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EMERGENCE OF CONSENSUS OF MULTI-AGENTS SYSTEMS
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Abstract. In this paper an emergence of leader-following consensus on arbitrary time scales is
investigated. It means that the step size is not necessarily constant but it is a function of time.
We propose and prove conditions ensuring a leader-following consensus for discrete time scales.
The presented results are illustrated by numerical examples.

2010 Mathematics Subject Classification: 34N05; 34D20; 93C10

Keywords: time scales, leader-following problem, emergence of consensus, multi-agent sys-
tems, networked control systems, graph, Laplacian

1. INTRODUCTION

Flocking is a form of collective behaviour of a large number of interacting agents
with a common group objective. Such a group is known as a multi-agent system.
Examples of these multi-agent systems include crowds, bees, ants, birds, fish and
penguins. Often in the group of agents there is one special agent which is called
the leader. The leader is an agent, whose motion is independent of all the other
agents and is followed by all the other ones. In this paper, we study model of be-
haviour of multi-agent system with the leader. The emergence of consensus is an
important topic in multi-agent systems. The main idea is to drive a team of agents to
reach an agreement on a certain issue by negotiating with the leader and with their
neighbours. Although, each individual agent has limited processing power, the in-
terconnected system as a whole can perform complex tasks in a coordinated fashion.
Agents share their states with their neighbours via a chaotic communication network.
The model describes the information transfers between agents particularly between
agents and the leader. The model could be applicable for describing negotiation pro-
cess in a group of number of people in which one of them is more important than the
others, as well as for describing movement of group of animals with the leader. The
origins of the investigation of the leader-following problem date back to the 1970s.
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In 1974 [9], DeGroot studied explicitly described process leading to the consensus.
The general objective of the paper published by French in 1977 [10], was to enhance
the understanding of organizational power by constructing a formal theory of power
as a process characterizing the relations among organizations. In 2000, Krause [15]
proposed the model of a group of experts who have to make a joint assessment of
a certain magnitude. Each of the experts has his own opinion but is open to some
extent to revise it when being informed about the opinions of all the other experts.
Coordination of groups of mobile autonomous agents using nearest neighbour rules
was studied by Jadbabaie et al. in [14]. In [3, 4], Blondel et al. investigated Krause’s
multi-agent consensus model with state-dependent connectivity. Girejko et al. stud-
ied Krause’s model of opinion dynamics on isolated time scales [11, 13]. In 2007,
Cucker and Smale [7, 8] published two papers devoted to an emergent behaviour in
flocks. The authors provided the model describing the evolution of a flock for both
continuous and discrete time. Cucker-Smale model on isolated time scales is studied
by Girejko et al. in [13]. In 2015, Wang et al. [19] studied the leader-following con-
sensus of discrete time linear multi-agent systems with communication noises. Re-
cently, in 2018, Girejko, Machado, Malinowska, and Martins, have published some
results for consensus in the Cucker-Smale type model on isolated time scales [12].
In [2], using the time scale theory, Babenko et al. investigated the leader-follower
consensus problem for high-order multi-agent systems with inherent non-linear dy-
namics evolving on an arbitrary time domain. The authors obtained some sufficient
conditions to guarantee that the tracking errors exponentially converge to zero using
the concept of matrix-valued Lyapunov functions.

Notice that an interaction topology in the multi-agent system is modelled by un-
directed or directed graph. Our analysis framework is based on tools from matrix
theory, algebraic graph theory and time scales theory.

2. BASIS OF TIME SCALES CALCULUS

A time scale is a model of time [1, 5, 6], where the step size is a function of time.
From mathematical point of view it is an arbitrary nonempty closed subset T of the
set R of real numbers.

The mapping � WT !T , defined by �.t/D inffs 2 T Ws > tg with inf¿D supT ,
is called the forward jump operator. Similarly, we define the backward jump operator
� W T ! T by �.t/ D supfs 2 T Ws < tg with sup¿ D infT . The following classi-
fication of points is used within the theory: a point t 2 T is called right-dense, right-
scattered, left-dense and left-scattered if �.t/D t (for t < supT ), �.t/ > t , �.t/D t
(for t > infT ) and �.t/ < t , respectively. We say that t is isolated if �.t/ < t < �.t/,
and that t is dense if �.t/ D t D �.t/. The function �WT ! Œ0;1/ is defined by
�.t/D �.t/� t and called the graininess function. The delta (or Hilger) derivative of
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f WT ! R at a point t 2 T � , where

T �
WD

(
T n .�.supT /;supT � if supT <1

T if supT D1
;

is defined in the following way.

