set of natural numbers and let K �N. Also let

Kn D fk W k 5 n and k 2Kg

and suppose that jKnj is the cardinality of Kn. Then the natural density d.K/ of K
is defined by

d.K/D lim
n!1

jKnj

n
D lim
n!1

1

n
jfk W k 5 n and k 2Kgj;

provided that the limit exists.
A given real sequence .xn/ is said to be statistically convergent to L if, for each

� > 0, the set
K� D fk W k 2N and jxk �Lj= �g

has zero natural density (see [6] and [27]). Thus, for each � > 0, we have

d.K�/D lim
n!1

jK�j

n
D lim
n!1

1

n
jfk W k 5 n and jxk �Lj= �gj D 0:

In this case, we write
stat lim

n!1
xn D L:

In the year 2002, Móricz [13] introduced the fundamental idea of statistical Cesàro
summability. Later on, Mohiuddine et al. [12] established some Korovkin-type
approximation theorems based upon statistical Cesàro summability. Subsequently,
Karakaya and Chishti [10] introduced and studied the concept of weighted statistical
convergence and their definition was later modified by Mursaleen et al. [14]. Further-
more, the fundamental concept of the deferred Cesàro statistical convergence as well
as of the statistically-deferred Cesàro summability and associated approximation the-
orems was introduced by Jena et al. [8]. Recently, Srivastava et al. [22] introduced
the notion of deferred weighted statistical convergence and proved analogous ap-
proximation theorems. For several other recent developments in this direction, see
(for example) [4], [15], [17], [22], [24], [23] and [25].

Recalling the probability theory, letXn .n 2N/ be a random variable defined on
an event space S with respect to a given class of events �. Let P W �! R (where
R is the set of real numbers) be a probability density function. Then we denote the
sequence X1;X2;X3; � � � of random variables by fXngn2N.

From the practical point of view, the discussion of a random variable X will be
highly significant if it is known that there exists a real constant c for which

P.jX � cj< �/D 1;

where � > 0 is sufficiently small, that is, it is nearly certain that the values of X lie in
a very small neighborhood of c.
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For a sequence fXngn2N of random variables, where each Xn may not have the
above property, it may happen that the aforesaid property (with respect to a real con-
stant c) becomes more and more distinguished as n gradually increases and then the
question of existence of such a real constant c will be answered by a notion of prob-
ability convergence (that is, convergence in probability) of the sequence fXngn2N.

Let fXngn2N be a sequence of random variables, where each Xn is defined on the
same event space S , with respect to a given class of subsets (of S ) as the class � of
events and a given probability function P W �! R. The sequence fXngn2N is said
to be statistically probability convergent (or statistically convergent in probability) to
a random variable X (where X W S ! R/ if, for any � > 0 and ı > 0, we have

lim
n!1

1

n
jk W k 5 n and P.jXn�X j= �/= ıj D 0

or, equivalently,

lim
n!1

1

n
jk W k 5 n and 1�P.jXn�X j5 �/= ıj D 0:

In this case, we write

statP lim
n!1

P.jXn�X j= �/D 0 or statP lim
n!1

P.jXn�X j5 �/D 1:

We now show by means of the following example that every statistically conver-
gent sequence is statistically probability convergent, but the converse is not necessar-
ily true.

Example 1. Consider a probability density function of Xn of the following form:

fn.x/D

8<:
1
3

.0 < x < 1I nDm2 8 m 2N/

0 (otherwise)

and

fn.x/D

8̂<̂
:
nxn�1

4n
.0 < x < 4I n¤m2 8 m 2N/

0 (otherwise):

Let 0 < �;ı < 1. Then

P.jXn�4j= �/D

8̂̂̂̂
<̂
ˆ̂̂:
1 .nDm2 8 m 2N/

1�P.jXn�4j< �/

D

�
1�

�

4

�n
.n¤m2 8 m 2N/:
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This implies that

lim
n!1

1

n
jfk W k 5 n and P.jXn�4j= �/= ıgj

5 lim
n!1

1

n
jf12;22;32; � � � ;n2gj D 0:

Clearly, it is neither statistically convergent nor ordinarily convergent, while it is
statistically probability convergent to 4.

