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Abstract. Here, we generalize the martix Riccati differential equation to the coupled matrix Ric-
cati differential equation. Using Schauder’s fixed point theorem, the existence of at least one
periodic solution of the coupled matrix Riccati equation with n�n matrix coefficients is proved.
Finally, two numerical examples are presented.
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1. INTRODUCTION

Generally, Riccati differential equation with real valued functions on R coefficients
is y0Cp.t/y2Cq.t/y D r.t/. This equation has many applications in different field
of sciences such as quantum mechanics in physics, control theory, biomathematics,
fluid mechanics, the theory of elastic vibration and econometrics [5, 12, 27]. An ex-
tensive studies of the set of periodic solutions and nonexistence of periodic solutions
are investigated. Also, there are some papers where stability and asymptotic beha-
viour of solutions were considered. Recently, Ni [17] study the existence and stability
of two periodic solutions on a class of Riccati differential equation. Also, Guillot [9],
exhibit some families of Riccati differential equations in the complex domain having
elliptic coefficients and study the problem of understanding the cases where there
are no multi-valued solutions. For more historical background and the existence of
solution for this kind of equation see [3, 4, 8, 11, 18].

The term Riccati equation is used to refer to matrix equations with an analog-
ous quadratic term, which occur in both continuous-time and discrete-time linear-
quadratic-Gaussian control. The steady-state (non-dynamic) version of it is referred
to as the algebraic Riccati equation. In a standard manner Riccati equation can be
reduced to a second-order linear ordinary differential equations or to a Schrodinger
equation of quantum mechanics. In fact, Riccati equation naturally arises in many
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fields of quantum mechanics, in particular, in quantum chemistry, the Wentzel-Kramers-
Brillouin approximation and SUSY theories. Also, methods for solving the Gross-
Pitaevskii equation arising in Bose-Einstein condensates based on Riccati equation
are introduced. Hacched et al. [10] consider large scale nonsymmetric differential
matrix Riccati equations with low rank right hand sides. These matrix equations ap-
pear in many applications such as control theory, transport theory, applied probability
and others. Koskela [13] describe the finite dimensional linear quadratic regulator
problem. The differential Riccati equation arises in the finite horizon case, i.e., when
a finite time integral cost functional is considered. They analysis Krylov subspace
approximation to large scale differential Riccati equations. Finally, for more details
of application of matrix Riccati equations see [1].

The Riccati differential equation may be generalized as matrix Riccati differential
equations (see [6, 7, 20]) and it is formulated by X 0.t/D A.t/X CXB.t/X CC.t/,
where A;B and C are n�n-real matrix valued function on R. This generalization
applies in many areas such as optimal control problem, stochastic control problem
and etc. [2, 14, 19].

In this paper, by Green’s function’s technique [15,16,20–26] and Schauder’s fixed
point theorem, the existence of at least one periodic solution of the coupled matrix
Riccati differential equation8̂̂̂̂

<̂̂
ˆ̂̂̂:

X
0

1.t/D A.t/X1.t/CX1.t/B
.1/
11 .t/X1.t/CX1.t/B

.1/
12 .t/X2.t/

CX2.t/B
.1/
21 .t/X1.t/CX2.t/B

.1/
22 .t/X2.t/CE1.t/;

X
0

2.t/D A.t/X2.t/CX1.t/B
.2/
11 .t/X1.t/CX1.t/B

.2/
12 .t/X2.t/

CX2.t/B
.2/
21 .t/X1.t/CX2.t/B

.2/
22 .t/X2.t/CE2.t/;

(1.1)

whereA;B.k/ij ;Ek for i;j;kD 1;2 are !-periodic continuous matrix valued functions
on R, is proved.

In Section 2, by using a suitable Green’s function, we can construct a system of
integral equation and we can prove the solution of the system of integral equation
(2.3) is a solution of the coupled Riccati differential equation (1.1). In Section 3, we
construct a compact operator on a Banach space and by applying Schauder’s fixed
point theorem, it is proved that the system of integral equation (2.3) has at least one
periodic solution.

