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EXISTENCE OF FAST POSITIVE SEMI-WAVEFRONT
SOLUTIONS TO MONOSTABLE INTEGRO-DIFFERENTIAL

EQUATIONS WITH DELAY
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Abstract. We establish the existence of fast positive semi-wavefront solutions to a delay integro-
differential problem

cu0.t/D J ?u.t/�u.t/Cf .u.t �h//; t 2 R; u.�1/D 0;

where the asymmetric kernel J is exponentially bounded, the nonlinearity f 2 C 1.Œ0;C1/IR/
is monostable, h� 0, and c > 0.
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1. INTRODUCTION

The main object of study in this paper is a time-delayed integro-differential equa-
tion

cu0.t/D J ?u.t/�u.t/Cf .u.t �h// for t 2 R; (1.1)

where h� 0, c > 0, and the non-negative averaging kernel J satisfies

J ?u.t/D

Z
R
J.x/u.t �x/dx;

Z
R
J.x/dx D 1;

Z
R
J.x/jxjdx <C1;

and there exists � > 0 such thatZ 0

�1

J.x/e��xdx <C1:

Further, we suppose that f 2 C 1.Œ0;C1/IR/, f .0/ D 0, f .1/ D 0, f .x/ > 0 for
x 2 .0;1/, f .x/ < 0 for x > 1. By a solution to (1.1) we understand a continuously
differentiable function defined on the whole real axis and satisfying (1.1) at every
point t 2 R.
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Integro-differential models as (1.1) and its versions without delay are using when
long distance dispersal events are considered. In ecology, long distance dispersal
events are suspected to deeply modify the dynamics of a population [5]. Many works
have shown, the phenomena observed in biological and ecological models depend not
only on the present state but also on some past occurrences. The delay effect induces
an important change in some predictions. For example, in population dynamics,
the time delays effect the prediction of population expansions speed [13]. On the
other hand, several studies also indicate that asymmetric kernels might appear in the
population modeling in a natural way [16]. So, we are interested in understanding
better the effect of delay in models as (1.1) when the kernel J is asymmetric.

If we take hD 0 in (1.1), we obtain an integro-differential equation without delay.
Such kinds of equations appears in various biological and ecological models (e.g.
population dynamics). The existence, uniqueness and propagation properties of trav-
eling wave solutions for equation (1.1) have been investigated in a series of papers
where different geometric and smoothness conditions on J and f were assumed (see,
e.g. [1–4,6–8,18]). The problem of existence/nonexistence and existence of the min-
imal speed of wavefronts (u.�1/D 0 and u.C1/D �) were considered in [7,8,18],
and the propagation properties and the effect of the dispersal heavy tails in [2–4, 9],
by means of different methods. In the mentioned papers, the results require several
conditions on kernels (compactly supported, exponential tails or algebraic tails, sym-
metrical/asymmetric) and nonlinearities (f 0.0/ > 0, 0 < f .s/ 6 f 0.0/s, f 0.1/ < 0).
In such cases the propagation can occur with the constant (kernel is exponentially
bounded) or accelerated (kernel with heavy tails) speed.

As far as we know, if h > 0, very few theoretical studies are devoted to integro-
differential equations with delay [12,14,17,19]. All these works have studied travel-
ing wavefront solutions to equation

cu0.t/D .J ?u.t/�u.t//�duCb.u.t �h// for t 2 R; (1.2)

where d is the death rate, b is the birth function. In these research, using different
methods (weighted energy method, the comparison principles, by constructing proper
upper and lower solutions), the existence/nonexistence, stability and uniqueness of
traveling wavefront solutions to (1.2) were obtained, assuming the typical Fisher-
KPP condition on nonlinear function b (0< b.s/� b0.0/s), considering monotonicity
or quasi-monotonicity conditions and symmetric kernels. Note that, if h > 0, model
(1.1) cannot be deduced from equation (1.2).

In this paper, we present an analytic results on the existence of waves in delayed
equations which include model (1.1). We will use the methods based on the general
theory of boundary value problems for functional differential equations to get the
existence of fast semi-wavefront solutions to (1.1) with asymmetric kernel, where
the typical conditions on f 0.0/ and f 0.1/ are not required.

Below, we present our main results.
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Theorem 1. For every c > 0 sufficiently large there exists a positive solution u to
the equation (1.1) satisfying

lim
t!�1

u.t/D 0; e��h � liminf
t!C1

u.t/� sup
t2R

u.t/� 1Cf0.e
h
c �1/;

where f0 Dmaxff .s/ W s 2 Œ0;1�g.