Quite recently, Srivastava et al. ([20] and [21]) first introduced and studied the
fundamental idea of deferred Cesàro statistical probability convergence as well as
deferred weighted statistical probability convergence of a sequence of random vari-
ables as follows.

Let fXngn2N be a sequence of random variables, where each .Xn/ is defined on
the same event space S with respect to a given class of subsets (of S ) as the class �
of events and a given probability function P W �! R. A given sequence fXngn2N

is said to be deferred Cesàro statistically probability convergent to a random variable
X (where X W S ! R), if for every ı > 0 and � > 0, the set

fk W an < k 5 bn and P.jXn�X j= �/= ıg

has natural density zero, that is,

lim
n!1

1

bn�an
jfk W an < k 5 bn and P.jXn�X j= �/= ıgj D 0;

In this case, we write

statDCP lim
n!1

P.jXn�X j= �/D 0:

Similarly, a given sequence fXngn2N is said to be deferred weighted statistically
probability convergent to a random variable X (where X W S! R), if for every ı > 0
and � > 0, the set

fm Wm5 Rn and pmqmP.jXn�X j= �/= ıg

has natural density zero, that is,

lim
n!1

1

Rn
jfm Wm5 Rn and pmqmP.jXn�X j= �/= ıgj D 0:

In this case, we write

statD NNP lim
n!1

pmqmP.jXn�X j= �/D 0:

Several researchers have worked on extending or generalizing the Korovkin-type
approximation theorems in many different ways and under several different settings,
including function spaces, abstract Banach lattices, Banach algebras, Banach spaces,
and so on. This theory is very useful in Real Analysis, Functional Analysis, Harmonic
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Analysis, Measure Theory, Probability Theory and Summability Theory. In the year
2018, Jena et al. [8] introduced statistically-deferred Cesàro summability for single
sequences in Korovkin-type approximation theorems. Recently, Paikray et al. [16]
established a Korovkin-type theorem based upon the .p;q/-integers for statistically-
deferred Cesàro summability mean. Subsequently, Dutta et al. [5] demonstrated the
Korovkin theorem on C Œ0;1/ by using the test functions 1; e�x and e�2x via the
deferred Cesàro mean. In another recent work, Srivastava et al. [24] made use of
the notion of the deferred Nörlund statistical convergence and accordingly proved a
Korovkin-type approximation theorem.

Motivated essentially by the above-mentioned investigations and results, we first
introduce here the notion of the product of deferred Cesàro and deferred Nörlund
statistical convergence of real sequences, and then for the statistical probability con-
vergence of sequences of random variables. Moreover, we establish an inclusion
relation between them. Furthermore, based upon our proposed methods, we prove a
new Korovkin-type approximation theorem with algebraic test functions for positive
sequences of random variables over a Banach space and demonstrate that our result
is a non-trivial extension of some well-established ordinary and statistical versions of
several known results.

2. PRELIMINARIES AND DEFINITIONS

Let .an/ and .bn/ be sequences of non-negative integers such that, (i) an < bn and
(ii) lim

n!1
bn D1; then the deferred Cesàro (DC) mean is defined by (see, Agnew

[1], p. 414),

�n D
xanC1CxanC2CxanC3C :::Cxbn

bn�an

D
1

bn�an

bnX
kDanC1

xk : (2.1)

It is well known that, deferred Cesàro (DC) mean is regular under conditions (i) and
(ii) (see, Agnew [1]).

Similarly, suppose that .pn/ be a sequence of non-negative real numbers such that

Pn D

bnX
mDanC1

pbn�m;

then the deferred Nörlund mean D.N;pn/ is defined by (see [24])

tn D
1

Pn

bnX
mDanC1

pbn�mxm:
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Also, it is well known that, D.N;pn/ is regular under the above-mentioned condi-
tions (i) and (ii) (see, for details, Agnew [1]).