2. GREEN’S FUNCTION

Assume A;B.k/ij ;Ek for i;j;k D 1;2 are !-periodic continuous matrix valued
functions on R, the coupled matrix Riccati equation (1.1) can be written as
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8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
X

0

1 D A.t/X1C

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/;

X
0

2 D A.t/X2C

2X
i;jD1

Xi .t/B
.2/
ij .t/Xj .t/CE2.t/:

(2.1)

Let X.t/ D .X1.t/;X2.t//T , and B.k/ 2 C.Œ0;Tf �;M2n�2n.R// be !-periodic real
valued matrix functions for k D 1;2 which are defined by

B.k/.t/D

 
B
.k/
11 .t/ B

.k/
12 .t/

B
.k/
21 .t/ B

.k/
22 .t/

!
:

Set M D exp.
R !
0 A.s/ds/, M1 D .In�M/�1, and M2 DMM1 where In is n�n

identity matrix. Notice that In�M is nonsingular. Define the Green’s function G by

G.t;s/D

8<: M1 exp.
R t
s A.�/d�/; 0� s � t � !;

M2 exp.
R t
s A.�/d�/; 0� t � s � !:

(2.2)

Lemma 1. SupposeB.k/ij ;Ek for i;j;kD 1;2 are !-periodic continuous functions

on R. Also, suppose for all t; s 2 Œ0;!�,
R t
0 A.�/d� commutes with

R s
0 A.�/d� and

A.t/, and A.t/ commutes with M . Let X be a solution of the system of integral
equations 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:
X1.t/D

Z !

0

G.t;s/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds;

X2.t/D

Z !

0

G.t;s/.

2X
i;jD1

Xi .s/B
.2/
ij .s/Xj .s/CE2.s//ds;

(2.3)

then X.t/ is a periodic solution of (1.1).

Proof. Since
R t
0 A.�/d� commutes with

R s
0 A.�/d� , one may write

.

Z t

0

A.�/d�/.�

Z s

0

A.�/d�/D .�

Z s

0

A.�/d�/.

Z t

0

A.�/d�/:

Therefore

exp.
Z t

s

A.�/d�/D exp.
Z t

0

A.�/d��

Z s

0

A.�/d�/D exp.
Z t

0

A.�/d�/exp.�
Z s

0

A.�/d�/

D exp.
Z t

0

A.�/d�/

�
exp.

Z s

0

A.�/d�/

��1
:
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Set ˛.t/ WD exp.
R t
0 A.�/d�/, thus

X1.t/D

Z !

0

G.t;s/
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

D

Z t

0

G.t;s/
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

C

Z !

t

G.t;s/
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

DM1

Z t

0

exp
�Z t

s

A.�/d�
�� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

�M2

Z t

!

exp
�Z t

s

A.�/d�
�� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

DM1˛.t/

Z t

0

˛.s/�1
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

�M2˛.t/

Z t

!

˛.s/�1
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds:

Since
R t
0 A.�/d� commutes with A.t/, the chain rule is satisfied and

X 01.t/DM1A.t/˛.t/

Z t

0

˛.s/�1
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

CM1

� 2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/

�
�M2A.t/˛.t/

Z t

!

˛.s/�1
� 2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/

�
ds

� M2

� 2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/

�
:
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Therefore

X 01.t/D A.t/

Z t

0

M1 exp.
Z t

s

A.�/d�/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds

CA.t/

Z !

t

M2 exp.
Z t

s

A.�/d�/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds

C .M1�M2/.

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t//

D A.t/

Z t

0

G.t;s/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds

CA.t/

Z !

t

G.t;s/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds

C

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/

D A.t/

Z !

0

G.t;s/.

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s//ds

C

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/

D A.t/X1.t/C

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/:

With the similar method, we have the same for X2.t/. So, we conclude that X.t/ is a
solution of equation (1.1). �

3. PERIODIC SOLUTION

Here, we prove the existence of at least one periodic solution of the system (1.1).

