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Abstract. The paper deals with the modeling and analysis of a single server queue with repeated
attempts and two priority customers involving generalized stochastic Petri nets. Indeed, the con-
sideration of the recalls and priority introduces great analytical difficulties. Therefore, by using
the GSPN, we show how this high level formalism allows us to cope with the complexity of this
system. The paper extends previous works on this topic and evaluate different performance char-
acteristics of the system. The Markov chain is obtained and some numerical results are presented
to illustrate the effect of the system parameters on the developed performance measures.
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1. INTRODUCTION

In recent years there have been significant contributions concerning retrial queues
which are characterized by the feature for which arriving customers who find all serv-
ers not available (blocked), will join the retrial group (Orbit) to insist their demand
after a random period.

Retrial queues have been widely used to model many problems in telephone switch-
ing systems, telecommunication networks and computer systems. For detailed over-
views of the main results and methods on retrial queues, the reader can consult [2,9].
There are many applications of retrial queueing models for which it’s necessary to
assign priority to customers. This queuing system and its variants are used to model
disk memory systems, star-like local area networks, and recently in wireless commu-
nication networks where resources are to be shared between many users in this case,
introduce priority can cater to the necessity of some classes of customers (see [1,10]).

Several authors have studied retrial queues with priorities, high priority customers
are queued and served according to a specific discipline. In the case of blocking,
low priority customers leave the system and retry until they find the server free. In
these systems the high priority customers have either preemptive or non-preemptive
priority over the low priority customers. The presence of the repeated customers and
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priority on the queueing systems makes their analysis more difficult. Hence, different
approximating algorithms and approaches are proposed. Krishna Kumar et al. [13]
considered an M=G=1 retrial queueing system with two-phase service and possible
preemptive resume service discipline. Drekic [8] extended the classical preemptive
resume model by enabling previously rendered service to be time-constrained. The
M1;M2=G=1 retrial queue with two types of customers, infinite priority queue for
type-1 calls and infinite retrial group of type-2 calls, is investigated by Choi and Park
[6]. They obtained the joint generating function of queue lengths by a supplement-
ary variable method. Later Falin et al. [9] extended Choi and Park’s model to the
case where two types of calls may have different service time distributions. The case
where the priority queue has finite capacity has been investigated by Bocharov et al.
[5]. Choi et al. in [7] investigated anM1;M2=G=l=KC1 retrial queue and obtained
the joint generating function of queue lengths. Moutzoukis and Langaris [15] ex-
tended Choi and Park’s model in which there are multiple types of calls, structured
batch arrivals and single vacation. They obtained the joint generating function of
queue lengths. For a detailed review of the main results and the literature on this
topic the reader can consult [3, 7, 9, 10, 15, 18].

A review of the literature reveals the remarkable fact that the non-homogeneity
caused by the flow of repeated attempts, the consideration of the priorities and the
finiteness of the sources of customers are the keys to understanding the analytical
difficulties that arise in the study of the system that we consider. It is important to
indicate that most works cited in the literature about the retrial systems with prior-
ities are analyzed only by the queueing theory. Even, though using this theory, it is
difficult to obtain analytical results and the last resort remains approximation meth-
ods, and simulation (see [1,10,17]). However, using generalized stochastic Petri nets
(GSPN), it is possible to obtain performance indices either with analytical means or
by numerical algorithms.

To the best of the authors’ knowledge, and after a bibliographic research, there
is no such study of finite sources retrial queueing systems with priority customers
using the GSPN formalism. Nevertheless, the existing works in the area of retrial
queues with priorities concern systems with infinite sources. In general, the queueing
analysis of finite-source systems is more difficult than the infinite ones. However,
in many practical systems, the number of users who access the system is finite, and
it is often important to take into account the fact that the rate of customers arrivals
decreases, as the number of customers in the system increases. This can be done with
the help of finite source or quasi-random input models.