Definition 1 ([5]). The delta derivative f �.t/ is the number (provided it exists)
with the property that given any " > 0, there is a neighbourhood U of t (i.e., U D
.t � ı; tC ı/\T for some ı > 0) such that

j.f .�.t//�f .s//�f �.t/.�.t/� s/j � "j�.t/� sj for all s 2 U:

The following definitions will be used in the sequel, too.

Definition 2 ([5]). A function f WT ! R is called regulated provided its right-
sided limits exist (finite) at right-dense points in T and its left-sided limits exist (fi-
nite) at left-dense points in T . A function f WT !R is called rd-continuous provided
it is continuous at right-dense points in T and its left-side limits exist (finite) at left-
dense points in T .

Definition 3 ([5]). Assume f WT ! R is a regulated function. We define the in-
definite integral of a regulated function f by

R
f .t/�t D F.t/CC , where C is an

arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy integral
by
R b
a f .t/�t D F.b/�F.a/ for all a;b 2 T .

Definition 4 ([5]). We say that a function pWT ! R is regressive provided 1C
�.t/p.t/¤ 0 holds for all t 2 T � . The set of all regressive and rd-continuous func-
tions pWT ! R is denoted by R. The set of all positively regressive elements of R,
is defined as RCWD fp 2RW1C�.t/p.t/ > 0 for all t 2 T g.

An N �N -matrix-valued function P on a time scale T is called regressive (with
respect to T ) provided

I C�.t/P.t/ is invertible for all t 2 T � ;

where by I we denote the N �N identity matrix.

Notice that, constant N �N matrix P is regressive iff the eigenvalues �i of P are
regressive for all 1� i �N .

The Grönwall inequality is used in the proof of the main result.

Lemma 1 ([5]). Let y be rd-continuous, p 2 RC and p.t/ � 0 for t 2 T and
C 2 R. Then

y.t/� C C

Z t

T0

p.�/y.�/�� for all t 2 T

implies
y.t/� Cep.t;T0/:
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Here ep.t;T0/, T0 2 T , is a solution of the initial value problem y�.t/D p.t/y.t/,
y.T0/D 1 on T .

Through this paper, assume that

infT D T0 and supT D1:

It implies that T � D T .

3. SUFFICIENT CONDITIONS FOR CONSENSUS

3.1. Adjacency matrix

The multi-agent system can be modelled by directed or undirected graph. A graph
is an object that consists of a non-empty set of vertices and another set of edges. In the
graph theory an adjacency matrix is a square matrix used to represent a finite graph.
We construct anN �N adjacency matrixA associated to the graph as follows: if there
is an edge from node i to node j , then we put 1 as the entry on row i , column j of
the matrix A, i;j D 1;2; : : : ;N . Diagonal matrixD D diagŒd1;d2; : : : ;dN � describes
communication between the leader and agents. Entries di , i D 1;2; : : : ;N are positive
when there exists information exchange between i -th agent and the leader, and di D 0
otherwise.

Hermitian matrix (or self-adjoint matrix) is a square matrix that is equal to its own
conjugate transpose. Obviously, any symmetric real matrix is Hermitian matrix. If
a square matrix equals the multiplication of a matrix and its conjugate transpose,
then is Hermitian matrix. The matrix norm induced by the Euclidean norm coincides
with the spectral norm and it is submultiplicative norm. Throughout this paper the
matrix norm means the spectral norm. If P is an N �N real matrix, then kP k Dp
�.PP T / where �.PP T / is the largest absolute value of eigenvalues of matrix

PP T . Moreover, if P is Hermitian, then kP k D �.P /. Symmetric and Hermitian
matrices have the property of being always diagonalizable.

Example 1. We consider multi-agent system consisting of the leader and the five
agents. In Figure 1 and 2 the topology of the system is given by undirected and
directed graph, respectively. The adjacency matrices are the following.