Theorem 1. Suppose the coefficients of the system (1.1) are !-periodic continuous
functions on R and the assumptions of Lemma 1 are are satisfied. For j D 1;2, set

�D sup
0�t;s�!

kG.t;s/k; � D max
0�t�!;jD1;2

k

Z !

0

G.t;s/Ej .s/dsk: (3.1)
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If

maxf
Z !

0

jjB.k/jjdsjk D 1;2g �
1

4��
; (3.2)

where jjB.k/jj is operator norm of 2n�2n matrix B.k/. Then system (1.1) admits at
least one !-periodic solution.

Remark 1. For convenience, set RDmaxf
R !
0 jjB

.k/
ij jjdsji;j;k D 1;2g and 1

4��
D

R.

Proof. Suppose �.t/D .�1.t/;�2.t//T and

XD f�.t/j �1.t/;�2.t/ are !-periodic continuous functions from R to Mn.R/g;

which is equipped with the norm k�kX D maxjD1;2 k�j k! , where k�j k! is oper-
ator matrix norm for n� n matrices. .X;k:kX / is a Banach space. Set  .t/ D�R !
0 G.t;s/E1.s/ds;

R !
0 G.t;s/E2.s/ds

�T and define a set FD f� 2Xj k�� kX �
�g. Notice that F is closed, bounded and convex subset of X. Define P W F! X by

P.�/.t/D

0B@
R !
0 G.t;s/

P2
i;jD1�i .s/B

.1/
ij �j .s/CE1.s/dsR !

0 G.t;s/
P2
i;jD1�i .s/B

.2/
ij �j .s/CE2.s/ds

1CA :
It’s easy to see that k�.t/kX � �Ck .t/kX � 2� for all t 2 Œ0;!�. By using the sub
multiplicative property of the operator norm, for all t 2 Œ0;!� we have

kP.�/.t/� .t/kX � jj

Z !

0

G.t;s/�TB.k/�dsjj

�

Z !

0

kG.t;s/�T .s/B.k/.s/�.s/kds

�

Z !

0

kG.t;s/kkB.k/.s/kk�.s/k2ds

� 4��2
Z !

0

jjBkjjds

� �:

Thus for all � 2 F we have kP.�/� kX � � and so P.�/ 2 F. This shows P is an
operator from F into F.

Now, we recall the weak version of Ascoli-Arzel Ja theorem to prove the compact-
ness of P .

Lemma 2 (Ascoli - Arzela). Let f˚n.t/gn2N be a sequence of functions from
Œa;b� to R2 which is uniformly bounded and equicontinuous. Then f˚n.t/gn2N has
a uniformly convergent subsequence.
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Suppose f�ng D .f.�1/ng;f.�2/ng/T , where T means transpose, is a sequence on
F. This sequence is bounded. So, there exists � > 0 such that for all n 2 N and
for all t 2 Œ0;!�, we have k�n.t/kX � �. At following, we have to show f�ng has a
subsequence, f�ni

g, such that fP.�ni
/g is convergent on F.

According to Lemma 1, the function P.�n/ is differentiable and for all t 2 Œ0;!�,
we have

P.�n/
0.t/D

 
A.t/.�1/n.t/C

P2
i;jD1.�i /n.t/B

.1/
ij .�j /n.t/CE1.t/

A.t/.�2/n.t/C
P2
i;jD1.�i /n.t/B

.2/
ij .�j /n.t/CE2.t/

!
:

Since F is bounded for all n 2N and for all t 2 Œ0;!�, we get kP.�n/0.t/kX � �1�C

�2�
2C �3, where �1;�2 and �3 are kAk! ;maxfjjB.k/jjjk D 1;2;0 � t � !g and

maxkD1;2 kEkk! on Œ0;!�, respectively. For given " > 0, let ı D "=.�1�C�2�2C
�3/, then for all n 2N and for all t1; t2 2 Œ0;!�; jt1� t2j< ı implies that

kP.�n/.t1/�P.�n/.t2/kX � .�1�C�2�
2
C�3/jt1� t2j< ": (3.3)

