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Abstract. In this paper, the author considers the one dimensional initial-boundary problem for
a pseudo-parabolic equation with time delay in second spatial derivative. To solve this problem
numerically, the author constructs higher order difference method and obtain the error estimate
for its solution. Based on the method of energy estimates the fully discrete scheme is shown to be
convergent of order four in space and of order two in time. Some numerical examples illustrate
the convergence and effectiveness of the numerical method.
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1. INTRODUCTION

In the domainQD˝� Œ0;T �;˝ D Œ0; l�,QD˝�.0;T �,˝ D .0; l/, we consider
the following pseudo-parabolic equation with delay (DPPEs)

@u.x; t/

@t
�a.t/

@3u.x; t/

@t@x2
D b.t/

@2u.x; t/

@x2
C c.t/

@2u.x; t � r/

@x2

Cd.t/u.x; t/Cf .x; t/; .x; t/ 2Q; (1.1)

u.x; t/D �.x; t/; .x; t/ 2˝ � Œ�r;0� ; (1.2)

u.0; t/D u.l; t/D 0; t 2 .0;T � ; (1.3)
where r > 0 represents the delay parameter, a > ˛ > 0, b, c, d , f and � are given
sufficiently smooth functions satisfying certain regularity conditions to be specified.

Pseudo-parabolic or Sobolev-type differential equations appears in a variety of
physical problems such as flow of fluid through fissured rocks, thermodynamics and
propagation of long waves of small amplitude (see, e.g. [9, 24, 25]). The signific-
ant characteristic of these equations is that they state the conservation of a certain
quantity (mass, momentum, heat, etc.) in any sub-domain. Such problems are inter-
esting not only because they are generalizations of a standard parabolic problem, but
also because they arise naturally in a large variety of applications. Various numerical
schemes have been constructed to treat PPEs in [2, 3, 5, 6, 10, 12, 14, 15, 23] (see also
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the references cited in them). Not only the existence, uniqueness and nonexistence
results for pseudo-parabolic equations were obtained, but also the asymptotic beha-
vior, regularity and others properties of solutions were investigated. For example, in
[6] the initial-boundary value problem for a linear PPEs with boundary layers is con-
sidered. They developed an exponentially fitted difference scheme and get its discrete
energy estimation. The difference scheme is constructed by the method of integral
identities with the use of exponential basis functions and interpolating quadrature
rules with the weight and remainder terms in integral form. Both explicit and im-
plicit in time discretization schemes have been developed in [10] which were based
on the piecewise linear finite elements for the solution a pseudo parabolic Burgers
equation. In [12] a Crank-Nicolson-Galerkin approximation with extrapolated coef-
ficients is presented for three cases for the nonlinear PPEs along with a conjugate
gradient iterative procedure which can be used efficiently to solve the different linear
systems of algebraic equations arising at each step from the Galerkin method. In [23]
authors presented two different schemes with respect to artificial diffusion parameter
using extension of the finite difference streamline diffusion method for linear Sobolev
equations with convection-dominated term. Further in [15] two difference approxim-
ation schemes to a nonlinear pseudo-parabolic equation are developed. Each of these
schemes possesses a unique solution which can be obtained by an iterative procedure.
The equivalence of the three different formulations for the PPEs and different time
discrete (implicit or semi-implicit) numerical schemes has been discussed in [14].
The one-dimensional initial-boundary value problem for a linear PPEs with initial
jump is studied in [5]. They developed a numerical method which combines a finite
difference spatial discretization on uniform mesh and the implicit rule on Shishkin
mesh (S-mesh) for the time variable. For a discussion of existence and uniqueness
results of PPEs see [8, 13, 18]. The above mentioned papers, related with PPEs were
only concerned with the cases without delay. Also delay pseudo-parabolic equations
(DPPEs) frequently arise in many scientific applications. For works on existence and
uniqueness results and for applications of DPPEs, see [11,16]. In [4] for solving one
dimensional initial-boundary delay PPE numerically, authors constructed high-order
finite difference technique to the considered problem and obtain the error estimate
for its solution. In [17] authors gave fourth order differential-difference scheme for
solving one dimensional initial-boundary DPPE and obtain the error estimate for its
solution. Further, the fourth order accurate Runge-Kutta method was used for the
realization of acquired differential-difference problem. In [1] authors considered the
explicit finite difference method for quasilinear DPPEs and proved that the fully dis-
crete scheme is absolutely stable and convergent of order two in space and of or-
der one in time variable. In [22] a super accurate numerical scheme to solve the
one-dimensional Sobolev type partial differential equation with an initial and two
nonlocal integral boundary conditions is considered. This methods are based on the
shifted Standard and shifted Chebyshev Tau method. In [7] the abstract quasilinear
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evolution equations of Sobolev type in a Hilbert setting are considered. Authors pro-
posed two fully discrete schemes and proved some error estimates under minimal
assumptions. In [20, 21] the authors present a regularity result for solutions of para-
bolic equations in the framework of mixed Morrey spaces. [19] aims at defining new
spaces and to study some embeddings between them. These spaces generalize Mor-
rey spaces and give a refinement of Lebesgue spaces. Some embeddings between
these new classes are also proved. The authors apply these classes of functions to ob-
tain regularity results for solutions of partial differential equations of parabolic type
in nondivergence form.