Figure 1: AD

266664
0 1 1 0 0

1 0 0 0 0

1 0 0 1 1

0 0 1 0 0

0 0 1 0 0

377775 I Figure 2: AD

266664
0 1 0 0 0

1 0 0 0 0

1 0 0 0 1

0 0 1 0 0

0 0 0 0 0

377775 :
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41 5

FIGURE 1. The topology of the leader-following multi-agent system
under the undirected graph

L

2

3

41 5

FIGURE 2. The topology of the leader-following multi-agent system
under the directed graph

We see that the matrices which represent undirected graph are symmetric. For both
graphs we can put for example

D D

266664
2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

377775 :

In this paper, more general adjacency matrix is used which is called weighted ad-
jacency matrix. In weighted adjacency matrix entries are non-negative real numbers.
Let aij (i;j D 1; : : : ;N ) denote the entries of the weighted adjacency matrix A as-
sociated with fixed graph by which the multi-agent systems are modelled. For an
undirected graph, A is symmetric. By L we mean the Laplacian matrix L D Œlij �
with li i D

P
j¤i

aij and lij D�aij , i;j D 1; : : : ;N , i ¤ j .
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3.2. Mathematical model of agents dynamics

We consider a discrete time multi-agent system consisting of N agents and the
leader. The dynamics of each agent labelled i , i D 1;2; : : :N , is given by the follow-
ing equation

x�i .t/D f .t;xi .t//C


NX
jD1

aij .xj .t/�xi .t//C
di .x0.t/�xi .t//; t 2 T ; (3.1)

where xi .t/ represents the state at time t and 
 is a feedback control gain. Function
f WT �R! R describes non-linear dynamics. The leader, labelled as i D 0, for
multi-agent system (3.1) is an isolated agent with trajectory described by

x�0 .t/D f .t;x0.t//; t 2 T : (3.2)

Notice that the control law 

NP
jD1

aij .xj .t/�xi .t//C
di .x0.t/�xi .t// for i -th agent

used in system (3.1)-(3.2) was studied by many authors including Yu, Jiang and Hu
in [20].

Definition 5. The multi-agent system (3.1)–(3.2) is said to be achieved the leader-
following consensus if a solution to (3.1)–(3.2) satisfies

lim
t!1

.xi .t/�x0.t//D 0; i D 1;2; : : : ;N; t 2 T ;

for any initial conditions xi .T0/ 2 R, i D 0;1;2; : : : ;N , T0 2 T .

Let us denote by "i .t/D xi .t/�x0.t/ the distance between the leader and the i -th
agent. From (3.1)–(3.2) we obtain

"�i .t/D f .t;xi .t//�f .t;x0.t//C


NX
jD1

aij ."j .t/� "i .t//�
di"i .t/

for i D 1;2; : : : ;N . Setting

".t/D
�
"1.t/;"2.t/; : : : ; "N .t/

�T
;

x.t/D
�
x1.t/;x2.t/; : : : ;xN .t/

�T
and

F.t;x.t//D
�
f .t;x1.t//;f .t;x2.t//; : : : ;f .t;xN .t//

�T
;

F .t;x0.t/1/D
�
f .t;x0.t//;f .t;x0.t//; : : : ;f .t;x0.t//

�T
;

system (3.1)–(3.2) takes the following form

"�.t/D F.t;x.t//�F.t;x0.t/1/�
B".t/; (3.3)

where B D LCD (for proof see [18]). Here 1 is the vector Œ1; : : : ;1�T .
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3.3. Main results

We assume that function f W T �R! R satisfies Lipschitz condition with respect
to the second variable in the meaning of following definition.

Definition 6. We say that function f W T �R! R fulfills Lipschitz condition if
there exists a positive constant L such that

jf .t;x.t//�f .t;y.t//j �Ljx.t/�y.t/j; t 2 T : (3.4)

Let P 2R. By eP .t;T0/ we denote the unique solution of initial value problem

y�.t/D Py.t/; y.T0/D 1:

So, for regressive �
B , function e�
B.t;T0/ is the solution of initial value problem

"�.t/D�
B".t/; ".T0/D 1:

Theorem 1. Assume that T DN and condition (3.4) is satisfied. If

each eigenvalue of matrix .�
B/ is regressive with respect to time scale N; (3.5)

and
spectral norm of matrix .I �
B/ is less than 1�L; (3.6)

where L is Lipschitz constant, then system (3.1)–(3.2) achieves the leader-following
consensus.