So fP.�n.t//g is equicontinuous and Theorem 2 implies that there exists a sub-
sequence of fP.�ni

.t//g of fP.�n.t//g which is uniformly convergent on Œ0;!�. We
conclude that fP.�ni

/g is convergent on F and so P is compact.
Thus Schauder’s fixed point theorem implies there existsX.t/D .X1.t/;X2.t//T 2F
such that P.X.t//DX.t/, i.e. for all t 2 Œ0;!�

X.t/D

0@ X1.t/

X2.t/

1AD
0B@
R !
0 G.t;s/.

P2
i;jD1Xi .s/B

.1/
ij Xj .s/CE1.s//dsR !

0 G.t;s/.
P2
i;jD1Xi .s/B

.2/
ij Xj .s/CE2.s//ds

1CA :
Thus, by Lemma 1, X.t/ is a solution of equation (1.1). �

Before ending this section, we would like to generalize the system (2.1).

Remark 2. Notice that the developments in this paper may be done in the following
more general case8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:
X

0

1 D A1.t/X1CX1D1.t/C

2X
i;jD1

Xi .t/B
.1/
ij .t/Xj .t/CE1.t/;

X
0

2 D A2.t/X2CX2D2.t/C

2X
i;jD1

Xi .t/B
.2/
ij .t/Xj .t/CE2.t/;

(3.4)

where Ak;Dk;B
.k/
ij ;Ek for i;j;k D 1;2 are !-periodic continuous matrix valued

functions on R. A good question is the existence of at least one period solution of
(3.4).

Note that the system (3.4) is the system (2.1) when D1.t/ D D2.t/ D 0 and
A1.t/D A2.t/D A.t/.
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4. NUMERICAL EXAMPLES

In this section, we bring two numerical examples that show the novelty of the
results.

Example 1. Consider the family of the coupled matrix Riccati equation (2.3) with
the coefficients

A.t/ D

�
3
16

�1
16

1
16

1
16

�
;

B111.t/ D

� cos t
4

sin t
4

�sin t
4

cos t
4

�
; B112.t/ D

�
0 0

0 0

�
;

B121.t/ D

�
0 0

0 0

�
; B122.t/ D

� cos t
4

�sin t
4

sin t
4

cos t
4

�
;

B211.t/ D

� cos t
4

sin t
4

�sin t
4

cos t
4

�
; B212.t/ D

�
0 0

0 0

�
;

B221.t/ D

�
0 0

0 0

�
; B122.t/ D

� cos t
4

�sin t
4

sin t
4

cos t
4

�
;

E1.t/D

�
511cos t�65sin t

4096
�3.32cos tC171sin t/

4096
1022cos t�129sin tCsin3t

5192
�64cos t�sin t�sin3t

5192

�
;

and

E2.t/D

�
�8257cos t�63cos3t�65599sin t�65sin3t

524288
65536cos t�122225sin t�65sin3t

524288
�16577cos t�63cos3t�131133sin t�65sin3t

1048576
�8257sin t�65sin3t

1048576

�
:

Then

M D

�
1
8

exp�=4.8C�/ �1
8

exp�=4�
�1
8

exp�=4� �1
8

exp�=4.�8C�/

�
:

Therefore, R <R and the equation (1.1) has a periodic solution.

Remark 3. We can easily show that

X1 D

� sin t
8

cos t
8

sin t
8

0

�
and X2 D

� cos t
8

sin t
8

sin t
8

0

�
:

is a periodic solution whose existence is guaranteed.

