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Abstract

In the field of frustrated magnetism, Kitaev models provide prototypical exam-
ples of exactly solvable quantum spin liquids, in which the spin degrees of free-
dom fractionalize into Majorana fermions coupled to an emergent Z2 gauge field.
While the ground states of these models are already well understood as exhibiting
different kinds of Majorana (semi)metals, it has still been an open task to achieve a
detailed understanding of the thermodynamics, and, namely, the low-temperature
ordering of the gauge field into different Z2 flux configurations.

In this thesis, we investigate the thermodynamics of Kitaev systems in two
and three spatial dimensions with sign-problem-free quantum Monte Carlo simu-
lations. In a first study of elementary 3D Kitaev models, we verify that the ground
state Z2 flux sectors of these systems are entirely determined by their elementary
plaquette length – a result which shows the validity of Lieb’s theorem for lat-
tice geometries which lack the geometric requirements for its proof. We closely
investigate the low-temperature phase transition associated with gauge-ordering,
which is a particular realization of an inverted Ising phase transition, as it occurs
in general lattice Z2 gauge theories. Our results corroborate the understanding of
this transition as separating different regimes in terms of vison-loop excitations,
by showing a clear correlation between the critical temperature and the vison gap.
We also introduce the concept of “gauge frustration”, which, for a particular 3D
Kitaev model, leads to the suppression of the phase transition and a more complex
physical behavior at low temperatures.

A second quantum Monte Carlo study focuses on a generalized 2D Kitaev
model on a five-coordinated lattice system. Here, the gauge ordering is accompa-
nied by the spontaneous breaking of time-reversal symmetry, a scenario which not
only allows for a variety of topological ground states, but also for the occurrence
of a phase transition in two spatial dimensions. We show that this model exhibits
such a transition at a particularly high temperature scale. Moreover, the system
possesses a number of phases where the Z2 fluxes are only partially ordered.
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Kurzzusammenfassung

Auf dem Gebiet des frustrierten Magnetismus stellen Kitaev-Modelle prototypi-
sche Beispiele für exakt lösbare Quanten-Spinflüssigkeiten dar, in denen die Spin-
Freiheitsgrade in Majorana-Fermionen fraktionalisieren, die an ein emergentes
Z2-Eichfeld gekoppelt sind. Während die Grundzustände dieser Modelle als Trä-
ger verschiedener Majorana-(Halb)metalle bereits gut verstanden sind, bleibt es
eine offene Aufgabe, ein detailliertes Verständnis ihres Verhaltens bei endlichen
Temperaturen zu erzielen, und insbesondere darüber, wie das Eichfeld in verschie-
dene Z2-Flusskonfigurationen ordnet.

In dieser Arbeit untersuchen wir die Thermodynamik von Kitaev-Systemen in
zwei und drei räumlichen Dimensionen mit Quanten-Monte-Carlo-Simulationen
ohne Vorzeichenproblem. In einer ersten Untersuchung von einfachen 3D Kitaev-
Modellen verifizieren wir, dass die Z2-Flusssektoren der Grundzustände dieser
Systeme vollständig von deren elementarer Plakettenlänge bestimmt werden – ein
Ergebnis, dass die Gültigkeit des Lieb-Theorems für solche Gitter zeigt, die nicht
über die geometrischen Voraussetzungen für dessen Beweisbarkeit verfügen. Wir
untersuchen den Phasenübergang bei niedrigen Temperaturen, der mit dem Ord-
nen des Eichfelds verknüpft ist und ein besonderes Beispiel für einen invertier-
ten Ising-Phasenübergang darstellt, wie er in allgemeinen Z2-Gittereichtheorien
vorkommt. Unsere Ergebnisse bestätigen das Verständnis dieses Übergangs als
eines Übergangs zwischen zwei verschiedenen Vison-Schleifen-Regimes, indem
sie eine deutliche Korrelation zwischen der kritischen Temperatur und der Vison-
Bandlücke zeigen. Wir führen außerdem den Begriff der “Eichfrustration” ein,
die auf einem bestimmten 3D-Kitaev-Modell zur Unterdrückung des Phasenüber-
gangs, und einem komplexeren physikalischen Verhalten bei niedrigen Tempera-
turen führt.

Eine zweite Quanten-Monte-Carlo-Untersuchung konzentriert sich auf ein ver-
allgemeinertes 2D-Kitaev-Modell auf einem Gittersystem mit Koordinationszahl
5. Hier ist die Eich-Ordnung von einer spontanen Brechung der Zeitumkehrsym-
metrie begleitet, ein Szenario, das nicht nur verschiedene topologische Grundzu-
stände erlaubt, sondern auch das Auftreten eines Phasenübergangs in zwei räum-
lichen Dimensionen. Wir zeigen, dass dieses Modell solch einen Übergang bei
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einer besonders hohen Temperatur aufweist. Außerdem besitzt es eine Reihe von
Phasen, in denen die Z2-Flüsse nur teilweise geordnet sind.
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Outline

This thesis presents numerical studies of Kitaev spin liquids at finite temperatures,
which are performed with sign-problem-free quantum Monte Carlo simulations.
The Kitaev model is an exactly solvable quantum spin liquid model, the low-
temperature behavior of which is described by a system of (itinerant) Majorana
fermions coupled to a (static) Z2 gauge field.

In the introductory Chapter 1, we start with a general discussion of the con-
cept of quantum spin liquids, and their inherent relation with lattice gauge the-
ories. Here, close attention is paid to lattice Z2 gauge theory, which applies to
Kitaev systems. Chapter 2 introduces the Kitaev model for lattice systems in two
and three spatial dimensions and gives a detailed presentation of its exact solution.
It also presents the generalization of the model to a five-coordinated, non-bipartite
lattice geometry, the Shastry-Sutherland lattice, which is shown to host different
topological ground state phases. A brief review on experimental realizations is
given. In Chapter 3, we introduce the quantum Monte Carlo method applied in
this work. This includes a detailed discussion on how the quantum partition func-
tion of Kitaev systems can be mapped to classical probabilities, a problem which
underlies every quantum Monte Carlo approach.

In the remainder of the thesis, we present our numerical results: Chapter 4
discusses the simulations we have performed on a family of elementary, tricoordi-
nated lattice systems in three spatial dimensions. The numerical results establish
the ground state flux sectors of these Kitaev models, and corroborate the under-
standing of the thermal transitions in these systems, in particular the inverted Ising
phase transition at low temperature scales, which is a general feature in lattice Z2

gauge theories and associated with Z2 flux ordering. In addition, the concept of
“gauge frustration” is introduced at the example of a particular 3D lattice sys-
tem with specific geometric properties, which lead to a deviating phase transition
mechanism.

Chapter 5 presents the numerical results for the 2D Kitaev Shastry-Sutherland
model, for which simulations have been performed in different topological regimes.
Here, the focus is also on the thermal phase transition. Other than in three dimen-
sions, this transition only occurs in 2D if the ground state spontaneously breaks
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time-reversal symmetry. In the stated model, this happens at a particularly high
temperature scale. In addition, the system is shown to possess several phases with
only a partial ordering of the Z2 fluxes.

In the final Chapter 6, we summarize our results and give an outlook on dif-
ferent lines for a future research on the topic.
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Chapter 1

Introduction:
Quantum Spin Liquids and Lattice
Gauge Theories

In condensed matter physics, quantum spin liquids have been an intensive field of
research for almost five decades, starting with Anderson’s proposal of the resonat-
ing valence bond (RVB) state in a frustrated spin-1/2 Heisenberg antiferromagnet
in 1973 [1, 2]. Since then, numerous theoretical models for the realization of this
exotic state of strongly correlated electron systems have been proposed and stud-
ied, which has been complemented by an immense experimental effort to produce
and verify their realizations in various materials [3–8]. The practical relevance
of quantum spin liquids spans a topical range that reaches from high-temperature
superconductivity [9, 10] to modern approaches for fault-tolerant quantum com-
puting [11, 12].

There has been an ongoing debate among researchers about the precise defi-
nition of what, at the core, constitutes this phase of matter. Clearly, quantum spin
liquids (QSLs) occur as the collective ground states of certain highly-correlated
spin systems, in which the emergence of a magnetic long-range order at tempera-
tures T → 0 is prevented by strong quantum fluctuations, and the latter typically
arise as a consequence of frustration effects in the system. For a long time, the
dominant point of view has been to focus on the analogy of this phase to classical
liquids - to which also the name quantum spin liquid is owed - and define the QSL
phase merely by the absence of ordering in the sense of Landau theory [13–15].
However, this negative definition has been broadly regarded as unsatisfying, and,
in recent years, this standpoint has been more and more superseded by approaches
to move forward to a positive QSL definition. Such a modern point of view is pro-
vided by regarding the QSL as a magnetic phase of matter that is characterized by
a macroscopic amount of quantum entanglement between the degrees of freedom
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Chapter 1. Introduction:
Quantum Spin Liquids and Lattice Gauge Theories

in the system [7]. In this sense, the wave function of the QSL is a quantum super-
position state which cannot be smoothly connected to a product state in terms of
its single particle constituents, a fact which implies its ability to support non-local
excitations [7]. Quantum spin liquids may occur both as gapped or gapless states,
and can show different kinds of quantum order [16, 17]. This includes gapped
states that possess a topological order [18–20], such as chiral spin liquids, which
are the bosonic analogues of fractional quantum Hall states [21].

A typical common feature of QSLs is the phenomenon of fractionalization,
i.e., the existence of a low-temperature description of the system in terms of quasi-
particles with “fractional” quantum numbers, i.e, quantum numbers that cannot
be constructed by any combination of the quantum numbers of the system’s orig-
inal degrees of freedom. These quasiparticles are most generally denoted by the
name of partons, and often, the parton description comprises a system of itinerant
fermionic spinon degrees of freedom coupled to an emergent bosonic gauge field.
This makes it possible to deduce important physical properties of the quantum
spin liquid from the corresponding lattice gauge theory [22–24]. Concretely, the
QSL phase, in which the fractionalized degrees of freedom behave as independent
quasiparticles, turns out to be described by the deconfined regime in such lattice
gauge theories. The latter are specified by their elementary symmetry, and serve
to classify different quantum spin liquids accordingly as U(1) spin liquids [1], Z2

spin liquids [20, 25, 26], and others. Notably, it is the nature of the underlying lat-
tice gauge theory that has been shown also to determine the stability of the QSL
state to quantum fluctuations, which can be seen when the corresponding mod-
els are treated with mean-field theory [16, 20]. In particular, the Z2 spin liquid
is known to possess only gapped gauge excitations, which are insensitive to low-
energy fluctuations [20, 26]. In addition, we see later that certain Z2 spin liquids
may, depending on their dimensionality, also be stable to thermal fluctuations up
to some finite temperature, and therefore exist as an extended phase in the thermal
phase diagram of the underlying models.

In fact, spin models in more than one dimension which possess an exact QSL
ground state are rather scarce. Therefore, it has been a fundamental theoretical
breakthrough when in 2006, Alexei Kitaev proposed a spin-1/2 model on the two-
dimensional honeycomb lattice that is an exactly solvable Z2 quantum spin liquid
[27], in which the original spin degrees of freedom fractionalize into itinerant
Majorana fermions, which are coupled to an emergent (static) Z2 gauge field.
This Z2 spin liquid possesses gapless and gapped phases in terms of the Majorana
fermions, while the vison excitations of the gauge field are always gapped. Soon,
the Kitaev model has been established not only as generalizable to other lattice
geometries in two and three spatial dimensions [28–36], but also as being realized
in certain Mott-insulating materials [8, 37–43]. Later on, Nasu and Motome have
shown with quantum Monte Carlo simulations on different lattice systems [44,
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1.1. Lattice gauge theories

45] that the QSL phase in 3D is thermally stable and separated from the high-
temperature paramagnet by a phase transition, while in 2D, the occurrence of
a thermal phase transition depends on whether the ground state is stabilized by
the spontaneous breaking of time-reversal symmetry by the (gauge-invariant) Z2

plaquette fluxes [46, 47]. In parallel, O’Brien et al. have used the projective
symmetry group approach by Wen [16, 20] to classify the gapless and gapped Z2

spin liquids which occur in a family of elementary 3D Kitaev systems, and have
shown that these systems host a variety of different Majorana (semi)metals with
characteristic features, such as topological Fermi surfaces, nodal lines and Weyl
nodes [35, 36, 48].

Both the thermodynamic results of Nasu and Motome, and the classification
of gapless Z2 spin liquids by O’Brien et al. constitute the starting point for the
work which is presented in this thesis. In a first project, we have adapted the
quantum Monte Carlo method introduced in Ref. [44] to perform large-scale nu-
merical studies on the thermodynamics of elementary 3D Kitaev systems, as they
are classified in Ref. [36] (Chapter 4). A second project has extended these quan-
tum Monte Carlo studies to a generalized Kitaev system, which shows spin liquid
ground states with different kinds of topological order (Chapter 5).

In the remainder of this introductory chapter, we present a brief review on the
general theoretical foundation of our work by, first, discussing the role of lattice
gauge theories in the realm of quantum spin liquid physics. In particular, we
introduce the notion of a Z2 spin liquid and how it relates to other spin liquid
versions. Also, we take a glimpse at the question of stability of spin liquids.
Finally, we comment on where our work is located in the broader field of studies
on quantum spin liquids. There is an abundance of literature on the subject [3–
8, 20, 49–51]. The presentation in this chapter is primarily based on Refs. [7, 49–
51].

1.1 Lattice gauge theories
Originally, lattice gauge theories have been developed as discretized versions of
gauge theories in quantum field theory, which allow for the study of strongly in-
teracting particles beyond perturbative approaches, and have a special relevance
for the description of quarks in quantum chromodynamics [52]. It has been soon
discovered that there is a natural connection to statistical mechanics, and, in par-
ticular, quantum magnets, where systems of spins on lattices can be treated with
lattice gauge theories [22].

In the context of quantum spin liquids, the low-temperature description of a
spin system in terms of parton degrees of freedom is usually accompanied by the
emergence of a gauge field on the underlying lattice. Hence, it is possible to use
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the corresponding lattice gauge theory to deduce important physical properties of
the QSL state, such as the gapless or gapped nature of the gauge excitations, the
existence of short-ranged or long-ranged interactions between quasiparticles, and
the stability of the QSL state with respect to quantum and thermal fluctuations.
As it turns out, a lot of these fundamental properties can already be extracted
from the elementary symmetry of the gauge theory, such as the (continuous) U(1)
or the (discrete) Z2 symmetry. For instance, in Z2 spin liquids like the Kitaev
model, the parton description of the system is usually based on two different ex-
citations, namely fermionic spinons, i.e., charge-neutral spin-1/2 quasiparticles,
and bosonic visons, which are topological vortex excitations of the Z2 gauge field
[43]. The vison excitations in Z2 gauge theory are generically gapped. This im-
plies that they can only mediate short-ranged interactions between the spinons,
which are renormalization-group-irrelevant and therefore do not affect the spin
liquid state in the (0th-order) mean-field approximation [20, 49, 53]. In this sense,
the Z2 spin liquid is stable to quantum fluctuations.

Following the introduction in the textbook by Wen [49], we use the term gauge
theory to denote a theory where more than one label is used to describe the same
quantum state. In spin liquids, this redundancy occurs when more than one gauge
field configuration describes the same physical state of the system. In this sense,
a gauge transformation is a mapping from one “gauge field label” of the same
physical state to another such label. Physical quantities are invariant under such
gauge transformations, hence, in order to describe the Hilbert space of the system
and, for instance, find its ground state, it is necessary to identify the relevant
gauge-invariant quantities.

1.1.1 Lattice U(1) gauge theory

An intuitive approach to a number of basic concepts in lattice gauge theory is
provided by first looking at the (compact) lattice U(1) gauge theory, which is
a discretized version of electromagnetism [7, 49]. Here, the vector potential A
translates to discrete field variablesAij , which are defined on the bonds of a three-
dimensional cubic lattice, and for which Aij = −Aji. The scalar potential φ, on
the other hand, translates to field variables φi on the lattice sites i. In this setup,
physical observables can be defined by the (integer-valued) electric field eij on the
bonds,

eij =
d

dt
Aij(t) + φi(t)− φj(t),

[Aij, eij] = i, (1.1)
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1.1. Lattice gauge theories

and the magnetic U(1) flux through the square plaquettes p of the lattice,

Φp =
∑
〈i,j〉∈p

Aij, (1.2)

where the notation 〈i, j〉 describes the summation over lattice bonds. A simple
Hamiltonian for this lattice gauge theory can be formulated as [49]

HU(1) =
J

2

∑
〈i,j〉

e2
ij − g

∑
p

cos(Φp), (1.3)

where J and g are coupling parameters. This Hamiltonian is periodic with respect
to the fields Aij , with periodicity 2π, so the equivalence relation Aij ∼ Aij + 2π
defines the compactness of the theory. In addition, HU(1) is compatible with the
presence of charges on the lattice sites, which are the eigenvalues of the field-
divergence operator

qi =
∑
j∈nn(i)

eij, (1.4)

where the summation is over the nearest-neighbor sites of i [7]. The U(1) nature
of this lattice gauge theory can be best seen when we go over to the exponentiated
flux definition

eiΦp =
∏
〈i,j〉∈p

uij =
∏
〈i,j〉∈p

eiAij . (1.5)

As it is known from electromagnetism, a redundant labelling of the field variables
can be introduced in terms of an arbitrary scalar field χ(t). The lattice U(1) gauge
transformation is given by

Aij(t)→ Aij(t) + χj(t)− χi(t),
φi(t)→ φi(t) + χ̇i(t), (1.6)

and leaves the Hamiltonian HU(1) invariant. Also, the electric field eij and pla-
quette flux variables Φp are gauge-invariant.

Conceptually, it is insightful to regard the ground state regimes of the Hamil-
tonian in Eq. (1.3), which occur in the different coupling limits. For the limit
g � J , the dominant flux term in the Hamiltonian can be Taylor-expanded as

− g
∑
p

cos(Φp)→
g

2

∑
p

Φ2
p +O(Φ3

p), (1.7)

and the exact solution of the theory for all qi = 0 is just standard vacuum elec-
tromagnetism, which can be shown to possess gapless photon excitations [49]. In
this limit, the theory (in 3D) is said to be in the deconfined or Coulomb phase.
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In the limit g � J , on the other hand, the elementary excitations are loops,
which are defined by the nonzero electric field variables eij on the lattice bonds.
These loops have a finite energy gap, and in the presence of a pair of charges
qi = +1, qj = −1, the electric field generates a potential that grows linearly with
the number of bonds between those charges. Hence, the energy that is necessary
to separate such a pair of charges diverges for the infinite lattice system. Such a
linear potential is called a confining potential, and therefore, the phase is denoted
as the confined phase of lattice U(1) gauge theory.

If we go from three to two spatial dimensions, the compact lattice U(1) gauge
theory can be shown to always be in the confined phase, because the regime de-
fined by g � J is destabilized by the occurrence of instanton excitations, which
lead to additional interaction terms in the gauge theory, and create a gap for the
photons [7, 49, 54].

1.1.2 Lattice Z2 gauge theory
Definition

The lattice Z2 gauge theory [49–51] can be obtained in a similar way. Here,
we start only from the (exponentiated) link variables uij on a square (or cubic)
lattice, as are defined in Eq. (1.5), and restrict them to ±1. This is equivalent to
choosing the vector potential Aij ∈ {0, π}. Again, we have the relation uij =
−uji. If we formulated a Hamiltonian as a direct function of these link variables
H = −J∑uij , it would just be the classical Ising model (which can be seen by
replacing uij = sisj , with si/j = ±1). In this case, every configuration |{uij}〉
would label a different state in the Hilbert space.

In contrast with that, a general d-dimensional lattice Z2 or Ising gauge theory,
here denoted by Mdn, takes the product of spins around n-dimensional objects,
such as lines (n = 1), plaquettes (n = 2), volumes (n = 3), etc., and formulates
a Hamiltonian in terms of these products [50]. In this notation, the lattice Z2

gauge theory Md1 is the standard d-dimensional Ising Model, and Md2 is the d-
dimensional Ising gauge theory, where the most general, classical Hamiltonian is
expressed in terms of Z2 plaquette flux operators Wp (see Fig. 1.1),

HZ2,class. = −g
∑
p

Wp,

Wp =
∏
〈i,j〉∈p

uij. (1.8)

The definition of Wp can be naturally extended to arbitrary closed loops in the
system. In this case, the operator is known as Wilson or Wegner-Wilson loop Wl,
and defines a Z2 flux ±1 through the lattice region that is enclosed by the loop.
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(a) Plaquette flux operator Wp and gauge trans-
formation operator Di

(b) Sign flips to change between degenerate pla-
quette flux ground states

Figure 1.1: Lattice Z2 gauge theory on the square lattice. Fig. (a) shows the definition of the
plaquette flux operatorsWp and the gauge transformationDi. In Fig. (b), the colored links indicate
the sign flips σij along the vertical (blue) and horizontal axis (red) that have to be performed on
the link variables uij , in order to construct the 4-fold degenerate plaquette flux ground states.

In the following, we consider the model M22 on the (two-dimensional) square
lattice. In this lattice model, the configurations |{uij}〉 are a redundant labelling of
physical states, and hence, deserve the name gauge configurations. The physical
states are, for the square lattice with open boundary conditions, defined by the pla-
quette flux states {Wp}, which can be seen by defining the gauge transformation
[49]

u′ij = DiuijD
−1
j , (1.9)

where the operators Di are arbitrary ±1-valued functions acting on the lattice
sites. A useful explicit definition of Di is provided by introducing the spin flip
operator σij , which changes the sign of a link variable as uij → −uij , and making
it act on all nearest neighbors of the site i 1 [51],

Di =
∏

j∈nn(i)

σij. (1.10)

Clearly, [Wp, Di] = 0 for all sites i and plaquettes p, so the physical states of the
open system can be labelled in a one-to-one manner by the flux states {Wp}.

For the square lattice with periodic boundary conditions, things are slightly
more complicated. Here, the product of all plaquette flux operators is constrained
as ∏

p

Wp = 1. (1.11)

1Adding a term−K∑iDi toHZ2,class. yields exactly the Hamiltonian of Kitaev’s Toric Code
model [11].
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Therefore, from the 2N plaquette flux states in the periodic 2D square lattice with
N sites, only 2N−1 are linearly independent. In the Ising gauge model M22, there
are, in total, 2N+1 states (equivalence classes under the gauge transformation),
which follows from dividing the 22N gauge configurations |{uij}〉 by 2N−1 (which
corresponds to 2N gauge transformations, divided by 2 elements of the Z2 gauge
group). Hence, for each plaquette flux configuration, there are four physical states.
From a gauge configuration |{uij}〉, the other three states that give the same pla-
quette flux configuration can be constructed by

1. flipping the sign of all link variables uij that cross a defined horizontal line

2. flipping the sign of all link variables uij that cross a defined vertical line

3. doing both steps 1. and 2.

This is visualized in Fig. 1.1.

Confined and deconfined phase

A quantum version of the lattice Z2 gauge theory M22 (and, likewise, for any d-
dimensional gauge theory Md2) is provided by adding a term to the Hamiltonian
that contains the sum over all spin-flip operators σij ,

HZ2 = −g
∑
p

Wp − t
∑
ij

σij. (1.12)

This extended definition introduces a hopping in terms of the Z2 fluxes, and any
state |{uij}〉 is, under HZ2 , converted into a highly-entangled superposition state.
At the same time, the Hamiltonian HZ2 is gauge-invariant with respect to the
transformation in Eq. (1.9) [49].

In close analogy to the lattice U(1) gauge theory, we can now distinguish a
deconfined and confined phase forHZ2:

For g � t, the ground states of the Hamiltonian are defined by the homoge-
neous plaquette flux configuration {Wp = 1} and are, as shown above, four-fold
degenerate. The gauge-invariant wavefunction for each such ground state is pro-
vided by symmetrizing the corresponding gauge configuration |{uij}〉 over all
gauge transformations Di,

|ψd0〉 =
∏
i

(1 +Di) |{uij}〉 , (1.13)

and is macroscopically entangled. The four-fold degeneracy of the ground state is
called topological, as it cannot be lifted by any local perturbations to the Hamil-
tonian [49]. One degenerate state can only be converted into another by applying
a number of gauge flip operators σij that corresponds to the linear system size L.
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Flipping a single link variable uij , on the other hand, creates a pair of (bosonic)
Z2 flux excitations, which are called vortices or visons. The creation of isolated
visons is only possible by generating a vison pair, and then applying a non-local
string of operators σij to separate them – which causes no further energy cost.
Hence, they are non-local excitations. The vison excitations in Z2 gauge theories
are always gapped, and the gap ∆ is of the order g.

This phase is called the Z2 deconfined phase, and its low-energy properties are
determined by the topological degeneracy (Z2 topological order) and the existence
of non-local, gapped vison excitations.

In contrast, for g � t, there is a unique ground state |ψc0〉 =
∑
{uij} |{uij}〉,

which seems highly entangled at first sight, but simply corresponds to an Ising
state with all spins pointing in the x-direction,

|ψc0〉 =
⊗
i

|→〉i . (1.14)

This can be seen by mapping the link variables uij to Pauli operators, uij → σzij ,
and using that the eigenstates |→〉, |←〉 of σx and the eigenstates |↑〉, |↓〉 of σz are
related as

|→〉 =
1

2
(|↑〉+ |↓〉),

|←〉 =
1

2
(|↑〉 − |↓〉). (1.15)

This phase is the Z2 confined phase. It doesn’t have a topological order, and
the elementary excitations are local, as they can be simply created by applying
operators σzij to individual lattice bonds.

Ising duality and inverted phase transitions

There is also a well-developed knowledge about the thermodynamics of lattice Z2

gauge theories. In Ref. [50], Wegner has shown that the lattice Z2 gauge theories
Mdn and Md(d−n) are always connected by a duality relation. This implies that
the partition function Z (and all derived thermodynamic quantities) of a model
at temperature T is related to the partition function of its dual at the temperature
T ∗, which is a decreasing function of T . Accordingly, the high-temperature and
low-temperature phase of the dualMd(d−n) are inverted with respect to the original
modelMdn. In particular, the three-dimensional lattice Z2 gauge theoryM32 of the
form given above is the dual of the three-dimensional Ising model, and exhibits a
(continuous) thermal phase transition, which is inverted with respect to the Ising
phase transition [55]. Therefore, it is called an inverted Ising transition.
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(a) Ising duality (b) Wegner-Wilson loop

Figure 1.2: Ising duality and Wegner-Wilson loop. Ising gauge theories Mdn and Md(d−n) are
connected by a duality relation [50], which holds in particular for the three-dimensional Ising
model M31 and the lattice Ising gauge theory M32 (a). Here, the low-temperature deconfined
phase of Md2 is the dual of the Ising paramagnet, and separated from the confined phase by a
continuous phase transition (inverted Ising phase transition). For 1 < n < d, this phase transition
does not possess a local order parameter. However, both phases can be distinguished by the scaling
behavior of the Wegner-Wilson loopWl =

∏
〈i,j〉∈l uij (b). For the deconfined phase, 〈Wl〉 scales

with the perimeter of the enclosed area, and, for the confined phase, with its area [51].

The phase transition of the d-dimensional Ising model and the corresponding
dual lattice gauge theory belong to the same universality class [56–58]. However,
Wegner proves that for the lattice Z2 gauge theory Mdn with 1 < n < d, the phase
transition deviates from the conventional Ginzburg-Landau paradigm [13–15], in
the sense that it does not require a broken symmetry in terms of any local order
parameter. For Md2 and d > 2, it instead separates the topologically non-trivial,
low-temperature deconfined and a high-temperature confined phase. Instead of a
local order parameter, both phases can be distinguished in terms of the average
Wegner-Wilson loop 〈Wl〉 (see Fig. 1.2): In the confined phase, it is expected that
〈Wl〉 obeys an (extensive) area law in terms of the areaAl enclosed by the contour
l, such that 〈Wl〉 ∼ exp(−aAl), which is a consequence of heavily fluctuating
fluxes in this phase. In the deconfined phase, on the other hand, vortex excita-
tions are suppressed and 〈Wl〉 is expected to decay only (subextensively) with the
perimeter Pl of the enclosed area as 〈Wl〉 ∼ exp(−bPl). In correspondence to the
scheme of inverted Ising transitions, the deconfined phase, where the plaquettes
are ordered, is the dual of the disordered Ising phase, and the (high-temperature)
confined phase is the dual of the ordered Ising phase [51].

1.1.3 Emergence of gauge fields in spin liquids
We have seen that the lattice U(1) gauge theory is a discretized version of electro-
magnetism, and contains gapless excitations in the deconfined phase. The bosonic
vortex excitations in lattice Z2 gauge theory, on the other hand, are always gapped.
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For both lattice gauge theories, we have distinguished the deconfined and confined
phase. At the example of the lattice Z2 gauge theory, we have seen that the de-
confined phase is a non-trivial phase, which is characterized by topological order,
non-local excitations and a ground state wavefunction with macroscopic entangle-
ment. The question is now how all this knowledge can be used for understanding
quantum spin liquids.

As it turns out, lattice gauge theories generically emerge in the description of
spin liquids, when the latter are represented using a parton approach. Such an
approach can be realized in terms of a slave-boson (projective construction) [26,
59–61] or slave-fermion ansatz [62, 63], and is necessary to enable the treatment
of spin liquid models with mean-field methods. This is seen when considering,
for example, a Heisenberg model on the two-dimensional square lattice,

H =
∑
〈i,j〉

Jij Si · Sj, (1.16)

which, in the mean-field approximation, is decoupled as

HMF =
∑
〈i,j〉

Jij (〈Si〉 · Sj + Si · 〈Sj〉 − 〈Si〉 · 〈Sj, 〉) . (1.17)

Usually, the ground state |ψMF〉 ofHMF can be calculated by choosing an adequate
ansatz for 〈Si〉, such that the self-consistency equation 〈Si〉 = 〈ψMF|Si |ψMF〉 is
fulfilled [49].