The present study is concerned with the one dimensional pseudo-parabolic equa-
tion containing time delay in second-order spatial derivative. Our aim is to construct
higher order difference method for approximation to the considered problem when
the coefficients are independent of spatial variable. Based on the method of energy
estimates and difference analogue of the Gronwall’s inequality with delay, the fully
discrete scheme is shown to be convergent of order four in space and of order two in
time. Numerical example on the performance of the method is presented.

2. THE MESH AND DIFFERENCE SCHEME

2.1. Notation

Let a set of nodes that discretises Q be given by ! D !N �!N0
with

!N D fxi D ih; i D 1;2; :::;N �1; hD l=N g ;

!NC D !N [fxN D lg ; N!N D !N [fx0 D 0; xN D lg ;

!N0
D
˚
tj D j�; j D 1;2; :::;N0; � D T=N0 D r=n0

	
;

N!N0
D !N0

[ft0 D 0g ; N! D N!N � N!N0
;

!n0
D
˚
tj D j�; j D 1;2; :::;n0; � D r=n0

	
;

!n�0 D
˚
tj D j�; j D�n0; :::;0; � D r=n0

	
and define the following finite differences and notation

v
j
Nx;i D

v
j
i �v

j
i�1

h
;v
j
Nxx;i D

v
j
iC1�2v

j
i Cv

j
i�1

h2
;v
j
Nt ;i
D
v
j
i �v

j�1
i

�
;

v
j
Ntt;i
D
v
jC1
i �2v

j
i Cv

j�1
i

�2
;v
.0:5/j
i D

v
j
i Cv

j�1
i

2
;v
j�0:5
i D v.xi ; tj �

�

2
/

for any mesh function vji D v.xi ; tj / given on N!.
Introduce the following inner product and norm for the mesh functions vi and wi

.v;w/� .v;w/!N
D

N�1X
iD1

hviwi ; .v;w/!
NC
D .v;w/!N

NX
iD1

hviwi ;
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kvk2 D .v;v/ ; kv Nxk
2
D .v Nx;v Nx/!

NC
; .v0 D vN D 0/:

2.2. Difference scheme

To construct the difference scheme, we will use the following relation which is
valid for any g .x/ 2 C 6

�
˝
�

1

12

�
g00 .xiC1/C10g

00 .xi /Cg
00 .xi�1/

�
D g Nxx;i C NRi ; (2.1)

where

NRi D h
�1

xiC1Z
xi�1

@6g

@x6
.�i /�.�/d� D

h4

240

@6g

@x6
.�i / ;

�.�/D

(
h
72
.xiC1� �/

3
�
h�1

120
.xiC1� �/

5 ; � > xi
h
72
.��xi�1/

3
�
h�1

120
.��xi�1/

5 ; � < xi
; �i 2 .xi�1;xiC1/ :

Using formula (2.1) we get

1

12
Œ
@3u.xiC1; t /

@t@x2
C10

@3u.xi ; t /

@t@x2
C
@3u.xi�1; t /

@t@x2
�D u Nxx;i .t/C

h4

240

@7u.�i ; t /

@t@x6
;

1

12
Œ
@2u.xiC1; t /

@x2
C10

@2u.xi ; t /

@x2
C
@2u.xi�1; t /

@x2
�

D u Nxx;i .t/C
h4

240

@6u.�i ; t /

@x6
;

