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Abstract. We introduce an infinite family of lacunary recurrences for the Fibonacci numbers and
give a combinatorial proof. The first entry in the family was proved by Lucas in 1876.
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1. INTRODUCTION

A lacunary recurrence for a given sequence is a recurrence relation involving only
terms of the sequence with indices in an arithmetic progression. We refer to the com-
mon difference in the indices in arithmetic progression as the gap of the lacunary
recurrence. Lacunary recurrences allow for faster computation of sequence terms.
The speed of the computation increases with the size of the gap. Lacunary recur-
rences have been studied for many types of sequences including Bernoulli numbers
[1, 8, 9, 11], Euler numbers [8], k-Fibonacci numbers (which are Fibonacci polyno-
mials at positive integer values) [4], Eisenstein series [10], Tribonacci numbers [6],
more general sequences that include Bernoulli, Euler, Fibonacci and Genocchi num-
bers [5], and sequences satisfying an arbitrary linear recurrence [3, 12, 13].

In this article we provide an infinite family of lacunary recurrences for Fibonacci
numbers.

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two. Thus, the sequence fFngn>0 of Fibonacci
numbers is defined by the recurrence relation

Fn D Fn�1CFn�2

with seed values F0 D 0 and F1 D 1. In this article, we set Fn D 0 for n < 0.
Lucas proved in 1876 that for every positive integer n the Fibonacci numbers of

even indices can be expressed in terms of the previous Fibonacci numbers of odd
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indices

F2n D

nX
kD1

F2k�1 (1.1)

and vice versa

F2nC1 D 1C

nX
kD1

F2k : (1.2)

After easy manipulations, one can rewrite the relations (1.1) and (1.2) as

Fn D
1C .�1/n

2
CFn�2C

bn�1
2
cX

kD1

Fn�2k : (1.3)

This identity involves only indices in an arithmetic progression of length 2 and is thus
a lacunary recurrence of gap 2.

We generalize Lucas’s identity (1.3) to lacunary recurrences with gap of any size
for the Fibonacci numbers.

Theorem 1. Given a positive integer N > 2, we have

Fn D FN �F
bn�1

N
c�1

N�1 �F.n�1/ mod N CFNC1 �Fn�N CF 2
N �

bn�1
N
cX

kD2

F k�2
N�1 �Fn�kN ;

for all n > N .

As a consequence of this theorem, we have the following congruence identity.

Corollary 1. For a fixed integer N > 2 we have

Fn�FNC1 �Fn�N � 0 .mod FN /

for all n > N .

Using the relation [2, p. 4, Identity 3]

Fn�FNC1 �Fn�N D FN �Fn�N�1;

Theorem 1 can be written as follows.

Corollary 2. For n > 0, N > 2,

FnCN D Fn mod N �F
bn=N cC1
N�1 CFN �

bn=N cX
kD0

F k
N�1 �FnC1�kN :

If N D 2, we recover Lucas’s identities in the concise form (1.3).
If N D 3, we recover the result of [4] (case k D 1 of Corollary 5, part (2)):

F3n D 2

nX
kD1

F3k�2;
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F3nC1 D 1C2

nX
kD1

F3k�1;

F3nC2 D 1C2

nX
kD1

F3k :

For N D 4 the statement of Theorem 1 becomes

Fn D 3 �2b
n�1

4
c�1
�F.n�1/ mod 4C5 �Fn�4C32

�

bn�1
4
cX

kD2

2k�2
�Fn�4k

and thus Fn�5Fn�4 � 0 .mod 3/.

2. A COMBINATORIAL PROOF OF THEOREM 1

In [7], Fibonacci numbers are interpreted combinatorially in terms of tilings of a
2�n grid with dominos. The author then provides combinatorial proofs for several
identities, including Lucas’s identities mentioned in the introduction. In particular,
for n > 1, the .nC1/st Fibonacci number, FnC1, equals the number of distinct dom-
ino tilings of the 2�n grid. The empty 2�0 grid has, by convention, one tiling. For
example, if nD 1 there is only F2 D 1 such tiling.

If nD 2, there are F3 D 2 tilings.

If nD 3, there are F4 D 3 tilings.

Obviously, the first row in a tiled 2�n grid completely determines the second row
and the combinatorial interpretation given above is equivalent to the interpretation in
[2] given in terms of tilings of the 1�n grid by (horizontal) dominos and squares.
For our proof we will use the above interpretation in terms of domino tilings of the
2�n grid.

We denote by an the number of distinct domino tilings of the 2� n grid. As
mentioned above, we set a0 D 1. Then an D FnC1.
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Definition 1. The position of a domino in a tiling is defined as the column number
i of its most left box.

For example, the position of the shaded horizontal domino in the figure below is 4

while the position of the vertical domino is 2.

We will never have to refer to the position of horizontal dominos in the second row
as they are determined by the horizontal dominos in the first row.

To prove Theorem 1, we count the domino tilings of the 2�n grid according to
whether there is a horizontal domino with position N or not.

The number of tilings of the 2�n grid with no horizontal domino with position N

equals aN �an�N since in this case the left 2�N grid can be tiled independently of
the right 2� .n�N / grid.

If there is a horizontal domino with position N , by the same argument, there are
aN�1 �an�N�1 such tilings.

Thus,
an D aN �an�N CaN�1 �an�N�1:

Next, we count the tilings of the 2� .n�N �1/ grid in a similar manner according
to whether there is a horizontal domino with position N �1 or not. We have

an�N�1 D aN�1 �an�2N CaN�2 �an�2N�1

and thus
an D aN an�N CaN�1.aN�1an�2N CaN�2an�2N�1/:

Repeating the procedure, and using the fact that

an�kN�1 D aN�1an�.kC1/N CaN�2an�.kC1/N�1;

for all 1 6 k 6 b n
N
c�1, we have

an D aN an�N CaN�1.aN�1an�2N CaN�2.aN�1an�3N CaN�2.aN�1an�4N

C�� �CaN�2.aN�1an�N b n
N
cCaN�2an�1�N b n

N
c/ � � �///
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D aN an�N C

b n
N
cX

kD2

a2
N�1ak�2

N�2an�kN CaN�1a
b n

N
c�1

N�2 an�1�N b n
N
c:

3. CONCLUDING REMARKS

An infinite family of lacunary recurrence formulas for Fibonacci numbers has been
introduced in this paper using a combinatorial approach. Some specializations of this
result are also presented. The first entry in this family is well known as Lucas’s
identity (1.3). The second entry is also known [4].

We conclude with an open problem. The Lucas numbers are defined by L0 D 2,
L1 D 1 and for n > 1,

Ln D Ln�1CLn�2:

These numbers are related to the Fibonacci numbers by the identity

Ln D Fn�1CFnC1:

It is natural to ask for a general lacunary recurrence for Lucas numbers in the spirit
of Theorem 1.
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