Proof. Condition (3.5) implies that matrix .�
B/ 2R.
By M we denote the spectral norm of matrix .I �
B/. Thus, by (3.6), we have

MCL< 1: (3.7)

By variation of constants (see [5]), the unique solution of equation (3.3) with initial
condition ".T0/, for t � T0, is given by

".t/D e�
B.t;T0/".T0/C

tZ
T0

e�
B.t;�.�//
�
F.�;x0.�/1/�F.�;x.�//

�
��:

Using condition (3.4), we obtain

k".t/k � k".T0/kke�
B.t;T0/kC

tZ
T0

Lk".�/kke�
B.t;�.�//k��: (3.8)

On time scale T DN function e�
B.t;T0/D .I �
B/t�T0 . This implies

ke�
B.t;T0/k D k.I �
B/
t�T0k � kI �
Bkt�T0 DMt�T0 :
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From the above and (3.8), putting �.�/D �C1, we get

k".t/k � k".T0/kM
t�T0C

tZ
T0

Lk".�/kMt���1��

and

M�tk".t/k � k".T0/kM
�T0C

tZ
T0

LM�1k".�/kM����:

By Lemma 1, we obtain

M�tk".t/k � k".T0/kM
�T0eLM�1.t;T0/:

Thus

k".t/k � k".T0/kM
t�T0.1CLM�1/t�T0 D k".T0/k.MCL/t�T0 :

Therefore, by (3.7)

0� lim
t!1

k".t/k � lim
t!1

k".T0/k.MCL/t�T0 D 0:

It implies the thesis of Theorem 1. �

Example 2. Let T DN. We consider a group of 5 followers and the leader with
the following initial conditions: x0.T0/D 5, x1.T0/D 3, x2.T0/D 14, x3.T0/D 16,
x4.T0/ D 10 and x5.T0/ D 7, where T0 D 1, and the symmetric adjacency matrix
(see Figure 1) and D given in Example 1. Let f .x;y/ D .0:2xy/=.2C 3x2/ and

 D 0:2. Here LD 0:2, M D 0;74. Therefore, by Theorem 1, the leader-following
consensus is achieved. The state trajectories xi and "i , i D 1;2;3;4;5 are shown in
Figure 3 and Figure 4, respectively. The trajectory of the leader x0 is drown in red
and trajectories of xi , i D 1;2;3;4;5, in green, black, blue, magenta and pink.

Theorem 2. Assume that T D hN, h > 0 and condition (3.4) is satisfied. If each
eigenvalue of matrix .�
B/ is regressive with respect to time scale hN, and

spectral norm of matrix .I �h
B/ is less than 1�hL; (3.9)

then the leader-following consensus holds for system (3.1)–(3.2).

Proof. Obviously matrix .�
B/ 2R. Here, by M� we denote spectral norm of
matrix .I �h
B/. Notice that, if t;T0 2 hN then .t �T0/=h 2N. We have

e�
B.t;Ta0/D .I �h
B/
t�T0
h and ke�
B.t;T0/k � .M�/

t�T0
h :

Applying the same arguments as in the proof of Theorem 1 we get the thesis. �
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FIGURE 3. Trajectories xi , i D 0;1;2;3;4;5
.

FIGURE 4. Trajectories "i , i D 1;2;3;4;5
.

Example 3. Now let T D 0:5N and T0D 0:5. As in Example 2, we consider 5 fol-
lowers and the leader. We also assume the same initial conditions, the symmetric ad-
jacency matrix, the matrixD, the function f .x;y/D .0:2xy/=.2C3x2/ and 
 D 0:2.
Hence, we have LD 0:2 and M � 0:87 < 1�0:5LD 0:9. According to Theorem 2,
the group of agents reaches the consensus. The trajectories of the leader and his
followers (xi ; i D 0;1;2;3;4;5) and distances between them ("i ; i D 1;2;3;4;5) we
draw in Figure 5 and in Figure 6, respectively.

Theorem 3. Assume that time scale T is discrete and condition (3.4) is satisfied.
If

.�
B/ is regressive
and

spectral norm of matrix .I ��.t/
B/ is less than 1��.t/L;
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FIGURE 5. Trajectories xi , i D 0;1;2;3;4;5
.

FIGURE 6. Trajectories "i , i D 1;2;3;4;5
.

then the leader-following consensus holds for system (3.1)–(3.2).