1

12
Œ
@2u.xiC1; t � r/

@x2
C10

@2u.xi ; t � r/

@x2
C
@2u.xi�1; t � r/

@x2
�

D u Nxx;i .t � r/C
h4

240

@6u.�i ; t � r/

@x6
:

Note also that

1

12
Œ
@3u.xiC1; t /

@t@x2
C10

@3u.xi ; t /

@t@x2
C
@3u.xi�1; t /

@t@x2
�D u0i .t/C

h2

12
u0Nxx;i .t/

and

1

12
Œu.xiC1; t /C10u.xi ; t /Cu.xi�1; t /�D ui .t/C

h2

12
u Nxx;i .t/;

then we obtain the semi-discrete relation on !N � Œ0;T � for equation (1.1)
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u0i .t/�.a.t/�
h2

12
/u0Nxx;i .t/D .b.t/Cd.t/

h2

12
/u Nxx;i .t/Cc.t/u Nxx;i .t�r/Cd.t/ui .t/

C Nfi .t/CRi
.0/.t/; i D 1;2; :::;N �1; t 2 .0;T � ; (2.2)

with
Nfi .t/D

1

12
ŒfiC1.t/C10fi .t/Cfi�1.t/� ;

Ri
.0/.t/D a.t/

h4

240

@7u.�i ; t /

@t@x6
Cb.t/

h4

240

@6u.�i ; t /

@x6
C c.t/

h4

240

@6u.�i ; t � r/

@x6
;

�i 2 .xi�1;xiC1/ :

Setting t D tj�0:5 D tj � �2 in (2.2) and taking into account there the relations

u0i .tj�0:5/D u
j
Nt ;i
�
�2

24

@3ui .xi ;�
.1/
j /

@t3
;

u0Nxx;i .tj�0:5/D u
j
Nt Nxx;i
�
�2

24

@5ui .xi ;�
.2/
j /

@t3@x2
;

ui .tj�0:5/D
u
j
i Cu

j�1
i

2
�
�2

8

@2ui .xi ;�
.3/
j /

@t2
;

u Nxx;i .tj�0:5/D
u
j
Nxx;i Cu

j�1
Nxx;i

2
�
�2

8

@4ui .xi ;�
.3/
j /

@t2@x2
;

ui .tj�0:5� r/D
u
j�n0

i Cu
j�n0�1
i

2
�
�2

8

@2ui .xi ; N�
.1/
j /

@t2
;

u Nxx;i .tj�0:5� r/D
u
j�n0

Nxx;i Cu
j�n0�1
Nxx;i

2
�
�2

8

@4ui .xi ; N�
.2/
j /

@t2@x2
;

tj�1 < �
.k/
j < tj ;k D 1;2;3;4I tj�n0�1 < N�

.k/
j < tj�n0

;k D 1;2;

we get

u
j
Nt ;i
� .a.tj�0:5/�

h2

12
/u
j
Nt Nxx;i
D .b.tj�0:5/Cd.tj�0:5/

h2

12
/u
.0:5/j
Nxx;i

Cc.tj�0:5/u
.0:5/.j�n0/
Nxx;i Cd.tj�0:5/u

.0:5/j
i

C Nf j
i
CRj

i
; i D 1;2; :::;N �1Ij D 1;2; :::;N0; (2.3)

where
Rj

i
DR

.0/j
i CR

.1/j
i ;
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R
.1/j
i D�

�2

24
.
@3ui .xi ;�

.1/
j /

@t3
C
@5ui .x

.1/
i ;�

.2/
j /

@t3@x2
/

�
�2

8
.
@2ui .xi ;�

.3/
j /

@t2
C
@4ui .x

.2/
i ;�

.4/
j /

@t2@x2
/

C
�2

8
.
@2ui .xi ; N�

.1/
j /

@t2
C
@4ui .xi ; N�

.2/
j /

@t2@x2
/:

Since
v.0:5/j D vj�1C

�

2
v
j
Nt
;

we then obtain

.1�dj�0:5

�

2
/u
j
Nt ;i
� .aj�0:5 �

h2

12
C
�

2
.bj�0:5C cj�0:5

h2

12
//u

j

txx;i

D .bj�0:5Cdj�0:5

h2

12
/u
j�1
Nxx;i C cj�0:5u

.0:5/.j�n0/
Nxx;i Cdj�0:5u

j�1
i

C Nf
j

O{
CR

j
i ; i D 1;2; :::;N �1Ij D 1;2; :::;N0: (2.4)

u
j
i D �

j
i ; i D 1;2; :::;N �1Ij D�n0;�n0C1; :::;0; (2.5)

u
j
0 D u

j
N D 0;j D 1;2; :::;N0: (2.6)