Clearly, such an approach is only well-suited for ordered spin states, where
〈Si〉 is expected to be finite, but not for spin liquids, which are interesting pre-
cisely because 〈Si〉 = 0 in the ground state. However, an alternative strategy to
perform the mean-field analysis on spin liquids can be pursued by first replacing
the spins with parton operators. One (but not the only) possible ansatz is provided
by introducing spin-1/2 charge neutral spinon operators fiα (α = 1, 2) as [49, 59]

Si =
1

2
f †iασαβfiβ, (1.18)

which leads to a Hamiltonian that is quartic in the spinons,

H = −
∑
〈i,j〉

1

2
Jijf

†
iαfjαf

†
jβfiβ + const. (1.19)

With the transformation in Eq. (1.18), the local Hilbert space of the system is
artificially extended from dimension 2 to 4, which produces unphysical states,
and has to be remedied by introducing a half-filling constraint f †iαfiα = 1 on the
fermions. The (0th order) mean-field approximation is then implemented by
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1. replacing the operator f †iαfjα by its ground-state expectation value,

χij = 〈f †iαfjα〉, (1.20)

and

2. loosening the half-filling constraint, and let it be fulfilled only on aver-
age, 〈f †iαfiα〉 = 1, which is done by adding the site- and time-dependent
Lagrange-multiplier term,

a0(i)(f †iαfiα − 1), (1.21)

to the Hamiltonian.

Choosing an ansatz (χij, a0(i)) for both quantities, the ground-state expectation
value χij and the Lagrange multiplier a0(i), the mean-field Hamiltonian assumes
the form

H0
MF = −

∑
〈i,j〉

1

2
Jij

((
f †iαfjαχij + h.c.

)
− |χij|2

)
+
∑
i

a0(i)(f †iαfiα − 1),

(1.22)
and the self-consistency equation is given by χij = 〈f †iαfjα〉 [49]. Likewise,
the ansatz for the Lagrange multiplier a0(i) has to fulfill the relaxed half-filling
constraint 〈f †iαfiα〉 = 1.

Now, the 0th order mean-field Hamiltonian in Eq. (1.22) describes a system of
free fermions, but this description is clearly qualitatively wrong, as the ansatz has
changed not only the Hamiltonian, but also the Hilbert space of the Heisenberg
model by allowing individual sites to violate the half-filling constraint. Thus, it
looks as if nothing was gained from the entire procedure. However, it is possi-
ble to fix this issue and recover the original Hilbert space by introducing (mass-
less) phase fluctuations (χe−iAij , a0(i)) around the mean-field state (which can be
shown to enforce the half-filling constraint for all sites [49, 59]). In this first-order
mean-field approximation, the Hamiltonian becomes

H1
MF =

∑
〈i,j〉

−Jij
(
f †iαfjαχije

−iAij + h.c.
)

+
∑
i

a0(i)(f †iαfiα − 1), (1.23)

and is invariant under the lattice U(1) gauge transformation

Aij → Aij + χj − χi,
fi → fie

iχi . (1.24)

So, instead of a system of free fermions, the Hamiltonian H1
MF now describes

fermions, which are coupled to an emergent U(1) gauge field [49]. Notably, it is
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precisely the introduction of gauge fluctuations which has recovered the original
Hilbert space of the system, so it can be concluded that the emergent gauge field
is a necessary ingredient for the valid parton description of the spin system (in the
words of Wen, the gauge field is required to “glue” the spinons “back together”
[49]). Remarkably, the question if the parton description is only a formal rewriting
of the spin system, or if it gives access to physical properties that would otherwise
stay unrevealed, now depends on the phase of the emergent gauge field. For the
confined phase of the gauge field, the parton description is just a reformulation
of the spin system, which does not provide any physical insight, as the system is
still fully governed by the fluctuations of spins. In the deconfined phase, on the
other hand, the spinons and the emergent gauge field truly behave as independent
quasiparticles, and it is exactly this scenario which characterizes the spin liquid
state. In this sense, the knowledge about confined and deconfined phases in lattice
gauge theories directly translates to the understanding of spin liquids.

There are alternative ways to perform the mean-field approximation for the
spinon approach in Eq. (1.18), which essentially distinguish themselves by the
pairing channels that are chosen for the spinon operators fiα. All these approaches
first lead to a qualitatively wrong 0th order mean-field description of the spin sys-
tem, as any such mean-field ansatz artificially expands the Hilbert space and, on
a more fundamental level, breaks the local symmetry of the original Hamiltonian.
However, it is always possible to find a global gauge symmetry which the 0th or-
der mean-field Hamiltonian still preserves. This global gauge symmetry is called
the invariant gauge group (IGG), and it is converted into a local gauge symme-
try in the first-order mean-field approximation by introducing IGG-fluctuations.
Generically, it can be shown that a mean-field ansatz which is invariant under the
invariant gauge group IGG leads to a low-energy description of the correspond-
ing spin liquid in terms of fermionic spinons, which are coupled to an IGG gauge
field. The question if the first-order mean-field solution allows for mass terms in
the fluctuations then reflects the nature of excitations of the corresponding spin
liquid, and, in consequence, its stability [20, 53]:

• The U(1) spin liquid possesses a gapless gauge boson beside further gapped
excitations. The U(1) gauge bosons always mediate long-ranged interac-
tions between the fermionic spinons. For certain systems, these interactions
do not affect the stability of the spin liquid regime, which can be shown
with renormalization group methods. Such systems are, due to the power-
law decay of correlations between the gauge bosons, called algebraic spin
liquids. Generically, however, RG-relevant long-range interactions or the
instanton effect makes the U(1) spin liquid unstable.

• In contrast, all bosonic gauge excitations in the Z2 spin liquid are gapped,
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and can only mediate short-ranged interactions. These interactions are gener-
ically RG-irrelevant and do not affect the stability of the spin liquid. There-
fore, it is also called a rigid spin liquid.

• A rigid spin liquid can also be realized if the invariant gauge group is SU(2),
but the SU(2) fluctuations are suppressed by a Chern-Simons term in the
underlying action, which is needed if the filled spinon band has a finite Hall
conductance [10, 21]. Such chiral spin liquids are quantum spin liquids
with broken time-reversal symmetry. They are the spin version of Chern in-
sulators [64–68], i.e., systems with a gapped bulk and gapless (chiral) edge
states, which are topologically protected by the bulk gap. The existence of
such edge modes can be tracked by a topological Z-invariant, the Chern
number which is given by the integral of the Berry curvature over the first
Brillouin zone.

Parton approaches to spin liquids are not restricted to mean-field treatments,
and the emergence of a gauge field is a generic feature of these approaches. In
the end, a valid description of the spin system is achieved when the algebra of
spin operators is faithfully reproduced by the parton ansatz, which often requires
the introduction of additional constraints, in order to reproject the parton system
to its physical subspace. We see in Chapter 2 that the Kitaev model, which is in
the focus of this thesis, can be solved by a parton ansatz which introduces real
(Majorana) fermions as spinons, which are coupled to a Z2 gauge field. In this
basis, the system is even exactly solvable and renders the application of mean-
field methods obsolete in many situations. However, it is also possible (and, for
some purposes, even more insightful) to study the Kitaev model with an ansatz
that uses complex fermions [36, 53].

1.2 Thermodynamics of quantum spin liquids
The common understanding of the quantum spin liquid state in an earlier period of
discussion has been focused on the absence of long-range ordering, and the anal-
ogy of this state to classical liquids. According to this point of view, it is natural
to expect that the QSL state is only well defined at exactly T = 0, and for any
finite temperature destabilized by thermal fluctuations. With this understanding, it
is presumed that the spin liquid phase is adiabatically connected to the paramag-
netic gas phase of the spin system, as is the case for classical liquids [44]. But also
from the modern point of view, which defines the QSL phase as a macroscopically
entangled quantum many-body state, one can argue that it might be only realized
for T = 0. Here, it is usually pointed out that any system at finite temperature
shows an extensive (volume law) entanglement, and therefore acquires classical
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correlations [7]. Hence, it is also expected that a generic QSL state is not protected
by a thermal phase transition, and the transition to the high-temperature phase is
realized as a smooth crossover.

However, considering that the low-temperature physics of spin liquid systems
can be captured in terms of partons coupled to gauge fields, it is the general knowl-
edge about lattice gauge theories that provides us with classes of systems which
deviate from this generally assumed behavior. Specifically, it can be argued that
spin liquids with gapped gauge excitations, such as Z2 spin liquids, which are sta-
ble against quantum fluctuations, are also candidates for a thermally stable phase,
which persists up to some finite temperature Tc. In this thesis, we discuss that
this is indeed the case for Kitaev systems, which are either defined in three spatial
dimensions, or which possess a ground state that is topologically protected by the
breaking of time-reversal symmetry. In the case of three-dimensional Kitaev Z2

spin liquids, Wegner’s studies on lattice Z2 gauge theories even equip us with the
universality class of the phase transition. For most 3D Kitaev systems, the spin
liquid ground state phase is separated from the paramagnetic state by an inverted
Ising phase transition, which is described in terms of loop-like vison excitations.
Later on, we see that the paramagnetic phase is further subdivided into an inter-
mediate regime, where the physics is still essentially described by fractionalized
degrees of freedom – this phase may also be considered as a proximate Z2 spin
liquid [69] – and the true paramagnetic phase, that is merely a spin gas.

1.3 Summary
Lattice gauge theories are discretized versions of gauge theories from quantum
field theory, which are useful for the description of spin systems. They are char-
acterized by the symmetry of their underlying gauge transformation as U(1), Z2

etc., which also determines the gapless or gapped nature of their elementary exci-
tations. Lattice Z2 gauge theories always possess gapped vison excitations. The
three-dimensional lattice Z2 gauge theory is the dual of the three-dimensional
Ising model, and its deconfinement-confinement transition is inverted with respect
to the Ising phase transition. In quantum spin liquids, lattice gauge theories arise
in the context of the parton description of the spin model. The low-temperature
behavior of spin liquid systems is, in this approach, described by fractionalized
spinon degrees of freedom, which are coupled to an emergent gauge field. Here,
the symmetry of the underlying lattice gauge theory allows for conclusions about
the stability of the spin liquid state.
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Chapter 2

Kitaev Model

The Kitaev model is the prototypical example of a quantum spin liquid model
that possesses an exact solution. Introduced and solved by Kitaev in his seminal
paper of 2006 [27], this particular version of a quantum compass model [70, 71]
has ever since become a research field of vast interest in both theoretical and
experimental condensed matter physics [8, 38–43]. The experimental enthusiasm
for the model has been triggered in 2009 by Jackeli’s and Khaliullin’s proposal for
a real material mechanism that leads to the occurrence of Kitaev interactions in
certain Mott insulators with strong spin-orbit coupling, such as Na2IrO3, Li2IrO3

and α-RuCl3 [37, 72]. Since then, not only have various experimental groups
joined in the race to detect signatures of the quantum spin liquid phase in those
Kitaev materials [38, 43], but also, there has been an ongoing search for potential
alternative realization mechanisms [73]. A fundamental breakthrough in the hunt
for signatures of the spin fractionalization in Kitaev magnets has been the recent
measurement of the half-integer thermal quantum Hall effect in α-RuCl3 [74, 75].

In this chapter, we give a detailed introduction of the Kitaev model and its so-
lution, which is the foundation for our numerical studies on the thermodynamics
of various 2D and 3D Kitaev systems. We start by explaining the solution ansatz
that is used in the original paper by Kitaev [27], which is based on the local trans-
formation of the original spin degrees of freedom to Majorana fermions coupled
to an emergent Z2 gauge field. Here, a close look is given to Lieb’s theorem,
which makes a statement about the ground state configuration of the correspond-
ing gauge-invariant quantity, the Z2 plaquette flux. Fixing the gauge field to the
ground state plaquette flux configuration, we are able to calculate Majorana band
structures and resolve their topological features, such as the graphene-like Dirac
cones that the Kitaev honeycomb model exhibits at zero temperature. With this
exact solution figured out, we explain how it can be obtained in an alternative way,
namely by a non-local Jordan-Wigner transformation of the spins [76–80]. The
latter becomes important in the context of developing a numerically exact, sign-
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problem-free quantum Monte Carlo algorithm for Kitaev systems (Chapter 3). In
this first part, the presentation is based on Refs. [27, 77, 78].

After that, we present how the Kitaev model can be extended to lattice systems
in three spatial dimensions, and review the Majorana (semi)metals that are found
in these systems. Here, the ground state plaquette flux is harder to determine,
since most of these systems lack the geometric requirements for the rigorous ap-
plicability of Lieb’s theorem. This section is followed by a discussion of the
elementary excitations of the Z2 gauge field, the so-called visons, which have a
fundamentally different nature in two and three spatial dimensions. In a section
on the thermodynamics of Kitaev systems, we see that the loop-like nature of the
vison excitations in 3D is the basis for the occurrence of an inverted Ising phase
transition in these systems. The presentation in this part is based in particular on
Refs. [36, 44, 50, 51, 81].

We also discuss that Kitaev systems with broken time-reversal symmetry can
host topologically non-trivial ground states. In particular, this is the case for non-
bipartite Kitaev systems in two spatial dimensions, where the ground state breaks
time-reversal symmetry spontaneously. In this context, we introduce a generalized
version of the Kitaev model for arbitrary odd-coordinated lattice systems, which
can be defined in terms of Γ-matrices [82, 83]. The presentation here relies in
particular on Refs. [27, 30, 47, 83].

Finally, we close this chapter by giving a brief overview on the material real-
izations of the Kitaev model, which is mainly based on Refs. [37, 38, 73].

2.1 Definition and solution

2.1.1 Spin model and fractionalization
The Kitaev model is defined on three-coordinated lattice systems. It describes
spin-1/2 degrees of freedom, which exist on the lattice sites and interact via bond-
dependent Ising interactions. The Hamiltonian is given by [27]

HKitaev =
∑
〈i,j〉γ

Jγ σ
γ
i σ

γ
j , (2.1)

where the σi are the Pauli matrices and the index γ labels the three subclasses of
x-, y- and z-bonds (Fig. 2.1). For each of these subclasses, the spins interact only
via the respective γ-component. This way, each spin ends up with three compet-
ing interactions, which cannot be satisfied at the same time. This phenomenon is
called exchange frustration. In the classical version of the Kitaev model, where
the SU(2) spins σi are replaced with O(3) vectors Si, the exchange frustration
leads to a macroscopically degenerate ground state manifold of the system, which

32



2.1. Definition and solution

(a) Kitaev honeycomb model (b) Kitaev hyperhoneycomb model

Figure 2.1: Kitaev model on the honeycomb (a) and hyperhoneycomb lattice (b) [27, 34, 36]. The
Kitaev model is an exactly solvable quantum spin liquid model, which can be defined on three-
coordinated lattices. Spin-1/2 degrees of freedom on the lattice sites interact via bond-dependent
Ising interactions −Jσγi σγj .

has been shown to be equivalent to the full set of dimer coverings on the under-
lying lattice [84]. Here, in the quantum version, the ground state is instead given
by a single wave function with macroscopic entanglement, which constitutes a
quantum spin liquid.

Local Majorana transformation

The latter can be derived by applying a parton approach to the system, in which the
spins are locally transformed to Majorana fermions. For this, each spin operator
σi is replaced by four Majorana fermion operators ci, bxi ,byi , b

z
i via [27]

σγi = ibγi ci. (2.2)

The Majorana operators bγi , ci fulfill the canonical commutation relations

{bαi , bβj } = 2δijδαβ,

{ci, cj} = 2δij,

{ci, bj} = 0, (2.3)

and reproduce two of the fundamental relations of the Pauli matrices,

(σγ)2 = 1,

(σγ)† = σγ. (2.4)

However, reproducing the full spin algebra,

[σα, σβ] = 2iεαβγσ
γ,

{σα, σβ} = 2δαβ, (2.5)
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requires the introduction of an additional constraint to the Majorana operators.
The reason behind this is a change in dimensionality that is typical for parton
approaches: The local Hilbert space in the Majorana basis is 4-dimensional (=
(
√

2)4), while in the spin basis, it only has dimension 2. The transformation in
Eq. (2.2) thus artificially increases the local Hilbert space of each spin. Only a
subspace reproduces the spin algebra, though, and can therefore be considered as
physical. This physical subspace is obtained by introducing a Z2 gauge transfor-
mation [27],

Di = bxi b
y
i b
z
i ci, (2.6)

and consists of all states |ξ〉 which are Z2 gauge-invariant, i.e., for which

Di |ξ〉 = |ξ〉 . (2.7)

The transformation in Eq. (2.2) replaces the Ising terms in the Hamiltonian ac-
cording to σγi σ

γ
j = −i(ibγi bγj )cicj , i.e., it reveals an interaction that is quadratic

in the Majorana fermions ci. The operators bγ in the interaction term can, on the
other hand, be combined to bond operators [27],

ûγij = ibγi b
γ
j , (2.8)

with ûji = −ûij . They commute with each other and with the Hamiltonian and
have eigenvalues ±1. Therefore, they can be replaced by their eigenvalues uij in
the Hamiltonian, which then assumes the form [27]

H ({uij}) =
1

4

∑
i,j

iAijcicj, (2.9)

with the matrix A defined by

Aij = 2Jγuγij, (2.10)

for connected sites i,j (otherwise, Aij = 0).
Physically, we now have the paradigmatic scenario for quantum spin liquids,

where the original spin degrees of freedom are fractionalized, and the fraction-
alized version of the system includes the description in terms of a lattice gauge
theory. Here, the spinon degrees of freedom are given by the non-interacting Ma-
jorana fermions ci, which are coupled to the emergent Z2 gauge field {uij = ±1}
on the lattice bonds (Fig. 2.2). Since the bond operators ûij commute with H,
the Z2 gauge field is static. Hence, if a configuration {uij} is fixed, the model is
exactly solvable by diagonalizing the Majorana fermion system, i.e., the complex
tight-binding matrix iA in Eq. (2.9). Since iA is Hermitian, its eigenvalues come
in (real) pairs ±ελ. These are the single-particle energy levels of the Majorana
fermions.
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Figure 2.2: Kitaev honeycomb model in the Majorana basis. In this representation, the original
spin degrees of freedom are fractionalized to (itinerant) Majorana fermions situated on the lattice
sites (black), which are coupled to an emergent (static) Z2 gauge field on the bonds (red, green,
blue) [27].

Vacuum state

The Majorana basis is, however, unsuited to determine a ground state (vacuum
state) of the system, because here, the creation and annihilation of a particle are
the same, c† = c. Therefore, the system has to be rewritten in terms of com-
plex (Dirac) fermions a†λ. Such a canonical diagonal description is achieved by a
pairwise recombination of the Majoranas. For this, we first apply a basis transfor-
mation of the operators ci to normal modes [27],

(b′1, b
′′
1, ..., b

′
m, b

′′
m) = (c1, c2, ..., c2m−1, c2m)Q, (2.11)

where Q is a transformation matrix consisting of the real (imaginary) parts of the
eigenvectors of iA in their odd (even) columns. The matrix A and the eigenvalues
εi of iA are related with the transformation matrix Q by

A = Q


0 ε1
−ε1 0

. . .
0 εm
−εm 0

QT . (2.12)

After this basis transformation, the spinless fermionic operators aλ, a†λ are intro-
duced as [27]

a†λ = (b′λ − ib′′λ)/2,
aλ = (b′λ + ib′′λ)/2. (2.13)
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Figure 2.3: Elementary plaquette of size |p| = 6 in the honeycomb lattice [27]. Taking the
product of the Z2 gauge variables uij along the plaquette yields the gauge-invariant Z2 plaquette
flux Wp =

∏
(−iuγij) = ±1.

Thus, the N Majorana operators are mapped to N/2 spinless fermions a†λ, and the
final diagonal representation of the Kitaev Hamiltonian in a fixed Z2 gauge field
configuration {uij} reads

H ({uij}) =

N/2∑
λ=1

ελ

(
a†λaλ −

1

2

)
. (2.14)

The ground state energy of the Majoranas in the gauge field configuration {uij} is
now obtained simply by setting the fermionic counting operators n̂λ = a†λaλ = 0
for all λ,

E ({uij}) = −1

2

N/2∑
λ=1

ελ. (2.15)

2.1.2 Lieb’s Theorem

Z2 plaquette flux

As a result of the described transformations, the problem of obtaining the ground
state of the full spin system is reduced to finding the Z2 gauge field configuration
{uij} which minimizes the energy (2.15). The bond operators ûij are clearly not
gauge-invariant, because they change their sign under any gauge transformation
Di that is applied to one of their adjacent sites i,

Diûij = −ûij, (2.16)
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Thus, it is necessary to find the corresponding gauge-invariant quantity for the Z2

gauge field {uij}, which is expected to be associated with some physical observ-
able.

Reminding ourselves of the general formulation of the lattice Z2 gauge theory
in Sec. 1.1.2, we find that this gauge-invariant quantity is already well known as
the plaquette flux, which has been written in terms of the operator Wp, Eq. (1.8).
There is an interesting mathematical-physics perspective on this quantity, which
relates it to the energy spectrum of arbitrary tight-binding electron Hamiltonians
with nearest-neighbor hopping tij = |tij|eiφij . As it turns out, for a fixed con-
figuration of coupling parameters tij , this spectrum only depends on the phase
variables φij through the flux Φ around the elementary plaquettes p, i.e., the loops
of shortest length of the corresponding lattice [85–87]. This flux Φ is, in the most
general version, defined by

eiΦ =

∏
〈i,j〉∈p tij∏
〈i,j〉∈p |tij|

, (2.17)

and corresponds to the plaquette flux that is defined in Sec. 1.1.2 for the lattice Z2

gauge theory Md2. In Kitaev systems, the plaquette flux operator eiΦ in Eq. (2.17)
is usually also denoted by Wp. We obtain it by taking the product of the Kitaev
bond terms around the plaquettes, where, as a standard, we multiply the bond
terms in a clockwise manner. Thus, in the spin and Majorana basis, the Z2 pla-
quette flux operator reads [27]

Wp =
∏
〈i,j〉γ∈p

σγi σ
γ
j

=
∏
〈i,j〉γ∈p

(−iuγij). (2.18)

The eigenvalues of Wp are ±1 for plaquettes with even and ±i for plaquettes
with odd length, and the (clock- or counterclockwise) direction of measurement
only affects the sign of the odd-length plaquettes. We use the convention that an
eigenvalue Wp = +1 = ei0 is identified with the absence of a Z2 plaquette flux
(=̂ 0-flux), while an eigenvalue −1 = eiπ signifies the presence of a Z2 plaquette
flux (=̂ π-flux) 1.

Wp is clearly invariant under the gauge transformation Di, since, for any pla-
quette, the latter always changes the sign of two Z2 gauge variables uij within that
plaquette. But this is not all. Wp also commutes with the Hamiltonian H ({uij}),
and therefore provides an extensive set of conserved quantities {Wp} for the Ki-
taev model. In consequence, the Hilbert space H of the system is divided into

1In the remainder of this thesis, we often use the convention to denote the flux operator eigen-
value Wp also by the name “plaquette flux”.
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Z2 gauge-invariant subspaces H{Wp}, which are given by the eigenspaces of the
plaquette flux operators Wp, and called flux sectors,

H =
⊕
{Wp}

H{Wp}. (2.19)

Thus, in the sense of the general gauge theory definition that is given in Chapter 1,
the Z2 gauge configurations {uij} are redundant labellings of the Z2 flux config-
urations {Wp}, and likewise, different gauge sectors H{uij} of the Hilbert space
provide a redundant description of the physical flux sectors.

Ground state flux sector

Having this gauge-invariant quantity Wp defined, the remaining problem is to find
the plaquette flux configuration {Wp} which gives a minimal energy. This prob-
lem has been the subject of numerous studies in mathematical physics [85–87]
(Appendix A.1). The most striking result is a theorem by Lieb [86], which states
that the flux ground state for an arbitrary half-filled band system of hopping elec-
trons and a bipartite lattice with (at least) semi-periodicity is determined by the
elementary plaquette length |p| of the lattice. If |p| mod 4 = 0 (e.g., in the square
lattice), the energy of the system is minimized by a plaquette flux Φ = π. Quite
remarkably, this means that the presence of a magnetic flux lowers the energy, a
phenomenon which can only occur for systems with high electron density. On the
other hand, if |p| mod 4 = 2 (e.g., in the honeycomb lattice), the ground state
plaquette flux is Φ = 0. A general formula for the plaquette flux is thus given by

Φ =
π(|p| − 2)

2
. (2.20)

However, Lieb’s theorem is not universally applicable. In non-bipartite lattice
systems, we have seen that the odd-length elementary plaquettes have direction-
dependent loop operator eigenvaluesWp = ±i. Here, the nature of the flux ground
state is fundamentally different from bipartite systems, since there is no energetic
selection of one distinguished flux state. Instead, the two possible flux states are
connected by time-reversal symmetry, and the ground state spontaneously breaks
TR symmetry by selecting either of the two states for all plaquettes.

Also for bipartite lattice systems, Lieb’s theorem is only rigorously proven for
systems with a specific geometric condition. The whole lattice (i.e. the sites and
bonds, along with the configuration of coupling constants Jγ), and the individual
plaquettes, for which the flux is minimized, have to be invariant under reflection
symmetry. Moreover, the corresponding mirror plane must not cut through any
vertices of the lattice. This condition is fulfilled for the honeycomb lattice. Going
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over to Kitaev systems in three spatial dimensions, on the other hand, we see that
the mirror plane condition is only fulfilled for one of the elementary systems. We
discuss this issue in Sec. 2.2.3.

QSL wave function

In the Majorana basis of the Kitaev system, a particular flux configuration {Wp}
is adjusted by choosing the adequate Z2 gauge field configuration {uij}. Is the
ground state plaquette flux configuration known and the gauge configuration {uij}
chosen accordingly, we obtain the ground state wave function of the model by
symmetrization over all gauge transformations Dj , i.e.

|Ψw〉 =
N∏
j=1

(
1 +Dj

2

)
|Ψu〉 , (2.21)

where |Ψu〉 = |u〉 ⊗ |m〉 consists of the gauge part |u〉 and the Majorana (matter)
part |m〉 [27]. The symmetrization operation amounts to reprojecting the sys-
tem to the physical subspace (see the discussion in Sec. 3.4.2), and the resulting
ground state wavefunction in Eq. (2.21) obviously contains a macroscopic degree
of entanglement, which determines its quantum spin liquid nature.

2.1.3 Majorana (semi)metal
With the plaquette flux configuration {Wp} of the quantum spin liquid ground
state fixed, we can calculate the band structure of the Majorana fermions. De-
scribing physical energy levels εn(k), the band structure is not affected by the
gauge transformations Di. Therefore, it is sufficient to fix the Z2 gauge field to
any configuration {uij} that produces the ground state plaquette flux {Wp}, and to
diagonalize the Majorana Hamiltonian in this gauge sector. For that, we go over
to the reciprocal space by Fourier-transforming the Majorana operators,

cn,i =
1√
N

∑
k

(
ck,ie

ikn + c†k,ie
−ikn

)
, (2.22)

with the vectors n labelling the unit cells, and the indices i = 1, . . . , n labelling
the site positions inside the unit cell. Applying the condition c†k = c−k for the
Majorana operators, the Hamiltonian, Eq. (2.9), takes the k-space form

Hk =
1

2

∑
k

(c−k,1 . . . c−k,n) (iAk) (ck,1 . . . ck,n) , (2.23)

and the band structure can be calculated by diagonalizing the Bloch matrix iAk.
For example, in the case of the Kitaev honeycomb model, we get [27]
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(a) Ground state phase diagram (b) Dirac cones

Figure 2.4: Majorana semimetal ground state for the Kitaev honeycomb model. For the choice of
bond couplings Jx+Jy+Jz = 1, the ground state phase diagram in (a) is obtained. The Majorana
system is gapless for the triangular region where |Jγ1 | ≤ |Jγ2 | + |Jγ3 |. Here, it possesses Dirac
cones at the symmetry points K, K ′ of the Brillouin zone [27].

iAk =

(
0 if(k)

−if(k)∗ 0

)
, (2.24)

where
f(k) = 2

(
Jxe

ikn1 + Jye
ikn2 + Jz

)
, (2.25)

with the lattice vectors n1 =
(

1
2
,
√

3
2

)T
and n2 =

(
−1

2
,
√

3
2

)T
(Fig. 2.1).

The energy bands are given by

ε(k) = ±|f(k)|, (2.26)

and possess gapless points, ε(k) = 0, if one of the couplings |Jγ| is lesser or equal
than the sum of the other two,

|Jγ1| ≤ |Jγ2|+ |Jγ3|. (2.27)

With these conditions, the ground phase diagram assumes the form that is shown
in Fig. 2.4 a, with a triangular gapless region around the point of isotropic coupling
(Jx = Jy = Jz), and gapped phases beyond this region.

Concerning the nature of the gapless phase, it is shown in Ref. [27] that the
latter is a Majorana semimetal, whose band structure possesses two Dirac cones at
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the symmetry points K, K ′ of the Brillouin zone (Fig. 2.4 b). This feature makes
the band structure of the Kitaev honeycomb model similar to graphene [88].

As it turns out, the occurrence of gapless spin liquid phases is a generic phe-
nomenon for Kitaev models both in two and three spatial dimensions. We see
later that the elementary 3D Kitaev systems that are in the focus of our numeri-
cal studies also exhibit a variety of Majorana (semi)metal ground states, where,
depending on the underlying lattice geometry, the band structures show different
topological features, such as (topological) Fermi surfaces, nodal lines and Weyl
nodes. Before we enter the discussion of these models, however, we make a short
detour by taking a look at an alternative solution approach for the Kitaev model.

2.1.4 Jordan-Wigner transformation
In the last sections, we have seen how to get from the Kitaev spin model, Eq. (2.1),
to its quantum spin liquid ground state in a straightforward manner, by applying
the local transformation ansatz introduced in Eq. (2.2) and deriving the Majorana
Hamiltonian for a fixed Z2 gauge sector, Eq. (2.9). However, there are alternative
solution approaches, a couple of which have been reviewed in Ref. [89]. One of
these alternative approaches is to use a non-local Jordan Wigner transformation
to transform the original spin operators into Majorana fermions [76–80], and has
been applied in earlier quantum Monte Carlo studies of Kitaev systems. [44–
47, 90]. We discuss it in the following.

The basic idea of the Jordan-Wigner transformation is to replace the spin op-
erators in a one-dimensional chain of lattice sites i = 1, . . . , N with fermions,
and to maintain the spin algebra by introducing non-local phase factors. The most
general form of the transformation is

σ+
j = a†je

−iπ
∑
i<j n̂i ,

σ−j = aje
iπ

∑
i<j n̂i ,

σzj = 2a†jaj − 1, (2.28)

where the n̂j are fermionic counting operators. The phase terms e±iπ
∑
i<j n̂j al-

ways give a ±1 and depend on the fermionic parity along the chain, between the
first and the j-th site.