We now define the product of deferred Cesàro (DC) and deferred Nörlund (DN)
means

�n D .� t/n D
1

.bn�an/

bnX
mDanC1

.tm/

D
1

.bn�an/

bnX
mDanC1

1

Pm

bmX
vDamC1

pbm�vxv;

and that a sequence .�n/ is summable toL by the deferred Cesàro (DC) and deferred
Nörlund (DN) product [D(CN)] means if,

lim
n!1

�n D L:

Also, assume that the [D(CN)] product mean is regular.

Let us now introduce the following definitions which will be needed in connection
with our proposed investigation here.

Definition 1. Let .an/ and .bn/ be sequences of non-negative integers, and let
.pn/ be the sequence of non-negative real numbers. A real sequence fxngn2N is said
to be deferred Cesàro and deferred Nörlund [D(CN)] statistically convergent to L if,
for each � > 0; the set given by

fm Wm5 .bn�an/Pn and pbn�mjxm�Lj= �g

has its natural density zero, that is,

lim
n!1

1

.bn�an/Pn
jfm Wm5 .bn�an/Pn and pbn�mjxm�Lj= �gj D 0:

In this case, we write
statD(CN) limxn D L:

Definition 2. Let .an/ and .bn/ be sequences of non-negative integers and let
.pn/ be the sequence of non-negative real numbers. Suppose also that fXngn2N

is a sequence of random variables, where each .Xn/ is defined on the same event
space S with respect to a given class � of subsets of the event space S and a given
probability density function P W �! R. A given sequence fXngn2N is said to be
deferred Cesàro and deferred Nörlund [D(CN)P] statistically probability convergent
to a random variable X (where X W S ! R) if, for every ı > 0 and � > 0, the set

fm Wm5 .bn�an/Pn and pbn�mP.jXn�X j= �/= ıg
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has its natural density equal to zero, that is,

lim
n!1

1

.bn�an/Pn
jfm Wm5 .bn�an/Pn and pbn�mP.jXn�X j= �/= ıgj D 0

or, equivalently,

lim
n!1

1

.bn�an/Pn
jfm Wm5 .bn�an/Pn

and 1�pbn�mP.jXn�X j5 �/= ıgj D 0:

In this case, we write

statD(CN)P lim
n!1

pbn�mP.jXn�X j= �/D 0

or
statD(CN)P lim

n!1
pbn�mP.jXn�X j5 �/D 1:

We next present a theorem demonstrating that every deferred Cesàro and deferred
Nörlund [D(CN)] statistically convergent sequence is deferred Cesàro and deferred
Nörlund [D(CN)P] statistically probability convergent. However, the converse is not
true.

Theorem 1. Let the sequence fxng of constants be such that statD.CN/xn ! x.
Then; assuming it to be a random variable having a one-point distribution at that
point; the sequence fXng of random variables is such that

statD.CN/PXn!X:

Proof. Let � > 0 be any arbitrarily small positive real number. Then, by Definition
1, we obtain

lim
n!1

1

.bn�an/Pn
jfm Wm5 .bn�an/Pn and pbn�mjxm�Lj= �gj D 0:

We now let ı > 0, so that the set

fm Wm5 .bn�an/Pn and pbn�mP.jXn�X j= �/= ıg �K;

where
K D fm Wm5 .bn�an/Pn and pbn�mjxm�Lj= �g:

Thus, by Definition 2, we may write

statD(CN)PXn!X:

�

We now present below an example to show that a sequence of random variables
is deferred Cesàro and deferred Nörlund [D(CN)P] statistically probability conver-
gent, whenever it is not deferred Cesàro and deferred Nörlund [D(CN)] statistically
convergent.
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Example 2. Let anD 2n�1, bnD 4n�1 and pnD n. Suppose that the probability
density function of Xn is given by

fn.x/D

8<: 1 .0 < x < 1I nDm2 8 m 2N/

0 (otherwise)

and

fn.x/D

8̂<̂
:
.nC1/xn

4nC1
.0 < x < 4I n¤m2 8 m 2N/

0 (otherwise):

Let 0 < �;ı < 1. Then

P.jXn�4j= �/D

8̂<̂
:
1 when nDm2

1�P.jXn�4j< �/D
�
1�

�

4

�nC1
when n¤m2:

Consequently, we have

lim
n!1

1

2n2
jfm Wm5 2n2 and nP.jXn�4j= �/= ıgj D 0;

Clearly, we observe that .Xn/ is neither convergent nor deferred Cesàro and deferred
Nörlund [D(CN)] statistically convergent; however, it is deferred Cesàro and deferred
Nörlund [D(CN)P] statistically probability convergent to 4.