Neglecting the remainder term R
j
i in (2.4), we propose the following difference

scheme for approximating (1.1)-(1.3):

Ejy
j
Nt ;i
�Ajy

j
Nt Nxx;i
D Bjy

j�1
Nxx;i CC

jy
.0:5/.j�n0/
Nxx;i

C Nf
j
i ; i D 1;2; :::;N �1;j D 1;2; :::;N0; (2.7)

y
j
i D �

j
i ; i D 1;2; :::;N �1;j D�n0;�n0C1; :::;0; (2.8)

y
j
0 D y

j
N D 0;j D 1;2; :::;N0; (2.9)

where

Ej D .1�dj�0:5

�

2
/;Aj D aj�0:5 �

h2

12
C
�

2
.bj�0:5C cj�0:5

h2

12
/;

Bj D bj�0:5Cdj�0:5

h2

12
;C j D cj�0:5:

For the error function ´ D y �u, from the relations (2.4)-(2.6) and (2.7)-(2.9), we
have the following difference problem

Ej´
j
Nt ;i
�Aj´

j
Nt Nxx;i
D Bj´

j�1
Nxx;i CC

j´
.0:5/.j�n0/
Nxx;i

CDj´
j�1
i CR

j
i ; i D 1;2; :::;N �1;j D 1;2; :::;N0; (2.10)
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´
j
i D 0; i D 1;2; :::;N �1;j D�n0;�n0C1; :::;0; (2.11)

´
j
0 D ´

j
N D 0;j D 1;2; :::;N0: (2.12)

The following lemma is used to discuss the stability and convergence properties of
our discrete problem (2.7)-(2.9).

Lemma 1 ([4]). Let the mesh function ı > 0, defined on !N0
, satisfies

ıj 6 ˛C �

jX
kD1

faıkCbık�1C cık�N Cdık�N�1Cfkg;j > 1 (2.13)

ıj 6 �j ;�N 6 j 6 0;ı0 6 ˛;

where ˛;a;b;c;d;fj > 0; �j given, N > 0 integer, 1� �a > 0.
Then

ıj 6 Q̨etj C
�

1� �a

jX
kD1

fke
tj�k ; (2.14)

where

Q̨ D ˛C .cCd/k�k1 ; D
aCbC cCd

1� �a
;k�k1 D

0X
jD�N

� j �j j:

3. ERROR ANALYSIS AND CONVERGENCE

Now we give the main result of this paper.

Theorem 1. Let the derivatives @7u
@t@x6 ;

@6u
@x6 ,@

2u
@t2

, @4u
@t2@x2 are bounded on the Q and

Ej > ˇ� > 0, Aj > ˛� > 0.
Then the error of the problem (2.7)-(2.9) satisfies

ky�ukCkyx�uxk6 C.h4C �2/; (3.1)

where C is a constant which is independent of h and � .

Proof. Consider the following identity

.Ej´
j

t
;´
j

t
/� .Aj´

j

t Nxx
;´
j

t
/D .Bj´

j�1
Nxx ;´

j

t
/

C.C j´
.0:5/.j�n0/
Nxx ;´

j

t
/C .Dj´

j�1

;´
j

t
/C .R

j

;´
j

t
/:

After some manipulations, we get

ˇ�

´jNt 2C˛�´jNt Nx2 � B�´jNt Nx´j�1Nx CC �´jNt Nx´.0:5/.j�n0/
Nx


CD�

´jNt ´j�1C´jNt Rj ;
where j Bj j� B�, j C j j� C � and jDj j�D�.
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From here, using the inequality j ab j� �a2C .1=4�/b2 .� > 0/ we have