The Kitaev systems we are interested in are two- or three-dimensional. How-
ever, they can be regarded as being composed of one-dimensional Jordan-Wigner
strings of bonds. Concretely, we choose the Jordan-Wigner strings as bond chains,
where the bonds only belong to two of the three subclasses γ. This way, the
Jordan-Wigner strings are connected by the bonds of the third subclass. A con-
venient way to visualize this in two-dimensional systems is to transform the un-
derlying lattice to a bricklayer geometry (Fig. 2.5). In this geometry, where rows
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Figure 2.5: Honeycomb lattice in bricklayer geometry. Rows (columns) of sites are labeled by
the coordinates m (n). The JW strings are defined along rows of x- and y-bonds (red and green).
The z-bonds (blue) host the Z2 gauge variables η [44].

and columns of sites can be labeled by the two coordinates m and n, the Kitaev
Hamiltonian is rewritten as [44]

H =
∑

m+n even

−Jxσxm,nσxm,n+1 − Jyσym,n−1σ
y
m,n − Jzσzm,nσzm+1,n. (2.29)

In the following, we choose the Jordan-Wigner strings along the x- and y-bonds.
With this choice, the spin operators are replaced with spinless fermion operators
a†, a via [44]

σxm,nσ
x
m,n+1 =

(
σ+
m,n + σ−m,n

) (
σ+
m,n+1 + σ−m,n+1

)
=
(
a†m,ne

−iπ
∑
j<n n̂j + am,ne

iπ
∑
j<n n̂j

)
·
(
a†m,n+1e

−iπ
∑
j<n+1 n̂j + am,n+1e

iπ
∑
j<n+1 n̂j

)
= a†m,ne

−iπn̂na†m,n+1 e
−iπ(2n̂1+···+2n̂n−1)︸ ︷︷ ︸

=1

+a†m,ne
iπn̂nam,n+1

+ am,ne
−iπn̂na†m,n+1 + am,ne

iπn̂nam,n+1 e
iπ(2n̂1+···+2n̂n−1)︸ ︷︷ ︸

=1

= −(am,n − a†m,n)(am,n+1 + a†m,n+1), (2.30)

and, likewise,

σym,nσ
y
m,n+1 = (am,n + a†m,n)(am,n+1 − a†m,n+1),

σzm,nσ
z
m+1,n = (2nm,n − 1)(2nm+1,n − 1). (2.31)

We see that all the parity terms e−iπ(2n̂1+2n̂n−1) cancel each other to 1, since, due
to the multiplication, each fermionic counting operator n̂j in the exponent carries
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a multiple of 2. The Hamiltonian now reads [44]

H =
∑

m+n even

Jx(am,n − a†m,n)(am,n+1 + a†m,n+1)

+ Jy(am,n−1 + a†m,n−1)(am,n − a†m,n)

− Jz(2nm,n − 1)(2nm+1,n − 1). (2.32)

On bipartite lattices, the two sublattices can be distinguished by the labels A,B.
With these labels, different Majorana operators cA/B for the two sublattices can
be defined via [44]

cA = −i(aA − a†A),

cB = aB + a†B,

c̄A = aA + a†A,

c̄B = −i(aB − a†B). (2.33)

With these Majorana operators, the Hamiltonian in Eq. (2.32) is finally rewritten
as [44]

H =
∑

m+n even

iJxcm,ncm,n+1 − iJycm,n−1cm,n − iJzηm,m+1cm,ncm+1,n, (2.34)

where ηm,m+1 = ic̄m,nc̄m+1,n is the Z2 gauge variable that is defined on all z-
bonds. Structurally, the Hamiltonian now has the same form as Eq. (2.9), with
the difference that the Z2 gauge field is, here, only defined on the z-bonds, and
the signs of all other matrix entries are fixed. Hence, the ground state is again
obtained by adjusting the Z2 gauge field {η} to produce the energy-minimizing
plaquette flux configuration, and by diagonalizing the Majorana Hamiltonian in
analogy to the procedure that is outlined above.

While the ground state calculation is, thus, almost the same for both ap-
proaches, there is a highly non-trivial difference, which, as we see later, has a sig-
nificant effect on the execution of finite-temperature calculations. In contrast with
the local ansatz, there is no artificial Hilbert space expansion necessary within
the Jordan-Wigner approach. Thus, all states are naturally physical, and there is
no need to introduce a gauge transformation in order to map states to a physical
subspace.

Although this seems very satisfying, there is still a caveat. The Jordan-Wigner
transformation only gives a Hamiltonian of the easy-to-handle form in Eq. (2.34)
for systems with open boundary conditions in the direction of the JW strings. If
the boundary conditions are chosen periodic, the phase factors that nicely cancel
in Eq. (2.30) remain, leaving the Hamiltonian with parity-terms of the form

eiπ
∑
j<N n̂j , (2.35)
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which are difficult to handle.
The discussion on this matter is continued in Sec. 3.4.2, in the context of

presenting the quantum Monte Carlo method for Kitaev systems.

2.2 3D Kitaev Models

The Kitaev model has originally been introduced on the honeycomb lattice, yet it
can be generalized and defined for arbritrary lattices that possess a coordination
number c = 3. A number of examples have been presented in two spatial di-
mensions, such as for the square-octagon [28, 29] and the decorated honeycomb
lattice [30]. In three spatial dimensions, after a number of early generalization
attempts [31–33], a direct version of the Kitaev model has first been presented for
the hyperhoneycomb lattice [34], which, later on, has even been shown to possess
material realizations [91, 92]. Interestingly, the Kitaev spin liquid on the hyper-
honeycomb lattice is also gapless for isotropic coupling parameters, its ground
state phase diagram looks the same as for the honeycomb lattice (Fig. 2.4), and
it hosts a Majorana semimetal with a nodal line band structure [34], i.e., a one-
dimensional manifold of gapless points, which shares the codimension 2 with the
zero-dimensional gapless points in the Kitaev honeycomb model. In this sense,
the Kitaev hyperhoneycomb model is a straightforward generalization of the hon-
eycomb model. This discovery has been followed by similar studies on the hype-
roctagon lattice, where the ground state is shown to exhibit a topological Fermi
surface [35], and the Kitaev hyperhoneycomb model with broken time-reversal
symmetry, where the Majorana fermions form a Weyl superconductor [48]. These
analytical studies have finally led to a comprehensive classification of gapless
Z2 spin liquids in elementary, three-dimensional Kitaev systems [36], and to an
extension of this classification to Kitaev systems on lattice geometries with non-
symmorphic symmetries 2 [93].

In our thermodynamic studies, we simulate a collection of elementary three-
dimensional Kitaev systems that have formerly been presented in the two afore-
mentioned works, in particular Ref. [36]. Therefore, we present this selection of
lattice systems in the following. In this context, we also discuss some important
geometric differences that arise when going over to Kitaev systems in three spatial
dimensions. In particular, the plaquette flux operators generically become subject
to volume constraints in 3D, which make them linearly dependent. We also dis-
cuss the applicability of Lieb’s theorem to these systems. Finally, we give a brief
overview on the Z2 spin liquid ground states that these models exhibit.

2Space groups are called symmorphic if they possess one point which is invariant under all
symmetry operations except translation.

44



2.2. 3D Kitaev Models

Lattice Alternative names Sites in unit cell Majorana metal TRS breaking
(10,3)a hyperoctagon [35] 4 Fermi surface Fermi surface
(10,3)b hyperhoneycomb [91] 4 Nodal line Weyl nodes
(10,3)c 6 Nodal line Fermi surfaces
(10,3)d 8 Nodal line Nodal line
(8,3)a 6 Fermi surface Fermi surface
(8,3)b hyperhexagon [94] 6 Weyl nodes Weyl nodes
(8,3)n 16 Gapped Weyl nodes
(8,3)c* 8 Nodal line Weyl nodes
(9,3)a* hypernonagon [95] 12 Weyl nodes Weyl nodes

Table 2.1: Overview of the elementary three-dimensional, tricoordinated lattices and their Majo-
rana band structures as given in Refs. [36, 93]. The occurrence of Majorana (semi)metals with
different topological features is based on distinct projective time-reversal and inversion symme-
tries of the underlying lattice geometry.

2.2.1 Elementary tricoordinated lattice systems

A comprehensive geometric classification of three-dimensional lattice systems
with coordination number c = 3 has been presented in 1977 by Wells [96]. For a
systematic study of 3D Kitaev systems, the authors of Ref. [36] select a family of
these lattice geometries which fulfill a number of prequisites that are considered
as elementary, namely (i) they have elementary loops of only one fixed length, (ii)
they possess equidistant bonds, and (iii) all bond angles have approximately 120
degrees.

A notation which provides a systematic way of labelling these lattices is given
by the Schläfli convention. According to this notation, a lattice is denoted by
(|p|, c)x, where |p| is the elementary plaquette length, c the coordination number,
and x = a, b, . . . a letter that serves for numbering.

An overview on the so-obtained three-dimensional lattice systems is given in
Table 2.1, which also summarizes the nodal structures that the Majorana metals
on these lattice systems exhibit, namely for the Kitaev model with and without a
time-reversal symmetry breaking term (see the discussion in Sec. 2.2.4). Details
on the lattice definitions (unit cell and basis vectors) and the assignment of Kitaev
couplings are documented in Appendix C.1.

2.2.2 Volume constraint

A fundamental geometric difference that arises when the Kitaev model is extended
to three spatial dimensions is the appearance of volume constraints for the loop
operators, which causes them to be linearly dependent. In the simplest case, when
plaquettes form the boundary of a closed volume, the product of their loop opera-
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Figure 2.6: Volume enclosed by loop operators in the (10,3)b lattice. The product of plaquette
flux operators Wp is constrained to

∏
pWp = 1, if the plaquettes form the boundary of a closed

volume. Hence, the plaquette flux operators in 3D are linearly dependent [34, 36].

tors Wp is constrained to be 1, ∏
p∈vol

Wp = 1. (2.36)

The appearance of such volumes is visualized in Fig. 2.6 for the example of the
(10,3)b (hyperhoneycomb) lattice. The volume constraint arises by construction
of the plaquette flux operators, but possesses an intuitive physical picture, which
is explained in the discussion of the elementary excitations of the gauge field
(Sec. 2.2.5). In particular, the volume constraint becomes of tremendous signifi-
cance for the emergent Z2 plaquette flux ground state in the (8,3)c Kitaev model,
which is extensively discussed in Chapter 4.

All 3D lattice systems that are considered in this thesis possess N/2 linearly
independent plaquette flux operators per unit cell, N being the number of sites per
unit cell.

2.2.3 Applicability of Lieb’s theorem

We have seen that Lieb’s theorem is (i) only applicable to bipartite lattice systems,
and (ii) among those only to lattice geometries which possess specific mirror sym-
metry conditions: The entire lattice system and its plaquettes must be invariant
under mirror symmetry, and the corresponding mirror planes must not cut through
any lattice sites. Among the 3D Kitaev systems, only (8,3)b and (8,3)n possess
mirror planes which fulfill this geometric condition (Fig. 2.7). In the latter case,
this is, moreover, only true for seven of the eight elementary plaquettes.
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Figure 2.7: Geometric condition for Lieb’s theorem [36]. (8,3)b is the only elementary, tricoordi-
nated 3D lattice that possesses a global mirror symmetry for which the mirror plane (green) does
not cut through any lattice vertices. Two other mirror planes are obtained by 120-degree rotations
around the z-axis (blue).

For this reason, there is no strict mathematical argument to predict the ground
state flux sectors for the other lattice systems. In Ref. [36], Lieb’s theorem is
therefore only considered as a guideline. All lattice systems with elementary pla-
quette length |p| = 8 are assumed to have flux operator eigenvalues Wp = −1
in the ground state (with the only exception of (8,3)c, where a specific volume
constraint has to be taken into account). The lattice systems with |p| = 10 are
supposed to have an energy minimum if Wp = 1 for all plaquettes p. These as-
sumptions are backed by showing that the predicted flux configurations preserve
the lattice symmetries, and by explicit calculations on periodic flux configurations
with small unit cells. We verify the correctness of these ground state flux config-
urations with results from quantum Monte Carlo simulations (Chapter 4).

2.2.4 Majorana band structures
The classification of 3D Kitaev models in Ref. [36] generalizes earlier works on
the hyperhoneycomb [34, 48] and hyperoctagon lattice [35]. It shows that all 3D
Kitaev systems – except (8,3)n – possess a gapless Z2 spin liquid ground state
for isotropic coupling parameters, and gapped phases beyond a finite-parameter
region with small anisotropy. In these systems, the itinerant Majorana fermions
form different kinds of (semi)metals, the band structures of which possess distinct
topological features, such as (Majorana) Fermi surfaces, nodal lines and Weyl
nodes. The occurrence of these topological features depends on the underlying
lattice geometry, and, more specifically, its fundamental symmetries. The lat-
ter result has been extracted from an analysis of the projective time-reversal and
inversion symmetries for all lattices. Also, it is shown how these topological fea-
tures evolve if a time-reversal symmetry breaking term is added to the Kitaev
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(a) (10,3)a, Fermi surfaces (b) (10,3)b, nodal line

Figure 2.8: Nodal structures of the Majorana metals in (10,3)a and (10,3)b. In (10,3)a, the combi-
nation of a nontrivial sublattice symmetry and the lack of inversion symmetry leads to the existence
of Weyl points at finite energy, which are encapsuled by topological Fermi surfaces. The nodal
line in (10,3)b emerges due to a trivial sublattice symmetry [36].

Hamiltonian. Furthermore, the vison gaps ∆ are presented for each system.
The results for the Majorana (semi)metals from Ref. [36] are summarized for

the different 3D Kitaev systems, with and without broken time-reversal symmetry,
in Tab. 2.1. We have also reproduced the calculation of the Fermi surface for
(10,3)a, Fig. 2.8 a, and the nodal line for (10,3)b, Fig. 2.8 b.

The analysis of projective symmetries shows that the occurrence of the topo-
logical features in the Majorana band structures can be related to the interplay
between (non)trivial sublattice symmetry, time-reversal and inversion symmetry.
A short summary of the argumentation is given in the following.

The Kitaev Hamiltonian H(k) is always particle-hole-symmetric, which is a
consequence of the description in terms of Majorana operators c with c† = c.
In addition, all the considered elementary 3D lattices except (9,3)a are bipartite,
i.e., they possess a sublattice symmetry. The distinction between a trivial and a
non-trivial sublattice symmetry amounts to the question if the sublattices have
the same translation vectors as the full lattice or not. If not, the two sublattices
are connected by the translation vectors, and a non-vanishing reciprocal lattice
vector k0 has to be considered when applying the unitary sublattice transformation
matrix USLS toH(k) ,

H(k) = −USLS H(k + k0) U−1
SLS. (2.37)

The vector k0 also shifts the band structure as

ε(k) = −ε(k + k0). (2.38)
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For the implementation of the time-reversal symmetry operation T and the inver-
sion symmetry operation UI , the sublattice transformation, Eq. (2.37), has an im-
portant consequence: Both these operations have to be supplemented by a gauge
transformation, in order to keep the Z2 gauge sector of the Hamiltonian fixed. We
can make this clear at the example of the time-reversal symmetry transformation.
On spin operators, the time-reversal operator T acts as

Tσγi T
−1 = −σγi , (2.39)

thus, a naive transformation into the Majorana language yields TcjT−1 = cj ,
respectively TbjT−1 = bj . Unfortunately, this would imply that T flips the Z2

gauge field, T ûjkT−1 = −ûjk. This, however, can be remedied by introducing a
gauge-transformed version T̃ of the time-reversal operation [36] ,

T̃ cjT̃
−1 = µcj,

T̃ bjT̃
−1 = µbj, (2.40)

where µ = 1 if site j is in sublattice A, and µ = −1 is site j is in sublattice B.
Thus, for the time-reversal operation, the gauge transformation is simply provided
by the sublattice transformation USLS. In consequence, this means that also the
time-reversal symmetry operation relates points k to −k + k0 (instead of k →
−k).

For the inversion symmetry operation, the exact form of the gauge transforma-
tion depends on the details of the lattice and the flux configuration, and, in general,
relates the points k to −k + k̃0, where k̃0 is either half a reciprocal lattice vector
or zero.

As it turns out, it follows from these projective symmetries which topolog-
ical structure the gapless points ε(k) = 0 assume in the Majorana band struc-
ture, namely if they exist as isolated Weyl points, one-dimensional lines or two-
dimensional surfaces. Concretely, it has been shown that [36]

• the lattice systems (10,3)b, (10,3)c and (8,3)c, which all possess a trivial
sublattice and projective time-reversal symmetry, exhibit nodal lines.

• from the lattices with a nontrivial sublattice symmetry, (8,3)b is the only
one which is also inversion-symmetric. This combination of symmetries
determines the emergence of isolated Weyl points, which are constrained to
lie exactly at the Fermi energy.

• in contrast, for (10,3)a and (8,3)a, which possess a nontrivial sublattice sym-
metry, but no inversion symmetry, the Weyl nodes are shifted to finite en-
ergy, where they are enclosed by Fermi surfaces – which are topologically
protected by the existence of the Weyl points.
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(a) Point-like visons (2D) (b) Vison loop (3D)

Figure 2.9: Vison excitations in two and three spatial dimensions. On 2D lattices, flipping the Z2

gauge variable on a single bond creates a pair of point-like vison excitations (a). In 3D, flipping
a bond creates a loop-like excitation (b) – here shown for (8,3)b – which is a consequence of the
volume constraint on the loop operators [36].

In addition to these results for the unperturbed Kitaev systems, it is shown that
adding a magnetic field term, which breaks time-reversal symmetry, generically
preserves the gapless spin liquid, but might alter its topological structure. While
Weyl nodes and Fermi surfaces remain principally intact upon TR breaking, al-
though the Fermi surfaces are usually deformed and the Weyl nodes moved in
k-space, the nodal lines either gap out to a finite number of isolated Weyl points –
which is the case on the (10,3)b lattice – or vanish in favor of a topological Fermi
surface structure – which is the case for the inversion-symmetric (10,3)c lattice.

The (10,3)d lattice is the only system considered here that is not treated in
Ref. [36], but in a separate study on 3D Kitaev systems with non-symmorphic
symmetries [93]. In this lattice, the latter appear as a glide mirror symmetry,
which keeps the nodal line structure of the isotropic ground state fixed, even if a
magnetic field perturbation is applied.

The outlined lattice symmetries also have influence on the occurence of ther-
modynamic signatures, which is discussed in Appendix C.

2.2.5 Z2 flux excitations

We have seen that the Majorana excitations are, in general, gapless for 3D Ki-
taev systems with isotropic coupling parameters. In contrast with that, the vison
excitations of the Z2 gauge field are always gapped, which is a generic feature of
lattice Z2 gauge theories. The visons are plaquette flux excitations that are created
by flipping Z2 gauge variables uij . As it turns out, their nature strongly depends
on the dimensionality of the underlying lattice.

In two spatial dimensions (e.g. on the honeycomb lattice), flipping a Z2 gauge
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variable creates a pair of Z2 plaquette flux excitations on the adjacent bonds.
These vison excitations are point-like. It is not possible to create a single vison,
except on lattice systems with an open boundary, if the Z2 gauge variable on an
edge bond is flipped. Of course, a pair of visons can be separated from each other
by subsequent bond flips.

Contrasting with two dimensional systems, we have seen that the elementary
plaquettes in 3D lattices are characterized by volume constraints. If a number
of plaquettes forms the boundary of a closed volume, the product of their loop
operators is restricted to

∏
pWp = 1. Due to this volume constraint, the flip of

a single Z2 gauge variable changes the flux on all the surrounding plaquettes of
the bond, which always results in a closed, loop-like vison excitation. Thus, we
can think of the volume constraint as putting a divergence-free condition on the
(magnetic) visons: Whenever a flux enters a closed volume by one plaquette, it
has to leave through another. There are no magnetic monopoles allowed in the Z2

gauge field of the Kitaev systems.
The different nature of the Z2 gauge excitations in two and three spatial dimen-

sions determines an entirely different thermodynamic behaviour of these systems
at low temperatures.

2.2.6 Thermodynamics
Another breakthrough for the understanding of Kitaev models has been reached in
2014, when the publication of a numerical finite-temperature study for the Kitaev
hyperhoneycomb model [44] has initialized a number of similar works on 3D
[45] and 2D lattice systems [46, 47]. All these numerical works have been built
on the development of a sign-problem-free quantum Monte Carlo method [44],
which allows for unbiased, large-scale studies of real space Kitaev models. This
technique is also the foundation for the studies presented in this thesis.

Before the thermodynamic behavior of the Kitaev hyperhoneycomb model
was known, it had been widely believed that the quantum spin liquid could not
exist as a stable phase at temperatures T > 0. Based on the understanding of the
quantum spin liquid as a state that is predominantly characterized by the absence
of long-range order, it was expected that there would always exist an adiabatic
connection of this state to the paramagnetic phase, as is the case for other liquid-
gas transitions. Accordingly, many experimental approaches to identify quantum
spin liquids had been focused on probing the absence of a phase transition [44].

At the example of the Kitaev hyperhoneycomb model, this general belief has
been proven wrong by verifying the existence of a low-temperature phase transi-
tion [44, 97]. At T ∼ J/100, the system undergoes an inverted Ising transition
[50, 55], which is accompanied by the ordering of Z2 fluxes. This phase tran-
sition manifests itself in one of two characteristic peaks in the specific heat Cv,
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which shows a diverging behavior in the thermodynamic limit. A second peak at
T ∼ J , on the other hand, is insensitive to the system size, and indicates a thermal
crossover. The latter is identified as the signature for the fractionalization of spins,
which occurs at this temperature scale, and which manifests itself in the fact that
the kinetic energy of the (itinerant) Majorana fermions – a quantity equivalent to
the spin correlator Szz – assumes a finite plateau value here.

In Ref. [44], the occurrence of the low-temperature phase transition is proven
for the full range of (an)isotropies in the bond coupling parameters Jγ , which
shows that there is no adiabatic connection between the quantum spin liquid state
and the paramagnetic phase. Moreover, it is shown that the value for the critical
temperature Tc is the largest at the isotropic coupling point, which signifies that
the quantum spin liquid phase is stabilized by the exchange frustration. The study
further supports a conceptual understanding of the phase transition mechanism
which has formerly been discussed in Ref. [81] and is explained in the following.

Deconfinement-confinement transition

As an inverted Ising transition, the phase transition in the Kitaev hyperhoneycomb
model lacks a local order parameter [50], and, in this sense, deviates from the
conventional Ginzburg-Landau paradigm [13–15]. Instead, it can be explained as
a deconfinement-confinement transition in terms of the loop-like vison excitations
in 3D Kitaev systems [50, 51]. In this picture, the deconfined phase is destabilized
by destructive interference of the itinerant Majorana fermions, when the latter
encircle the magnetic flux excitations and thereby pick up a phase π. In three
spatial dimensions, this only happens with a non-vanishing probability if the loop-
like flux excitations have an extension comparable to the system size. The creation
of such extended loop excitations, however, requires an amount of energy which
is proportional to the loop length L and a temperature-dependent loop tension
(energy per length) τ(T ). This quantity can be written in the form [81]

τ(T ) = τ(T = 0) + δτ(T ), (2.41)

where the zero-temperature loop tension τ(T = 0) is presumably a function of
the vison gap ∆, and the finite-temperature contribution δτ(T ) is caused by effec-
tive flux interactions, which are mediated by the Majorana fermions. Thus, in the
thermodynamic limit, the energy required for the creation of macroscopic loops
diverges as E ∝ L, implying a vanishing density of such loops. However, con-
figurations with extended loops also come with a large entropy S, so the relevant
quantity to estimate the probability for the creation of extended loops at finite tem-
peratures is given by an effective loop tension (free energy per length) τ̃ , which
contains an additional term that depends on the entropy per length s [81],

τ̃(T ) = τ(T )− sT. (2.42)
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For large vison loops, the entropy per length s is expected to be a constant, which
is roughly estimated by the logarithm of the coordination number cd of the dual
lattice (lattice of plaquette fluxes), s ∼ log (cd). Therefore, the effective loop
tension τ̃(T ) is renormalized to lower values when T is increased, and expected
to become negative at a critical temperature Tc. Thus, at Tc, the free energy F
is lowered by the proliferation of macroscopic loops through the effective loop
tension τ̃ . With the picture of destructive interference that is given above, the
proliferating system-spanning vison loops at T > Tc then constitute a confining
potential for the itinerant Majorana fermions, and destroy the quantum spin liquid
phase.

Going back to the point of view of lattice Z2 gauge theory, we can interpret
the vison loops also as domain boundaries of the Ising system which is defined
on the dual lattice of plaquette fluxes. In this picture, we can see why the low-
temperature and high-temperature phases are inverted with respect to the conven-
tional 3D Ising model. Here, the phase with system-spanning domain walls (vison
loops) is the high-temperature phase, while in the Ising model, system-spanning
domain walls are characteristic for the (ferromagnetic) low-temperature phase.
Thus, the transition between two “loop regimes” confirms the general understand-
ing of inverted Ising transitions (Sec. 1.1.2).

It is outlined in Ref. [44] that this, in some sense, non-conventional phase
transition mechanism also corresponds to a prediction from mean-field approxi-
mation results for three-dimensional Z2 quantum spin liquids that have formerly
been presented in Refs. [16, 26]. The occurrence of the thermal phase transition
has also been verified in another 3D Kitaev system on the hyperoctagon lattice
[45], and a comparison of the critical temperatures Tc and vison gaps ∆ for these
systems suggest a correlation between both quantities, which is expected from the
described mechanism. Quantum Monte Carlo results for a family of elementary
3D Kitaev systems verify this correlation (Chapter 4).

Thermal crossover in 2D Kitaev systems

A similar quantum Monte Carlo study on Kitaev’s original honeycomb model
[46] has shown that, in this two-dimensional model, no thermal phase transition
occurs. On the one hand, the specific heat curve Cv also shows a double peak
structure for this system, and the thermal crossover at T ∼ J still indicates the
temperature scale of spin fractionalization (Fig. 2.10). On the other hand, the low-
temperature peak, which displays the temperature scale of gauge ordering, is now
also insensitive to the system size.

This thermodynamic behavior can be explained with the same arguments that
are given above for the 3D phase transition. There, the creation of extended vi-
son loops is necessary to cause destructive interference of the Majorana fermions,

53



Chapter 2. Kitaev Model

2D

(a) Specific heat Cv (b) Spin correlator Szz

Figure 2.10: Specific heat Cv and spin correlator Szz for the Kitaev honeycomb model. The
specific heat plot (a) shows a two-peak structure, which is characteristic for all Kitaev systems.
In 2D, both peaks show no divergence for increased system sizes, and therefore indicate thermal
crossovers. The high-temperature peak at T ′ is a signature of spin fractionalization, which is
indicated by the spin correlator Szz assuming a finite low-T value (b). The low-temperature peak
at T ∗ is associated with the proliferation of point-like Z2 flux excitations, which, in contrast to the
flux ordering in 3D systems, is an entirely local phenomenon [46, 69].

which requires an energy that scales with the loop length L. Therefore, a van-
ishing density of extended loops is expected at low temperatures T < Tc, before
the effective loop tension τ̃ assumes negative values as an effect of entropy. In
2D, on the other hand, the creation of point-like visons suffices to destabilize the
deconfined phase, and comes with a constant energy cost ∆. Therefore, a finite
density of point-like visons exists at any temperature T > 0 [81]. In this scenario,
the gauge-ordering transition is an entirely local phenomenon, which constitutes
a smooth crossover at a temperature T ∗.

An exception from this paradigm is realized for two-dimensional Kitaev sys-
tems where the ground state is protected by the spontaneous breaking of time-
reversal symmetry. This is the case for the Kitaev model defined on the non-
bipartite decorated honeycomb lattice (Yao-Kivelson model) [30]. In another
QMC study, it has been shown that here, the Z2 gauge ordering is accompanied
by a thermal phase transition [47].

2.3 Chiral Kitaev spin liquids

We have seen that Kitaev models in two and three spatial dimensions host Z2 spin
liquids with both gapless and gapped Majorana fermions. A particular class of
spin liquids, which is likewise realized in certain Kitaev systems, is character-
ized by a broken time-reversal symmetry, and may, under certain circumstances,
host topologically non-trivial phases. In such a topological regime, the bulk band
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structure is gapped, but, at the same time, the system possesses gapless boundary
modes, which cannot be destroyed by any continuous deformation of the Hamil-
tonian that leaves the bulk gap open [98]. The existence of such boundary modes
manifests itself in a finite value of the Chern number ν (Sec. 5.1.4). Here and
in the following, we denote this particular topological phase, which is the spin
version of a Chern insulator [99], as a chiral spin liquid, and add the remark that
in another broadly used nomenclature, this term is assigned to the class of spin
liquids with broken time-reversal symmetry as a whole [1, 2, 9, 10, 21, 100–102].

We consider a conjugate-linear time-reversal operator T with T 2 = −1. There
are, in principal, two different ways to construct Kitaev systems with broken T -
symmetry. Since the Kitaev Hamiltonian HKitaev is, per se, always time-reversal
symmetric, the first way is to add an extra term toHKitaev which does not commute
with T . In the simplest version, the latter can be realized by a magnetic field. This
way, Kitaev systems on bipartite lattice geometries, which belong to symmetry
class BDI, are moved to class D [103].

An alternative scenario for broken T -symmetry without an external magnetic
field is realized on non-bipartite lattice systems. Here, we have seen that the
elementary lattice plaquettes have odd length |p|, and the corresponding loop
operators Wp = ±i are connected by the time-reversal operator T due to the
complex conjugation inherent in T . While the Kitaev Hamiltonian itself remains
T -symmetric on these systems, their flux ground state breaks T -symmetry spon-
taneously by selecting one of the two fluxes for the entire plaquette set. Therefore,
these systems also belong to symmetry class D.

From the classification tables in Refs. [103, 104], we know that symmetry
class D allows for the existence of a non-trivial topological phase in two spatial
dimensions, but not in three. Hence, it is expected to find chiral spin liquids either
in 2D Kitaev systems on bipartite lattices with a magnetic field, or on non-bipartite
lattice systems. Since non-bipartite Kitaev systems in 2D are rather scarce, a third
option is provided by generalizing the Kitaev model to arbitrary lattice geome-
tries, which possess an odd coordination number. Such a generalization can be
realized by replacing the spin operators σγi with higher-dimensional Gamma ma-
trices Γγi . As it turns out, such models can be likewise solved by a Majorana
ansatz, and treated with the same quantum Monte Carlo method as the original,
three-coordinated Kitaev model.

In the following, we take a closer look at those different ways to realize chiral
spin liquids.