3. A NEW KOROVKIN-TYPE THEOREM

In this section, we extend here the result of Jena et al. [8] and Srivastava et al.
[24] by using the product deferred Cesàro and deferred Nörlund [D(CN)P] statistical
probability convergence of sequences of random variables over a Banach space.

Let C.R/, be the space of all real valued continuous probability functions defined
on R under the norm k:k1. Also let C.R/ is a Banach space. Then, for f 2 C.R/,
the norm of f denoted by kf k is given by,

kf k1 D sup
x2R
fjf .x/jg:

We say that the operator L is a sequence of random variables of positive linear oper-
ator provided that

L.f Ix/= 0 whenever f = 0:

Now we prove the following theorem by using the product deferred Cesàro and
deferred Nörlund [D(CN)P] statistical probability convergence.
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Theorem 2. Let
Lm W C.R/! C.R/

be a sequence of random variables of positive linear operators. Then, for all f 2
C.R/,

statD(CN)P lim
m!1

kLm.f Ix/�f .x/k1 D 0; (3.1)

if and only if

statD(CN)P lim
m!1

kLm.1Ix/�1k1 D 0; (3.2)

statD(CN)P lim
m!1

kLm.xIx/�xk1 D 0; (3.3)

and

statD(CN)P lim
m!1

kLm.x
2
Ix/�x2k1 D 0: (3.4)

Proof. Since each of the following functions

f0.x/D 1; f1.x/D x and f2.x/D x
2

belonging to C.R/ and are continuous, the implication given by .3:1/ implies .3:2/
to .3:4/ is obvious. In order to complete the proof of the Theorem 2, we first assume
that the conditions (3.2) to (3.4) hold true. If f 2 C.R/, then there exists a constant
M > 0 such that

jf .x/j5 M .8 x 2 R/:

We thus find that

jf .s/�f .x/j5 2M .s;x 2 I /: (3.5)

Clearly, for given � > 0, there exists ı > 0 such that

jf .s/�f .x/j< � (3.6)

whenever
js�xj< ı; for alls;x 2 I:

Let us choose
'1 D '1.s;x/D .s�x/

2:

If js�xj= ı, then we obtain

jf .s/�f .x/j<
2M

ı2
'1.s;x/: (3.7)

From equation (3.6) and (3.7), we get

jf .s/�f .x/j< �C
2M

ı2
'1.s;x/;
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which implies that

���
2M

ı2
'1.s;x/5 f .s/�f .x/5 �C

2M

ı2
'1.s;x/: (3.8)

Now since Lm.1Ix/ is monotone and linear, so by applying the operator Lm.1Ix/ to
this inequality, we have

Lm.1Ix/

�
���

2M

ı2
'1.s;x/

�
5 Lm.1Ix/.f .s/�f .x//

5 Lm.1Ix/

�
�C

2M

ı2
'1.s;x/

�
:

We note that x is fixed and so f .x/ is a constant number. Therefore, we have

��Lm.1Ix/�
2M

ı2
Lm.'1Ix/5 Lm.f Ix/�f .x/Lm.1Ix/

5 �Lm.1Ix/C
2M

ı2
Lm.'1Ix/: (3.9)

But

Lm.f Ix/�f .x/D ŒLm.f Ix/�f .x/Lm.1Ix/�Cf .x/ŒLm.1Ix/�1�: (3.10)

Using (3.9) and (3.10), we have

Lm.f Ix/�f .x/ < �Lm.1Ix/C
2M

ı2
Lm.'1Ix/Cf .x/ŒLm.1Ix/�1�: (3.11)