.ˇ���1��2/
´jNt 2C .˛���3��4/´jNt Nx2 � 1

4�3
.B�/2

´j�1Nx 2
C

1

4�4
.C �/2

´.0:5/.j�n0/
Nx

2C 1

4�1
.D�/2

´j�12C 1

4�2

Rj2 :
After choosing, �1 D �2 D

ˇ�
4

and �3 D �4 D
˛�
2

this inequality reduces to

ˇ�

´jNt 2C˛�´jNt Nx2 � .B�/2˛�

´j�1Nx 2C .C �/2
˛�

´.0:5/.j�n0/
Nx

2
C
.D�/2

ˇ�

´j�12C 1

ˇ�

Rj2 :
Multiplying this inequality by T � and summing it up from k D 1 to k D j , using the
inequality

v2j 6 tj �

jX
kD1

v2Nt ;k 6 T �

jX
kD1

v2Nt ;k; .v0 D 0/

we obtain

ˇ�

´j2C˛�´jNx2 6 T �

jX
kD1

�
.B�/2˛�1�

´j�1Nx 2C .C �/2˛�1� ´.0:5/.j�n0/
Nx

2
C.D�/2ˇ�1�

´j�12 Cˇ�1� Rj2� :
Denoting now

ıj D ˇ�

´j2C˛�´jx2 ;
we have

ıj 6
jX
kD1

�
˚
c1ık�1C c2ık�n0

C c2ık�n0�1C�k
	
;j > 1;

with
c1 D T max

˚
.B�/2˛�2� ; .D�/2ˇ�2�

	
;

c2 D T .C
�/2˛�2� :

�k D Tˇ
�1
�

Rk2 :
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Applying now Lemma 1 we obtain

ˇ�

´j2C˛�´jx2 6 Tˇ�1� �

jX
kD1

e.c1Cc2/tj�k

Rk2: (3.2)

It is not difficult to see that, under the assumed smoothness

.�

N0X
kD1

Rk2/1=2 DO.h4C �2/;
which together with (3.2), completes the proof of the theorem. �

4. NUMERICAL RESULTS

In this section we present some numerical results for the scheme discussed in this
paper. Consider the problem

@u.x; t/

@t
�
@3u.x; t/

@t@x2
D
@2u.x; t/

@x2
C2

@2u.x; t �1/

@x2
�u.x; t/D 50e1�tsinh.x/:

u.x; t/D e�t .x sinh.1/� sinh.x//; .x; t/ 2 Œ0;1�� Œ�1;0�;

u.0; t/D u.1; t/D 0; t 2 .0;2�:

The exact solution is given by

u.x; t/D 25e�t .x sinh.1/� sinh.x//:

The computational results are presented in Table 1 and Table 2.

TABLE 1. The numerical results on .0;1/� .0;1/

Nodes Exact Numerical Solution Pointwise Error
(x; t/ Solution hD 0:1;� D 0:05 jy�uj

(0.1,0.1) 0.392565 0.392566 0.47440E-05
(0.2,0.2) 0.689985 0.690003 0.74700E-04
(0.3,0.3) 0.889722 0.889745 0.94742E-04
(0.4,0.4) 0.994252 0.994276 0.99745E-04
(0.5,0.5) 1.008508 1.008538 0.12070E-03
(0.6,0.6) 0.939428 0.939452 0.96937E-04
(0.7,0.7) 0.795281 0.795303 0.90725E-04
(0.8,0.8) 0.584801 0.584818 0.69740E-04
(0.9,0.9) 0.316850 0.316851 0.46582E-05

We see from the above tables that these results display a well agreement with our
theoretical analysis.
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TABLE 2. The numerical results on .0;1/� .1;2/

Nodes Exact Numerical Solution Pointwise Error
(x; t/ Solution hD 0:1;� D 0:05 jy�uj

(0.1,1.1) 0.144415 0.144418 0.14730E-04
(0.2,1.2) 0.253786 0.253794 0.32855E-04
(0.3,1.3) 0.327310 0.327327 0.70685E-04
(0.4,1.4) 0.365754 0.365770 0.64967E-04
(0.5,1.5) 0.371012 0.371033 0.86997E-04
(0.6,1.6) 0.345599 0.345623 0.98410E-04
(0.7,1.7) 0.292567 0.292588 0.85730E-04
(0.8,1.8) 0.215136 0.215154 0.73182E-04
(0.9,1.9) 0.116528 0.116535 0.28105E-04

5. CONCLUSIONS

In this paper, the higher order difference method is applied to the problem (1.1)-
(1.3). Based on the method of energy estimates, the fully discrete scheme was shown
to be convergent of order four in space and of order two in time. To demonstrate the
accuracy and usefulness of this method, numerical example has been presented.
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