2.3.1 Applying a magnetic field
In the discussion of the classification of three-dimensional Kitaev systems [36],
we have seen that the time-reversal symmetry operation on bipartite lattices has to
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(a) (b)

Figure 2.11: Two different kinds of three-spin interactions σxj σ
y
kσ

z
l arise when the Kitaev honey-

comb model is perturbed by a weak magnetic field [27].

be supplemented by a sublattice transformation, T → T̃ , in order to achieve gauge
invariance, Eq. (2.40). There, we have also seen that the gapless spin liquids in 3D
Kitaev models are generically not destroyed if a time-reversal symmetry breaking
term is added to the Hamiltonian. However, the situation is different for the two-
dimensional Kitaev honeycomb model [27]. Here, it is shown that, if a weak
magnetic field is applied along the 111 direction, the Dirac cone singularities in
the Majorana band structure gap out into a massive chiral spin liquid phase, which
possesses non-Abelian anyonic excitations.

As a matter of fact, with an arbitrary magnetic field term V = −∑j(hxσ
x
j +

hyσ
y
j + hzσ

z
j ), the Kitaev Hamiltonian loses its exact solvability, since the Z2

gauge field becomes dynamic in this case. However, it is possible to treat the
magnetic field h perturbatively, if it is kept smaller than the excitation energy of
the visons, h < ∆. In this case, the third-order perturbation term is the first term
to break time-reversal symmetry. It introduces a three-spin interaction [27]

H(3)
eff ∼ −

hxhyhz
J2

∑
j,k,l

σxj σ
y
kσ

z
l , (2.43)

from which it directly follows that T̃H(3)
eff T̃

−1 = −H(3)
eff . There are two different

versions of the three-spin interaction, which are shown in Fig. 2.11. In the Majo-
rana language, the first variant (a) transforms to a next-nearest neighbor Majorana
interaction, which is mediated by the Z2 gauge field on the two bonds that connect
the Majoranas [27],

σxj σ
y
kσ

z
l = −iDlûjlûklcjck. (2.44)

The second variant (b), on the other hand, transforms into a four-fermion interac-
tion term, which does not alter the energy spectrum and can be ignored [27].

It is shown in Ref. [27] that the magnetic field terms converts the tight-binding
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Figure 2.12: Yao-Kivelson model. The two possible plaquette fluxesWt = ±i on the triangles are
connected by time-reversal symmetry, and the ground state spontaneously breaks TR-symmetry
by selecting either of the two fluxes for all plaquettes [30, 47].

matrix iAk in Eq. (2.24) into [27]

iÃk =

(
∆(k) if(k)
−if(k)∗ −∆(k)

)
, (2.45)

with

∆(k) = 4
hxhyhz
J2

(sin(k,n1) + sin(k,−n2) + sin(k,n1 − n2)) . (2.46)

In particular, this leads to an energy gap ∆ ∼ (hxhyhz)/J
2 at the positions of

the Dirac cones K, K ′.
The gapped ground state possesses a nonzero Chern number ν = ±1, which

corresponds to left- (right-) moving gapless edge modes for systems with open
boundary conditions. In Ref. [27], it is also shown that the gapped fermionic bulk
excitations behave as non-Abelian anyons.

2.3.2 Yao-Kivelson model
Spontaneous breaking of time-reversal symmetry requires the definition of the
Kitaev model on a non-bipartite lattice geometry. In two spatial dimensions, such
a geometry can be obtained by taking a honeycomb lattice and replacing the sites
with triangles (Fig. 2.12). The “triangle” or “decorated” honeycomb lattice has
first been mentioned as a possible stage for a chiral spin liquid ground state in a
side remark in Kitaev’s original paper [27], and has been studied in detail one year
later by Yao and Kivelson [30]. Afterwards, the model has also become known
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by the name Yao-Kivelson model. Yao and Kivelson use the coupling parameters
Jx = Jy = Jz = J (J ′x = J ′y = J ′z = J ′) on the bonds within (between) the
triangles, and map out the ground state phase diagram for the Kitaev system as a
function of the coupling ratio α = J ′/J . Here, it is seen that the system possesses
two topologically distinct ground state phases, which are separated by a quantum
critical point αc =

√
3. A chiral spin liquid phase, characterized by a finite Chern

number ν = ±1 is realized for α < αc. Here, the existence of a gapless edge state
corresponds to the non-vanishing Chern number, and the anyon excitations in the
system obey non-Abelian statistics. It is not possible to destroy the gapless edge
state unless the bulk gap is closed, which is what happens at the quantum critical
point. For α > αc, the system enters a topologically trivial ground state phase,
with ν = 0, and without gapless edge modes. In this phase, the excitations are
Abelian anyons.

In another study of the system in question, Nasu and Motome elucidate how
the ground state phase diagram translates into the realm of finite temperatures
[47]. With quantum Monte Carlo simulations, they show that, in contrast to the 2D
Kitaev honeycomb model, the Yao-Kivelson model undergoes a low-temperature
thermal phase transition for all values of α. This thermal phase transition is ac-
companied by the spontaneous breaking of time-reversal symmetry, which can be
measured in terms of the chirality κ = 1

Nt

∑
tWt, where Wt = ±i denotes the

flux operator eigenvalue for the triangular lattice plaquettes, and Nt is the number
of triangles in the lattice. Below Tc, the mean square of the chirality assumes a
finite value 〈κ2〉 = 1 for both quantum regimes. Thus, the phase transition is
again related with flux ordering. However, it is also shown that the nature of the
thermal phase transition differs, depending on whether α belongs to the chiral or
the trivial ground state regime. In the chiral regime α < αc, the phase transition
is first-order, and it becomes second-order in the trivial regime. This result, which
is obtained from analyzing energy histograms, has been further corroborated by
comparing a finite-temperature version of the Chern number ν(T ) and the thermal
Hall conductivity κab(T ) for both quantum regimes. While both quantities remain
strictly zero for all temperatures in the trivial phase, they obtain finite ground state
values in the non-trivial regime. The critical temperature Tc changes continuously
as a function of the coupling anisotropy.

In addition to these results, the thermal phase diagram of the system shows
various thermal crossovers, which, again, depend on the topological phase. In the
trivial phase, the thermal crossover associated with spin fractionalization and the
thermal phase transition are accompanied by another crossover at intermediate
temperatures, which corresponds to the classical ordering of the length-12 pla-
quette fluxes. In the chiral phase, the system also shows three transitions. While
again, the thermal phase transition at lowest temperatures is explained by the spon-
taneous breaking of T -symmetry, the occurrence of two thermal crossovers at
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Figure 2.13: Shastry-Sutherland lattice [82, 83, 105]. On this five-coordinated lattice, a general-
ized version of the Kitaev model can be defined, where anticommuting 4 × 4 Γ-matrices on the
lattice sites represent spin- 32 degrees of freedom. We introduce staggered coupling constants on
the horizontal and vertical bonds. The blue bonds carry a coupling Jz , all (red and green) dashed
bonds have a coupling J0 − δJ , and all solid bonds a coupling J0 + δJ . For a suitable choice of
parameters, this model is shown to possess a topologically non-trivial ground state.

higher temperatures requires here a more subtle explanation in terms of subse-
quent levels of spin fractionalization. The original spins σi are first fractionalized
into pseudospins τ and triangular plaquette fluxes Wt, before the pseudospins τ
further decompose into two Majorana fermions [47].

2.3.3 Generalized Kitaev models

Another realization of a topologically non-trivial quantum spin liquid can be ob-
tained by generalizing the Kitaev model to lattice geometries with a higher coor-
dination number c. For c = 5, we can define such a generalization for the Shastry-
Sutherland lattice [82, 83] (Fig. 2.13). This lattice is best known as the host for the
orthogonal dimer model, which has been solved by Shastry and Sutherland [105]
and serves as an effective low-temperature model for the transition-metal oxide
SrCu2(BO3)2.

A well-defined generalization of the Kitaev model for lattices with an arbitrary
odd coordination number c = 2n − 1 can be formulated in terms of Γ-matrices
[82, 83]. The latter satisfy the anticommutation relation {Γj,Γk} = 2δjk, and
therefore define a Clifford algebra. In fact, the Pauli matrices σγi , which represent
the spins in the Kitaev model, are only a special case of these Γ-matrices. In the
generalized version, the Hamiltonian reads

HKitaev = −
∑
〈j,k〉γ

JγΓγjΓ
γ
k, (2.47)
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Chapter 2. Kitaev Model

where the index γ again labels the bond direction. On the Shastry-Sutherland
lattice, the coordination number is c = 5, γ = 1, . . . , 5, and the Γ-matrices can be
expressed by the 4× 4 anticommutating matrices [83]

Γ1 = τx ⊗ I,
Γ2 = τ y ⊗ I,
Γ3 = τ z ⊗ σx,
Γ4 = τ z ⊗ σy,
Γ5 = τ z ⊗ σz. (2.48)

Physically, the Γ-matrices can be interpreted as either j = 3
2

spins or two coupled
spin-1

2
degrees of freedom, such as spin and orbital degrees of freedom, which

are situated on the lattice sites. In close analogy to the spin-1
2

model, the Γγ can
be replaced on each site i by c + 1 = 6 Majorana fermion operators ci and {bγi }
according to

Γγi = ibγi ci, (2.49)

where the Majorana operators are the same as in the standard case, and, in partic-
ular, fulfill the (anti)commutation relations in Eq. 2.3. We again face the issue that
the Majorana operators artificially expand the Hilbert space and therefore have to
be supplemented by a gauge transformation

Λi = icib
1
i b

2
i . . . b

c=5
i , (2.50)

which defines the physical subsector as the set of states |ψ〉 for which

Λ |ψ〉 = λ |ψ〉 , (2.51)

with λ = in−1 = i2 = −1.
In analogy to the solution of the Kitaev model, the Majorana operators {bi}

are recombined to bond operators ûjk = ibγj b
γ
k , which commute with the Hamilto-

nian, possess eigenvalues ujk = ±1, and can be interpreted as a (static) Z2 gauge
field, to which the non-interacting, itinerant Majorana fermions {ci} are coupled.
Therefore, the Majorana Hamiltonian in a fixed Z2 gauge configuration {ujk} is
again given by

HKitaev =
1

4

∑
j,k

iAjkcjck,

Ajk = 2Jγuγjk, (2.52)

and the solution for a fixed gauge sector is the same as before.
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2.3. Chiral Kitaev spin liquids

Figure 2.14: Ground state phase diagram of the Kitaev Shastry-Sutherland model with staggered
couplings [83]. Fixing the diagonal coupling at Jz = 1, we obtain a ground state phase diagram
with two chiral spin liquid regimes by varying the parameters J0, δJ (with phase transitions at
Jc = 1/(2

√
2)). In addition, a second order spin liquid phase is realized if both parameters J0, δJ

are larger than Jc.

The Shastry-Sutherland lattice is non-bipartite, which implies elementary pla-
quettes with an odd length. Since it is a square lattice, where a diagonal bond is
added to every second square plaquette, there are two types of elementary plaque-
ttes, namely triangles and squares. Although Lieb’s theorem is not applicable on
non-bipartite lattices, the flux ground state is expected to be Ws = −1 (π-fluxes)
on all squares, and either Wt = +i or −i on all triangles, which we confirm with
QMC simulations. Since the sign of Wt depends on the direction in which the
product Wt =

∏
(−iujk) is taken, we use the convention to take the product with

clockwise orientation. Under the conjugate-linear time-reversal operation T , the
triangular plaquette flux operator obtains a sign,

TWtT
−1 = W ∗

t = −Wt. (2.53)

The flux ground state therefore breaks T -symmetry spontaneously by uniformly
selecting a±π/2 flux for all plaquettes. In combination with the lack of sublattice
symmetry and the particle-hole symmetry of the Majorana fermions, this sets the
symmetry class of the spin-3

2
Kitaev model to D, which, in two spatial dimensions,

allows for the occurrence of a topologically non-trivial ground state phase [103,
106].

Ground state phase diagram

A ground state phase diagram of the spin-3
2

Kitaev-Shastry-Sutherland model has
first been presented in Ref. [82], where the occurence of a chiral spin liquid phase
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Figure 2.15: Topological band structures of the Kitaev Shastry-Sutherland model [82, 83]. At
the quantum critical point Jz/J0 = Jc, the band structure of the system is gapless. Here, the
chiral spin liquid phase with a first-order topology, which exhibits edge modes, is separated from
the topologically trivial ground state. If an additional staggering δJ is added to the coupling
parameters, the system also possesses a ground state phase with a second-order topology, showing
gapless corner modes.

is verified. However, a later study on the model shows that this is not the end of
the story with respect to topological phases [83]. As a matter of fact, the Shastry-
Sutherland lattice possesses additional lattice symmetries in the form of mirror
symmetries, where the mirror lines are straight lines through the diagonal bonds.
Due to this lattice symmetry, the Kitaev Hamiltonian anticommutes with the mir-
ror operators [83]

M11 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1

 , M11 =


−1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (2.54)

In symmetry class D, such higher-order lattice symmetries allow for the ex-
istence of an additional higher-order topological insulator phase [83, 107–110].
In this nomenclature, an n-th-order topological insulator (TI) is a d-dimensional
insulator which possesses topologically protected gapless modes only in d − n
dimensions. These gapless modes exist at the intersection of n boundary planes,
and the boundaries that have a codimension < n remain gapped [109–111]. In the

3The Majorana wavefunctions for the Kitaev Shastry-Sutherland model have been calculated
and plotted by Dr. Vatsal Dwivedi.
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case of our model, this translates to a second-order topological insulator (SOTI)
phase, whose characteristic features in two spatial dimensions are gapless corner
modes (see Fig. 2.15 a). We dub such a phase in a (generalized) Kitaev model a
second-order Kitaev spin liquid.

A suitable choice of bond couplings for the realization of both the chiral spin
liquid and SOTI phase is provided by staggered parameters Jx = Jy = J0 +
δJ and J ′x = J ′y = J0 − δJ for the vertical and horizontal bonds (Fig. 2.13),
which is inspired by the model in Ref. [110]. Here, δJ denotes the staggering
parameter, and Jz is the coupling on the diagonal bonds. With this choice for the
couplings, the ground state phase diagram for the system is shown in Fig. 2.14,
where the topological phases are drawn for the parameter space spanned up by
the ratios J0/Jz and δJ/Jz. The phase diagram contains four gapped ground
state phases, which are divided by a vertical line at the quantum critical points
J0 = Jc = ± Jz

2
√

2
, and a horizontal line at δJ = Jc = ± Jz

2
√

2
(see Fig. 2.15 b for

the gapless band structure at Jz/J0 = J−1
c ). For these parameters, the system is

gapless. Within the region J0 < Jc, δJ < Jc, we encounter a topologically trivial
ground state phase with Chern number ν = 0. For either J0 > Jc or δJ > 0, the
ground state is a chiral spin liquid (Chern insulator) with a non-vanishing Chern
number and a gapless edge mode. The second-order spin liquid phase is realized
for both J0 > Jc and δJ > Jc. Here, the Chern number is likewise ν = 0,
but the spectrum of the real space Hamiltonian for a system with open boundary
conditions shows four zero-energy states, which are situated at the corners of the
system (Fig. 2.15 a).

Based on these results for the ground state phase diagram, we study the ther-
modynamics of the spin-3

2
Kitaev-Shastry-Sutherland model with QMC simula-

tions. The results are presented in Chapter 5.

2.4 Experimental Realizations
In the final section of this chapter, we give a short overview of material realizations
for the Kitaev model. In particular, we discuss a physical mechanism for the
formation of j = 1/2 Mott insulators with bond-dependent interactions, which
is encountered in certain transition-metal oxides, and has first been presented in
2009 by Jackeli and Khaliullin [37].

2.4.1 Spin-orbit entangled Mott insulators
Transition metals are characterized by atoms with partially filled d-subshells. Ac-
cording to their number of filled energy levels, they are subdivided into 3d - 6d
transition metals. A mechanism for the formation of effective j = 1/2 Mott
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Figure 2.16: Spin-orbit entangled Mott insulators. The interplay of crystal-field effects, spin-orbit
coupling and strong electron correlations causes the formation of j = 1/2 Mott insulators in d5

electron configurations, which appear for example in certain iridates (Ir4+) and ruthenates (Ru3+)
[38].

insulators can be realized when certain materials of this class form compounds
with oxygen, the so-called transition-metal oxides [112]. In this case, the Mott
insulator formation can be understood as a consequence of the interplay between
crystal-field effects, spin-orbit coupling and electron correlations. This mecha-
nism in certain materials with d5 electronic configurations, such as a number of
iridates and ruthenates, may, under certain conditions, allow for the occurrence
of a dominant Kitaev exchange between the effective j = 1/2 magnetic moments.
The way this is realized is outlined in the following.

Mott insulator formation

The atomic structure of a number of 4d5 and 5d5 transition-metal oxides (such as
the 5d5-iridates with Ir4+ valence and the 4d5-ruthenates with Ru3+ valence) is
characterized by the localization of transition-metal ions in the centers of octahe-
dral cages of oxygen ions. In this case, the fivefold degeneracy of the d-subshell
is partially lifted by the (cubic) crystal electric field of the oxygen octahedra, and
the result is the transformation of the d-orbitals into three t2g-orbitals with lower
and two eg-orbitals with higher energy, with an energy difference of ∼ 3 eV.

The five electrons corresponding to the d5-configuration now occupy the t2g-
orbitals, and there, constitute an effective orbital moment l = −1, while the eg-
orbitals remain empty. In this setting, the l = −1 orbital moments couple with the
spins s = 1/2 of the electrons, and produce another degeneracy lifting, namely of
the (sixfold) degeneracy of the t2g-orbitals. These split up into two energy levels
with a (much smaller) difference of∼ 400 meV. The new energy levels correspond
to the effective magnetic moments j = l ± s: A lower-energy j = 3/2 quartet
state, and a higher-energy j = 1/2 doublet. The quartet state is then occupied by
four electrons, and the j = 1/2 doublet is filled with one electron.

Due to the relatively small bandwidth between the two j-levels, the Coulomb
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(a) Corner-sharing octahedra (b) Edge-sharing octahedra (c) Parallel edge-sharing octahedra

Figure 2.17: Orientations of neighbouring IrO6 octahedra and corresponding Ir-O-Ir exchange
paths. The single exchange path for corner-sharing octahedra leads to a dominant Heisenberg
coupling between neighbouring j = 1/2 moments (a), while the existence of two exchange paths
in edge-sharing configurations (b,c) causes a destructive interference of the Heisenberg exchange,
and allows for a dominant bond-directional Kitaev exchange [37, 38].

repulsion U between the electrons leads to the opening of a Mott gap and prevents
the double occupation of the j = 1/2 doublets with electrons from neighboring
ions. Thus, the system becomes effectively governed by the localized j = 1/2
magnetic moments of the holes at each iridium ion. Such a system is called a
Mott insulator [38]. The described mechanism which leads to its formation is
visually summarized in Fig. 2.16.

Bond-directional interactions

The occurrence of bond-directional interactions in such systems now depends on
the geometric configuration which the oxygen octahedra assume in the material,
and the corresponding emergence of superexchange paths for the hopping of holes
between the iridium ions. This hopping is realized via the oxygen ions [37, 113],
and, for the IrO6 octahedra that appear in a number of relevant iridates, there
are two qualitatively different situations (see Fig. 2.17): If the octahedra share a
corner (Fig. 2.17 a), there is only one Ir-O-Ir exchange path (180◦ bond) which
allows the holes to hop between the j = 1/2 doublets of neighboring ions. This
hopping between the j = 1/2 orbitals corresponds to a symmetric Heisenberg in-
teraction between the magnetic moments. This scenario is realized for perovskite
iridates like Sr2IrO4.

On the other hand, if two neighboring IrO6 octahedra share an edge (Fig. 2.17
b), the existence of two different Ir-O-Ir exchange paths (90◦ bonds) results in
the suppression of the symmetric exchanges between the j = 1/2 doublets by
destructive interference. The remaining, dominant exchange is a bond-directional,
ferromagnetic Ising interaction produced by the exchange between the j = 1/2
doublet of one iridium ion with the j = 3/2 multiplet at the neighboring ion
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(Hund’s coupling), which is described by a term

− 8t2JH
3U2

Sγ1S
γ
2 , (2.55)

with a hopping parameter t, a Hund’s coupling strength JH and the electronic
correlation strength U [38]. This process only couples the γ-components of the
magnetic moments for a bond in the αβ-plane (perpendicular to the γ-axis), and
therefore constitutes what we know as the Kitaev interaction. The reason for the
occurrence of this bond-directional coupling lies in the spatial orientation of the
t2g-orbitals, namely in the xy-, yz- and xz-direction [37, 113]. For each bond,
only two orbitals participate in the exchange process. These are for example the
dxz- and dyz-orbital of neighboring iridium ions, which are “active” in the xy-
plane and exchange holes via the pz-orbitals of the two adjacent oxygen ions.
In this example, the Hund’s coupling manifests itself in the interaction of the z-
components of the magnetic moments.

The same mechanism leads to the suppression of the Heisenberg exchange
and a dominant Kitaev interaction for materials with “parallel edge”-sharing oc-
tahedra (Fig. 2.17 c). Bond-directional interactions have been experimentally
verified for α-RuCl3, as well as the honeycomb iridates Na2IrO3 and α-Li2IrO3

[39, 114, 115]. The mechanism based on edge-sharing octahedra is also realized
in the hyperhoneycomb material β-Li2IrO3 and the stripy-honeycomb material
γ-Li2IrO3 [38], whereas the scenario of parallel edges can be found in so-called
triangular Kitaev materials (Ba3IrxTi3−xO9).

Kitaev-Heisenberg-Gamma model

In a realistic material, however, the interaction between j = 1/2 moments is never
purely Kitaev, and a full description of the system requires to consider a remaining
Heisenberg exchange, as well as an off-diagonal exchange of the orthogonal spin
components α, β⊥γ. A more realistic effective Hamiltonian for the considered
systems is therefore given by [115, 116]

H = −
∑
〈i,j〉γ

JHSiSj + JKS
γ
i S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j ), (2.56)

and, in the limit Γ = 0, reduces to the Kitaev-Honeycomb model [72].
The residual Heisenberg interaction poses a rather difficult obstacle for the

experimental hunt for quantum spin liquids in Kitaev materials, as it notoriously
causes magnetic long-range ordering at sufficiently low temperature scales. In
fact, magnetic ordering has been detected at temperatures below 7-15 K for the
QSL candidates α-RuCl3, Na2IrO3 and α-Li2IrO3 [39, 115], while the Kitaev
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Figure 2.18: Possible phase diagram for the Kitaev-Heisenberg model [69]. Although most Ki-
taev materials have been shown to possess a magnetically long-range ordered ground state due
to a residual Heisenberg coupling between the magnetic j = 1/2 moments, it is expected that a
proximate spin liquid phase exists above the ordering temperature, where the system is effectively
governed by fractionalized degrees of freedom.

exchange for another honeycomb iridate, H3LiIr2O6, has at least been shown to
remain dominant down to a temperature of 50 mK [117]. State-of-the-art ap-
proaches in the experimental search for spin liquids therefore aim on the further
suppression of the additional exchange terms by applying a magnetic field [118–
125], a route which has already led to the detection of the half-integer thermal
quantum Hall effect in α-RuCl3 [74, 75]. Another experimental ansatz is to focus
on the proximate spin liquid regime, which is expected to exist in Kitaev materials
above the long-range ordered phase, and to be effectively governed by the frac-
tionalized degrees of freedom [69]. In the phase diagram of the Kitaev-Heisenberg
model, such a proximate spin liquid is considered to be situated in the disordered
Z2 spin liquid phase in three-dimensional Kitaev systems, which might continue
to exist above the quantum regime of dominant Heisenberg interactions due to the
large configurational entropy arising from system-spanning visons (see Fig. 2.18).

2.4.2 Alternative realizations
Spin-orbit entangled Mott insulators in 4d5 and 5d5 transition-metal compounds
are by now, however, not the only route of research towards the realization of
Kitaev spin liquids. In recent years, there has been a number of proposals for
Kitaev materials that go beyond the mechanism proposed by Jackeli and Khal-
iullin. In one of these approaches, systematic ab-initio calculations for various
d- and f−electron have yielded possible compounds where the occurence of
j = 1/2 doublets with dominant Kitaev coupling due to interfering exchange
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paths is equally obtained. These systems include materials with high-spin d7 elec-
tron configurations (which contain Co2+- and Ni3+-ions) and f 1 configurations
(Pr4+), as well as systems with a polar asymmetry in the lattice structure [73].
Another approach aims at the formation of Kitaev honeycomb systems in certain
metal-organic frameworks (MOFs), which are also based on ruthenium (Ru3+),
or, alternatively, osmium (Os3+) [126]. Here, it is expected that the physical
mechanism which determines the bond-directional interaction includes a stronger
suppression of the direct exchange, and could therefore realize a Kitaev material
that does not suffer from long-range ordering at very low temperatures.

2.5 Summary
The Kitaev model defines an exactly solvable quantum spin liquid, which can
be described in terms of (itinerant) Majorana fermions coupled to an emergent
(static) Z2 gauge field. A gauge-invariant quantity is given by the magnetic Z2

flux through the lattice plaquettes. Originally introduced on the two-dimensional
honeycomb lattice, the definition of the Kitaev model can be extended to any tri-
coordinated lattice system in two or three spatial dimensions. In addition, there
is a generalized version of the model for lattices with higher (odd) coordination
numbers. The spin liquid ground state in Kitaev models usually possesses gapless
and gapped Majorana phases. In 3D lattice systems, the gapless Z2 spin liquids
form a variety of different Majorana (semi)metals, and the spin liquid ground state
is stable up to finite temperatures, where it is typically separated from the (con-
fined) high-temperature phase by an inverted Ising phase transition. This phase
transition is described in terms of the proliferation of system-spanning Z2 flux ex-
citations (visons). In two spatial dimensions, on the other hand, a phase transition
is only realized on non-bipartite lattice systems, where the Z2 fluxes are imagi-
nary, and their ground state spontaneously breaks time-reversal symmetry. Such
2D systems can be shown to host topological ground states. A number of j = 1/2
Mott insulating materials, such as certain transition-metal oxides, allow for the
occurrence of dominant Kitaev interactions between the magnetic moments and
are possible candidates for the realization of Kitaev spin liquids.
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Quantum Monte Carlo simulations
of Kitaev systems

In this chapter, we present the quantum Monte Carlo method which is applied in
this work. After giving a brief overview of a number of frequently used numer-
ical techniques for studying quantum many-body systems, we review the basics
of classical Monte Carlo methods in statistical physics [127, 128]. The emphasis
here is on the well-known Metropolis algorithm [129]. Afterwards, we outline
the application of Monte Carlo methods to quantum systems – a task which, in
the first place, relies on finding an appropriate quantum-to-classical mapping of
the corresponding partition function [130–138]. We then discuss the analytical
and numerical details of our Monte Carlo approach. Based on a similar Monte-
Carlo method developed for double-exchange models [139–142], this method has
been presented in 2014 by Nasu and Motome [44], and, subsequently, been used
to study a number of Kitaev models in two and three spatial dimensions [45–
47, 90, 143]. While the original method is based on a (non-local) Jordan-Wigner
transformation [76–79] to represent the system in its Majorana basis, the simula-
tions here make use of Kitaev’s original, local transformation approach [27]. The
problem of the artificial Hilbert space extension, which arises in this approach
[27, 144, 145], is discussed in detail. Following that, we introduce the Green’s-
function-based Kernel Polynomial Method (GF-KPM) [45, 146, 147]. We use this
method to significantly reduce the computation time in the Monte Carlo sampling,
and to enable us to study large systems. In the final section of this chapter, we dis-
cuss the data analysis and extrapolation methods used to post-process the quan-
tum Monte Carlo results. These comprise the binning analysis used to treat auto-
correlation effects in statistical errors, and the Ferrenberg-Swendsen reweighting
method with multiple histograms [148–150] for data extrapolation.

The general presentation of classical and quantum Monte Carlo methods, as
well as data analysis, is based in particular on a number of well-known textbooks
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on the matter [127, 128, 134]. The more specific part on Monte Carlo methods
for Kitaev systems relies on Refs. [44, 46, 144, 145], and the presentation of the
Green’s-function-based Kernel Polynomial method on Refs. [45, 146, 147].

3.1 Numerics for quantum many-body systems
The most straightforward technique to address systems of quantum spins is, ar-
guably, the exact diagonalization method (ED) [151]. It is applicable for discrete,
finite quantum systems. We consider a many-body system with a single parti-
cle basis of dimension d. In the ED method, the Hamiltonian H is directly ap-
plied to the dN basis states |ψi〉 to compute the Hamiltonian matrix 〈ψi|H |ψj〉
(i, j ∈ {1, . . . dN}). The Hamiltonian matrix is then diagonalized. Its eigenvalues
{εi} are the energy levels of the system, and the partition function can be calcu-
lated from those eigenvalues as Z =

∑dN

i=1 e
−βεi , making the expectation values

of thermodynamic observables O directly accessible via 〈O〉 = Z−1
∑

iOe−βεi .
Clearly, the possibility to calculate exact expectation values of thermodynamic
observables is the unbeatable advantage of this method.

However, one immediately realizes that the task of setting up the Hamiltonian
matrix alone scales, in the worst case (without using symmetries), with O(2N).
Furthermore, a full matrix diagonalization with the usual divide-and-conquer al-
gorithms [152] scales cubically with the matrix size, leading the computational
cost of the calculation to an order of ∼ 23N . In many cases, it is possible to
reduce it by first transforming the Hamiltonian matrix into some block-diagonal
form [153, 154], which is possible if the underlying system possesses symmetries.
In practice however, the exponential scaling limits the applicability of the exact
diagonalization method to very small clusters. While this might still be sufficient
for the treatment of certain quantum many-body systems with negligible finite-
size effects, for instance in one or two spatial dimensions, ED is clearly unfit to
investigate three-dimensional Kitaev systems, where the unit cells of the lattices
alone contain up to 16 vertices.

More advanced diagonalization techniques like the Lanczos algorithm [155]
may be used if the matrix is sparse, and only the lowest energy levels of the system
are required. This is, however, not the case if the calculation of full phase diagrams
up to highest temperatures is the objective, where also the higher energy levels are
occupied and determine the physical behavior of the system.

Beside ED, there are many powerful numerical techniques for the treatment
of quantum many-body systems, and, in particular, frustrated magnets. The den-
sity matrix renormalization group (DMRG) [156, 157] provides a sophisticated
variational method which acts on the matrix-product state [158, 159] representa-
tion of many-body wavefunctions. Within this method, the degrees of freedom of
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the wavefunction are iteratively reduced to the physically relevant ones by sub-
sequent singular value decompositions, thereby yielding the ground state (or an-
other, moderately excited target state) for a given Hamiltonian. However, being
suited essentially for one-dimensional systems and, within those, basically to ex-
plore the low-energy physics, it is also not an option for our purpose. The latter
restriction also holds for generalizations of the DMRG method to higher dimen-
sions [160], among them the tensor-network-based [161] variational techniques
like PEPS [162–165], and MERA [166].