Proof. Let us denote by M�� supremum of spectral norms of matrices .I ��.t/
B/.
Here

ke�
B.t;T0/k D k
Y

s2T\ŒT0;t/

.I ��.s/
B/k

�

Y
s2T\ŒT0;t/

k.I ��.s/
B/k �
Y

s2T\ŒT0;t/

M��:
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For considered here time scales, inequality (3.8) implies

k".t/k � k".T0/k
Y

s2T\ŒT0;t/

M��C

tZ
T0

Lk".�/k
Y

s2T\Œ�.�/;t/

M����: (3.10)

Hence, multiplying the both sides of inequality (3.10) by
Q

s2T\.T0;t/

.M��/�1, we

obtain Y
s2T\.T0;t/

.M��/�1k".t/k � k".T0/kM
��

C

tZ
T0

L.M��/
�1
k".�/k

Y
s2T\.T0;�/

.M��/
�1
��:

By Lemma 1, we obtainY
s2T\.T0;t/

.M��/�1k".t/k � k".T0/kM
��

Y
s2T\ŒT0;t/

�
1C�.s/L.M��/�1

�
k".t/k � k".T0/k

Y
s2T\ŒT0;t/

�
M��C�.s/L

�
:

By (3.9), we have M��C�.s/L< 1 for any s 2 T . Thus

lim
t!1

k".t/k � lim
t!1

k".T0/k
Y

s2T\ŒT0;t/

�
M��C�.s/L

�
D 0:

It implies the thesis. �

In the following remark we present the most useful consequence of Theorem 3.

Remark 1. Assume that time scale T is discrete, graininess function �.t/ 2

f�1;�2; : : : ;�kg and condition (3.4) is satisfied. If for any i 2 f1;2; : : : ;kg each
eigenvalue of matrix .�
B/ is regressive with respect to considered time scale, and
spectral norm of matrix .I ��i
B/ is less than 1��iL, then the leader-following
consensus holds for system (3.1)–(3.2).

Proof. By Mmax we denote maximum of spectral norms of .I ��i
B/ for i 2
f1;2; : : : ;kg. Set �� D max

i2f1;2;:::;kg
�i .t/. Here

ke�
B.t;T0/k �
�
Mmax�j t�T0��

k
for t � T0:

�
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Example 4. Consider the time scale

T D

�
t W t D

3nC1

2
for nD 2k; t D

3n

2
for nD 2kC1;k 2N[f0g

�
;

that is T D f0:5;1:5;3:5;4:5;6:5;7:5; : : :g. In this case we have T0D 0:5 and �1D 1,
�2 D 2. Again we observe the behavior of group of 5 followers and the leader with
the initial conditions known from the previous examples: x0.T0/ D 5, x1.T0/ D 3,
x2.T0/D 14, x3.T0/D 16, x4.T0/D 10 and x5.T0/D 7. We take the matrix D and
the symmetric adjacency matrix given in Example 1. In the numerical computations
we use 
 D 0:1, f .x;y/D .0:1xy/=.2C3x2/. Hence LD 0:1 and

kI ��1
Bk � 0:87 < 1��1LD 0:9;

kI ��2
Bk � 0:74 < 1��2LD 0:8:

Finally, by Remark 1, the leader-following consensus is also achieved. Below, in
Figure 7 we present trajectories of the leader and 5 agents (xi ; i D 0;1;2;3;4;5) and
in Figure 8 we draw distances between the leader and 5 agents ("i ; i D 1;2;3;4;5).

FIGURE 7. Trajectories xi , i D 0;1;2;3;4;5
.

Remark 2. If there exists T � 2 T such that time scale considered in Theorem 3 is
discrete for t � T �, then the thesis of this Theorem also holds.

Analogous remarks are valid for Theorems 1 and 2.
The obtained result generalizes the result obtained by Malinowska, Schmeidel and

Zdanowicz in [16] and by Ostaszewska, Schmeidel and Zdanowicz in [17]. In [17],
the authors study the leader-following problem on discrete time scales with finite
codomain of graininess function.
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FIGURE 8. Trajectories "i , i D 1;2;3;4;5
.

CONCLUSION

In this paper, an emergency of the leader-following consensus of multi-agent sys-
tems is investigated on time scales. Based on the stability theory of systems on time
scales and Grönwall inequality, sufficient conditions ensuring the leader-following
consensus of the model are presented for discrete time scale. Finally, examples are
given to demonstrate the effectiveness of the proposed method.
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