Corollary 1. For every c > 0 sufficiently large there exists a positive solution u to
the equation (1.1) with hD 0 satisfying

lim
t!�1

u.t/D 0; lim
t!C1

u.t/D 1:

Remark 1. We observe that Corollary 1 shows that the special conditions f 0.0/> 0
and f 0.1/ < 0 (steady state 1 is stable) are not necessary to prove the existence of
fast wavefront solutions to (1.1) when hD 0.

The paper is organized as follows. In Section 2, some auxiliary propositions are
given and the existence of fast positive semi-wavefronts is proven. In the last section,
Section 3, the existence theorem is applied to some models.

2. AUXILIARY PROPOSITIONS

In what follows we will use the following notation. C.Œ0;C1/IR/, C.RIR/,
C.Œ�N;N �IR/, resp. C 1.Œ0;C1/IR/ are standard spaces of continuous, resp. con-
tinuously differentiable functions. If u 2 C.Œ�N;N �IR/, then kukC D max

˚
ju.t/j W

t 2 Œ�N;N �
	
. Put

f0
def
D maxff .s/ W s 2 Œ0;1�g; xc

def
D 1Cf0.e

h
c �1/;

fc
def
D maxfjf 0.s/j W s 2 Œ0;xc�g:

Obviously, according to the assumptions laid on f , we have that f .x/Cfcx � 0 for
x 2 Œ0;xc�.

Further we define auxiliar functions f 2 C.Œ0;C1/IR/ and ef 2 C.RIR/ by

f .x/D

(
f .x/ for x 2 Œ0;xc�;
f .xc/�fc.x�xc/ for x > xc ;

ef .x/D (0 for x < 0;
f .x/Cfcx for x � 0;

Note that ef is a bounded non-negative function.
For every N > 0 we define an operator �N W C.Œ�N;N �IR/! C.RIR/ by

�N .u/.t/D

8̂<̂
:
u.�N/ for t < �N;
u.t/ for t 2 Œ�N;N �;
u.N / for t > N;
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and let `CN ;`
�
N W C.Œ�N;N �IR/�RC! C.Œ�N;N �IR/ be operators given by

`CN .u;�/.t/D

Z
R
J.x/�N .u/.t �x/dxC��N .u/.t �h/;

`�N .u;�/.t/D u.t/C��N .u/.t �h/:

It can be easily verified that the operators `CN and `�N are linear positive operators in
the first variable, i.e., for every fixed �0 2 RC, the operators `CN .�;�0/;`

�
N .�;�0/ W

C.Œ�N;N �IR/! C.Œ�N;N �IR/ are linear and transforms the set C.Œ�N;N �IRC/
into the set C.Œ�N;N �IRC/. Moreover, the operator `�N .�;�0/ is a Volterra operator
(with respect to the point �N ), i.e., for every t0 2 .�N;N � the equality

u.t/D 0 for t 2 Œ�N;t0�

implies
`�N .u;�0/.t/D 0 for t 2 Œ�N;t0�:

Lemma 1. Let �0 � 0 and let c > 0 satisfy

c��

Z C1
0

J.x/dxC

Z 0

�1

J.x/e��xdxC�0: (2.1)

Then, for every N > h, the function 
.t/D e�t for t 2 Œ�N;N � satisfies

c
 0.t/� `CN .
;�/.t/ for t 2 Œ�N;N �; � 2 Œ0;�0�: (2.2)

Proof. According to the definition of `CN we have that

`CN .
;�/.t/D e
�t

 
e��.tCN/

Z C1
tCN

J.x/dxC e��.t�N/
Z t�N

�1

J.x/dx

C

Z tCN

t�N

J.x/e��xdxCp.t/

!
for t 2 Œ�N;N �;

where

p.t/D

(
�e��.tCN/ for t 2 Œ�N;�N Ch/;
�e��h for t 2 Œ�N Ch;N �:

It can be easily verified that the function in the parenthesis is non-increasing with
respect to t . Therefore, we get

`CN .
;�/.t/� e
�t

 Z C1
0

J.x/dxC e2�N
Z �2N
�1

J.x/dxC

Z 0

�2N

J.x/e��xdxC�

!

� e�t
�Z C1

0

J.x/dxC

Z 0

�1

J.x/e��xdxC�0

�
for t 2 Œ�N;N �; � 2 Œ0;�0�:

Now, using (2.1) in the last inequality we arrive at (2.2). �
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By a direct calculation one can verify the following assertion.