Instead, the twofold purpose of obtaining exact results over a wide range of
temperature scales, but also being able to study large systems, suggests the use of
quantum Monte Carlo simulations (QMC) [127, 128] to treat the Kitaev model.
Monte Carlo methods provide an unbiased, numerically exact tool to handle the
partition function of large-scale many-body systems with statistical sampling.
They are widely used in statistical physics, both on classical and quantum sys-
tems, provided a proper configuration sampling technique can be designed for
the underlying model. Such a method exists for the Kitaev model, and enables
us to investigate Kitaev systems at sizes beyond 1000 sites, which is sufficient to
extrapolate the physical behavior of these systems in the thermodynamic limit. In-
terestingly, it is the Majorana basis of the Kitaev system which allows for a quan-
tum Monte Carlo approach that is free of the infamous sign problem [167–170].
Furthermore, it does not require the introduction of an additional imaginary-time
dimension to treat the quantum character of the system.

3.2 Classical Monte Carlo
Monte Carlo methods [127, 128] comprise a rather large number of numerical
techniques, which are applied in numerous scientific fields, from mathematics and
physics to social sciences. The common ground of these methods is the applica-
tion of random sampling techniques. These are used to solve problems which are
deterministically unaccessible, usually due to a large computational complexity,
or which are just less efficiently solvable with other numerical means. We consider
for instance a potentially complicated integral I =

∫
Ω
f(x)dx in a d-dimensional

subspace Ω ∈ Rd, which can be calculated with the standard trapezoidal or Simp-
son rule. Instead, in the Monte Carlo integration method, one generates a set of
N random abscissa points {xi} ∈ Ω according to some probability distribution
p(x). Then, one can approximate I by summing over the function values f({xi}),

I ≈ 1

N

N∑
i=1

f(xi)

p(xi)
. (3.1)

Here, the statistical distribution of abscissa points p(x) is desired to express their
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“weight” in the integral. Quite obviously, a set of abscissa points which is used
to numerically integrate for example a Gaussian function with given mean µ and
standard deviation σ is ideally Gaussian-distributed itself, with the same param-
eters. Most importantly, the numerical error of the Monte Carlo integral is given
by [127]

∆ =

√√√√Var
(
f(x)
p(x)

)
N

, (3.2)

and does not depend on the dimensionality of the problem. It is only statistical,
with a 1/

√
N -dependence on the number of samples (abscissa points). This is a

major difference to the deterministic trapezoidal and Simpson method, which de-
pend exponentially on the dimension d. Therefore, for high-dimensional integrals,
the Monte Carlo method converges faster, for example for d > 9 in comparison
with the Simpson method. The ability to produce a numerical error which is only
statistical is the most important advantage of the Monte Carlo method.

In statistical physics, Monte Carlo methods are frequently used to compute
statistical estimates of quantities that are, in practice, impossible to calculate ex-
actly, mostly because the partition function Z of the underlying system comprises
an exponentially large number of states. Instead, in a typical Monte Carlo simu-
lation, one generates random sets of configurations Ci of some (e.g. spin) system,
which follow a physically meaningful statistical distribution – usually the Boltz-
mann distribution – and performs numerical measurements on these configura-
tions. From the data of the numerical measurements, statistical estimates of the
desired observables can be calculated.

While the early precursors of Monte Carlo methods had been sophisticated
recipes to calculate the irrational number π with the help of sticks and stones
in the 18th century [127], the breakthrough of random sampling techniques came
with the works of Ulam, Metropolis and von Neumann [129, 171] in the context of
their research on nuclear weapons at the Los Alamos National Laboratory [127].
At this time, also the name Monte Carlo has been invented to underline the random
experiment nature of these methods, reminiscent of the famous gambling places
in the district of Monaco that has the same name.

3.2.1 Markov chains

How are Monte Carlo simulations in statistical physics performed in detail? First
of all, we consider a many-body system with physical configurations Ci. We can
think of these configurations as belonging to some abstract configuration space Ω.
The key concept of the Monte Carlo simulation is to generate a computationally
accessible and statistically representative subset of the configuration space Ω̃ ⊂ Ω,
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3.2. Classical Monte Carlo

instead of considering all configurations Ci ∈ Ω. This means, a finite number M
of configurations Ci is sampled, such that, for every observable Oi = O(Ci),
which is measured on the Ci, and for large enough M , the statistical average Ō
converges to the exact expectation value 〈O〉, defined by the probability distribu-
tion pi = p(Ci),

Ō =
1

M

M∑
i=1

Oi M→∞−−−−→ 〈O〉, (3.3)

〈O〉 =
∑
Ci∈Ω

pi · Oi, (3.4)

with
∑

Ci∈Ω p(Ci) = 1. Here, we have already assumed that the configuration
space Ω is finite (however large) and the configurations Ci are discrete. This
corresponds to the case of finite systems with discrete single-particle degrees of
freedom. The arguably most prominent example of such a system is the Ising
model [172], where Z2 spins si = ±1 are situated on the vertices of a lattice, and
the Hamiltonian is, in its simplest version, given by

H = −J
∑
〈i,j〉

sisj. (3.5)

At a given inverse temperature β, the probability distribution for the spin config-
urations of this model is given by the Boltzmann distribution

p(Ci) =
1

Z e
−βH(Ci), (3.6)

with the partition function Z =
∑

Ci
e−βH(Ci). For the sake of simplicity and its

paradigmatic character, we explain the further details of Monte Carlo simulations
at the example of the Ising model. We show in the remainder of this chapter that
also the QMC simulation for Kitaev models is, on the technical level, Ising Monte
Carlo.

The crucial part of the Monte Carlo method is to sample the configurations Ci
in a way that the statistically representative character of Ω̃ is ensured, i.e. configu-
rations Ci are drawn from Ω according to the right probability distribution p(Ci).
The most common method to do so is to generate a Markov chain of configura-
tions. The Markov chain is a sequence

C1 → C2 → · · · → Ci → Ci+1 → · · · → Cn, (3.7)

in which the probabilityWij to transit from one stateCi to another stateCi+1 = Cj
only depends on Ci, and not on any previous states,

P (Ci+1 = Cj|Ci . . . C1) = P (Ci+1 = Cj|Ci) =: Wij. (3.8)
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All transition probabilities Wij taken together (with Wij ∈ [0, 1] ∀i, j) form a
matrix W , which has to fulfill a number of conditions to ensure that (i) the se-
quence of configurations Ci really obeys Eq. (3.8), and (ii) the configurations in
the sequence follow the desired probability distribution p(Ci). These conditions
are the following:

• Normalization: Probability is conserved in the Markov process, which
means, the probability to reach any state Cj from an initial state Ci is 1,∑

j

Wij = 1. (3.9)

All row vectors of W thus have to add up to 1, which, by definition, makes
W a stochastic matrix. At the beginning of each Markov process, we “feed”
the matrixW with an initial distribution of configurations p(0). For example,
if the process is started with a random configurationC0 ofNspins Ising spins,
which is drawn from a uniform distribution, all 2Nspins elements i of p(0) are
p

(0)
i = 1/2Nspins . In each Markov step Ci → Ci+1, the probability distri-

bution is changed as (p(n+1))T = (p(n))T ·W , where pT is the transposed
vector, and

∑
i p

(n)
i = 1 ∀n. Stochastic matrices can be shown to possess

a largest eigenvalue 1, which is equivalent to the statement that there exists
an eigenvector peq of W , which does not change under multiplication with
W . The elements of this stationary vector peq give the equilibrium proba-
bility distribution of the configurations Ci. We want the stationary vector
of the Markov process to be a specific probability distribution pspec (e.g.
the Boltzmann distribution), and the Markov chain to converge against this
distribution for long enough simulation times, regardless which initial dis-
tribution p(0) it is started with. For that, the normalization condition alone
is not sufficient.

• Ergodicity: In order to allow the sequence of configurations to converge
against the probability distribution pspec from any initial state, there has to
be a finite probability to reach any configuration Cj from a configuration Ci
in a finite amount of steps k, i.e.

∀Ci, Cj ∃k : (W k)ij 6= 0. (3.10)

In a physical sense, ergodicity is the condition for the Markov chain not to
get “trapped” in some limited subregion of the configuration space. In this
case, the sampled subset of Ω could never become statistically representa-
tive.
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• Detailed balance: With the first two conditions, it is still not guaranteed
that the Markov chain really converges against the desired equilibrium dis-
tribution pspec. If the distribution p

(n)
i changes in each Markov step by

p
(n+1)
j =

∑
i p

(n)
i Wij , there is still the possibility that it could rotate around

some set of different values with some periodicity ñ instead of converging.
This unfortunate situation is called a limit cycle [127]. It can be shown that
such a cycle can be avoided by introducing the additional condition

p(Cj)

p(Ci)
=
Wij

Wji

, (3.11)

which is known as detailed balance. Detailed balance is thus a sufficient
condition for the convergence of the Markov chain, and it is here that the
probability distribution pspec is explicitly introduced into the process.

If the sampling method fulfills the outlined conditions, the Markov chain gen-
erates configurations that follow the probability distribution pspec by construction
and for large enough simulation times. The most common (and probably most
powerful) algorithm which generates such a Markov chain is the Metropolis algo-
rithm [129], which is discussed in the following.

3.2.2 Metropolis algorithm
In order to generate a Markov chain, an appropiate choice for the transition proba-
bilitiesWij has to be made. The Metropolis algorithm uses the Metropolis weights

Wij = min

(
1,
p(Cj)

p(Ci)

)
. (3.12)

It can be easily seen that with this choice, the detailed balance condition is ful-
filled. If pspec is the Boltzmann distribution, Eq. (3.6), the fraction p(Cj)/p(Ci)
reduces to the transition probability

e−β(H(Cj)−H(Ci)) = e−β∆E, (3.13)

such that the (numerically expensive) partition function Z cancels out and the
computational task is reduced to finding the energy difference ∆E between the
two configurations Ci, Cj . Based on this choice for the transition probabilities,
the Metropolis algorithm works as follows:

1. Starting from the initial configurationCi, an update to another configuration
Cj is proposed.
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2. The statistical weight for the update Ci → Cj is calculated,

α = Wij =
p(Cj)

p(Ci)
. (3.14)

3. A random number γ ∈ [0, 1] is generated.

4. If γ ≤ α, the update is accepted: Ci+1 = Cj . Otherwise, it is rejected:
Ci+1 = Ci.

5. The process is restarted from the configuration Ci+1.

For an algorithm that is (quite) universally applicable, this general scheme is
remarkably simple. However, we have to make a couple of remarks on details and
implementation:

1. Choice of updates: Finding a suitable way to propose configuration up-
dates is, in general, a non-trivial task. The update has to fulfill the ergodicity
condition of the Markov process. This is easy for the Ising model, where we can
pick a single random spin and propose a local update σi → −σi. This way, we
can reach any (finite-sized) spin configuration Cj from any initial configuration
Ci with a finite amount of local updates. In other systems, there is no such local
update that fulfills the ergodicity criterium. In classical dimer systems for exam-
ple, flipping a pair of neighbouring (parallel) dimers is not ergodic. Instead, more
advanced non-local directed loop updates are necessary here [173–175].

2. Equilibration: The choice of the Metropolis weight, Eq. (3.12), ensures
that updates are always accepted if the new configuration has a lower energy than
the initial one, while configurations with higher energy are accepted with the prob-
ability p(Cj)/p(Ci). For the Boltzmann distribution, this corresponds to e−β∆E –
meaning that the acceptance to overcome an energy barrier ∆E is modulated by
temperature. It is the thermal fluctuations in a system which allow it to adapt (en-
ergetically) unfavorable states during the simulation. This way, it is possible for
the system to reach its thermal equilibrium at a given temperature in a (possibly
large) number of Monte Carlo steps. Since each simulation is started from some
initial configuration C1 – which can be completely random or ordered – it takes a
certain number of Monte Carlo steps before the system reaches the equilibrium.
In order to get results that are unbiased by the initial configuration, it is important
to let the simulation thermalize, i.e. perform a sufficient amount of Monte Carlo
updates before taking measurements.

3. Sweeps and autocorrelation: The outlined Metropolis loop only describes
a single Monte Carlo update. In practice, a sweep of such Monte Carlo updates
is performed successively, and measurements are performed after every sweep.
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In the case of the Ising model with N spins, a sweep usually consists of N (at-
tempted) local updates. Between each measurement, every spin can therefore be
randomly picked and flipped at least once. Nonetheless, subsequent observable
measurements Oi, Oi+1 are still correlated, which can be measured in terms of
the (time-displaced) autocorrelation [127]

χ(t) =

∫
dt′(O(t′)O(t′ + t)− 〈O〉2), (3.15)

a function which typically scales as χ(t) ∼ e−t/τ [127], with the autocorrelation
time τ for a given simulation and a given observable. Usually, different observ-
ables possess different autocorrelation times.

4. Global updates: Due to the autocorrelation, finding local updates as
described in 1. is often not enough. We consider the two-dimensional ferro-
magnetic Ising model on a square lattice. Here, at a critical temperature Tc =
2J/ log(1 +

√
2) [176], a phase transition separates the ordered (ferromagnetic)

ground state from the paramagnetic regime. In the temperature region around Tc,
Monte Carlo simulations suffer not only from large statistical errors due to the
critical fluctuations of the system, but also from critical slowing down, the diver-
gence of the autocorrelation time. For temperatures far below Tc, where the Ising
system is in one of two configurations with all spins si = +1 or si = −1, the
generation of a Markov sequence which leads from one configuration to the other
is extremely unlikely. Thus, the Monte Carlo simulation is “frozen” in a limited
phase space region. Both phenomena, critical slowing down at phase transitions
and the freezing of the simulation at very low temperatures, ask for more sophisti-
cated update techniques beyond the single spin-flip scheme, where the degrees of
freedom in the system are updated not individually, but domainwise. Finding such
cluster or global updates for general systems is far from trivial. For the (simple)
case of the Ising model, such cluster update techniques do exist, the most famous
ones being the Swendsen-Wang [177] and the Wolff algorithm [178]. Note that
the numerical advantage of these techniques is only given in the region of the
phase transition, while at high temperatures, where none or only small domains
exist, the Metropolis algorithm with local updates remains more efficient.

5. Parallel tempering: A more general technique for the realization of (a kind
of) a cluster update can be implemented in Monte Carlo simulations where a num-
ber of Markov processes at different temperature (or other parameter) points are
performed in parallel. In the parallel tempering or replica exchange Monte Carlo
simulation [179–183], these parallel simulations communicate with each other
and exchange (swap) configurations with a certain probability. Thus, within such
a simulation, particular configurations are updated in the conventional Metropolis
sense and interchanged between the parallel processes of the simulation. One can
describe this procedure as a random walk of configurations in temperature space,
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while, from the standpoint of a particular Monte Carlo process at a fixed temper-
ature, the swap of configurations with neighboring processes appears as a global
update.

3.3 Quantum Monte Carlo
We now present the general approach to address quantum problems with Monte
Carlo simulations. Particularly, we discuss the problem of mapping the quantum
partition function to a sum over classical probabilities, which is the analytical step
that lies at the heart of every quantum Monte Carlo (QMC) flavor. A number of
common QMC flavors are outlined in the following. Apart from that, we discuss
the sign problem[167, 170], which arises in many situations and prevents the nu-
merical investigation of quantum systems at a large-scale. This problem is, in
general, dependent on the choice of basis for a given system. A sign-problem-
free quantum Monte Carlo method can be constructed for Kitaev systems in their
Majorana basis, but not in their spin basis.

3.3.1 Mapping problem
In contrast to classical systems, the states in quantum many-body systems are
wavefunctions, which are written as linear superpositions of the (orthonormal)
basis states of the corresponding Hilbert space. Here and in the following, we
consider systems with a discrete Hilbert space basis, where the basis states can be
denoted by |n〉. These may describe for instance the N individual spin states of
the Ising model, |n〉 = |σ1 . . . σN〉. An arbitrary quantum many-body state |Ψ〉 is
given by

|Ψ〉 =
∑
n

αn |n〉 , (3.16)

with complex coefficients αn such that
∑

n |αn|2 = 1.
The physical observables like energy, momentum, etc. in quantum physics are

operators acting on the Hilbert space of a given system. Most of these operators
do not commute with each other, and are, therefore, not simultaneously diagonal-
izable. In particular, the Hamiltonian of a quantum system may contain different
terms that are not simultaneously diagonalizable.

In classical systems, the distribution of states Ci in statistical ensembles is
described by the function p(Ci). Going over to statistical distributions of quantum
states, this translates to the density operator [128]

ρ̂ =
e−βH

Z . (3.17)
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Here, the partition function Z is the trace over the matrix-valued operator e−βH

Z = tr e−βH

=
∑
n

〈n| e−βH |n〉 . (3.18)

In general, the operator e−βH contains non-diagonal elements. Observable expec-
tation values can be calculated with the density operator as

〈A〉 = tr ρA. (3.19)

In the simplest scenario, there exists an orthonomal basis of the Hilbert space
whose states are eigenstates of the Hamiltonian H. In this case, one can replace
the Hamiltonian in the partition function with its eigenvalues H |n〉 = E(n) |n〉,
the trace simplifies to Z =

∑
n e
−βE(n), and the expectation values of observables

O can be calculated as in classical systems [128],

〈A〉 =
∑
n

A(n)e−βE(n), (3.20)

with A(n) = 〈n|A |n〉. In general, however, the Hamiltonian of a quantum sys-
tem does not possess an eigenbasis that also forms a basis of the Hilbert space,
and therefore consists of different non-commuting terms that do not allow for the
simplifications that have led to Eq. (3.20).

A standard example of such a more complex quantum system is the Ising
model with a transverse magnetic field [184, 185], which is described by the
Hamiltonian

H = −J
∑
〈i,j〉

σzi σ
z
j + h

∑
i

σxi . (3.21)

Here, the σx-operators in the magnetic field term do not commute with the σz-
operators, implying they have no common eigenbasis. If one chooses the eigen-
states of σz as the single-particle basis states, it is readily seen that, once the
Hamiltonian is applied to a many body basis state, for example |n〉 = |↑ . . . ↑〉,
the σxi in the magnetic field term of H flip the single spins in |n〉 subsequently,
and the result is a superposition state. In this general case, Z does not trivially
become a sum over classical numbers in the way that is shown above. Instead,
the essential task to construct a Monte Carlo algorithm for a particular quantum
problem is to find a suitable mapping between the (quantum) partition function
and classical probabilities,

tr e−βH −→
∑
i

pi. (3.22)
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In other words, quantum Monte Carlo (QMC) simulations are classical Monte
Carlo simulations, in which the quantum system is suitably mapped to a classical
configuration space Ω. This general concept is the common ground for all dif-
ferent kinds of QMC flavors [128, 134], which, above all, differ in the way the
mapping, Eq. (3.22), is designed. In the following, we give a brief review on two
common QMC flavors, and look at the way Z is represented in these approaches.

3.3.2 Common Quantum Monte Carlo techniques
World Line QMC

A commonly used starting point for various quantum Monte Carlo techniques is
the path-integral formulation of the partition function. Here, the inverse tempera-
ture β is identified with an imaginary time τ = it, and Z is rewritten as a product
over M small imaginary time steps ∆τ [128],

Z =
∑
n

〈n| e−τH |n〉

=
∑
n

〈n|
(
e−∆τH

)M |n〉 . (3.23)

Considering a Hamiltonian with different terms H = H1 + . . .HN , the corre-
sponding exponential operator for each imaginary time step is then approximated
as [128]

e−∆τH = e−∆τH1e−∆τH2 . . . e−∆τHN +O((∆τ)2), (3.24)

which is the so-called Trotter-Suzuki decomposition with a characteristic error
quadratic in ∆τ . Within this approximation, the partition function becomes

Z =
∑
n

〈n|
(
e−∆τH1e−∆τH2 . . . e−∆τHN

)M |n〉+O((∆τ)2). (3.25)

Then, a unity operator I =
∑

ik
|ik〉 〈ik| is inserted after each exponential term. In

each of these unity operators, the {|ik〉} denote a complete set of basis states of
the corresponding Hilbert space. Hence, there are, in total, (N ·M − 1) sets of
basis states introduced, and, using the identification |i0〉 := |n〉, we can reexpress
the partition function as [128]

Z =
∑

i0,...,iN·M

〈i0| e−∆τH1 |i1〉 〈i1| e−∆τH2 |i2〉 . . . 〈iN−1| e−∆τHN |iN〉

. . . 〈iN ·M−1| e−∆τHN·M |i0〉 + O((∆τ)2). (3.26)

Usually, the basis states |ik〉 are now expanded in the eigenbasis of one of the
Hamiltonian terms Hi. For instance, for the transverse field Ising model, these
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can be the tensor products of the eigenstates |↑〉 , |↓〉 of σz. In addition, the further
approximation of the exponentials,

e−∆τHi ≈ (1−∆τHi) , (3.27)

is common for practical calculations [128].
In Eq. (3.26), the partition function of the d-dimensional quantum system is

represented as a sum over (d+1)-dimensional classical system configurations with
periodicity in the imaginary-time dimension. These configurations are also called
world lines. A quantum Monte Carlo simulation can be realized as the classical
sampling of world line configurations, for which certain requirements, as the con-
tinuity of world lines, have to be fulfilled. The probability weights in the Monte
Carlo simulaton are given by the matrix elements 〈iN−1| e−∆τHN |iN〉. Again, lo-
cal and non-local updates can be defined [128]. Thus, the mapping 3.22 now has
the form

tr e−βH −→
∑
CW

p(CW ), (3.28)

where the CW denote world line configurations.
In other words, within this quantum Monte Carlo approach, the d-dimensional

quantum system is mapped to a (d+1)-dimensional classical system, and the quan-
tum information is “encoded" in the additional interactions that arise in the imag-
inary time dimension. World line Monte Carlo is primarily used for the simula-
tion of bosonic models and quantum spin systems, like different incarnations of
the Heisenberg model (e.g. the XXZ-model) [134]. Aside from the simulation
algorithm in discretized imaginary-time that is outlined here, there is also a modi-
fication for continuous times [186], which rids the algorithm of the discretization
error that is introduced with the approximation in Eq. (3.24).

Determinant QMC

There are more QMC methods which are based on the path-integral representation
of the partition function. For instance, interacting fermion systems on a lattice are
frequently treated with the Determinant Quantum Monte Carlo (DQMC) method
[128, 134, 187, 188]. Here, a Hubbard-Stratonovich transformation [189, 190] is
implemented to map the many-particle HamiltonianH (or, alternatively, the action
S) of the interacting fermion system to a system of non-interacting fermions. For
this, a bosonic auxiliary field φ – the Hubbard-Stratonovich field – is introduced,
to which the non-interacting fermions couple. We consider as an example the
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Hubbard-type Hamiltonian [134]

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.)︸ ︷︷ ︸
H1

+U
N∑
i=1

(
c†i,↑ci,↑ −

1

2

)(
c†i,↓ci,↓ −

1

2

)
︸ ︷︷ ︸

H2

, (3.29)

with U > 0. The second term in this Hamiltonian is quartic in the fermionic
operators c†i , ci, which makes the treatment of H difficult. In the Trotter-Suzuki
decomposed path integral, this quartic term appears in the exponential e−∆τH2 . It
can be transformed away with a Hubbard-Stratonovich transformation [189, 190]
of the form [128]

e−∆τU(ni,↑− 1
2)(ni,↓− 1

2) =
1

2
e−

1
4

∆τU
∑
φ=±1

eαφ(ni,↑−ni,↓), (3.30)

where we use the notation ni = c†ici, and the parameter α is given by the relation
cosh(∆τα) = e∆τU/2. We see that the transformed exponential in Eq. (3.30) is
now only quadratic in the fermions c†i , ci. In return, the auxiliary field φ = ±1
has been introduced, and we can interpret the second term of the Hamiltonian as
a function of this field,H2 = H2({φ}).

Structurally, with the introduction of the auxiliary field φ, the partition func-
tion Z can be rewritten as a double sum over different field configurations {φ}i in
imaginary time, and the fermions, which are here formally denoted by the wave-
functions ψ [128],

Z =
∑

{φ}1...{φ}M

∑
ψ

〈ψ| e−βH1e−βH2({φ}M ) . . . e−βH1e−βH2({φ}1) |ψ〉+O
(
(∆τ)2

)
.

(3.31)
Now that both termsH1 andH2 are quadratic in the fermions, the following iden-
tity for free fermion Hamiltonians is used [128, 134]

tr e−β
∑
i,j c
†
iAijcj = det(I + e−A), (3.32)

where the Aij are the elements of the matrix A. With this identity, Eq. (3.31) is
brought into the much simpler form

Z =
∑

{φ}1...{φ}M

det
(
M↑(Φ)

)
det
(
M↓(Φ)

)
,

Mσ (Φ) = I + e−∆τHσ1 e−∆τHσ2 ({φ}M ) . . . e−∆τHσ1 e−∆τHσ2 ({φ}1), (3.33)

where the fermionic sector is integrated out for each configuration Φ = {φi,j} of
the Hubbard-Stratonovich field, which extends both in space (index i) and imag-
inary time (index j). The weight of each field configuration Φ is given by the
product of the two determinants in Eq. (3.33).
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Hence, in the Monte Carlo sampling, the field Φ is sequentially sampled from
a starting configuration Φ0 via local updates φi,j → φ′i,j = −φj,i, which are
accepted with probability

α =
det(M↑(Φ′))

det(M↑(Φ))

det(M↓(Φ′))

det(M↓(Φ))
. (3.34)

These update weights are usually calculated in terms of Green’s functions [128,
134]. In the next section, we see that the Kitaev quantum Monte Carlo simulation
has a theoretical foundation with a similar structure, namely with a nested partition
function over field configurations and a fermionic sector which is explicitly traced
out in each Monte Carlo step. The theory behind the Monte Carlo update scheme
is simpler here, because the Kitaev Hamiltonian has no quartic terms.

Aside from the quantum Monte Carlo techniques sketched in this section, there
are many more. They comprise methods such as Stochastic Series Expansion
[135], variational Monte Carlo [191–196], diagrammatic Monte Carlo [197, 198]
and Monte Carlo simulations which apply machine learning techniques [199].
The development and improvement of quantum Monte Carlo techniques remains
an active field in computational physics until today.

3.3.3 Sign problem
Quantum Monte Carlo methods provide an unbiased, numerically exact tool to
study quantum many-body systems, whenever a suitable mapping of the quantum
partition function to a classical configuration space, Eq.(3.22), can be found. If
they were applicable on all kinds of quantum systems, one might ask why some-
one would even bother looking for other techniques.

Unfortunately, QMC methods are not applicable to all quantum systems, due
to a phenomenon which is known as the fermionic sign problem [167, 168, 170].
The sign problem typically appears in world line Monte Carlo simulations of
fermionic systems and frustrated quantum spin systems [168]. In order to capture
the problem that arises in these systems, we take a look back at the quantum-to-
classical mapping of the partition function,

tr e−βH →
∑
i

pi.

The sign problem is the fact that in this mapping, it is not guaranteed that the
numbers pi, which are treated as classical probabilities, are positive, or even real.

The reason for this lies in the exponential operator e−βH. Although H is Her-
mitian, making its exponential positive definite, it is not necessary that all entries
of e−βH are positive or even non-negative [128]. In fact, the property of a matrix to
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be positive depends on the choice of basis. If there is a diagonal representation of
e−βH, it can be brought into a positive form, which directly follows from positive
definiteness. However, the existence of such a diagonal representation is not guar-
anteed. Thus, there may appear negative entries in e−βH, and therefore negative
probability weights in Eq. (3.22). This is the case for world-line configurations
which contain an odd number of fermionic exchanges [170]. Similarly, it happens
on frustrated spin systems, where a path through the lattice can be found that con-
sists of an odd number of off-diagonal operations, for example on non-bipartite
lattices [168].

The occurrence of negative probability weights has to be avoided in the Monte
Carlo sampling. An apparent solution is provided if, instead of the numbers pi
itself, the Monte Carlo sampling is performed with respect to their absolute values
|pi|. In this case, in the numerical measurements, the sign sgn(p) = p/|p| is treated
as part of the observable O. In doing so, we get the following expression for the
expectation value of O, [170]

〈O〉 =

∑
iOi sgn(pi)|pi|/

∑
i |pi|∑

i sgn(pi)|pi|/
∑

i |pi|
=
〈O sgn〉|p|
〈sgn〉|p|

, (3.35)

where 〈. . . 〉|p| denotes the expectation value with respect to the probability distri-
bution |p| (instead of p).

Hence, we arrive at an expression for the expectation value of O, where the
expectation value of the sign, 〈sgn〉|p|, appears in the denominator. Configurations
with negative and positive signs nearly cancel each other, which leads to an expo-
nentially small value of 〈sgn〉|p|. Concretely, for world line configurations, 〈sgn〉|p|
can be shown to exponentially scale with the system volume and the temperature
[170],

〈sgn〉|p| =
∑

i pi∑
i |pi|

=
Z
Z|p|

= e−βV (F−F|p|), (3.36)

with β the inverse temperature, V the volume and F the free energy density. This
exponentially small expectation value of the sign leads to an exponential growth
in the statistical errors [170],

∆ sgn

〈sgn〉 =

√
Var(sgn)

N

〈sgn〉 ∼ eβV∆F

√
N

. (3.37)

In other words, in order to get the statistical errors under control in the simulation,
exponentially many (∼ eβV∆F ) measurements become necessary. This, however,
sets this method back to a numerical scaling that is no better than exact diagonal-
ization.

For a specific quantum system, the sign problem might still be overcome if the
system can be transformed to a suitable basis, where e−βH becomes an operator
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with only positive values. However, the computational effort to find such a basis
has been shown to be an NP-hard problem [169].

Thus, the usual quantum Monte Carlo methods turn out to fail for many fermion
and frustrated spin systems, including the Kitaev model. Here, the sign problem
appears as a consequence of the exchange frustration of the spins [44]. The oc-
curence of negative probabilities becomes apparent when the nonzero matrix el-
ements 〈iN−1| 1 − ∆τHi |iN〉 for a 2-spin example state |iN〉 = |↑↑〉 (in the σz

basis) are explicitly written down

〈↓↓| 1−∆τJxσ
x
1σ

x
2 |↑↑〉 = −∆τJx,

〈↓↓| 1−∆τJyσ
y
1σ

y
2 |↑↑〉 = +∆τJy,

〈↑↑| 1−∆τJzσ
z
1σ

z
2 |↑↑〉 = 1−∆τJz. (3.38)

We see that for positive couplings Jγ > 0, the first matrix element leads to nega-
tive probability weights.