The difficulty in the queueing analysis of finite sources queues arises on the obtain-
ing of the markov chain associated to theses systems. In this case, the GSPNs form-
alism are convenient for generating these corresponding Markov chains and consider
features that may be hard to obtain directly by queueing theory. Moreover, the be-
havior of complex systems can be easily and efficiently represented by using GSPN,
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rather than using Markov chains directly [11]. Thus, in this paper we analyze the
M2=M2=1==.N1;N2/ retrial queueing system with a finite population and non pree-
mptive priority. Gomez in [12] studied the finite population retrial queue with quasi-
random input and Non-preemptive Priority and obtain some performances indices.
However, these performance characteristics have been provided through supplement-
ary variable method which have made the expressions cumbersome and the obtained
results cannot be put into practice.

In the present paper, we prove how we apply a simple method, based on gener-
alized stochastic Petri nets, to obtain easily the different performance indices of this
system. GSPN are a high-level graphical formalism, which allows an easier descrip-
tion of complex systems behavior [11].

Let’s outline the structure of the paper. After the Introduction in Section 1, Section
2 is devoted to a brief introduction to GSPN formalism. In Section 3, we describe the
basic model of retrial queueing system with non preemptive priority. In Section 5, we
present the associated GSPN model for M2=M2=1==.N1;N2/ retrial queueing sys-
tem, and we detail the proposed stochastic analysis approach. Furthermore, we derive
the computational formulas for evaluating exact performance indices of our system.
Finally, Section 5 provides some numerical examples and concluding remarks.

2. AN OVERVIEW OF PETRI NETS

Petri Nets (PN), in their various shapes and sizes, have been used for the study
of the qualitative properties of systems exhibiting concurrency and synchronization
characteristics. They are directed bipartite graph [14]consisting of places (used to
represent conditions) and transitions (used to describe events that occur in the sys-
tem), that are connected by directed arcs. The places of the net can contain tokens
moving from place to place by the firing of the transition representing an event in
the system [4, 16]. When a transition fires tokens from input places are absorbed and
tokens are created on each of the output places.

Many extensions to Petri Nets have been proposed to enlarge the class of problems
that can be represented and, in order to model real systems. Among these extensions
we have Generalized Stochastic Petri nets (GSPN), introduced by Marsan et al are
the modeling formalism that can be conveniently used for the analysis of complex
models of Discrete Event Dynami Systems (DEDS) and for their performance and
reliability evaluation [4, 16]. They have been widely and successfully used as a good
modeling tool for the qualitative and quantitative analysis of asynchronous concurrent
systems with synchronization, nondeterminism, conflicts and sequencing. In GSPN
some transitions are timed, while others are immediate. The immediate transitions
are drawn as thin bars and fire without delay. The timed transitions are drawn as
empty bars fire after an exponentially distributed delay. A marking in which at least
one immediate transition is enabled, is called vanishing marking while a marking in
which only timed transitions are enabled is known as a tangible marking. Molloy [16]
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shows that the stochastic Petri nets are isomorphic to continues time Markov process
with discrete space states. Thus, the aspect which contributed significantly to the
development of Generalized Stochastic Petri nets is the fact that their performance
analysis is based upon Markov theory. The states of the CTMC are the markings in
the tangible reachability graph, and the state transition rates are the exponential firing
rates of timed transitions in the GSPN. In this case, the performance measures of this
GSPN model can be evaluated by computing the steady-state distribution � , using
the following linear system: (

�:QD 0IP
i2E

�i D 1I (2.1)

where: E is the set of the tangible markings; �i denotes the steady-state probability
that the process is in stateMi ,Q is the infinitesimal generator of the Markov process
and its elements are given as a function of the timed transitions firing rates.