We now estimate Lm.'1Ix/ as follows:

Lm.'1Ix/D Lm..s�x/
2
Ix/D Lm.s

2
�2xsCx2Ix/

D Lm.s
2
Ix/�2xLm.sIx/Cx

2Lm.1Ix/

D ŒLm.s
2
Ix/�x2��2xŒLm.sIx/�x�

Cx2ŒLm.1Ix/�1�:

Using (3.11), we obtain

Lm.f Ix/�f .x/ < �Lm.1Ix/C
2M

ı2
fŒLm.s

2
Ix/�x2�

�2xŒLm.sIx/� e
�x�Cx2ŒLm.1Ix/�1�g

Cf .x/ŒLm.1Ix/�1�:

D �ŒLm.1Ix/�1�C �C
2M

ı2
fŒLm.s

2
Ix/�x2�

�2xŒLm.sIx/�x�Cx
2ŒLm.1Ix/�1�g

Cf .x/ŒLm.1Ix/�1�:
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Since � > 0 is arbitrary, we can write

jLm.f Ix/�f .x/j5 �C

�
�C

2M

ı2
CM

�
jLm.1Ix/�1j

C
4M

ı2
jLm.sIx/�xjC

2M

ı2
jLm.s

2
Ix/�x2j

5 K.jLm.1Ix/�1jC jLm.sIx/�xj

C jLm.s
2
Ix/�x2j/; (3.12)

where

K Dmax
�
�C

2M

ı2
CM;

4M

ı2
;
2M

ı2

�
:

Now, for a given r > 0, there exists ı;� > 0, such that � < r . Then, by setting

�m.xIr/D
˚
m Wm5 .bn�an/Pn and pbn�mP .jLm.f Ix/�f .x/j= r/

	
= ı:

Also, for i D 0;1;2, we have

�i;m.xIr/D fm Wm5 .bn�an/Pn

and pbn�mP
�
jLm.fi Ix/�fi .x/j=

r � �

3K

�o
= ı;

so that,

�m.xIr/5
2X
iD0

�i;m.xIr/:

Clearly, we have

k�m.xIr/kC.R/

.bn�an/Pn
5

2X
iD0

k�i;m.xIr/kC.R/

.bn�an/Pn
: (3.13)

Now, using the above assumption about the implications in (3.2) to (3.4) and by
Definition 2, the right-hand side of (3.13) is seen to tend to zero as n!1. Con-
sequently, we get

lim
n!1

k�m.xIr/kC.R/

.bn�an/Pn
D 0 .ı;r > 0/:

Therefore, the implication (3.1) holds true. This completes the proof of Theorem
2. �

Now, by using the Definition 1, we present the following corollary as the con-
sequence of Theorem 2.

Corollary 1. Let Lm W C.R/! C.R/ be a sequence of positive linear operators.
Also let f 2 C.R/. Then

statD.CN/ lim
m!1

kLm.f Ix/�f .x/k1 D 0
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if and only if

statD.CN/ lim
m!1

kLm.1Ix/�1k1 D 0;

statD.CN/ lim
m!1

kLm.xIx/�xk1 D 0;

and

statD.CN/ lim
m!1

kLm.x
2
Ix/�x2k1 D 0:

We present below an illustrative example for the sequence of random variables of
positive linear operators that does not satisfy the conditions of the Korovkin approx-
imation theorems proved earlier by Jena et al. [8], Srivastava et al. [24] and Paikray
et al. [15], but which satisfies the conditions of our Theorem 2. Consequently, our
Theorem 2 is stronger than the results established earlier by both Jena et al. [8] and
Srivastava et al. [24].

We now recall the operator

x.1CxD/

�
D D

d

dx

�
which was used by Al-Salam [2] and, more recently, by Viskov and Srivastava [28]
(see also [18] the monograph by Srivastava and Manocha [26] for various general
families of operators of this kind). Here, in our Example 3 below, we use this operator
in conjunction with the Meyer-König and Zeller operators.