The fermionic sign problem and its possible solutions are an ongoing field
of research [170]. It has been shown that for some fermionic systems, a sign-
problem-free quantum Monte Carlo simulation can be realized with determinant
quantum Monte Carlo [128, 134, 187, 188] or diagrammatic Monte Carlo meth-
ods [197, 198]. A particular branch of research in mathematical physics is con-
centrated on the formulation of models, which, due to their inherent symmetries
– such as Kramer’s time-reversal symmetry – are sign-problem-free [200–202].
In particular, it has been shown that it is the Majorana representation of interact-
ing fermion models which allows for their systematic classification with respect
to the presence or absence of a sign problem. Here, classification approaches are
based on Majorana reflection positivity [203] and Majorana time-reversal sym-
metry [204]. Another recent approach proposes the usage of the properties of
contraction semigroups to identify sign-problem-free fermion models. [205].

3.4 Quantum Monte Carlo for Kitaev systems

3.4.1 Majorana Basis
For the Kitaev model, it is the Majorana basis which allows for a sign-problem-
free quantum Monte Carlo approach [44]. To see this, we remind ourselves of the
exact solution (Sec. 2.1). The original spin degrees of freedom σγi are replaced
with Majorana operators, σγi −→ ibγi ci, and the model is reformulated in terms of
non-interacting itinerant Majorana fermions ci and a (static) Z2 gauge field {uγij =
±1} [27]. A gauge-invariant quantity is defined by the Z2 plaquette flux operator
Wp, and the ground state is obtained by, first, finding the energy-minimizing Z2
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flux configuration, and, secondly, exactly diagonalizing the Majorana Hamiltonian
H({uij}) in the corresponding Z2 gauge sector, Eq. (2.9).

Thus, the setup is a system of free fermions coupled to field variables, and
bears similarity with the scenario for the DQMC method. However, while the
DQMC approach starts from a Hamiltonian that is quartic in the fermions, and the
quartic terms have to be transformed via Hubbard-Stratonovich transformation,
this is not necessary here. Within a given Z2 gauge field configuration {uij}, the
Hamiltonian H = H({uij}) is quadratic in the Majoranas ci, and can be directly
brought into a diagonal form, Eq. (2.14). Thus, the eigenbasis of H({uij}) is an
eigenbasis of the partial fermionic Hilbert space Hf , and its eigenvalues can be
used to calculate observable expectation values in the simple way that is shown
in Eq. (3.20). The Z2 gauge field commutes with the Hamiltonian, and therefore
effectively becomes a classical variable. This situation of fermionic degrees of
freedom coupled to classical variables is known from the double-exchange model
[139], for which a quantum Monte Carlo approach is known [140–142].

The key idea in the QMC approach for the Kitaev model is the Monte Carlo
sampling of the Z2 gauge field {uij} [44], which can be thought of as a local Ising
variable: uij = ±1. For each Z2 gauge field configuration {uij}, the tight-binding
Majorana Hamiltonian is exactly diagonalized, giving access to the thermody-
namic observables needed for the calculation of Metropolis weights and numerical
measurements.

More specifically, we rewrite the partition function of the full Kitaev spin sys-
tem, which is the Boltzmann-weighted trace over all possible spin configurations
{σ}, as a double trace over its fractionalized degrees of freedom, namely the Z2

gauge configurations {uij} and the Majorana degrees of freedom {ci} [44],

Z = tr{σ}e
−βHKitaev

= tr{uij}tr{ci}e
−βH({uij}). (3.39)

Here, tr{uij} is the sum over classical gauge configurations, for which the fermionic
solutions can be calculated independently. Therefore, we can replace the trace by
the sum

tr{uij} −→
∑
{uij}

. (3.40)

Diagonalizing H({uij}) and transforming the Majorana operators to (spinless)
fermions a†λ, aλ, we rewrite the partition function in terms of the fermionic count-
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ing operators n̂λ = a†λaλ [44],

Z =
∑
{uij}

(
tr{n̂λ}e

−β
∑
λ ελ(n̂λ− 1

2
)
)

=
∑
{uij}

(
tr{n̂λ}

∏
λ

e−βελ(n̂λ− 1
2

)

)
. (3.41)

Now, since we are summing over all occupation numbers of the fermionic single
particle states λ, we can exchange the trace and the product in the last equation.
Subsequently, for each λ, we explicitly perform the partial summation tr{n̂λ}, i.e.
we sum over the fermionic states nλ ∈ {0, 1}, which gives an analytic expression
ZMaj({uij}) for the Majorana partition function in a fixed gauge sector [44],

Z =
∑
{uij}

∏
λ

tr{n̂λ}e
−βελ(n̂λ− 1

2
)

=
∑
{uij}

∏
λ

(
e
βελ
2 + e−

βελ
2

)
=
∑
{uij}

∏
λ

(
2 cosh

(
βελ
2

))
︸ ︷︷ ︸

=:ZMaj({uij})

. (3.42)

From the Majorana partition function ZMaj({uij}), the relevant thermodynamic
observables, such as the free energy, internal energy, specific heat and entropy, can
be directly derived, using the standard formulas from statistical physics (Appendix
B.4). Considering that the Majorana fermions form a many-particle system in the
fixed Z2 gauge sector, where internal energy and entropy are in competition with
each other, the statistical weight for a given gauge sector is determined by the
Majorana free energy in that gauge sector. The quantum partition function of the
Kitaev system is therefore finally expressed as the classical sum,

Z =
∑
{uij}

e−βF ({uij}), (3.43)

with

F ({uij}) = −T lnZMaj({uij})

= −T
∑
λ

ln

(
2 cosh

(
βελ
2

))
. (3.44)
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The probabilty for each Z2 gauge field configuration is

p({uij}) =
1

Z e
−βF ({uij}), (3.45)

which is guaranteed to be positive and real, since e−βF is not an operator, but an
ordinary number. This indicates the absence of a sign problem.

As the gauge field consists of classical Ising variables±1 located on the bonds,
the Metropolis algorithm becomes applicable in a very intuitive way. A quantum
Monte Carlo step consists of

1. a single flip of a random Z2 gauge field variable, uij → −uij ,

2. which is accepted with a probability 1

α = e−β∆F , (3.46)

where ∆F = F ({u′ij}) − F ({uij}) is the free energy difference between
the initial Z2 gauge field configuration {uij} and the proposed new configu-
ration {u′ij}. Note that for the calculation of the free energy, Eq. (3.44), the
full set of eigenvalues {ελ} ofH({uij}) is required.

The described update scheme naturally fulfills the conditions for the Markov
chain, as the normalization of the transition matrix and detailed balance are inher-
ent to the Metropolis algorithm, and the ergodicity follows from the local Ising
update.

To calculate the Metropolis weight, an exact diagonalization of the Majorana
HamiltonianH(uij) is required in each Monte Carlo step, amounting to diagonal-
izing an N × N matrix for a lattice system with N sites. With standard divide-
and-conquer techniques [152], such a matrix diagonlization scales with O(N3).
In Sec. 3.4.3, we present the Green’s-function-based Kernel Polynomial method
[45, 146, 147], which enables us to perform more efficient Monte Carlo updates
with linear scaling in N .

To summarize, the quantum Monte Carlo simulation for Kitaev systems is
sign-problem-free if the system is transformed to the Majorana basis. In this ba-
sis, we can benefit from two facts. First, the Z2 gauge field, which emerges in the
Majorana basis, is static, and can therefore be treated as a classical variable. Sec-
ondly, for a given Z2 gauge field configuration {uij}, the Majorana Hamiltonian
H({uij}) is quadratic in the Majorana operators ci, such that there is an eigen-
basis of H({uij}), which is also a basis of the partial (fermionic) Hilbert space
Hf . These two properties enable us to map the quantum partition function to a
classical sum, without the need to introduce an additional (e.g. imaginary time)
dimension.

1In practice, we used the slightly modified weight α = 1
1+eβ∆F .
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3.4.2 Jordan-Wigner and local transformation

Local Transformation: Hilbert space extension

There remain some non-trivial considerations on the validity of the derivation in
the last section, namely the step presented in Eq. (3.42). Concretely, the latter con-
tained an explicit summation over all possible fermionic occupancies nλ ∈ {0, 1}
for the single-particle states λ. Some of these fermionic states in the Majorana
partion function are, however, unphysical. This is a consequence of Kitaev’s lo-
cal transformation approach. By replacing each spin with 4 Majorana operators,
σγi → ibγi ci, the Hilbert space is artificially increased by a factor 2 for each spin.
In total, the many-body Hilbert space is extended to the dimension 4N , while
the dimension of the physical subspace is only 2N . The latter is defined by the
gauge transformation Di = bxbybzci, and contains only those states |ξ〉 for which
Di |ξ〉 = |ξ〉 [27].

Reprojection

Thus, in order to avoid unphysical contributions to the Majorana partition function
ZMaj({uij}), which, in the end, might blur the numerical results, it seems that a
reprojection to the physical subspace needs to be included in each QMC step.
Such a reprojection operator has been introduced by Kitaev as a symmetrization
over all gauge transformations Di [27],

P =

∏
i(1 +Di)

2
, (3.47)

with P2 = P , [P ,HKitaev] = 0, and DiP = P ∀i, such that any wavefunction
P |Ψ〉 indeed lies in the physical subspace.

Every many-body wavefunction for the Kitaev model can be written as

|Ψ〉 = |u〉 ⊗ |m〉 , (3.48)

with the gauge part |u〉 and the fermionic (matter) part |m〉. A detailed analysis
of the operator P shows that the forbidden states are hidden in the matter sec-
tor, while there is no particular gauge configuration {uij}, that is, in principal,
physically excluded [144]. Although the {uij} are not invariant under the gauge
transformation Di, since the latter flips the gauge variable uij on all bonds con-
nected to the site i, the underlying Z2 plaquette flux Wp is invariant under Di.
Therefore, it is insightful to rewrite the operator P as a product of an operator P0,
which contains all terms that only act on the matter sector, and another operator S,
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which contains all terms that only act on the gauge sector [144] (Appendix B.1),

P = S ·
(

1 +
∏N

i=1 Di

2

)
︸ ︷︷ ︸

:=P0

. (3.49)

In the expression forP0, we can reexpress the operatorsDi with the corresponding
Majorana operators bγi , ci. Afterwards, we follow the transformation procedure
used for the solution of the model, regroup the bγi to Z2 bond operators ûij , and
transform the Majorana operators to spinless fermions. This way, P0 assumes the
form [144] (Appendix B.1)

P0 =
1

2

1 + (−1)φ ·
∏
〈i,j〉

uij · det(Q) · π̂

 , (3.50)

with some integer phase factor φ, which depends on the lattice geometry, the
transformation matrix Q, Eq. (2.11), and the fermionic parity operator [144]

π̂ =
∏
λ

(1− 2n̂λ). (3.51)

A closer look at Eq. (3.50) shows that all terms in the parentheses give a ±1,
and all but the parity operator π̂ depend either on the lattice or the Z2 gauge field
configuration {uij}. Thus, for a given lattice and gauge field configuration, the
eigenvalue of P0 only depends on the parity operator π̂: Only fermionic states
with either even or odd parity lead to an eigenvalue 1, and the other states to an
eigenvalue 0. It can be concluded that those many-body wavefunctions which give
an eigenvalue 0 are strictly unphysical, while all other wavefunctions have some
overlap with physical states, since the operator S only acts on the gauge part
|u〉 of the wavefunction |Ψ〉 [144]. This implies that on a given lattice, a gauge
configuration {uij} physically allows for either even or odd fermionic parity, and
states with the other parity are unphysical.

The dimension of the extended many-body Hilbert space for the fractionalized
degrees of freedom is 4N for the N -site system, corresponding to 23N/2 gauge
configurations {uij}, and 2N/2 fermionic states. We have now seen that, given
the lattice and the gauge configuration {uij}, only half of the fermionic states are
physical, corresponding to a dimension of 2N/2−1. The extension of the gauge
sector is, with the argument given above, merely a redundant counting of physical
plaquette flux sectors, which has no effect on the observables of the system. On
the other hand, the summation over arbitrary fermionic states is expected to affect
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the results. For instance, the energy of an arbitrary basis state |n〉 of the matter
sector is given by

E =
1

2

N/2∑
λ=1

(−1)1−nλελ. (3.52)

Since the distinctive difference between physical and unphysical states is parity,
an unphysical state can be considered as a physical state, where a single fermion
a†λ has been added or removed, giving an energy difference |E − E ′| = |ελ|.

To get rid of this effect from unphysical fermionic states, the parity projection
has to be included in the Majorana partition function ZMaj({uij}). The explicit
implementation of this step has been recently presented in Refs. [206, 207]. This,
however, means that in each Monte Carlo step, the determinant of the transfor-
mation matrix Q has to be calculated, in order to determine the allowed parity.
This diagonalization step increases the numerical computation time and puts an
additional restriction on the accessible system sizes – which is something we want
to avoid, in order to be able to simulate 3D Kitaev systems beyond the realm of
strong finite-size effects.

Jordan-Wigner transformation: No unphysical states

It is possible to avoid the reprojection and prevent the numerical artifacts from
unphysical fermionic states at the same time. In fact, there are several ways to
transform the spin degrees of freedom in the Kitaev system to Majorana fermions
and a Z2 gauge field [89]. One is built on a non-local Jordan-Wigner transforma-
tion [77–80] (Sec. 2.1.4). This approach is used in earlier quantum Monte Carlo
simulations of Kitaev systems [44–47, 90].

The Jordan-Wigner transformation [76] is well known as an exact solution
method for one-dimensional spin models like the Heisenberg chain. Here, instead
of locally transforming a spin according to Eq. (2.2), they are transformed chain-
wise to Majorana operators. The Jordan-Wigner chains have to be chosen to con-
sist of two of the three subclasses of γ-bonds, while only the third class of bonds
carries the Z2 gauge degrees of freedom, here usually denoted by {η}. The major
advantage of this approach is its faithfulness to the Hilbert space dimensionality of
the spin model. In contrast to the local transformation, the Jordan-Wigner ansatz
makes no use on an artificial Hilbert space extension. This makes sure we do not
integrate over unphysical states when calculating the Majorana partition function,
Eq. (3.42), and subsequently, the thermodynamic observables. However, there re-
mains a weak spot in this approach. In order to avoid the introduction of nonlocal
parity terms that have to be considered when closing the Jordan-Wigner strings,
open boundary conditions have to be imposed in (at least) one spatial direction,
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(a) system size N = 32 (b) system size N = 108

Figure 3.1: Comparison of QMC results for the (10,3)a (hyperoctagon) lattice with periodic
boundary conditions in the a1-direction. We have performed QMC simulations with a Jordan-
Wigner (JWT) and local transformation for systems with 32 (a) and 108 sites (b). In the first
method, Z2 gauge variables are only sampled on the z-bonds, and in the second method on all
bonds. The Jordan-Wigner transformation is exact for this choice of boundary conditions, and
both approaches give consistent results.

while, within the local transformation approach, there is, intrinsically, no restric-
tion on boundary conditions.

Comparing the Jordan-Wigner and the local approach, we see that both trans-
formations lead to the same Hamiltonian, if, within the local approach, the Z2

gauge field on two subclasses of bonds is fixed to a specific configuration [80].
In this case, the remaining Z2 gauge degrees of freedom uγij on the γ-bonds are
equivalent to the Z2 gauge variables η from the Jordan-Wigner transformation.
Since we know that the latter leads to an exact analytic expression for the Majo-
rana partition function, it is therefore guaranteed that the QMC results from both
methods are exact. This is the case if the corresponding lattice system possesses
open boundary conditions in the direction of the Jordan-Wigner strings.

Benchmark calculations have further shown us that even if we move away
from this exact equivalence and sample semi-open systems over all Z2 gauge
variables uij , the results still remain within the error margins of the exact (Jordan-
Wigner) results. The effect of sampling over “too many bonds” is therefore inter-
preted as an overcounting of physical states, which does not affect the measure-
ment results of the physical observables. Results for the (10,3)a (hyperoctagon)
lattice with periodic boundary conditions in the a1-direction are shown in Fig. 3.1.

Boundary conditions

In addition to the stated exactness of both QMC methods for semi-open systems,
we can argue that the two can be extended also to systems with periodic boundary
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Figure 3.2: Comparison of QMC and ED results. We compare results (i) for an 8-site Honeycomb
cluster with periodic boundary conditions in both spatial directions (a), and (ii) for the same cluster
with an open boundary condition in the horizontal direction (b). For the cluster with periodic
boundary conditions, neglecting the difference between fermionic parities leads to a deviation
∆T ∼ 0.04 in the T -location of the low-temperature peak. This effect is expected to scale as
1/N with the system size N , and become negligible for large systems. For the cluster with the
open boundary, the Majorana Hamiltonian underlying the QMC approach is equivalent to the one
obtained from a Jordan-Wigner transformation, which does not make use of an artificial Hilbert
space extension. Thus, there is an exact correspondence to the result from the ED of the spin
system even for this very small cluster.

conditions in all spatial directions, and that the implementation of a reprojection
to the physical subspace is not necessary for large systems. This follows from a
simple scaling argument for the local transformation approach. Every unphysi-
cal fermionic state in the Majorana partition function possesses a physical “part-
ner”. With respect to this partner state, it is a single fermion that has been added
or removed in the unphysical state, resulting in an energy difference of one sin-
gle particle energy |ελ|, which enters the summation over the fermionic states in
Eq. (3.42). The effect of unphysical states on numerical measurements is there-
fore expected to be a finite-size effect, which scales as 1/N for a system with N
sites [145]. The same argument applies if the parity term from the Jordan-Wigner
transformation is regarded, which shows up whenever a Jordan-Wigner string is
closed along a periodic boundary.

We can see the numerical effect from unphysical states if we compare the re-
sults from a QMC simulation with exact diagonalization results for the spin system
on a small cluster. We perform these simulations on an 8-site Honeycomb system
with periodic boundary conditions and measure the specific heat as a function of
temperature (Fig. 3.2 a). The double-peak curve from the exact diagonalization is
qualitatively reproduced and quantitatively exact for temperatures T > 0.3. Be-
low this region, the low-temperature peak from the QMC simulation deviates to
lower temperatures, and its extremal point is shifted by ∆T ∼ 0.04. With the
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argument given above, this effect is expected to influence the results for finite-
sized Kitaev systems, and to vanish for N → ∞. We also observe that for the
same system with an open boundary in one spatial direction, where the Jordan-
Wigner transformation is exact, there is perfect agreement between the QMC and
ED results down to lowest temperatures (Fig. 3.2 b).

Based on these arguments, we perform the QMC simulations on elementary
3D Kitaev systems with the local transformation approach – treating the Z2 gauge
field {uij} on all bonds as free Ising variables. We assure that a Jordan-Wigner
transformation is possible on the underlying lattice geometry (Appendix C.7), but
use periodic boundary conditions in all spatial dimensions. We see that the finite-
size effects arising from this choice of boundary conditions becomes negligible
for the considered system sizes N > 1000, and especially for the extrapolation
of critical temperatures. A detailed discussion of finite-size effects in the nu-
merical results is given in Appendix C. Empirically, we find that the choice of
Jordan-Wigner strings has an effect on the scaling behavior of the thermodynamic
observables (e.g. the height of specific heat peaks). As a rule of thumb, this be-
havior becomes more systematic if the lattice geometry of a system allows for a
Jordan-Wigner transformation in which all Jordan-Wigner strings have approxi-
mately the same length.

Details on the numerical performance of the QMC method are discussed in
Appendix B.2.

3.4.3 Green’s-function-based Kernel Polynomial method
The bottleneck in the quantum Monte Carlo simulation is the exact diagonaliza-
tion of the Majorana Hamiltonian, which scales with O(N3) for a lattice sys-
tem with N sites. This performance limitation can be lifted by a numerical
technique called Green’s-function-based Kernel Polynomial Method (GF-KPM)
[45, 146, 147]. Here, we obtain the free energy difference ∆F between two gauge
configurations without calculating the full set {ελ} of the Majorana Hamiltonian.

The key ideas of this method are,

1. to look at the change in the density of states ρ(E)− ρ′(E) in a Monte Carlo
update, and

2. express this change in ρ(E) in terms of (a small set of) Green’s functions
G(E), which can be numerically approximated by Chebyshev polynomials.

This method reduces the computational cost of each Monte Carlo update to
O(N), which comes at the expense of introducing an additional systematic error
through the Chebyshev approximation. This error is however controlled by the
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number of Chebyshev moments which are considered in the approximation. Thus,
it is possible to reproduce numerical results from the exact method with a high
accuracy down to the lowest temperature scales. In the following, we use the
term QMC-ED for the Monte Carlo method with exact diagonalization, and the
term QMC-KPM for the Monte Carlo method with Green’s-function-based Kernel
Polynomial method.

Theory of the Green’s-function-based Kernel Polynomial method

How is the GF-KPM method constructed in detail? Computationally, a local up-
date of the Z2 gauge variable on a particular bond, uij → −uij , means changing
the signs of a single pair of entries Ãij and Ãji of the Hermitian matrix Ã := iA,
Eq. (2.9). This update can also be written in the form of a sum [45, 147]

Ã −→ Ã′ = Ã+ ∆, (3.53)

where ∆ is a rank-two matrix, for which only the entries ∆ij = −2Ãij and ∆ji =
−∆ij are nonzero. With this knowledge, it is possible to use the information stored
in Ã much more efficiently for the calculation of Metropolis weights than in the
QMC-ED approach. To see that, we can define the Green’s function [45, 147]

G(E) = (Ã− E · I)−1, (3.54)

and use it to reexpress the eigenvalue equation of the updated matrix Ã′ [45, 147],(
Ã+ ∆

)
|ψ〉 = E |ψ〉 ,(

Ã− E + ∆
)
|ψ〉 = 0,

G(E)
(
Ã− E + ∆

)
|ψ〉 = 0,

(I +G(E)∆) |ψ〉 = 0. (3.55)

Thus, the eigenvalues of Ã′ are the given by the roots of the function,

d(E) = det(I +G(E)∆), (3.56)

i.e., the values ofE for which d(E) = 0. The crucial property of the function d(E)
is the vanishing of all entries of ∆, except the two given above. Thus, in order to
express d(E) explicitly, we only need four Green’s functions G(E) [45, 147],

d(E) = (1 + ∆ijGji(E))(1−∆ijGij(E)) + ∆ij∆jiGii(E)Gjj(E), (3.57)

a fact which is exploited for numerical efficiency. Physically, the function d(E)
can be related to the change in the density of states ∆ρ(E) during the Monte Carlo
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update. This becomes apparent if we extend the domain of d(E) to the complex
plane by the analytic continuation E → z := E + iε and take the derivative of its
logarithm [45, 147],

1

π
Im

(
lim
ε→0

d log d(z)

dz

)
=

1

π
Im lim

ε→0

∑
i

1

εi − z
− 1

ε′i − z

=
∑
i

δ(εi − E)− δ(ε′i − E)

= ρ(E)− ρ′(E). (3.58)

With this relation, it is also possible to express the change in the free energy in
terms of d(z) [45],

∆F = −T
∫ ∞

0

log

(
2 cosh

(
βE

2

))
(ρ(E)− ρ′(E)) dE

= −T
π

∫ ∞
0

log

(
2 cosh

(
βE

2

))
Im

(
lim
ε→0

d log d(z)

dz

)
∗
= −T

π

∫ ∞
0

β sinh
(
βE
2

)
2 cosh

(
βE
2

)Im
(

lim
ε→0

log(d(E + iε))
)
dE

= − 1

2π

∫ ∞
0

tanh

(
βE

2

)
Im
(

lim
ε→0

log(d(E + iε))
)
dE. (3.59)

Here, in step (*), partial integration is used. Thus, we can calculate ∆F by nu-
merically integrating a function that is essentially composed of d(E), which, as
he have seen in Eq. (3.57), is given by four Green’s functions.

Numerical implementation

The calculation of the Green’s functions in Eq. (3.57) is therefore the key step
in the improved calculation of acceptance probabilities, and replaces the exact
diagonalization of Ã′. Most efficiently, we can write the off-diagonal Green’s
functions Gij(E) (i 6= j) in terms of diagonal Green’s functions Gii(E) via [45]

Gab =
1

2
(Ga+b,a+b − iGa+ib,a+ib − (1− i)(Ga,a +Gb,b)) ,

Gba =
1

2
(Ga+b,a+b + iGa+ib,a+ib − (1 + i)(Ga,a +Gb,b)) , (3.60)

and calculate the diagonal Green’s functions Gii(E) with the Chebyshev approx-
imation [45, 146, 147],

Gii(E + iε) = i
µ0 + 2

∑M−1
m=1 µm exp (−im arccos(E/s))√

s2 − E2
. (3.61)
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Figure 3.3: Computation time for a single MC step with the QMC-ED and the QMC-KPM
method. The QMC-ED method scales cubically with the number of system sites N , which is
a consequence of the ED calculation in each Monte Carlo update. With QMC-KPM, the compu-
tational cost of the Monte Carlo step can be reduced to linear scaling in N .

Here,M is the number of Chebyshev moments µm that are taken into account, and
s denotes the bandwidth of the system. It has to be calculated in the beginning of
the QMC simulation by a sufficient number of (e.g. 1000) exact diagonalizations
of Ã with random Z2 gauge field configurations. The Chebyshev moments µm are
given by [45, 146, 147],

µm = gm 〈i|Tm(H/s) |i〉 , (3.62)

where gm denotes the Jackson Kernel factor [146]

gm =
(M −m+ 1) · cos

(
πm
M+1

)
+ sin

(
πm
M+1

)
cot
(

π
M+1

)
M + 1

, (3.63)

which has to be included to increase the precision of a Chebyshev iteration which
is truncated after a finite amount of M steps. An exact expansion of a function
f(x) would require the summation over an infinite series of Chebyshev polyno-
mials, and the truncation usually leads to unwanted oscillations of the expanded
series near points where f(x) is not continuously differentiable (so-called Gibbs
oscillations). Kernel factors can be used to dampen these oscillations [146]. In
the moments 〈i|Tm(H/s) |i〉 in Eq. (3.62), |i〉 is the unity vector with all entries
zero but the i-th, and iterated by the Chebyshev recursion

Tm(x) = 2xTm−1(x)− Tm−2(x). (3.64)
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(a) specific heat Cv , L = 3 (b) specific heat Cv , L = 6

(c) plaquette flux Wp, L = 3 (d) plaquette flux Wp, L = 6

Figure 3.4: Comparison of numerical results for the QMC-KPM / QMC-ED method. Data shown
are the specific heat Cv(T ) (top) and average plaquette flux W p (bottom) on a (10,3)b Kitaev
system (with periodic boundary conditions in the a3-direction) with 108 (L = 3, a,c) and 864 sites
(L = 6, b,d). The number of Chebyshev moments is M = 512.

Concretely, the latter is performed by successive multiplications of |i〉 with the
rescaled Hamiltonian H/s [45, 146, 147],

|u0〉 = I |i〉 = T0(H/s) |i〉 ,
|u1〉 = (H/s) |u0〉 = T1(H/s) |i〉 ,
|um〉 = 2(H/s) |um−1〉 − |um−2〉 = Tm(H/s) |i〉 , (3.65)

such that
〈i|Tm(H/s) |i〉 = 〈i|um〉 . (3.66)

The necessary calculation steps can be further reduced by a factor of 2, if the
relations

µ2m = 2 〈um|um〉 − µ0,

µ2m+1 = 2 〈um+1|um〉 − µ1, (3.67)

are used [45, 146, 147].
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In summary, a Monte Carlo update of the Z2 gauge field ujk → −ujk now
requires the followings steps for the calculation of Metropolis weights:

1. Chebyshev iteration of the Green’s functionsGjj ,Gkk,Gj+k,j+k andGj+ik,j+ik

(note that in the last Green’s function, i denotes the imaginary unit!) accord-
ing to Eqns. (3.61) and (3.67).

2. Calculation of d(E) according to Eq. (3.57).

3. Numerical integration of ∆F , Eq. (3.59).

4. Calculation of the Metropolis weight: α = min
(
1, e−β∆F

)
.

The subsequent matrix-vector multiplications in Eq. (3.65) are now the most time-
consuming part in the Monte Carlo update. If sparse-matrix techniques are applied
(Appendix B.3), the scaling of this calculation can be reduced toO(N), which we
have verified with benchmark calculations (Fig. 3.3). The approximative calcu-
lation of Green’s functions by Chebyshev polynomials introduces a systematic
error to the Monte Carlo update. This error is however controlled by the number
of Chebyshev momentsM which is considered in Eq. (3.61). Benchmark calcula-
tions show that for typical system sizes N ≥ 600, a choice M = 256− 512 leads
to a sufficient agreement of the QMC-KPM results with those from QMC-ED
calculations (Fig. 3.4). For smaller systems, M has to be increased.

Further technical details on the implementation of the QMC-KPM method are
given in Appendix B.3.

3.5 Data Analysis
We close this chapter with a discussion on post-processing and analysis of the
numerical data. First, we give a brief review on the statistical basics that are im-
portant for any Monte Carlo simulation in statistical physics, most of all the error
analysis and the treatment of autocorrelation effects. After that, we review the
bootstrap method that can be used to compute the statistical errors for observables
that are themselves functions of expectation values, like, for example, the specific
heat Cv(T ) = T−2(〈E2〉 − 〈E〉2). Finally, we explain the Multiple Histogram
Reweighting Method of Ferrenberg and Swendsen [148–150], which we apply
for data extrapolation on the (8,3)c Kitaev model (Sec. 4.4).

3.5.1 Statistical Basics
In the general discussion of Monte Carlo simulations, we have seen which condi-
tion such a simulation has to fulfill to produce a sequence of system configurations
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that obey a certain probability distribution p. Here, we assume that all these con-
ditions are fulfilled. Thus, the Monte Carlo simulation has generated a Markov
chain of N configurations C1 → C2 → . . . CN , on which we measure some ob-
servable x, producing a sequence of data

{x1, x2, . . . , xN}, (3.68)

with xi = x(Ci). In the following, we start by assuming that the xi are uncorre-
lated,

χ|j−i| = 〈xixj〉 − 〈xi〉〈xj〉 = 0. (3.69)

From the data sequence, we calculate the sample mean

x =
1

N

N∑
i=1

xi, (3.70)

and the sample standard deviation

sx =

√√√√ 1

(N − 1)

N∑
i=1

(xi − x)2, (3.71)

from which the standard error of the mean follows as

σx =
sx√
N
. (3.72)

The outcome of x depends on the number of measurements N , and for large N ,
we want x to converge against the expectation value 〈x〉 =

∑
Ω x(Ci)p(Ci) of the

observable xwith respect to the probability distribution p. It can be easily checked
that the expectation value of x is indeed 〈x〉 [128],

〈x〉 =
1

N

N∑
i=1

〈xi〉 =
1

N

N∑
i=1

〈x〉 = 〈x〉. (3.73)

100



3.5. Data Analysis

Explicitly using that χ|j−i| = 0, the variance of x is [128]

Var (x) = 〈x2〉 − 〈x〉2

=
1

N2

〈∑
i,j

xixj

〉
− 〈x〉2

=
1

N2

〈∑
i

x2
i +

∑
i 6=j

xixj

〉
− 〈x〉2

=
1

N

〈
1

N

N∑
i=1

x2
i

〉
− 1

N
〈x〉2

=
Var (x)

N
. (3.74)

Thus, the variance of x is proportional to the variance of the random variable x –
an intrinsic property which is per se unknown – and inversely proportional to the
number of measurements N . Analogously, it can be shown that [128]

〈σ2
x〉 =

Var(x)

N
, (3.75)

so σx, the standard error of the mean, is an estimate for the deviation of x from the
expectation value 〈x〉, which becomes smaller if the number of measurements is
increased. The sample standard deviation sx, on the other hand, is an estimate for
the (intrinsic) standard deviation σ of the random variable x. The error bars in the
data plots always correspond to the interval [x− σx, x+ σx] of a given observable
x.