3. DESCRIPTION OF M2=M2=1==.N1;N2/ RETRIAL QUEUEING SYSTEM

We consider retrial queueing system with two priority classes in which two classes
of customers arrive independently from two independent finite-sources of sizes N1
and N2, following a quasi-random input rate. Customers from the first source are
called high priority customers and customers from second sources are called low
priority customers. The time between the service completion and the next service
requirement of a customer in class i is an independent exponentially distributed ran-
dom variable with rate �i , i=1;2. The service facility has a single server that serves
customers of all the priority classes. The service times of class i are exponential,
independent and identically distributed random variables with rate �i , i=1;2. If the
server is free at the time of arrival of a primary customer, then the customer starts to
be served. Any high priority customer which, upon arrival, finds the server busy is
queued up in an ordinary queue. Upon blocking, low priority customers immediately
join a pool of unsatisfied customers, called the orbit. Any orbiting customer try to
connect with the server with classical retrial policy after an exponential time period
with rate � > 0, independently to the other customers in orbit, until it finds the server
free.

4. THE M2=M2=1==.N1;N2/ RETRIAL QUEUEING SYSTEM GSPN MODEL

In what follows, we present the GSPN model describing M2=M2=1==.N1;N2/

retrial queueing systems (Fig. 1).
� The place P:Sour1 (respectively P:Sour2) contains the high priority (respect-

ively low priority) customers, represented by N1 (respectively N2) tokens,
which represents the condition that none of the N1 and N2 customers has
arrived for service;
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FIGURE 1. GSPN model for the M2=M2=1==.N1;N2/ retrial
queueing system.

� The place P:Cust1 contains the high priority customers;
� The place P:Choice represents the condition that a primary or a repeated call

is ready for service;
� The place P:Orbit represents the orbit;
� The place P:serv1 (respectively P:serv2) represents the condition that ’the

server is busy by the high priority (respectively low priority) customer’;
� The place P:serv:Idle represents the condition ’the server is idle’, represen-

ted by one token.
� Then, the initial marking of the net is :
Mo DM.P:Sour1/;M.P:Cust1/;M.P:serv1/;M.P:Sour2/;M.P:Choice/;

M.P:Orbit /;M.P:serv2/;M.P:serv:Idle/

Mo D .N1;0;0;N2;0;0;0;1/:

When the transition tArri1 fires, one token is taken from PSour1 and is deposited
in PCust1. The firing of tArri1 indicates the arrival of a high priority customer. This
firing is marking dependent. Thus, the firing rate of tArri1 depends on the number
of tokens in PSour1. If we have N1 tokens in PSour1, the firing rate is N1�1. The
condition of marking dependent firing is represented by the symbol # placed next to
the transition tArr1.

If the arrived customer is a low priority one, the transition tArri2 will fire, then the
placePChoice receives a token. Because the transition tArri2 is a marking dependent,
so the firing rate is N2�2:
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The immediate transition tgo:serv1 is enabled when the place PServ:Idle con-
tains one token (i.e. the server is idle), and the place PCust1 is not empty (i.e there
is at least one priority customer). Once the transition tgo:serv1 is fired, a token is
removed from each of the two places PServ:Idle and PCust1, then it’s deposited in
PServ1. This token represents a high priority customer in service.

The immediate transition t:Orbit fires at the arrival of a low priority customer
who finds no operational free server i.e. PServ:idle is empty. Hence, he joins imme-
diately the orbit represented by the place POrbit . Once in orbit, the customer starts
generation of a flow of repeated calls exponentially distributed with rate �. The firing
of transition tRetr represents the arrival of a repeated call from the orbit.

The immediate transition tgo:serv2 fires if the place PCus1 is empty (This condi-
tion is expressed by the inhibitor arc from place PCust1 to the transition tgo:serv2.),
the place PServ:idle contains one token which represents the idle server and the place
PChoice contains one token. So, the placePServ2 receives a token representing a low
priority customer in service.

The timed transition tServ2 (respectively, the timed transition tServ1) is fired to
determine the end of the low priority customer period service (respectively, the high
priority customer period service). So, one token is deposited in Psour2 (respectively
in Psour1) which represents the condition that a low priority customer or a priority
one will be returned to be idle and a second token is deposited in PSrv:idle which
represents the condition that the server is ready to serve another customer.