Remark 4. Consider the initial value problem consist of the Riccati equation in
example 1 together with initial condition X.0/DX0. Let8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
T1X.t/D

Z t

0

ŒA.s/X1.s/C

2X
i;jD1

Xi .s/B
.1/
ij .s/Xj .s/CE1.s/�dsC �1;

T2X.t/D

Z t

0

ŒA.s/X2.s/C

2X
i;jD1

Xi .s/B
.2/
ij .s/Xj .s/CE2.s/�dsC �2;

(4.1)
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then T WC.R;M2�2.R//�C.R;M2�2.R//!C.R;M2�2.R//�C.R;M2�2.R//, where
T D .T1;T2; /

T is the corresponding Picard’s operator that relates the unique solution
of the initial value problem to a fixed point of an operator. The fixed point iteration
method �

Xn.t/D TXn�1.t/;

X0.t/D �;
(4.2)

where � D .�1; �2/
T constitutes a numerical technique for generating the unique

solution of the initial value problem, provided that the convergence is guaranteed.
Let ERn D kXn�Xk Dmax0�t�2� kXn.t/�X.t/k, be the error of approximation,
where

X1 D

� sin t
8

cos t
8

sin t
8

0

�
and X2 D

� cos t
8

sin t
8

sin t
8

0

�
;

where

�1 D

�
0 1

8
0 0

�
and �2 D

�
1
8

0
1
8

0

�
:

Numerical values for the error are given in the Table 1.

TABLE 1.

n ER1 ER2
1 0.19635 0.19635
2 0.11539 0.0774063
3 0.0336085 0.0190035
4 0.00657322 0.00521541
5 0.000982148 0.000993719
6 0.000118411 0.000147843
7 0.0000203268 0.0000202704
8 3:00827�10�6 2017528�10�6

Example 2. Consider the Riccati equation (1.1) with coefficients

A.t/ D

�
1
5
.1C cos t / 1

5
.1C sin t /

1
5
.�1� sin t / 1

5
.1C cos t /

�
;

B111.t/ D

� cos t
25

sin t
25

�sin t
25

cos t
25

�
; B112.t/ D

�
1
25

1
25

�1
25

1
25

�
;

B121.t/ D

�
0 0

0 0

�
; B122.t/ D

�
0 0

0 0

�
;

B211.t/ D

� cos t
25

sin t
25

�sin t
25

cos t
25

�
; B212.t/ D

�
1
25

1
25

�1
25

1
25

�
;

B221.t/ D

�
0 0

0 0

�
; B222.t/ D

�
0 0

0 0

�
;
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E1 D

�
1�25cos t�25cos2t�cos3t�100sin t

625
�1�25cos t�100cos t�25sin t�25sin2t�sin3t

625
1C25cos tC100cos tC25sin tC25sin2tCsin3t

625
1�25cos t�25cos2t�cos3t�100sin t

625

�
and

E2 D

�
1�26cos t�25cos2t�cos3t�150sin t

625
�1�25cos t�150cos tC25sin tCsin3t

625
1C25cos tC150cos t�25sin t�sin3t

625
1�26cos t�25cos2t�cos3t�150sin t

625

�
:

Then

M D

0@ 1
4
.�1C

p
5/exp2�=5

q
5
8
C

p
5
8

exp2�=5q
5
8
C

p
5
8

exp2�=5 1
4
.�1C

p
5/exp2�=5

1A :
Remark 5. For consistency of our assumptions, we can easily show that

X1 D

� cos t
5

cos t
5

�cos t
5

cos t
5

�
and X2 D

� cos t
5

�cos t
5

cos t
5

cos t
5

�
;

is a periodic solution. Consider the fixed point iteration corresponding to this example
(see example (1)). Numerical results are shown in the Table 2.

TABLE 2.

n E1 E2
1 0.502655 0.389338
2 0.403075 0.380026
3 0.176354 0.184883
4 0.0797213 0.0770404
5 0.0180976 0.0244803
6 0.00618601 0.00610193
7 0.00118407 0.0013605
8 0.000367802 0.000436594
9 0.000219501 0.0001916484

10 0.0000643376 0.0000556998
11 0.0000296998 5:65144�10�6

12 4:17076�10�6 0.0000127965
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