3.5.2 Autocorrelation Effects
In reality, subsequent configurations Ci, Ci+1 in a Markov chain are always in-
trinsically correlated, resulting in finite function values χ|j−i| for observables x.
The vanishing of the χ|j−i| is, however, explicitly assumed upon deriving the re-
lation between the variance of the sample mean Var(x) and the variance of the
observable Var(x), Eq. (3.74). Accordingly, while the autocorrelation has no ef-
fect on the sample mean x, it affects the statistical error. Instead of the simplified
derivation of Var(x), its true relation with the observable variance turns out to be
[128]

Var(x) =
Var(x)

N
(1 + 2τx), (3.76)

with the autocorrelation time

τx =
N−1∑
i=1

(
1− i

N

)
χi
χ0

. (3.77)
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Thus, the autocorrelation time τx of the observable x reduces the number of statis-
tically independent measurements to N/(1 + 2τx), which increases the statistical
error. The standard error of the mean σx does not reflect this, and is therefore
too small as an estimate for the statistical error of the data sequence with finite
autocorrelation.

There are different possibilities to remedy this problem and obtain a statistical
error which considers autocorrelation effects. One way is to calculate the auto-
correlation time τx explicitly from the time series of results {x1, x2, . . . , xN} with
Eq. (3.77).

Another common technique is binning analysis. Here, the time series is split
up into different bins of results, each bin containing an amount of B measure-
ments. In total, there are Nb bins

x1, x2, . . . xB︸ ︷︷ ︸
1

, xB+1, xB+2, . . . x2B︸ ︷︷ ︸
2

, . . . , x(Nb−1)B+1, x(Nb−1)B+2, . . . xNbB︸ ︷︷ ︸
Nb

,

(3.78)
and, for each bin, the average of the xi is calculated separately,

x̃k =
1

B

∑
i∈kth bin

xi. (3.79)

This, of course, does not affect the sample mean

x =
1

Nb

Nb∑
j=1

x̃j =
1

N

N∑
i=1

xi, (3.80)

but the variance of the bin averages,

s2
xbin
≈ 1

(Nb − 1)

Nb∑
j=1

(x̃j − x)2, (3.81)

which increases with the bin size B.
If B is large enough, all bins become statistically independent. In order to

determine for which size B this is the case, we can measure the ratio [128]

Rx =
s2
xbin

s2
x

, (3.82)

as a function of B. This function first increases with B, and converges to some
finite value Rf

x, when the bins are large enough and become uncorrelated. The
root of this value

√
Rf
x determines the ratio between the standard deviation of the
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Figure 3.5: Autocorrelation times of the energy E and plaquette flux W p for the Kitaev hon-
eycomb model with linear size L = 10. The autocorrelation time has a local maximum at
T ∼ J/100, where the system undergoes a thermal crossover. The autocorrelation times are
calculated using the ALEA library [208] of the ALPS project [209, 210].

bin averages sxbin and the sample standard deviation sx that would be obtained
without binning. Thus, the corrected standard error of the mean is

σ̃x =

√
Rf
x
sx√
N
, (3.83)

and the autocorrelation time is calculated from Rf
x as

τx =
1

2

(
Rf
x − 1

)
. (3.84)

We perform the binning analysis on our simulation data using the ALEA library
[208] of the ALPS project [209, 210].

3.5.3 Bootstrapping
The described binning method is not only suited for determining the autocorrela-
tion time of a given observable, but also for calculating the error of observables
which are themselves functions of expectation values, or, more general, the i-th
moments of random variables x, f = f(〈x〉, 〈x2〉, . . . 〈xn〉). This is the case for
the specific heat Cv, which is given by

Cv(T ) =
1

T 2

(
〈E2〉 − 〈E〉2

)
. (3.85)
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For E and E2, we can save time series of measurements {Ei}, {E2
i } during the

Monte Carlo simulation, and use it to calculate the standard error of the mean
according to Eq. (3.72). But if we calculate the sample means E, E2 from this
entire time series, we only obtain one measurement for Cv. Furthermore, calcu-
lating the standard error of the mean with Gaussian error propagation is not trivial
here, since E and E2 are correlated random variables.

The simplest way to solve this issue is to split the time series for E and E2

again into bins, whose size B exceeds the autocorrelation time τx, and calculate
Cv separately for each bin. The standard error can then be calculated from the bin
variance

√
s2
xbin

.
More sophisticated techniques are the bootstrap and the jackknife method

[127, 128]. In the bootstrap method, the time series {x1, . . . , xN} is resampled,
i.e., N measurements xi from the time series are subsequently picked at random.
Here, it is explicitly allowed to pick the same number several times. The result is a
new time series of resampled data {x̃1, . . . , x̃N}, from which we can calculate the
quantity of interest. The resampling is then repeated several times, until we obtain
a large enough time series of data for f , {f1, . . . , fM}. From this time series, we
can calculate the standard error of the mean according to [127]

σf =

√
f 2 − f 2

. (3.86)

The jackknife method slightly differs from bootstrapping. Here, there is no resam-
pling of the whole time series. Instead, we start from the set {x1, . . . , xN}, take
away the first value x1, and calculate f(x) from the remaining set {x2, . . . , xN}.
Then, we put x1 back in, take away x2, and again calculate f(x). We repeat the
procedure for all i ∈ {1, . . . N}, and thereby obtain a time series {f1, . . . , fN−1}.
The error of f is then given by [127]

σf =

√√√√ N∑
i=1

(fi − f)2, (3.87)

where f is calculated from the whole time series {x1, . . . , xN}.
We use the bootstrap method for calculating the statistical errors for reweighted

data sets.

3.5.4 Multiple Histogram Reweighting

The information obtained from simulations at certain temperatures {Ti} can be
used to extend the data analysis also to other temperatures, which have not been
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directly simulated. The numerical techniques for this purpose are called single-
histogram [148] and multiple-histogram reweighting [149, 150], and allow for an
interpolation and extrapolation of data that have a stronger physical foundation
than the usual numerical methods, such as least-squares fitting or spline interpo-
lation. This is due to the fact that reweighting is based on the information about
the density of states that is extracted from the Monte Carlo simulations.

The idea of the multiple histogram technique is outlined as follows [127]:
From a Monte Carlo simulation at some temperature Ti, we obtain an estimate
for the density of states ρi(E), which is determined by the number of sweeps Mi,
the number of times a particular energy E is measured, Ni(E), and the partition
function Zi. Taking a number of Monte Carlo simulations at different (but close)
temperature points i yields different estimates

ρi(E) =
Ni(E)

Mi

Zi
e−βiE

. (3.88)

In practice, the ρi(E) are different histogram curves with some overlap, and it is
justified to assume that the histograms for other temperatures, which are in close
range to the ones simulated, have some overlap with the ρi(E).

Now, the idea is to use the curves ρi(E) to generate a best estimate for the
“true” density of states ρ(E). This best estimate can be shown to be given by
[127]

ρ(E) =

∑
iNi(E)∑

jMjZ−1
j e−βjE

, (3.89)

where the partition functions Zj are unknown, but can be expressed recursively
for each temperature Tk,

Zk =
∑
E

ρ(E)e−βkE

=
∑
E

∑
iNi(E)∑

jMjZ−1
j e(βk−βj)E

=
∑
i,s

1∑
jMjZ−1

j e(βk−βj)Ei,s
. (3.90)

Here, in the last expression, the indices i, j again label the simulations at different
temperatures Ti, Tj , while the index s labels the summation over different sweeps.

The major part of the reweighting calculation is now focused on the recursion
equation (3.90). Starting from an initial estimate, Zk is iteratively calculated for
each temperature point Tk, until it converges to a fixed point. We now possess es-
timates of Zk for all simulated temperatures Tk. But it is also possible to calculate
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an estimate for Z at any other inverse temperature β that has not been simulated,
provided ρ(E) still possesses some overlap with the ρi(E) from the simulations.

Explicitly, the partition function, Eq. (3.90), is generalized for any inverse
temperature β as

Z(β) =
∑
i,s

1∑
jMjZ−1

j e(β−βj)Ei,s
. (3.91)

Being able to produce an estimate for the partition function at any β, we can now
also calculate estimates for other thermodynamic observables O as

〈O〉 =
1

Z(β)

∑
i,s

Oi,swi,s,

wi,s =
1∑

jMjZ−1
j e(β−βj)Ei,s

. (3.92)

In the case of the Kitaev model, the Boltzmann weights are expressed in terms of
the free energy F , which is a function of the single-particle energies ελ. Thus, in
Eq. (3.92), the logarithmic weights have to be replaced according to

− βE −→ −β
∑
λ

log

(
2 cosh

(
βελ
2

))
. (3.93)

Therefore, for every temperature point i and for every sweep s, we need to save
the full set of eigenvalues {ελ}i,s from the QMC simulation to be able to perform
the reweighting.

In practice, we use the multiple-histogram reweighting to extrapolate low-
temperature estimates for the thermodynamic observables of the (8,3)c Kitaev
system, in the region where QMC fails to converge even with parallel tempering
(Sec. 4.4). For the implementation, we use the open source tool FerrenbergSwend-
senReweighting.jl [211] which is designed for the Julia programming language
[212].

For the analysis of the statistical errors ∆O of the reweighted observables, we
use a particular implementation of the bootstrap method. In reweighting, subse-
quent eigenvalue configurations {ελ}i,s from the QMC simulation at temperature
Ti are correlated. But, in addition, there is a finite correlation also between the
configurations at neighboring temperature points, which is a consequence of ex-
changing replicas. We treat these autocorrelation effects by a combination of bin-
ning and resampling. For a given temperature point i, we first regroup subsequent
sets of eigenvalue configurations {ελ}i,s to bins, where the bin length B is gener-
ously chosen to exceed the autocorrelation time τE within one QMC process by
multiple times. This way, we obtain a set d of, in total, M/B data sequences sl,
i.e.

d =
{
s1, . . . , sM

B

}
, (3.94)
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in which the sl contain the correlated eigenvalue configurations,

sl = {{ελ}l,1, . . . {ελ}l,B} . (3.95)

Now, for each temperature point Ti, we generate a number of resamples of the
sequence d,

dn =
{
si1 , . . . , siM/B

}
, (3.96)

which we separately feed into the reweighting calculation, and, thereby, generate
a time series of reweighted observables {Oi}. The statistical error ∆O is then
calculated by the standard error for resamples, as given in Eq. (3.86).

3.6 Summary
In this chapter, we have presented the technical underpinning of our quantum
Monte Carlo simulation approach which we use for the numerical study of Ki-
taev systems at finite temperatures. We have seen how this approach is rooted in
the Majorana basis of the Kitaev model. Here, the partition function can be sep-
arated into a sum over classical field configurations, namely the static Z2 gauge
field {uij}, and a trace over the Majorana fermions. The latter is exactly diago-
nalized for each Z2 gauge field configuration {uij}. This way, we map the par-
tition function to a sum over classical probabilities, without having to introduce
an additional (imaginary time) dimension as, for example, in world line QMC.
The effect from the artificial extension of the Hilbert space, which is used in Ki-
taev’s local transformation from spins to Majorana operators, can be either ne-
glected, if we perform the QMC simulations on large systems, or avoided, by al-
ternatively using a non-local Jordan-Wigner transformation, which preserves the
Hilbert space dimension of the spin model. The computational bottleneck in the
Monte Carlo update is the exact diagonalization of the Majorana Hamiltonian –
a numerical calculation which scales with O(N3) for system sizes N . It can be
significantly accelerated by using the Green’s-function-based Kernel polynomial
method. Here, one exploits that a gauge field update uij −→ −uij only leads to
a rank-2 update of the Hamiltonian, and the change in the free energy ∆F that
determines the Metropolis weights can be efficiently calculated in terms of four
Green’s functions. The Chebyshev expansion used in this method only relies on
repeated matrix-vector multiplications, which, applying sparse-matrix techniques,
scale with O(N). The Chebyshev expansion introduces a systematic error to the
calculation of acceptance probabilities, which can be controlled by the number
of considered Chebyshev moments. Apart from the QMC method itself, we have
presented the most important techniques for the analysis of our numerical data,
including multiple histogram reweighting.
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Chapter 4

Thermodynamic classification of 3D
Kitaev spin liquids

In Sec. 2.2.6, we have given a brief introduction to the thermodynamics of the
Kitaev model. In general, Kitaev systems exhibit two characteristic thermal tran-
sitions, namely the fractionalization of spins into Majorana fermions and a Z2

gauge field, and the low-temperature ordering of the gauge field. A manifestation
of these transitions is a two-peak structure in the specific heat. In three spatial
dimensions, the Z2 gauge ordering is associated with a thermal phase transition,
which is determined by the proliferation of system-spanning vison excitations and
belongs to the class of inverted Ising transitions that occur in certain lattice Z2

gauge theories [50] (Sec. 1.1.2). These phase transitions deviate from the con-
ventional Ginzburg-Landau paradigm, in the sense that they are not described by
any local order parameter. The occurrence of the thermal phase transition in 3D
Kitaev systems and its underlying mechanism have been shown and explained in
earlier quantum Monte Carlo studies on individual systems [44, 45].

The aim of the numerical studies presented in this chapter is to deepen this
understanding of the Z2 gauge physics in three spatial dimensions. For that, we
present quantum Monte Carlo results for a set of elementary, tricoordinated 3D
Kitaev systems [96] (Tab. 4.1), which have been studied in a series of earlier
works on the classification of Majorana ground states [35, 36, 48, 93, 213].

We start with the numerical verification that the ground state flux sectors in all
considered 3D Kitaev systems follow the prediction by Lieb’s theorem [85–87],
although the geometrical conditions for its rigorous applicability are only given
for one of the lattice systems. After that, we discuss the signatures of the thermal
transitions. In particular, we use the results on the low-temperature specific heat
peaks to extrapolate critical temperatures Tc for all systems, and show that Tc
is correlated with the size of the vison gap ∆ – a result which corroborates the
picture of a phase transition that separates different vison loop regimes. Apart
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from the focus on the Z2 gauge field in this chapter, we also present an analysis of
the Majorana density of states (DOS).

In the last part of this chapter, we discuss a lattice system which falls out
of the “conventional” thermodynamical scheme. In the Kitaev system on the
(8,3)c lattice, a peculiar interplay between the loop length and a geometrical con-
straint on the Z2 fluxes leads to geometrically frustrated gauge configurations,
with a macroscopic number of (energetically) degenerate states. We call this phe-
nomenon gauge frustration. We show that the degeneracy of the Z2 gauge field
leads to a suppression of the thermal ordering transition down to a particularly
low temperature scale. At this critical temperature, it is a subtle interplay between
the Z2 gauge field and the Majorana fermions which determines the lifting of the
degeneracy.

The first three sections in this chapter discuss work which has been reported
in Ref. [214]. The work discussed in section 4 has been reported in Ref. [143].

4.1 Ground state flux sectors
The conserved, gauge-invariant physical quantity which underlies the Z2 gauge
field in Kitaev systems is the magnetic Z2 plaquette flux Wp = eiΦ (Sec. 2.1.2).
In order to obtain the exact ground state solution for a Kitaev system, one first
needs to find the Z2 flux configuration {Wp} with minimal energy. A statement
about this ground state flux configuration is provided by Lieb’s Theorem, which
states that it is the (even) length |p| of the elementary plaquette of bipartite lattice
systems which determines the energy-minimizing plaquette flux. If |p| mod 4 =
2, all plaquettes have to remain flux-free (Φ = 0 ↔ Wp = 1), while for |p|
mod 4 = 0, it is a flux Φ = π per elementary loop (Wp = −1), which gives the
ground state. The prediction is valid for any tight-binding Hamiltonian describing
a half-filled band system of hopping electrons, and the theorem is therefore also
extendable to the hopping Majorana fermions in Kitaev systems (Sec. 2.1.2).

However, Lieb’s theorem is rigorously proven only for bipartite lattice ge-
ometries which fulfill certain mirror symmetry conditions. All plaquettes and the
lattice system itself must be symmetric with respect to mirror planes that do not
cut through any of the lattice vertices. Among the elementary tricoordinated lat-
tices considered here, these symmetry conditions are only fulfilled for (8,3)b, and
partly (8,3)n.

As a consequence, the energy-minimizing flux sector for most 3D Kitaev sys-
tems is, strictly speaking, unknown. This, however, does not necessarily mean
that Lieb’s theorem is completely useless here. It only means that the flux con-
jecture cannot be strictly proven on these lattices. Despite that, it can be argued
that Lieb’s theorem still provides the right guideline for determining the ground
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Figure 4.1: Plaquette flux Wp [214]. The numerical data shows that the ground state flux con-
figuration 0/π (corresponding to a Wp-eigenvalue ±1) is determined by the elementary plaquette
length |p| for each lattice. For |p| mod 4 = 0, the ground state has a π-flux per plaquette, while
the flux for systems with |p| mod 4 = 2 is 0. This prediction by Lieb’s theorem is valid for all
considered 3D Kitaev systems, even for those that do not fulfill the mirror symmetry conditions
that are required for its strict proof – which are all except (8,3)b. Data shown is for the linear
system size L = 7, except for (8,3)n and (10,3)d (here, L = 5). Error bars are smaller than the
symbol sizes.

state flux sector. One might think of at least two different strategies to corroborate
the flux conjecture: The first one is routed as well in symmetry considerations. It
can be asked if the flux predicted by Lieb’s theorem is consistent with the point-
group symmetries of the lattice. If this is the case, it would be very unintuitive
if the Kitaev system on this lattice geometry assumed another ground state flux
configuration. The second strategy is to check the ground state flux configura-
tions numerically. This has been partly done, namely for small periodic clusters,
in Ref. [36], which supports the ground state flux configurations according to Lieb
(Sec. 2.2.3).

Our QMC results verify this conjecture also for large systems. In the numeri-
cal experiments on finite, real-space Kitaev systems, where the Z2 gauge variables
are independent degrees of freedom, we have confirmed that all considered sys-
tems assume those ground state flux configurations which follow the prediction
by Lieb’s theorem. All bipartite systems with a plaquette length |p| dividable by 4
possess a π-flux ground state, while all lattice systems with |p| mod 4 = 2 have
a ground state where all plaquettes are flux-free (Fig. 4.1).

Based on this result, the elementary, bipartite 3D Kitaev systems can be sys-
tematically categorized into different families, which are characterized by their
plaquette length and the corresponding ground state flux sector (Tab. 4.1). The
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Lattice Alternative names Ground state flux sector Lieb theorem
(10,3)a hyperoctagon [35] 0
(10,3)b hyperhoneycomb [91] 0
(10,3)c 0
(10,3)d 0
(8,3)a π
(8,3)b hyperhexagon π Yes
(8,3)n π

(8,3)c* frustrated
(9,3)a* hypernonagon [95] ±π/2

Table 4.1: Overview of the elementary three-dimensional, tricoordinated lattices [36, 214]. The
plaquette length |p| is the quantity which determines the ground state flux configuration for all
bipartite lattice systems (see Fig. 4.1), while Lieb’s Theorem is only strictly applicable for (8,3)b.
The lattices (8,3)c and (9,3)a, indicated by an asterisk, do not possess the conventional ground
state flux 0/π. For (8,3)c, additional geometric conditions determine a frustrated flux ground state,
while the flux sector of the non-bipartite system (9,3)a is characterized by spontaneous breaking
of time-reversal symmetry and plaquette fluxes ±π/2 [90, 95].

Schläfli convention (Sec. 2.2) provides an intuitive notation for this classification,
since the naming of the lattices is, here, started by the plaquette length. Among
the bipartite lattices, we find the family (10,3)x with flux-free ground states, and
the family (8,3)x, where the plaquettes generally carry the (maximal) flux π in
the ground state. Among the lattices with plaquette length 8, (8,3)c is the only
one that has a more exotic ground state flux sector, and is separately discussed in
Sec. 4.4.

4.2 Thermal phases
The thermal signatures of fractionalization and gauge ordering have been estab-
lished in earlier quantum Monte Carlo studies of 3D Kitaev systems, namely on
the (10,3)b [44] and (10,3)a lattice [45]. The specific heat of these systems has
been shown to exhibit a characteristic two-peak structure, indicating two thermal
transitions. At T ′ ∼ J (J being the coupling constant of the Kitaev interaction), a
high-temperature peak, which shows no lattice- or system-size-dependent modifi-
cations, indicates a thermal crossover. It is here that the spins locally fractionalize,
and itinerant Majorana fermions, which are situated on the vertices of the lattices,
couple to the static Z2 gauge field that is located on the lattice bonds. The fraction-
alization can be further read off at this temperature scale from the characteristic
behavior of the spin-spin-correlator Sγγ = 〈σγi σγj 〉, a quantity which is equiv-
alent to the kinetic energy −i〈cicj〉γ of the Majorana fermions [43, 46]. It has
been shown that, below the crossover temperature T ′, Sγγ assumes a finite plateau
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Figure 4.2: Two peaks in the specific heatCv [214]. The high-temperature peak at T ′ = 0.51(5) is
the signature of the thermal crossover associated with spin fractionalization. The low-temperature
peak indicates the thermal phase transition associated with the ordering of the Z2 gauge field into
the ground state flux configuration. Data shown is for lattice systems (10,3)d with linear system
size L = 5 and (8,3)b with linear system size L = 7. Error bars are indicated, but mostly smaller
than the symbol sizes.

value, thereby indicating that the Majorana fermions become itinerant here.
At a temperature scale which is two orders of magnitude smaller than T ′,

namely at Tc ∼ J/100, the 3D Kitaev systems show a second peak in the specific
heat. Unlike the crossover peak, this peak is strongly sensitive to the geome-
try of the underlying lattice system, as well as to the system size. Its generi-
cally diverging behaviour with growing system size is the signature of a thermal
phase transition. This phase transition is a feature which is only characteristic
for the three-dimensional Kitaev systems, and distinct from the low-temperature
crossover which is usually encountered in their 2D counterparts [46]. It is at the
low-temperature phase transition that the gauge ordering happens, and the Kitaev
systems enter their respective ground state flux sector, which is measurable in
terms of the average plaquette flux (eigenvalue) Wp.

Between the two thermal transitions, the system is thus in a peculiar state
where the spins are already fractionalized, i.e., its properties are already governed
by the parton degrees of freedom, but the Z2 gauge field, to which the Majo-
rana fermions are coupled, remains disordered. This intermediate phase has been
shown to appear as a flattened region in the entropy curve S(T ) [44, 45], under-
lining its relative thermal stability. The fact that this intermediate regime spans
two orders of magnitude in temperature space raises the expectation that it might
be a candidate for experimental detection in a real material.

Our quantum Monte Carlo results show that the described thermal signatures
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Chapter 4. Thermodynamic classification of 3D Kitaev spin liquids

are generic features of the considered systems. The details are discussed in the
following. We have simulated all Kitaev systems at the isotropic coupling point,
where Jx = Jy = Jz = 1/3. The unit of the temperature corresponds to this
choice of the coupling, and is omitted in the following (to restore the unit J , all
temperatures have to be multiplied by 3). The assignment of Kitaev couplings
has been chosen in accordance with Ref. [36]. We have performed the quantum
Monte Carlo simulations on systems with linear sizes up to L = 7, and, deviantly,
L = 5 for (8,3)n, which has a particularly large unit cell of 16 sites, and (10,3)d,
which has been simulated solely with the QMC-ED method. This choice of L cor-
responds to largest system sizes with N = 1000− 2058 sites. All lattice systems
have been implemented with periodic boundary conditions, with the exception of
(10,3)d, where open boundary conditions in the a2- and a3-direction have been
used to reduce finite-size effects. A detailed overview of the individual numer-
ical results for each lattice and a discussion of finite-size effects is provided in
Appendix C.

4.2.1 Thermal crossover and local spin fractionalization

We start the discussion of the numerical results by closely inspecting the specific
heat Cv(T ). For all 3D Kitaev systems, it shows the aforementioned two-peak
structure (Fig. 4.2, appendices C.3, C.4). To achieve a more precise understanding
on how the fractionalized degrees of freedom differ with respect to their physical
behaviour, it is convenient to examine the specific heat contributions of the (itin-
erant) Majorana fermions and the Z2 gauge field separately [215], and to compare
them with the added result from both contributions. The Majorana contribution
is given by the derivative of the internal energy Ef of the Majorana system (Ap-
pendix B.4),

Cv,MF(T ) = − 1

T 2

〈
∂Ef ({ujk})

∂β

〉
MC

, (4.1)

a term which appears in the full specific heat formula due to the explicit tempera-
ture dependence of Ef . Here, the bracket 〈. . . 〉MC denotes averaging over Monte
Carlo samples.

The full specific heat curve Cv(T ) and its Majorana part Cv,MF(T ) are plot-
ted for the different 3D Kitaev systems in Fig. 4.3. The peak temperature is
T ′ = 0.51(5) for all lattice systems, and we can also see that all specific heat
curves lie (almost) exactly on top of each other. In fact, only the curve of (10,3)d
appears slightly shifted with respect to the others, which is an effect from the
open boundary conditions that this system is implemented with. For the full spe-
cific heat, this correspondence holds down to a temperature scale of T ∼ 0.1,
below which the curves of the lattices start to differ and evolve into the respective
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(b) Majorana contribution Cv,MF

Figure 4.3: Specific heat Cv in the high-temperature region (a), and its Majorana contribution
Cv,MF (b) [214]. The high-temperature peak indicates a thermal crossover, caused by the (local)
fractionalization of spins into (itinerant) Majorana fermions and a (static) Z2 gauge field. The
position and shapes of the peaks are (nearly) equal for all lattice systems, which underlines the
local character of the thermal transition. Data shown is for the linear system size L = 7, except
for (8,3)n and (10,3)d (here, L = 5). The dotted line indicates the crossover temperature T ′ =
0.51(5). Error bars are smaller than the symbol sizes.

low-temperature peaks. For the Majorana contribution Cv,MF(T ), the correspon-
dence of the lattice curves holds down to lowest temperatures, and for T → 0.01,
Cv,MF(T ) becomes 0 for all lattice systems.

We can draw a number of conclusions from these observations. The first one is
associated with the energy scales on which the fractionalized degrees of freedom
in the system become relevant. Clearly, the specific heat contribution from the Z2

gauge field is measurable only below T ∼ 0.1, which signifies that the strongest
fluctuations of the gauge field lie within this energy scale. In contrast with that,
the weakest fluctuations of the itinerant Majoranas have a magnitude which lies
above T ∼ 0.01. Below the temperature scale T ∼ 0.01, the system is entirely
governed by the fluctuations of the Z2 gauge field, and above T ∼ 0.1, it is
entirely governed by fluctuations of the Majorana fermions. In the intermediate
temperature regime 0.01 ≤ T ≤ 0.1, fluctuations of both fractionalized degrees
of freedom play a role. This corresponds exactly to the regime which is dubbed
disordered Z2 spin liquid, where the itinerant Majorana fermions are coupled to a
disordered Z2 gauge field.

Secondly, there are no changes in the high-temperature peak, neither for dif-
ferent lattice geometries (albeit there is a slight shift for systems with open bound-
ary conditions), nor for different system sizes. Thus, it can be stated that for all
3D Kitaev systems, the thermal transition associated with the fractionalization of
spins is a local phenomenon, i.e. a thermal crossover. Numerical measurements of
the spin-spin correlator Szz (see Fig. 4.4) further show that all systems approach
a finite plateau value Szz ∼ 0.52 below the crossover temperature T ′ (with the
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Figure 4.4: Spin correlator Szz = 〈σzi σzj 〉. This quantity is equivalent to the kinetic energy of the
itinerant Majorana fermions, −i〈cicj〉γ . Below the thermal crossover at T ′ = 0.51(5) (indicated
by the dotted line), the correlator assumes a finite plateau value for all lattice systems. Hence, the
thermal crossover can be interpreted as being caused by the local fractionalization of spins into
itinerant Majorana fermions, which are coupled to a static Z2 gauge field. Data shown is for the
linear system size L = 7, except for (8,3)n and (10,3)d (here, L = 5). Error bars are smaller than
the symbol sizes.

exception of (10,3)d, where the plateau value is Szz ∼ 0.48). This confirms the
picture of spins σi that locally fractionalize at the crossover, σγi → ibγi ci, and of
the Majorana fermions ci becoming itinerant at this temperature.

4.2.2 Thermal phase transition and Z2 gauge ordering
In contrast to the high temperature region, where the different specific heat curves
Cv(T ) lie on top of one another, the latter differ at temperatures below a scale of
T ∼ 0.1. Here, the physical behaviour of the system becomes more and more
governed by the fluctuations of the Z2 gauge field {ujk}, which can be seen from
comparing the full specific heat Cv(T ) with its Majorana contribution Cv,MF(T )
(Fig. 4.3). For T → 0.01, Cv,MF(T ) goes to 0. Thus, the specific heat in the
low-temperature region T ≤ 0.05 is effectively given by its gauge contribution,
which is captured by the variance of the internal energy Ef ,

Cv,GF(T ) =
1

T 2

(
〈E2

f ({ujk})〉MC − 〈Ef ({ujk})〉2MC

)
. (4.2)

The results for Cv,GF(T ) on the different lattice systems are shown in Fig. 4.5.
We can see that the thermal signature in the gauge-dominated regime, the low-
temperature peak ofCv,GF(T ), is qualitatively different from the high-temperature
peak described above. Here, the 3D Kitaev systems show relatively sharp low tem-
perature peaks, and the sizes, shapes and positions in temperature space of these
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Figure 4.5: Specific heat Cv,GF in the low-temperature region [214]. The low-temperature peak
indicates a thermal phase transition, caused by the ordering of the Z2 gauge field. Its position in
temperature space is lattice-specific and correlated with the size of vison gap ∆ (see Fig. 4.7).
Data shown is for the linear system size L = 7, except for (8,3)n and (10,3)d (here, L = 5).

peaks strongly differ for distinct lattice geometries. The sharpest low-temperature
peak is found for (8,3)b and has the highest position in temperature space. In con-
trast, (10,3)a has the broadest peak with the lowest position in temperature space.
A comparison of Cv,GF(T ) with the results for Wp (Fig. 4.1, 5.4) shows that the
peak positions T ′′ coincide with the ordering of the Z2 fluxes. This confirms that
the low-temperature peak indicates a gauge ordering transition, which, for differ-
ent lattice systems, happens at different temperatures. Regarding a specific lattice
geometry, the precise location of the peak and the ordering of fluxes is further
altered by the choice of boundary conditions (Fig. C.7).