4.1. Stochastic analysis and performance measures

The obtained GSPN model of Figure 2 is bounded and the initial marking is a
home states then their steady-state probability distributions exist. In this case, several
performance indices can be computed by the formulas given in the following subsec-
tions.
I The mean arrival rate of the high priority requests N�1 (resp. low priority
requests N�2) are:

N�1 D
X

j2.SMj /1

�1.Mj /�j ; N�2 D
X

j2.SMj /2

�2.Mj /�j I

with : .SMj /k is the set of markings where the transition tArrik is enabled, and
�k.Mj / is the firing rate associated with the transition tArrik in the marking Mj ,
with k D 1;2.
I The mean retrial rate of low priority requests:
The throughput of the transition tRetr gives the mean retrial rate of low priority re-
quests:

N�D
X

j2.SMj /o

�.Mj /:�j I
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with : .SMj /o is the set of markings where the transition tAretr is enabled, and
�.Mj / is the firing rate associated with the transition tretr in the marking Mj .
I The mean number of the high priority requests �1 (resp. low priority requests
�2) in the queue:

�1 D
X
j

Mj .PCust1/�j I ; �2 D
X
j

Mj .POrbit /:�j I

where, Mj .PCust1/ is the number of tokens in place PCust1 in the marking Mj and
Mj .POrbit / is the number of tokens in place POrbit in the marking Mj . The sum
in this formula is made on all the accessible markings.
I The mean number of high priority requests �S1 (resp. low priority requests
�S2) in the system:

�S1 D
X
j

ŒMj .PCust1/CMj .PServ1/��j I

�S2 D
X
j

ŒMj .POrbit /CMj .PServ2/��j :

The sum in this formula is made on all the accessible markings.
I The mean waiting time of high priority W1 (resp. low priority W2) the re-
quests:

W1 D
�1
N�1
I W2 D

�2
N�2
:

I The mean response time of high priority �1 (resp. low priority �2) requests:

R1 D
�S1
N�1
I R2 D

�S2
N�2
I :

I The blocking probability of low priority customers The blocking probability of
low priority customers is:

Bp D
X
i

P robfM.POrbit /� 1 and M.P:serv:Idle/D 0g:

I The probability that a low priority customers is being served This corresponds
to the probability that the server is busy by low priority customer, it’s given by Ps:

Ps D
X
i

P robfM.Pserv2/D 1g:

As a numerical example for the non-preemptive priority queueing system with a
single finite population, we consider the M2=M2=1==.2;2/ retrial queueing system
with N1 D 2 and N2 D 2. The reachability graphs of these models are finite and
strongly connected. Hence, underlying Markov process is ergodic and the steady-
state distribution exists and is unique. We construct the continuous-time Markov
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chain (CTMC) (see Figure 2) where the states of this CTMC are the tangible mark-
ings of the tree. The vanishing markings are merged with their successor tangible
markings since it takes zero time to go through a vanishing marking. Hence, the in-

FIGURE 2. The CTMC for the M2=M2=1==.2;2/ retrial queueing
GSPN model.

finitesimal generator Q of underlying Markov chain is derived and the steady-state
marking probability distribution

� D .�0;�3;�4;�5;�7;�10;�11;�13;�14;�15;�18;�21;�24;�25;�27;�28/

is the solution of the system 2.1.
� The mean arrival rate of the high priority customers
N�1 D 2�1.�0C�4C�13C�18C�28/C�1.�3C�10C�24C�7C�21/:

� The mean arrival rate of the low priority customers
N�2 D 2�2.�0C�3C�5/C�2.�4C�7C�11C�18C�10C�14/:

� The mean number of the high priority customers in the queue

�1 D 2.�11C�25/C�5C�7C�14C�21C�27:

� The mean number of the low priority customers in the orbit

�2 D 2.�24C�27C�28/C�10C�13C�14C�18C�21C�25:

� The mean number of the high priority customers in the system

�S1 D 2.�5C�11C�14C�25C�27/C�3C�7C�10C�21C�14C�24:
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� The mean number of the low priority customers in the system

�S2 D 2.�13C�21C�24C�25C�27/C�28C�4C�7C�11C�10C�14C�18:

� The mean waiting time of the customers

W1 D
2.�11C�25/C�5C�7C�14C�21C�27

2�1.�0C�4C�13C�18C�28/C�1.�3C�10C�24C�7C�21/
:

W2 D
2.�24C�27C�28/C�10C�13C�14C�18C�21C�25

2�2.�0C�3C�5/C�2.�4C�7C�11C�18C�10C�14/
I

� The mean response time of the customers

R1 D
2.�5C�11C�14C�25C�27/C�3C�7C�10C�21C�14C�24

2�1.�0C�4C�13C�18C�28/C�1.�3C�10C�24C�7C�21/
:

R2D
2.�13C�21C�24C�25C�27/C�28C�4C�7C�11C�10C�14C�18

2�2.�0C�3C�5/C�2.�4C�7C�11C�18C�10C�14/
I

5. NUMERICAL EXAMPLES

In this section, we present the results of numerical experiments the goal is to
demonstrate the feasibility of the proposed approach and to give some insight into
quantitative behavior of the system.

In Figures 3 and 4 we show the influence of the arrival rates �1, �2 with �2 D �1

2
on the blocking probability Bp. We have presented three curves which correspond
to the different values of service rates, .�1;�2/. In all the numerical experiments,
we assume � D 3:5. From Figures 3 and 4 it is shown that the blocking probability
Bp increases as the rates �1 increases and approaches one. The increasing of Bp is
rapidly for a small value of .�1;�2/ and for .N1;N2/D .10;5/. We see also that the
blocking probability Bp increases rapidly when �2 D 2�1. In Figure 4 the blocking

FIGURE 3. Bp versus the arrival rates �1 and �2 with �2 D �1

2
.

probability Bp curves are plotted versus the arrival rate �1, �2 with �2 D 2�1 for
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FIGURE 4. Bp versus the arrival rates �1 and �2 with �2 D 2�1.

FIGURE 5. Ps versus the arrival rate �1 and �2 with �2 D �1

2
.

different values of .�1;�2/ and .N1;N2/. Figure 5 illustrates the behavior of the
probability that a low priority customer is being served Ps versus the arrival rate �1,
�2 with �2 D �1

2
. We have presented three curves which correspond to the different

values of service rates, .�1;�2/.
Figures 6 shows the effect of the arrival rate �1, �2 with �2D �1

2
on the probability

that a low priority customer is being servedPs . We have presented three curves which
correspond to the different values of service rates, .�1;�2/. From these figures, it
is shown that we see the probability that a low priority customer is being served
Ps increases until the maximum and decreases to approach zero. We notice that Ps
approaches zero with the increases of �1. The zero is reached rapidly for lower values
of .�1;�2/ and for a large number of high priority customers .N1;N2/D .10;5/.

In the following we show the effect of of the arrival rates �1, �2 on the mean
number of the high priority customers and low priority customers in the queue and
in orbit respectively. Figures 7 displays NQi for i 2 f1;2g versus the arrival rates
�1 and �2. We see that the mean number of customers in the queue and orbit is
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FIGURE 6. Ps versus the arrival rate �1 and �2 D 2�1

an increasing function of arrival rate �1. However, when more and more arrival
customers arrive, Q2 approaches N2 ie the low priority customers are blocked. All

FIGURE 7. NQ1, NQ2 versus �1.

the above remarks are obtained by considering the parameters .N1 D 5;N2 D 10/
or .N1 D 10;N2 D 5/, we checked them with other different values of N1 and N2.
However, we gave the similar values used by Gomez in order to compare our results
obtained via our approach Petri nets and those obtained by him in [12].