Example 3. Let X D Œ0;1� and we consider Meyer-König and Zeller operators
Mn.f Ix/ on C Œ0;1� given by (see [3]),

Mn.f Ix/D

1X
kD0

f

�
k

kCnC1

� 
nCk

k

!
xk :.1Cx/nC1:

Also let Lm W C Œ0;1�! C Œ0;1� be sequence of operators defined as follows:

Lm.f Ix/D Œ1CXm�x.1CxD/Mm.f / .f 2 C.R/; (3.14)

where .Xm/ is a sequence of random variables defined in Example 2.

Now,

Lm.1Ix/D Œ1CXm�x.1CxD/1D Œ1CXm�x;

Lm.sIx/D Œ1CXm�x.1CxD/x D Œ1CXm�x.1Cx/;

and

Lm.s
2
Ix/D Œ1CXn�x.1CxD/

�
x2
�
nC2

nC1

�
C

x

nC1

�
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D Œ1CXn.x/�

�
x2
��
nC2

nC1

�
xC2

�
1

nC1

�
C2x

�
nC2

nC1

���
;

so that we have

statD.CN/P lim
m!1

kLm.1Ix/�1k1 D 0;

statD.CN/P lim
m!1

kLm.xIx/�xk1 D 0;

and

statD.CN/P lim
m!1

kLm.x
2
Ix/�x2k1 D 0;

that is, the sequence Lm.f Ix/ satisfies the conditions (3.2) to (3.4). Therefore by
Theorem 2, we have

statD.CN/P lim
m!1

kLm.f Ix/�f k1 D 0:

Hence, it is deferred Cesàro and deferred Nörlund [D(CN)P] statistically probability
convergent. However, since .Xm/ is neither Cesàro nor Nörlund statistically con-
vergent, so it is neither deferred Cesàro (DC) statistically convergent nor deferred
Nörlund (DN) statistically convergent. Thus, we conclude that earlier works in [8]
and [24] are not valid for the operators defined by (3.14), where as our Theorem 2
still works for the operators defined by (3.14).

4. CONCLUDING REMARKS AND OBSERVATIONS

In this concluding section of our investigation, we present several further remarks
and observations concerning to various results which we have proved here.

Remark 1. Let .Xm/m2N be a sequence of random variables given in Example 2.
Then, since

statD.CN/P lim
m!1

Xm D 4 on Œ0;1�;

we have

statD.CN/P lim
m!1

kLm.fi Ix/�fi .x/k1 D 0 .i D 0;1;2/: (4.1)

Thus, by applying by Theorem 2, we can write

statD.CN/P lim
m!1

kLm.f Ix/�f .x/k1 D 0; .i D 0;1;2/; (4.2)

where
f0.x/D 1; f1.x/D x and f2.x/D x

2:

However, since .Xm/ is neither statistically convergent nor converges uniformly in
the ordinary sense, thus, the classical and statistical Korovkin-type theorems do not
work here for the operators defined by (3.14). Hence, clearly, this application in-
dicates that our Theorem 2 is a non-trivial generalization of the classical as well as
statistical Korovkin-type theorems (see [6] and [11]).
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Remark 2. Let .Xm/m2N be a sequence of random variables as given in Example
2. Then, since

statD.CN/P lim
m!1

Xm D 4 on Œ0;1�;

so (4.1) holds true. Now by applying (4.1) and Theorem 2, the condition (4.2) holds
true. However, since the sequence .Xm/ of random variables is not deferred Cesàro
[8] and deferred Nörlund statistically convergent, the results of Jena et al. [8] and
Srivastava et al. (see [24]) do not work for our operator defined in (3.14). Thus,
naturally, our Theorem 2 is also a non-trivial extension of the result of Jena et al. [8]
and Srivastava et al. [24] (see also [15] and [17]). Based upon the above results, it is
concluded here that our proposed method has successfully worked for the operators
defined in (3.14) and, therefore, it is stronger than the classical and statistical versions
of the Korovkin-type approximation theorems (see [15], [17] and [24]) which were
established earlier.
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