Lemma 2. Let �0 � 0 and let c > 0 satisfy

c�� 1C�0e
�h: (2.3)

Then, for every N > h, the function ˇ.t/D e��t for t 2 Œ�N;N � satisfies

cˇ0.t/� �`�N .ˇ;�/.t/; for t 2 Œ�N;N �; � 2 Œ0;�0�:

Remark 2. Note that xc and fc are nonincreasing with respect to c. Therefore,
there exists c� > 0 such that, for every c � c�, we have that

c��

Z C1
0

J.x/dxC

Z 0

�1

J.x/e��xdxCfc ; (2.4)

c�� 1Cfce
�h: (2.5)

Thus, in what follows, by c� we refer to the number described above.

Now we introduce some a priori estimates.

Lemma 3. LetN >h, c � c�, and let u be a non-negative solution to the equation

cu0.t/D `CN .u;0/.t/�u.t/Cf .�N .u/.t �h// for t 2 Œ�N;N � (2.6)

such that u.�N/� e��h. Then

u.�N/Dminfu.t/ W t 2 Œ�N;N �g:

Proof. Suppose on the contrary that u.�N/>minfu.t/ W t 2 Œ�N;N �g. Then there
exists t0 2 .�N;N � such that

u.t0/Dminfu.t/ W t 2 Œ�N;N �g< e��h; u.t/ > u.t0/ for t 2 Œ�N;t0/:

Obviously,

cu0.t/D `CN .u;0/.t/�`
�
N .u;fc/.t/C

ef .�N .u/.t �h//
� �`�N .u;fc/.t/ for t 2 Œ�N;t0�:

According to Lemma 2, the function ˇ.t/D e��t satisfies

cˇ0.t/� �`�N .ˇ;fc/.t/ for t 2 Œ�N;t0�:

Consequently (see [10, Theorem 1.5]), we find that

u.t/�
u.t0/

ˇ.t0/
ˇ.t/D u.t0/e

��.t�t0/ for t 2 Œ�N;t0�:

In particular,

�N .u/.t/� u.t0/e
�.hC"/

� 1 for t 2 Œt0� .hC "/; t0�;

for a suitable positive "� t0CN , which implies

f .�N .u/.t �h//� 0 for t 2 Œt0� "; t0�:
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Set w.t/D u.t/�u.t0/ for t 2 Œ�N;N �. Then, obviously, w.t/� 0 and

cw0.t/D `CN .w;0/.t/�w.t/Cf .�N .u/.t �h//� �w.t/ for t 2 Œt0� "; t0�:

Consequently, u.t/D u.t0/ for t 2 Œt0� "; t0�, a contradiction. �

Lemma 4. Let N > h, c � c�, and let u be a non-negative solution to (2.6) such
that u.�N/� e��h. Then

kukC � xc :

Proof. According to Lemma 3, there exists t0 2 .�N;N � such that u.t0/D kukC
and

0� cu0.t0/D

Z
R
J.x/

�
�N .u/.t0�x/�u.t0/

�
dxCf .�N .u/.t0�h//:

Therefore, f .�N .u/.t0�h// � 0, i.e. �N .u/.t0�h/ � 1 and assuming kukC > xc ,
there exists t1 2 Œt0 � h; t0/ such that u.t1/ D 1. Obviously, t1 � �N . Then (2.6)
implies

cu0.t/� u.t0/�u.t/Cf0 for t 2 Œt1; t0�;

whence we obtain

u.t0/e
t0
c � u.t1/e

t1
c C Œu.t0/Cf0�.e

t0
c � e

t1
c /

and, consequently,

u.t0/� 1Cf0.e
h
c �1/D xc ;

a contradiction. �

Lemma 5. Let N > h, c � c� and let u be a non-negative solution to the equation

cu0.t/D `CN .u;0/.t/�u.t/Cf .�N .u/.t �h// for t 2 Œ�N;N � (2.7)

such that kukC � xc . Then

u.0/� u.�N/e�N :

Proof. According to (2.7) and the assumption f 2 C 1.Œ0;C1/IR/ we have that

cu0.t/� `CN .u;fc/.t/ for t 2 Œ�N;N �:

Further, according to (2.4) and Lemma 1, the function 
.t/D e�t satisfies

c
 0.t/� `CN .
;fc/.t/ for t 2 Œ�N;N �:

Consequently (see [10, Theorem 1.1]), we find that

u.t/�
u.�N/


.�N/

.t/D u.�N/e�.tCN/ for t 2 Œ�N;N �:

In particular, for t D 0 we obtain the assertion of the lemma. �
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Lemma 6. Let N > h, c � c�, and let u1 and u2 be non-negative solutions to the
equation (2.7) such that

kuikC � xc .i D 1;2/; u1.�N/� u2.�N/:

Then
u1.t/� u2.t/ for t 2 Œ�N;N �:

Proof. Set w.t/D u1.t/�u2.t/ for t 2 Œ�N;N �. Then we have

cw0.t/D `CN .w;0/.t/�w.t/Cf .�N .u1/.t �h//�f .�N .u2/.t �h//

D `CN .w;0/.t/�w.t/Cp.t/�N .w/.t �h/ for t 2 Œ�N;N �; w.�N/� 0;

where

p.t/D

(
f .�N .u1/.t�h//�f .�N .u2/.t�h//

�N .u1/.t�h/��N .u2/.t�h/
if �N .u1/.t �h/ 6D �N .u2/.t �h/;

0 otherwise.

Obviously, jp.t/j � fc for t 2 Œ�N;N � and according to (2.4), (2.5), and Lemmas 1
and 2, the functions 
.t/D e�t and ˇ.t/D e��t satisfy

c
 0.t/� `CN .
;fc/.t/� `
C

N .
;0/.t/C Œp.t/�C�N .
/.t �h/ for t 2 Œ�N;N �;

cˇ0.t/� �`�N .ˇ;fc/.t/� �ˇ.t/� Œp.t/���N .ˇ/.t �h/ for t 2 Œ�N;N �:

However, according to [10, Theorems 1.1, 1.2, 1.4], the latter inequalities imply that
w.t/� 0 for t 2 Œ�N;N �, i.e. u1.t/� u2.t/ for t 2 Œ�N;N �. �

Remark 3. Note that according to Lemma 6, the problem

cu0.t/D `CN .u;0/.t/�u.t/Cf .�N .u/.t �h//; u.�N/D r

with r 2 Œ0;xc� has at most one solution such that kukC � xc provided N > h and
c � c�.

Lemma 7. Let c � c� and u0 2 .0;e��h�. Then, for every N > h, there exists a
positive solution u 2 C.Œ�N;N �IR/ to the problem

cu0.t/D `CN .u;0/.t/�u.t/Cf .�N .u/.t �h//; u.0/D u0 (2.8)

such that kukC � xc .

Proof. Let N > h be arbitrary but fixed. According to (2.4), (2.5), and Lemmas 1
and 2, the functions 
.t/D e�t and ˇ.t/D e��t satisfy

c
 0.t/� `CN .
;0/.t/; cˇ0.t/� �`�N .ˇ;fc/.t/ for t 2 Œ�N;N �:

Consequently (see [10, Theorems 1.1, 1.2, 1.4]), the homogeneous problem

cu0.t/D `CN .u;0/.t/�`
�
N .u;fc/.t/; u.�N/D 0

has only the trivial solution and thus, the problem

cu0.t/D `CN .u;0/.t/�`
�
N .u;fc/.t/C

ef .�N .u/.t �h//; u.�N/D r
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has a solution ur for every r � 0 (see [11, Theorem 3.1]). Moreover, since ef is
a non-negative function, the solution ur is also non-negative on Œ�N;N � (see [10,
Theorem 1.4]). Consequently, ur is a solution to

cu0.t/D `CN .u;0/.t/�u.t/Cf .�N .u/.t �h//; u.�N/D r:

Now we will show that there exists r0 2 Œu0e��N ;u0� such that the corresponding
solution ur0 admits ur0.0/D u0.

According to Lemmas 3 and 4, for r � e��h we have that

ur.�N/� ur.t/� xc for t 2 Œ�N;N � (2.9)

and so, for r1 D u0 we get

u0 D ur1.�N/� ur1.0/:

Moreover, all the solutions ur with 0 < r � e��h are, obviously, also positive solu-
tions to the equation (2.7). Consequently, according to Lemma 5, for r2 D u0e��N

we have that
ur2.0/� ur2.�N/e

�N
D u0:

Furthermore, Remark 3 yields the uniqueness of every solution ur .r � e��h/ and
thus, the continuous dependence on parameter (see [15, Theorem 2.1]) implies the
existence of r0 2 Œu0e��N ;u0� such that ur0.0/D u0. �

Lemma 8. Let c � c� and let u be a non-negative solution to (1.1) such that
u.t/� xc for t 2 R. Then

u.s/� u.t/e�.t�s/ for s; t 2 R; s � t:

Proof. It follows from (2.5) that ˇ.t/D e��t satisfies

cˇ0.t/� �ˇ.t/�fcˇ.t �h/ for t 2 R:

Further, from (1.1) it follows that

cu0.t/D J ?u.t/�u.t/�fcu.t �h/Cef .u.t �h//
� �u.t/�fcu.t �h/ for t 2 R:

Now, let t0 2 R be arbitrary but fixed. Obviously,

u.t/D o.ˇ.t// as t !�1:

Therefore, there exists t1 � t0 such that

�
def
D sup

�
u.t/

ˇ.t/
W t � t0

�
D
u.t1/

ˇ.t1/
;

and so
�ˇ.t/�u.t/� 0 for t � t0; �ˇ.t1/�u.t1/D 0;

and

c.�ˇ0.t/�u0.t//� �.�ˇ.t/�u.t//�fc.�ˇ.t �h/�u.t �h//� 0 for t � t0:
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Therefore, �ˇ.t0/D u.t0/ and so

u.t/�
u.t0/

ˇ.t0/
ˇ.t/D u.t0/e

�.t0�t/ for t � t0:

Since t0 was chosen arbitrarily, we get the assertion of the lemma. �

Lemma 9. Let c � c�. Then, for every u0 2 .0;e��h�, there exists a positive
solution u to the equation (1.1) such that

u.0/D u0; sup
t2R

u.t/� xc : (2.10)

Proof. According to Lemma 7 there exist an increasing sequence of real numbers
Ni .i 2N/ such that

N1 > h; lim
i!C1

Ni DC1

and a sequence of positive solutions uNi W Œ�Ni ;Ni �! R to (2.8) (with N D Ni )
satisfying kuNikC � xc .i 2N/. Therefore, f�Ni .uNi /g

C1
iD1 is a sequence of positive

continuous functions defined on R, uniformly bounded by xc , and equicontinuous on
every compact interval contained in R. Without loss of generality we can assume that
there exists a continuous function u such that

lim
i!C1

�Ni .uNi /.t/D u.t/ uniformly on every compact subinterval of R:

As a limit of �Ni .uNi /, the function u satisfies 0� u.t/� xc for t 2R, which implies
that

lim
i!C1

Z
I

j`CNi
.uNi ;0/.t/�J ?u.t/jdt D 0

for every compact interval I � R. Consequently, u is a non-negative nontrivial
.u.0/D u0 > 0/ solution to (1.1).

To show that u is a positive function, assume on the contrary that u vanishes at
some point t0 2 R. According to Lemma 8 we have u.t/D 0 for t � t0. Moreover,

cu0.t/D J ?u.t/�u.t/Cf .u.t �h//� J ?u.t/Cfcu.t �h/ for t 2 R:

On the other hand, according to (2.4), the function 
.t/D e�t satisfies

c
 0.t/� J ?
.t/Cfc
.t �h/ for t 2 R

and
u.t/D o.
.t// as t !C1:

Consequently, there exists t1 � t0 such that

�D sup
�
u.t/


.t/
W t � t0

�
D
u.t1/


.t1/
;

and so
�
.t/�u.t/� 0 for t � t0; �
.t1/�u.t1/D 0:
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Since u.t/D 0 for t � t0, we have �
.t/�u.t/� 0 for t 2 R and

c.�
 0.t/�u0.t//� J ?.�
.t/�u.t//Cfc.�
.t �h/�u.t �h//� 0 for t � t0:

Therefore, �
.t0/ D u.t0/ D 0 and so � D 0. Thus, u � 0 on R that contradicts
u.0/D u0 > 0. �

Lemma 10. Let c � c� and let u be a positive solution to (1.1) such that

inf
t2R

u.t/ < e��h; sup
t2R

u.t/� xc :

Then
u.t/ > inf

s2R
u.s/ for t 2 R:

Proof. Assume on the contrary that there exists t0 2 R such that

u.t0/D inf
t2R

u.t/:

Then, according to Lemma 8 we have that u.t0�h/ < 1, and thus f .u.t0�h// > 0.
On the other hand,

0D cu0.t0/D

Z
R
J.x/Œu.t0�x/�u.t0/�dxCf .u.t0�h//� f .u.t0�h//;

a contradiction. �

Lemma 11. For any non-negative bounded function u we have

liminf
t!˙1

J ?u.t/� liminf
t!˙1

u.t/:

Proof. Obviously, for every N > 0 we have thatZ
R
J.x/u.t �x/dx �

Z N

�1

J.x/u.t �x/dx

�

Z N

�1

J.x/dx inffu.s/ W s 2 Œt �N;C1/g for t 2 R:

Consequently,

liminf
t!C1

J ?u.t/�

Z N

�1

J.x/dx liminf
t!C1

u.t/ for N > 0:

Thus, the assertion of the lemma follows as N !C1. The case t !�1 can be
proven analogously. �

Lemma 12. Let c � c� satisfy

c >

Z
R
J.x/jxjdx (2.11)
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and let u be a positive solution to (1.1) such that u.t/� xc for t 2 R and

liminf
t!C1

u.t/ < e��h; resp. liminf
t!�1

u.t/ < e��h:

Then
lim

t!C1
u.t/D 0; resp. lim

t!�1
u.t/D 0:

Proof. We will proof the lemma as t !C1. For the case when t ! �1 the
proof is similar. First we prove that there exists a limit of u.t/ as t !C1. Assume
on the contrary that

u�
def
D liminf

t!C1
u.t/ < limsup

t!C1

u.t/:

According to Lemma 8 we have

u.t �h/ < 1 whenever u.t/ < e��h:

Therefore, there exist sn; tn 2 R .n 2N/ and y0 2 .u�; e��h/ such that sn < tn,

lim
n!C1

sn D lim
n!C1

tn DC1; lim
n!C1

u.tn/D u�; u.sn/D y0;

u.tn/� u.t/� u.sn/; u.t �h/ < 1 for t 2 Œsn; tn�:

Then

cu0.t/�

Z
R
J.x/Œu.t �x/�u.t/�dx for t 2 Œsn; tn�: (2.12)

Now we show that tn� sn!C1 as n!C1. Assume on the contrary that there
exists K > 0 such that tn� sn � K for n 2N. According to Lemma 11 and (2.12),
for every " > 0 there exists n0 2N such that

cu0.t/� u�� "�u.t/ for t 2 Œsn; tn�; n� n0:

Consequently, we have that

u.tn/e
tn
c � u.sn/e

sn
c C .u�� "/.e

tn
c � e

sn
c /;

whence we obtain

u.tn/�u� � .y0�u�/e
�K
c � ".1� e

�K
c /:

Passing to the limit as n!C1 in the latter equation we find that

0 < y0�u� � ".e
K
c �1/;

whence we get a contradiction, because " can be chosen arbitrarily small. Con-
sequently, we get that tn � sn ! C1 as n! C1. Therefore, for every N > 0

we have that N < tn� sn provided n is sufficiently large. Now

cu0.t/�

Z
R
J.x/Œu.t �x/�u.t/�dx
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D�

Z
R
J.x/x

Z 1

0

u0.t �´x/d´dx for t 2 Œsn; tn�:

Integration of the last inequality over the interval Œsn; tn�, using Fubini’s theorem,
yields

c.u.tn/�y0/� �

Z
R
J.x/x

Z 1

0

Œu.tn�´x/�u.sn�´x/�d´dx

��

Z N

0

J.x/jxj

Z 1

0

u.tn�´x/d´dxC

Z N

0

J.x/jxjdx inffu.�/ W � 2 Œsn�N;C1/g

C

Z 0

�N

J.x/jxjdx inffu.�/ W � 2 Œtn;C1/g�
Z 0

�N

J.x/jxj

Z 1

0

u.sn�´x/d´dx

�

 Z C1
N

J.x/jxjdxC

Z �N
�1

J.x/jxjdx

!
xc

�
�

inffu.�/ W � 2 Œsn�N;C1/g�y0
�Z N

�N

J.x/jxjdx� ".N /

�
�

inffu.�/ W � 2 Œsn�N;C1/g�y0
�Z

R
J.x/jxjdx� ".N / (2.13)

provided n is sufficiently large, where

lim
N!C1

".N /D 0: (2.14)

However, passing to the limit as n!C1 in (2.13) we get

.u��y0/

�
c�

Z
R
J.x/jxjdx

�
� �".N / for N > 0: (2.15)

Consequently, in view of (2.14), the inequality (2.15) yields

.u��y0/

�
c�

Z
R
J.x/jxjdx

�
� 0:

Thus, on account of y0 > u� we have

c �

Z
R
J.x/jxjdx;

which contradicts (2.11). The obtained contradiction proves that the limit of u.t/ as
t !C1 exists.