In Figure 8 the mean response time is spotted versus the retrial rate �. We have
presented several curves which correspond to the different values of .N1;N2/ and
we have assumed that .�1;�2/D .0:4;0:8/, .�1;�2/D .8;20/. From these figures,
we see that the mean response time is a decreasing function of retrial rate, for low
priority customers and slightly increasing for high priority customers. Moreover, the
high priority customers have the best mean response times in all cases. The worst
mean response times are given by a high values of N1 and for a small value of �.
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Furthermore, Figure 8 shows also that the retrial rate has a significant influence on
the mean response time for low retrial rate values. This result is logical because the
increasing of the retrial rate describes the fact that the repeated requests intensity
increases. Hence, customers in orbit have more chance to be served compared to
new arrivals,which explains the amelioration of the mean response time. In Tables 1

FIGURE 8. Mean response time of customers versus retrial rate.

and 2 we check respectively, the effect of arrival rates �1 and �2 with �2 D �1

2
on

the mean response time for respectively .�1;�2/D .8;20/ and .�1;�2/D .4;10/.

TABLE 1. The effect of arrival rates on the mean response time for
.�1;�2/D .8;20/.

.N1;N2/D .5;10/ .N1;N2/D .10;5/

�1 High priority Low priority High priority Low priority
customers customers customers customers

0.01 0.1250 0.0533 0.1265 0.0555
0.1 0.1327 0.0861 0.1411 0.1140
0.2 0.1409 0.1288 0.1602 0.2016
0.4 0.1583 0.2384 0.2093 0.4916
0.6 0.1769 0.3889 0.2735 1.0549
0.8 0.1961 0.5898 0.3497 2.1343
1 0.2151 0.8482 0.4313 4.1395

1.2 0.2334 1.1672 0.5114 7.8098

From Tables 1 and 2 we can see that the mean response time is an increasing function
of the arrival rates which has a significant influence when they are high. The mean
response time of high priority customers is better. Furthermore, the mean response
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TABLE 2. The effect of arrival rates on the mean response time for
.�1;�2/D .4;10/.

.N1;N2/D .5;10/ .N1;N2/D .10;5/

�1 High priority Low priority High priority Low priority
customers customers customers customers

0.01 0.2530 0.10856 0.2560 0.1146
0.1 0.2817 0.2013 0.3204 0.3028
0.2 0.3168 0.3450 0.4187 0.7087
0.4 0.3938 0.8246 0.7019 3.0869
0.6 0.4716 1.6716 1.0268 11.3301
0.8 0.5417 2.9668 1.3057 38.3670
1 0.6029 4.6891 1.5171 121.1

1.2 0.6566 7.0179 1.6723 350.57

time of low priority customers increases rapidly with a high values of N1 and lower
values of .�1;�2/.

Finally, we have concluded that for retrial queueing systems with high priority the
optimal results are obtained when the arrival rates, service rates are low and the retrial
rate is high with a small number of low priority customers.

6. CONCLUSION

The paper presents a technique allowing to obtain exact performance indices,
based on Generalized Stochastic Petri nets (GSPN), to analyzeM2=M2=1==.N1;N2/

retrial queueing system with finite population. Generalized Stochastic Petri nets
(GSPN) have proven to be a powerful and enduring graphically oriented framework
for modeling and performance analysing of complex systems. First, We have de-
veloped formulas of the main stationary performance indices based on stationary
probabilities and network parameters. Furthermore, we have presented numerical ex-
amples to illustrate the efficiency of the proposed approach where we study the effect
of network parameters on performance indices. Finally, we conclude that the arrival
rate of high priority customers, the arrival rate of low priority customers, retrial rate
and the number of customers in the sources are the major factors affecting the per-
formance of this system. From these results, we conclude that the Petri net theory
can be used to add powerful analysis capabilities to high priority and retrial queueing
systems.
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[12] A. Gómez-Corral, “Analysis of a Single-Server Retrial Queue with Quasi-Random Input and Non-
preemptive Priority.” Computers and Mathematics with Applications, vol. 43, no. 6, pp. 767–782,
2002, doi: 10.1016/S0898-1221(01)00320-0.