Now we will show that u� D lim
t!C1

u.t/ is equal to zero. Obviously, according to

Lemma 11 we have that for every " > 0 there exists t" 2 R such that

cu0.t/� u�� "�u.t/Cf .u.t �h// for t � t"
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and the integration from t to tC1 yields

cu.tC1/� cu.t/� u�� "�

Z tC1

t

u.s/dsC

Z tC1

t

f .u.s�h//ds for t � t":

Passing to the limit as t !C1 we arrive at

"� lim
t!C1

Z tC1

t

f .u.s�h//ds D f .u�/

since f is continuous. Consequently, since " > 0 can be chosen arbitrarily small,
f .u�/D 0 and so u� D 0. �

Lemma 13. Let c � c� satisfy (2.11) and let u be a positive solution to (1.1) such
that u.t/� xc for t 2 R. Then

liminf
t!C1

u.t/� e��h: (2.16)

Proof. Assume on the contrary that

liminf
t!C1

u.t/ < e��h:

Then according to Lemma 12 we have

lim
t!C1

u.t/D 0:

Consequently, there exists t0 > 0 such that

u.t0/� u.t/; u.t �h/ < 1 for t � t0

and thus u satisfies

cu0.t/�

Z
R
J.x/Œu.t �x/�u.t/�dx

D�

Z
R
J.x/x

Z 1

0

u0.t �´x/d´dx for t � t0:

Integrating the last inequality from t0 to t and using Fubini’s theorem we obtain that

c.u.t/�u.t0//� �

Z
R
J.x/x

Z 1

0

Œu.t �´x/�u.t0�´x/�d´dx

��

Z N

0

J.x/x

Z 1

0

u.t�´x/d´dx�

Z 0

�1

J.x/jxj

Z 1

0

u.t0�´x/d´dx�xc

Z C1
N

J.x/xdx

� �

Z N

0

J.x/x

Z 1

0

u.t �´x/d´dx�u.t0/

Z 0

�1

J.x/jxjdx� ".N / for t � t0;
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whereN > 0 is arbitrary and " satisfies (2.14). Passing to the limit as t!C1, from
the latter inequality it follows that

u.t0/

�
c�

Z 0

�1

J.x/jxjdx

�
� ".N / for N > 0: (2.17)

Consequently, in view of (2.14), the inequality (2.17) yields

u.t0/

�
c�

Z 0

�1

J.x/jxjdx

�
� 0:

Thus, on account of u.t0/ > 0 we have

c �

Z 0

�1

J.x/jxjdx;

which contradicts (2.11). The obtained contradiction proves the assertion of the
lemma. �

Proof of Theorem 1. According to Lemma 9, for every u0 2 .0;e��h/ there exists
a positive solution u to (1.1) such that (2.10) holds (recall that xc D 1Cf0.e

h
c �1/).

In view of Lemmas 10 and 12 we have that

either lim
t!�1

u.t/D 0 or lim
t!C1

u.t/D 0:

However, Lemma 13 assures that (2.16) is valid. Therefore, the theorem is proven.
�

3. APPLICATIONS AND EXAMPLES

In this section, we present some examples to illustrate the application of the main
results of this paper about the existence of traveling wave to equation (1.1) with some
specific growth term f and dispersal kernel J , which are usually used representing
the dynamical population model of single species in ecology (see, e.g. [3,5,6,13,18]).

We consider the exponential kernel

J˛.s/D
e�

.sC�/2

4˛

p
4�˛

; � � 0:

Note that
R

RJ˛.x/dx D 1 and
R 0
�1

J˛.x/e
��xdx <C1 for all � > 0. In addition,

by computation we haveZ C1
�1

J˛.x/jxjdx D

r
4˛

�
e�

�2

4˛ C� erf
�

�
p
4˛

�
DWM1 <C1;

where erf.x/ is the Gauss error function. Moreover, we also getZ C1
0

J˛.x/dx D
1

2

�
1� erf

�
�
p
4˛

��
DWM2;
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�1

J˛.x/e
��xdx D

e�.�C�˛/

2

�
1C erf

�
�C2�˛
p
4˛

��
DWM3.�/ for � > 0:

Let f be as in Section 1, and let f0, xc , and fc be as in Section 2. Put

H.�/ WD

Z C1
0

J˛.x/dxC

Z 0

�1

J˛.x/e
��xdx; Gc.�/ WD c��fc ; �� 0:

Note thatH.0/D 1,H 00.�/ > 0 for � > 0,H 0.0/D�
R 0
�1

xJ˛.x/dx > 0 andH.�/
does not depend on c. Moreover,Gc.0/D�fc <0,G0c.�/D c > 0 andGc is increas-
ing with respect to c at every positive point �. In consequence, there exist c?;�? > 0
such that

Gc?.�?/DH.�?/; Gc?.�/ < H.�/ for � > 0; � 6D �?:

In addition, for each c > c?, we have

Gc.�?/ > H.�?/

and, if c < c?, then Gc.�?/ < H.�?/. By substitution, we finally have, for each
speed c � c?,

c�? �M2CM3.�?/Cfc : (3.1)
We also obatin that G0c?.�?/DH

0.�?/, i.e.,

c? D�

Z 0

�1

xJ˛.x/e
��?xdx:

Now, to estimate the right-hand term of (3.1), we will consider a particular non-
linearity. We study two types of nonlinearities, usually used in literature for non-
degenerate case (f 0.0/ > 0) and degenerate case (f 0.0/D 0).

Example 3.1 Let f be the classical Fisher-KPP nonlinearity given by f .s/D s.1�
s/ for s � 0. Thus f0 D 1

4
, xc D 1

4
.3C e

h
c / > 1, and fc D jf 0.xc/j D 1Ceh=c

2
.

According to the above-proven, there exist positive numbers c? and �? such that

c?�? DM2CM3.�?/Cfc? (3.2)

and (3.1) holds for every c � c?. Substituting into (3.1) we obtain

c�? �M2CM3.�?/C
1C eh=c

2
for c � c?:

Moreover, the function

Pc.�/ WD 1Cfce
�h
D 1C

1C eh=c

2
e�h

is increasing with respect to �, and decreasing with respect to c at every positive point
�. Therefore, there exits c� � c? such that

c��? Dmax

(
M2CM3.�?/C

1C eh=c�

2
;Pc�.�?/

)
:
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Consequently,

c�? �max

(
M2CM3.�?/C

1C eh=c

2
;Pc.�?/

)
for c � c�:

Set

M D
1

�?
max

(
M2CM3.�?/C

1C eh=c�

2
;Pc�.�?/;�?M1

)
:

Then the proof of Theorem 1 guarantees the following result.

Theorem 2. For every c >M there exists a positive solution u to the monostable
delay equation

cu0.t/D J˛ ?u.t/�u.t/Cu.t �h/.1�u.t �h//;

satisfying

lim
t!�1

u.t/D 0; e��?h � liminf
t!C1

u.t/� sup
t2R

u.t/� 1C
e
h
c �1

4
:

Example 3.2 We consider the nonlinearity f .s/D spC1.1� s/, p > 0 (degenerate
case). Then

f0 D
.pC1/pC1

.pC2/pC2
; xc D 1C

.pC1/pC1.e
h
c �1/

.pC2/pC2
;

and

fc D jf
0.xc/j

D

0@1C .pC1/pC1
�
e
h
c �1

�
.pC2/pC2

1Ap0@1C .pC1/pC1
�
e
h
c �1

�
.pC2/pC1

1ADWN1.c/:
According to the above-proven, there exist positive numbers c? and �? such that (3.2)
is fulfilled and (3.1) holds for every c � c?. Substituting into (3.1) we obtain

c�? �M2CM3.�?/CN1.c/ for c � c?:

Moreover, the function

P c.�/ WD 1Cfce
�h
D 1CN1.c/e

�h

is increasing with respect to � and decreasing with respect to c at every positive point
�. Therefore, there exits c� � c? such that

c��? Dmax
˚
M2CM3.�?/CN1.c�/;P c�.�?/

	
:

Consequently,

c�? �max
˚
M2CM3.�?/CN1.c/;P c.�?/

	
for c � c�:
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Now, set

N D
1

�?
max

˚
M2CM3.�?/CN1.c�/;P c�.�?/;�?M1

	
:

Then we have the following result.

Theorem 3. For every c > N there exists a positive solution u to the monostable
delay equation

cu0.t/D J˛ ?u.t/�u.t/C .u.t �h//
pC1.1�u.t �h//;

satisfying

lim
t!�1

u.t/D 0; e��?h � liminf
t!C1

u.t/� sup
t2R

u.t/� 1C
.pC1/pC1

�
e
h
c �1

�
.pC2/pC2

:
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