[13] B. Kumar, A. Vijayakumar, and D. Arivudainambi, “An M=G=1 retrial queueing system with
two-phase service and preemptive resume.” Queueing Systems, vol. 113, no. 1, pp. 61–79, 2002,
doi: 10.1023/A:1020901710087.

[14] A. R. F. Laali and H. H. S. Javadi, “Spectra Of Some Special Bipartite Graphs,” Miskolc Mathem-
atical Notes HU e-ISSN 1787-2413,DOI: 10.18514/MMN.2017.1587, vol. 18, no. 1, pp. 295–305,
2017, doi: 10.18514/MMN.2017.1587.

[15] C. Langaris and E. Moutzoukis, “Non-preemptive priorities and vacations in a multiclass retrial
queueing system.” Commu. Statis. Stochastic Models, vol. 12, no. 3, pp. 455–472, 1996, doi:
10.1080/15326349608807394.

[16] M. K. Molloy, “Performance analysis using Stochastic Petri Nets.” IEEE Trans.comp., vol. 31,
no. 9, pp. 913–917, 1982, doi: 10.1109/TC.1982.1676110.

[17] C. Peng and H. Zeng, “Response time analysis of digraph real-time tasks scheduled with static
priority: generalization, approximation, and improvement.” Real-Time Syst. Springer US, New
York, NY, vol. 54, no. 1, pp. 91–131, 2018, doi: 10.1007/s11241-017-9290-7.

[18] F.-F. Wang, A. Bhagat, and T.-M. Chang, “Analysis of priority multi-server retrial queueing in-
ventory systems with MAP arrivals and exponential services.” Springer India, New Delhi, Delhi,
India; Operational Research Society of India, Kolkata, West Bengal, India, vol. 54, no. 1, pp.
44–66, 2017, doi: 10.1007/s12597-016-0270-9.

http://dx.doi.org/10.1016/j.mcm.2009.12.011
http://dx.doi.org/10.1007/s00291-017-0497-8
http://dx.doi.org/10.1007/978-3-540-72522-03
http://dx.doi.org/10.1016/S0895-7177(99)00134-X
http://dx.doi.org/10.2307/3214586
http://dx.doi.org/10.1007/BF01148947
http://dx.doi.org/10.1016/S0166-5316(02)00232-8
http://dx.doi.org/10.1007/BF01158878
http://dx.doi.org/10.1007/s12351-015-0175-z
http://dx.doi.org/10.1016/j.cam.2009.11.040
http://dx.doi.org/10.1016/S0898-1221(01)00320-0
http://dx.doi.org/10.1023/A:1020901710087
http://dx.doi.org/10.18514/MMN.2017.1587
http://dx.doi.org/10.1080/15326349608807394
http://dx.doi.org/10.1109/TC.1982.1676110
http://dx.doi.org/10.1007/s11241-017-9290-7
http://dx.doi.org/10.1007/s12597-016-0270-9


ANALYSIS OF PRIORITY QUEUE WITH REPEATED ATTEMPTS USING GSPN 939

Authors’ addresses

Sedda Hakmi
Research Unit LaMOS (Modeling and Optimization of Systems, Bejaia University 06000, Algeria
E-mail address: sed.hakmi@gmail.com

Ouiza Lekadir
Research Unit LaMOS (Modeling and Optimization of Systems, Bejaia University 06000, Algeria
E-mail address: ouizalekadir@gmail.com

Djamil Aı̈ssani
Research Unit LaMOS (Modeling and Optimization of Systems, Bejaia University 06000, Algeria
E-mail address: lamos bejaia@hotmail.com


	1. Introduction
	2. An overview of Petri Nets
	3. Description of M_2/M_2/1//(N_1, N_2) retrial queueing system
	4. The M_2/M_2/1//(N_1, N_2) retrial queueing system GSPN model
	4.1. Stochastic analysis and performance measures

	5. Numerical examples
	6. Conclusion
	References