A close inspection of the finite-size behaviour of Cv,GF(T ) shows that the low-
temperature peak diverges for increased system sizes (Fig. 5.4). For some systems,
this diverging behavior is concealed by finite-size effects, which are shown and
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Figure 4.6: Finite-size scaling of the specific heat Cv and the average plaquette flux Wp. While
the high-temperature peak of the specfic heat (a,b) is unchanged for increased system sizes, the
low-temperature peak diverges in the thermodynamic limit. This is a clear signature of a thermal
phase transition, which is associated with the ordering of Z2 fluxes (c,d).

discussed in Appendix C. The divergence of the low-temperature peak is a clear
indicator that the gauge ordering is, for all 3D Kitaev systems, associated with a
thermal phase transition. In the following, we examine the physical mechanism
within the gauge field that leads to this phase transition.

Phase transition mechanism

For the analysis of the low-temperature transition, we have used the specific heat
peak positions T ′′ at different system sizes N to extrapolate the critical temper-
atures Tc for each lattice system. Concretely, we have regarded the peak posi-
tion T ′′ as a function of the inverse system size 1/N , and performed a linear fit
to obtain Tc as the limit of the fit function for 1/N → 0 (Appendix C.6). For
(10,3)a, (10,3)b, (8,3)c and (9,3)a, results on Tc have already been published in
Refs. [44, 45]. We have used these literature results in the following analysis, and
discuss the agreement of our results with the literature values in Appendix C.6.
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Lattice Vison gap ∆ Critical temperature Tc Tc/∆
(10,3)a 0.0299(13) 0.00405(9) [45] 0.135(7)
(10,3)b 0.0426(4) 0.00519(9) [44] 0.121(2)
(10,3)c 0.046(2) 0.0049(2) 0.107(6)
(10,3)d 0.030(2) 0.00462(1) 0.154(10)
(8,3)a 0.0197(13) 0.0044(8) 0.22(4)
(8,3)b 0.0532(3) 0.0079(3) 0.148(6)
(8,3)n 0.05397(10) 0.0071(3) 0.132(6)
(8,3)c* 0.0219(6) 0.0020(2) [143] 0.091(9)
(9,3)a* 0.034(1) [90] 0.00244(4) [90] 0.072(2)

Table 4.2: Overview of the vison gaps ∆ and critical temperatures Tc for the elementary 3D
Kitaev systems. Quantum Monte Carlo simulations show that the temperature at which the Kitaev
systems undergo a thermal phase transition from a disordered to an ordered Z2 spin liquid is
determined by the size of the vison gap (Fig. 4.7). For the lattices (8,3)c and (9,3)a, indicated by
an asterisk, the physical mechanism underlying the low-temperature phase transition is different
from the rest due to special characteristics of the gauge field in these systems. Literature values
are indicated by references. For the calculation of the vison gaps ∆, we use the raw data from
Ref. [36] (except for (8,3)c and (10,3)d), rescale and refit it. Details on the calculations of ∆ and
Tc are given in Appendices C.5 and C.6.

We compare the critical temperature estimate Tc with the vison gap ∆ for
each system. The vison gap is the energy difference between the ground state flux
configuration of the Kitaev system and the configuration with the smallest possible
flux excitation, which is generated by carefully picking the right Z2 gauge variable
uij and flipping it. The energy difference is calculated by exact diagonalization of
the Majorana Hamiltonian in the respective gauge sectors. Results for the vison
gaps have been published in Ref. [36]. Since the ground state flux sectors in
these calculations are verified by our QMC results, we have used the raw data for
all lattices except (8,3)c and (10,3)d from Ref. [36], rescaled it to the coupling
strength J = 1/3, and refitted it, in order to improve the estimates on the error of
∆ (Appendix C.5).

The results for the critical temperatures Tc and the vison gaps ∆ are given in
Tab. 4.2, and plotted in Fig. 4.7. We see that the critical temperature Tc lies within
the range T = 0.004 − 0.008 for all systems except (8,3)c and (9,3)a. Above
all, it is clearly correlated with the vison gap ∆. This is suggested by a linear
(least-squares) fit of the data, which gives an approximately vanishing y-intersect
T = 0.0000(13), i.e., a vanishing critical temperature for ∆ → 0. For all data
points except (9,3)a, the error bars at least overlap with the statistical error of the
fit.

The linear correlation between Tc and ∆ confirms the understanding of the
phase transition mechanism that is discussed in Refs. [44, 81, 97]. The phase tran-
sition is a continuous, inverted Ising transition which generically occurs in lattice
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vison gap Δ 

Figure 4.7: Critical temperature Tc and vison gap ∆ [214]. Both quantities are clearly correlated,
indicated by the black linear fit line. The shaded area indicates the error of the y-intersect of the
least-squares fit. The values of Tc are extrapolated from the positions of the low-temperature peaks
in the specific heat Cv . At this phase transition temperature, the loop-like vison excitations of the
3D Kitaev systems proliferate and become system-spanning, line-like objects. The values for ∆
and Tc are given in Tab. 4.2. Details on the calculations of ∆ and Tc are given in Appendices C.5,
C.6.

Z2 gauge theories [50]. It cannot be described by spontaneous symmetry breaking
in terms of a local order parameter, and, in this sense, deviates from the conven-
tional Ginzburg-Landau paradigm. The underlying geometric reason for this is
the linear dependence of the loop operators Wp. An excitation from the ordered
Z2 ground state flux configuration is, as we have seen, created by flipping the Z2

gauge degree of freedom ujk on a particular bond 〈j, k〉. In three dimensions, this
generates flux excitations on all the adjacent plaquettes of the bond, which corre-
sponds to the creation of a loop-like quasi-particle, the vison (Fig. 2.9). By heating
the system up, more and more vison excitations are generated by thermal fluctua-
tions of the Z2 gauge field, and some neighbouring visons merge with one another
to form larger loops. The thermal phase transition separates the low-temperature
regime, where the visons are still small objects, from the high-temperature phase
that is characterized by the proliferation of system-spanning, macroscopic loops,
which form a confining potential for the fermions (Fig. 4.8). Thus, it constitutes
a deconfinement-confinement transition in the sense of lattice Z2 gauge theory,
which separates two topologically distinct regimes (Sec. 1.1.2). If the plaquette
fluxes ±1 are considered as Ising spins on the dual lattice, the low-temperature
and high-temperature phase of this system are reversed with respect to the con-
ventional 3D Ising model. In this picture, the visons can also be understood as
domain walls.
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Figure 4.8: Low-temperature phase transition in 3D Kitaev systems [43, 44, 81]. Unlike in 2D
systems, here, the loop operators Wp are linearly dependent. Exciting the Z2 gauge variable on a
lattice bond amounts to creating a loop-like vison excitation that perpetrates all adjacent plaquettes.
The phase transition is produced by such loop-like vison excitations being converted into system
spanning, line-like objects. This constitutes an inverted Ising gauge transition, which separates the
deconfined and confined phase in lattice Z2 gauge theory.

In Ref. [44], the existence of system-spanning visons above Tc is verified by
measuring the Wilson loop Wc – the equivalent of Wp along the edge of an open
boundary. The thermal average of this quantity is shown to sharply drop from
Wc = 1 to Wc = 0 at Tc, and therefore, Wc serves as a non-local equivalent to an
order parameter. This underlines that the phase transition cannot be understood as
being caused by spontaneous breaking of Z2 symmetry by the variables Wp.

For systems with periodic boundary conditions, we cannot define a Wilson
loop Wc along some edge of the system. However, we can probe the described
mechanism also in an indirect way, namely by understanding how the magnitude
of the critical temperature Tc is determined. The energy that is required for the
creation of macroscopic vison excitations is expected to be proportional to their
length L and a (temperature-dependent) loop tension (energy per length) τ , which
is considered to be a function of the vison gap ∆. In the thermodynamic limit
L→∞, the energy of the extended loops diverges, but the free energy of the sys-
tem is lowered by the large entropy they are accompanied with. This mechanism
renormalizes the effective loop tension (free energy per length) τ̃ of macroscopic
loops to lower, and finally, negative values at the critical temperature Tc [81],
which results in their proliferation. In this picture, Tc is expected to show a de-
pendance on the vison gap ∆ through the loop tension. In this sense, the (linear)
correlation between Tc and ∆, which we extracted from the numerical results,
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Figure 4.9: Entropy S per site [214]. The entropy in the paramagnetic (high-temperature) region
is S = ln(2), indicating two possible states per spin. At the thermal crossover, T ′ = 0.51(5)
(dotted line), the system releases half of its entropy due to the fractionalization of the spins into
(itinerant) Majorana fermions and a (static) Z2 gauge field. The latter remains disordered in this
intermediate region. It is at the thermal phase transition at Tc ∼ 0.05 that the system releases
its remaining entropy, and the Z2 gauge field freezes into an ordered configuration, indicated by
a sharp drop. For (10,3)d, open boundary conditions in two spatial directions cause a residual
entropy for T → 0, since Z2 gauge degrees of freedom on the edge bonds may fluctuate without a
cost in energy. The residual entropy approaches 0 when the system size is increased. Data shown
is for the linear system size L = 7, except for (8,3)n and (10,3)d (here, L = 5). Error bars are
smaller than the symbol sizes.

corroborates the theoretical model. Specifically, the linear fit indicates that for
∆→ 0, also Tc vanishes.

For most systems, the ratio Tc/∆ is ∼ 0.1− 0.14 (Tab. 4.1). This ratio is con-
siderably larger for (8,3)a (∼ 0.22), where also the error estimate on the critical
temperature Tc is particularly large, and possibly, an improved extrapolation of
Tc for numerically so far inaccessible system sizes may produce a slightly lower
estimate for Tc. For (8,3)c and (9,3)a, on the other hand, Tc/∆ is smaller than
0.1. This can be explained with the different nature of the thermal phase transi-
tion in these systems. In (8,3)c, the gauge field is geometrically frustrated, which
leads to a suppression of the gauge-ordering transition down to a particularly low
temperature scale Tc = 0.0020(2). The phase transition in (9,3)a, on the other
hand, has been shown to be first-order, and to comprise several physical effects
at once: The described vison proliferation mechanism, along with spontaneous
breaking of time-reversal symmetry, and the spontaneous breaking of a number of
point-group symmetries of the lattice [90].

A summarized view on the thermal phases in 3D Kitaev systems can be ob-
tained from looking at the entropy per site S(T ) of the Kitaev systems (Fig. 4.9).
Our results on S(T ) confirm those from earlier QMC studies [44, 45]. In the para-
magnetic phase of the Kitaev spin model, where the Majorana fermions and the
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Figure 4.10: Density of states (DOS) for the lattice systems (8,3)a and (8,3)b [214]. The numerical
DOS (b,d) is extracted from QMC simulations of systems with the linear size L = 7.

Z2 gauge field are still glued together as spin-1/2 degrees of freedom, the entropy
is S = ln(2), which corresponds to two possible states per spin: σz ∈ {|↑〉 , |↓〉}.
At the thermal crossover, T ′ = 0.51(5), the spin system releases half of its entropy
due to the fractionalization of spins into parton degrees of freedom. Between this
temperature scale and the thermal phase transition at Tc ∼ 0.004 − 0.008, we
encounter a plateau in the entropy with S ∼ ln(2)/2. Here, the system is in the
relatively stable regime of itinerant Majorana fermions coupled to a disordered
Z2 gauge field, and governed by fluctuations both of the gauge degrees of free-
dom and the Majorana fermions. At the thermal phase transition, the remaining
entropy is released, and within this region, the system is entirely determined by
the (small) fluctuations of the Z2 gauge field. Note that on (10,3)d, the entropy is
not fully released for T → 0 due to semi-open boundary conditions. Here, the Z2

gauge field on the surface remains fluctuating without a cost in energy. This is a
finite-size effect that gets systematically smaller if we go over to large systems.

As we have shown in this section, our numerical results reproduce the thermal
signatures known from earlier QMC simulations on Kitaev systems [44, 45], and
verify that the selection of elementary, bipartite 3D Kitaev systems considered
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Figure 4.11: Density of states (DOS) for the lattice system (8,3)n [214]. The numerical DOS (b)
is extracted from the QMC simulations of a system with the linear size L = 4.

here shows the same thermodynamic behavior. The numerical results also con-
firm the theoretical understanding of the inverted Ising phase transition in these
systems, which is a deconfinement-confinement transition characterized by the
proliferation of macroscopic vison excitations. This mechanism manifests itself
in a (linear) correlation between the critical temperature Tc and the vison gap ∆ –
quantities which are expected to be related through the loop tension τ .

4.3 Majorana density of states

In addition to the thermodynamic observables discussed so far, we show numeri-
cal results for the density of states (DOS) ρ(E) of the Majorana fermions close to
the ground state. In the QMC simulation, the DOS corresponds to the distribution
of eigenvalues (single-particle energies) ελ of the Majorana Hamiltonian, which
are calculated and saved after each Monte Carlo sweep. In order to get an approx-
imate version of the ground state DOS from the Monte Carlo data, we regard the
eigenvalue configurations at a temperature that is well below the thermal phase
transition, but high enough for the Monte Carlo simulation not to be “frozen” into
a single gauge field configuration. Typically, we show the density of states ρ(E)
for the systems at a temperature T ∼ 0.0016 (Figs. 4.12 - 4.11).

In order to compare the numerical results, we also show analytical results for
the DOS ρ(E) at T = 0. For that, we have Fourier-transformed the Majorana
HamiltoniansH({ujk}), and fixed the Z2 gauge variables ujk, in order to produce
the ground state flux configuration. Then, we have diagonalized H({ujk}) at the
L3
k k-points of the discretized Brillouin zone. Typically, we have chosen Lk = 400

for this calculation.
The analytical and numerical results for the DOS are given in Figs. 4.12 -
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Figure 4.12: Density of states (DOS) for the lattice systems (10,3)a and (10,3)d [214]. The ana-
lytic ground state DOS (a,c) is calculated via exact diagonalization of the Majorana Hamiltonian in
reciprocal space. The numerical DOS (b,d) is obtained from QMC simulations of finite real-space
systems at the stated temperatures. The numerical data shown is for the linear system size L = 7
for (10,3)a, and L = 5 for (10,3)d.

4.11. We see that the numerical results qualitatively reproduce the features from
the exact ground-state DOS. It is only in the region of lowest energies (E � 0.25)
that the numerical results notably deviate from the exact DOS. This is expected
due to finite-size and finite-temperature effects in the QMC simulation. For the
lowest-lying energy levels, where the DOS is expected to be zero (unless it pos-
sesses a Fermi surface), there is a certain occupancy probability if the temperature
is low, but finite. To further approach the analytic DOS at this scale would require
simulation times that exceed those of our calculations by many times. Hence, at
the current state of the QMC method, it is not possible to extract low-energy signa-
tures coming from the Majoranas, as the numerically reachable temperature scale
does not allow for an effective distinction between the different nodal structures.

The behaviour of the analytic DOS in the region around E ∼ 0 is an indicator
for the topological band structure of the corresponding Majorana (semi-)metal.
(8,3)a and (10,3)a possess a Fermi surface, which manifests itself in a finite DOS
also for the lowest-lying energy levels (Figs. 4.12 and 4.10). The majority of
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Figure 4.13: Density of states (DOS) for the lattice systems (10,3)b and (10,3)c [214]. The
numerical DOS (b,d) is extracted from QMC simulations of systems with the linear size L = 7.

the other lattice systems host Majorana (semi-)metals with Weyl nodes or nodal
lines as topological features. Here, the DOS always approaches zero for E → 0,
but the topological features reveal themselves in a characteristic shape of the low-
energy DOS. Those systems that possess a nodal line in the ground state – (10,3)b
and (10,3)c – show a linear increase of the DOS close to E = 0 (Fig. 4.13 a,c).
This is reminiscent of the 2D Kitaev honeycomb model, where the band structure
possesses Dirac cones in the ground state, and also an E-linear DOS for low
energies [46]. For (8,3)b, a system that exhibits Weyl nodes, the increase of the
low-E DOS is instead quadratic (Fig. 4.10 c). Finally, as a deviating example from
the rest of the systems, the Kitaev system on (8,3)n possesses a finite gap also for
the isotropic point (Fig. 4.11 a). The gap here is also visible in the numerical
result.
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4.4. Gauge frustration

Figure 4.14: The (8,3)c lattice [143]. The elementary 8-plaquettes form a hexagonal lattice of
plaquette triplets (indicated by the black sites). Their plaquette length lets expect a uniform ground
state flux configuration of π-fluxes. However, each plaquette triplet forms the boundary of a closed
volume. Therefore, the product of fluxes Wp is, for each triplet, constrained to

∏
pWp = 1. In

consequence, one plaquette in every triplet has to carry a 0-flux (see also Fig. 4.15).

4.4 Gauge frustration

So far, we have closely examined the prototypical thermodynamic behavior of
bipartite 3D Kitaev systems, which is, in the low-temperature regime, character-
ized by a thermal phase transition associated with the ordering of the Z2 gauge
field. With the gauge ordering, the Kitaev systems assume their Z2 ground state
flux configurations, which, for all systems considered so far, is a unique, uniform
configuration of either 0- or π plaquette fluxes, the choice for which entirely de-
pends on the length of the elementary plaquettes. However, this rule comes with
an exception: On the (8,3)c lattice, we encounter a remarkable deviation from this
conventional thermal behavior of 3D Kitaev systems. Here, the emergence of a
uniform ground state flux configuration is prevented – or frustrated – by an inter-
play between the elementary plaquette length |p| = 8, which favors a π-flux, and
a volume constraint which explicitly forbids the π-flux to be assumed on all lattice
plaquettes. The result is the emergence of a highly degenerate constrained gauge
manifold. In this scenario, which we call gauge frustration, the gauge ordering
transition is suppressed down to a temperature scale that is (almost) one order of
magnitude lower than in the other Kitaev spin liquids. Finally, it is the interaction
between the itinerant Majorana fermions and the Z2 gauge field which leads to a
partial lift of the gauge degeneracy, and the selection of a non-trivial ground state
flux order.
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(a) (b) (c)

Figure 4.15: Gauge frustration on the (8,3)c Kitaev system [143]. The elementary plaquette length
|p| = 8 asks for a π-flux ground state. However, three plaquettes form the boundary of a closed
volume, which constrains the product of their loop operator eigenvalues to

∏
Wp = 1. Hence, per

plaquette triplet, there are three allowed flux states that minimize the energy. Two plaquettes carry
a π-flux (cyan), while the third plaquette is forced to be flux-free (yellow).

In the following, we introduce the (8,3)c lattice and explain the geometric
foundation of gauge frustration. Afterwards, we present how the occurrence of
gauge frustration manifests itself in the physical observables. In particular, we
introduce a pseudospin, a classical auxiliary variable that describes triplets of pla-
quette fluxes in the lattice, and whose correlator serves to display the degree of
frustration in different (an)isotropy and temperature regimes of the (8,3)c Kitaev
system. A close look is given to the ground state of the system, and how it emerges
as a consequence of the interplay between the Z2 gauge field and the itinerant Ma-
jorana fermions. In the end, we discuss the phase diagram of the gauge-frustrated
Kitaev spin liquid in its different (an)isotropy limits.

4.4.1 Volume constraint and gauge frustration
Plaquette triplets

In the (8,3)c lattice, each unit cell possesses 8 sites and four linearly independent
loop operators of length 8 (Fig. 4.14). Therefore, according to Lieb’s theorem, one
would expect the Kitaev system on this lattice to ask for a ground state flux sec-
tor with a uniform configuration of π-fluxes. In particular, such a uniform π-flux
configuration on all the 8-plaquettes would preserve the point-group symmetries
of the lattice – threefold rotation and inversion symmetry – as has been laid out
in Ref. [36]. However, it is exactly this uniform π-flux configuration that turns
out to be geometrically forbidden. The reason for this is the volume constraint on
plaquette fluxes that is in force for lattice systems in three spatial dimensions. The
operators Wp on lattice plaquettes which form the boundary of a closed volume V
are linearly dependent. The product of their eigenvalues

∏
p∈V Wp is constrained
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4.4. Gauge frustration

to be 1. In a physical sense, this constraint corresponds to a divergence-free con-
dition on the vison excitations that are formed by the fluxes. In three spatial di-
mensions, the visons are not point-like, but loop-like, and whenever a vison loop
enters a volume through one plaquette, it has to leave through another. In other
words. Magnetic monopoles are forbidden in the system.

How does the volume constraint in the (8,3)c lattice now affect the formation
of the ground state flux sector? As Fig. 4.14 shows, the elementary 8-plaquettes
in the (8,3)c lattice are arranged as a hexagonal lattice of independent triplets t
(which is indicated by the lattice sites marked in black). Here, three plaquettes
form the boundary of a closed volume. In consequence, it is impossible that all
three plaquettes carry a π-flux, since this would lead to a product

∏
p∈tWp = −1.

Hence, at least one plaquette per triplet must be flux-free, which is dictated by
the volume constraint. The three corresponding flux triplet states are visualized
in Fig. 4.15. Of course, these are not the only states which are, in principal, al-
lowed by the volume constraint. In addition, there is the triplet with all plaquettes
carrying a 0-flux. Here however, we treat the question which configuration gives
minimal energy, and for that, it is expected that the triplet assumes the maximum
number of π-fluxes which is allowed by the constraint. This maximum is two.
Hence, instead of a single ground state flux configuration, the Z2 gauge field of
the system is expected to enter a highly degenerate constrained gauge manifold at
low temperatures, where each plaquette triplet independently assumes one of the
three states with two π-fluxes and one 0-flux. The spin liquid state of the (8,3)c
Kitaev model is therefore “doubly frustrated”. Apart from the exchange frustra-
tion of spins, there is an additional geometric frustration of the Z2 gauge field. We
call this phenomenon gauge frustration.

Degeneracy levels in different coupling regimes

A closer inspection of the plaquettes within a triplet further shows that the en-
ergy of the triplet states depends on the (an)isotropy of the bond couplings. This
can be seen if the number of z-bonds per plaquette is considered. While in each
triplet, the two plaquettes with vertical orientation possess three (blue) z-bonds,
the plaquette with horizontal orientation always possesses two. Keeping Jx and
Jy fixed, a tuning of Jz therefore determines the level of degeneracy, with a strong
Jz-coupling “attracting” and a weak Jz-coupling “repulsing” the π-fluxes. We
consider the degeneracy as a function of Nt, the number plaquette triplets in the
lattice. Nt is related to the number of lattice sitesN byNt = N/4 1. We encounter
the following degeneracy regimes:

1There are 3
2 bonds per site in a Kitaev system, hence, in total, 3N

4 plaquettes in the (8,3)c
lattice. Since 3 plaquettes form a triplet, Nt = N

4
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Chapter 4. Thermodynamic classification of 3D Kitaev spin liquids

• For isotropic coupling parameters Jz = Jx = Jy, all three plaquette triplet
states are degenerate, and there are 3Nt possible flux states in the system.

• For Jz < Jx, Jy, one of the two vertical plaquettes picks the 0-flux state
(Fig. 4.15 b,c). Hence, there is a reduced degeneracy, with 2Nt possible flux
states in total.

• For Jz > Jx, Jy, the 0-flux in the triplet is only assumed by the horizontal
plaquettes, which possess fewer z-bonds (Fig. 4.15a). With that, the degen-
eracy of the gauge field is lifted, and a unique ground state flux configuration
is restored.

In our QMC simulations, we have used the convention that the Jγ-couplings
add up to 1, and Jx = Jy. Therefore, we always indicate the coupling (an)isotropy
by the Jz-value, and the other couplings follow as Jx = Jy = (1 − Jz)/2. In the
following, we see how the gauge frustration for different (an)isotropy limits of
the Kitaev system can be measured in terms of physical observables, and how
it affects the thermodynamic behavior of the system. We have performed the
simulations with the QMC-KPM method. To reduce finite-size effects, we have
chosen the smallest size of our systems as 4 · 4 · 6 unit cells (768 sites), and
the largest size as 63 unit cells (1728 sites). For the exploration of the lowest-
temperature regime, below the region where the QMC simulations converge in a
reasonable computation time, we have extrapolated our results with the multiple
histogram reweighting method [149, 150].

4.4.2 Signatures of gauge frustration
Average plaquette flux

The easiest way to probe the existence of the gauge-frustrated low-temperature
regime in the (8,3)c Kitaev system is by measuring the plaquette flux. Obviously,
if the system does not assume a uniform flux configuration, the average plaquette
flux does not converge to its usual ground state values Wp = ±1 at low tempera-
tures. Instead, if two plaquettes in each triplet acquire a π-flux (Wp = −1), and
one plaquette remains flux-free (Wp = 1), the expected average plaquette flux for
T → 0 is Wp = (−2 + 1)/3 = −1/3. This is confirmed by the QMC results
(Fig. 4.16 a).

Interestingly, this result means that Lieb’s theorem still plays its role also in
this more exotic lattice geometry, although neither of the plaquettes fulfills the
mirror symmetry condition for the theorem. The 8-plaquettes tend to adopt the
π-flux that corresponds to their length |p|, but, due to the volume constraint, only
two out of three may do so. This implies that the plaquette length is a stronger

130



4.4. Gauge frustration

10−3 10−2 10−1 100

temperature T

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

p
la

qu
et

te
flu

x
W

p

−1/3

Jz = 0.42

Jz = 0.25

Jz = 1/3

(a) plaquette flux Wp

10−3 10−2 10−1

temperature T

0.0

0.2

0.4

0.6

0.8

1.0

p
se

u
d

os
p

in
co

rr
el

at
or
P

1

1/3

1/9

0

Jz = 0.42

Jz = 1/3

Jz = 0.25

(b) pseudospin correlator P

Figure 4.16: Average plaquette flux Wp and pseudospin correlator P as functions of temperature
[143]. In Fig. (a), we see that the average plaquette flux converges to a ground state value Wp =
(−2 + 1)/3 = −1/3 for all (an)isotropy limits, which corresponds to one plaquette in each triplet
assuming a 0-flux. With the pseudospin correlator P in Fig. (b), it is possible to resolve the
different levels of degeneracy for each (an)isotropy parameter Jz (see the text). Data shown is for
the system size 4 × 4 × 6 (N = 768). The shaded region in Fig. (b) indicates the temperature
range where we obtain the numerical results from multiple histogram reweighting.

criterium for the choice of the energy-minimizing flux than symmetry consider-
ations. Here, the system energetically prefers to adopt a plaquette flux config-
uration that breaks the lattice symmetries (threefold rotation and inversion sym-
metry). Each plaquette triplet assigns the 0-flux independently to one of its con-
stituents. The only allowed flux configuration that preserves all symmetries would
be a uniform configuration of 0-fluxes, as has been discussed in Ref. [36]. This
configuration, however, has a higher energy.

Pseudospin correlator

In Fig. 4.16 a, we see that the fluxes average to a ground state value Wp = −1/3,
regardless of the (an)isotropy parameter Jz. The degree of degeneracy is, however,
dependent on the ratio between the Jγ-couplings. All plaquette triplets find them-
selves in a two-π-one-0 flux state, but it is the relative strength of the Jz-coupling
that decides which one of the three states of this kind is chosen. This selection
between the triplet states is something we cannot see from looking at Wp, and it
is desirable to have another observable at hand which enables us to resolve the
selection.

Such an observable is introduced by regarding the plaquette triplets as classi-
cal, three-dimensional pseudospins W, whose components are given by the flux
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operator eigenvalues Wα of the plaquettes in a triplet (for the assignment of the
labels α ∈ {x, y, z}, see Fig. 4.15),

W =

Wx

Wy

Wz

 (a)
=

−1
−1

1

 (b)
=

 1
−1
−1

 (c)
=

−1
1
−1

 . (4.3)

We can measure the two-point correlator of the pseudospins,

P =
4

3N

∑
j

〈W0Wj〉, (4.4)

where the normalization constant 4/3N corresponds to the number of plaquette
triples N/4 and the magnitude of the pseudospin ||W ||2 = 3. The pseudospin
correlator serves to determine the degeneracy of the flux manifolds, which corre-
spond to a certain value of Jz (Appendix C.8.1):

• For isotropic coupling constants Jz = Jx = Jy and “full” gauge degener-
acy, all pseudospin states W given in Eq. (4.3) are expected to be equally
distributed in the system. Therefore, the correlator P assumes the charac-
teristic value P = 1/9.

• For Jz < Jx, Jy, the gauge degeneracy is partially lifted. Here, only the
states (b) and (c) in Eq. (4.3) appear in the system, and the correlator is
expected to be P = 1/3.

• For Jz > Jx, Jy, the state (a) in Eq. (4.3) is expected for all plaquette triplets
(pseudospins), and the resulting pseudospin correlator is P = 1.

• At high temperatures, the system finds itself outside the constrained gauge
manifold, and, in addition to the three pseudospin states (a), (b), (c) in
Eq. (4.3), the state W = (1, 1, 1)T can be adopted, which also fulfills the
volume constraint. With the four pseudospin states expected to be equally
distributed in the system, the pseudospin correlator goes down to P = 0.

The Monte Carlo results for the pseudospin correlator P confirm these expectation
values (Fig. 4.16 b).

4.4.3 Thermodynamics
With the set of observables adapted to the physical specifics of the (8,3)c Kitaev
system, we have studied its signatures for all temperature scales. The numerical
results are presented for the system with isotropic coupling Jz = 1/3 (Fig. 4.17).
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Figure 4.17: Thermodynamics of the (8,3)c Kitaev system [143]. Instead of a peak at T ′′ ∼ 10−2,
the specific heat Cv (a) shows a broad shoulder, indicating a thermal crossover, while the phase
transition occurs at a lower temperature Tc. At T ′′, the entropy (b) assumes the characteristic
value S = ln(4)/3, corresponding to 3 possible flux configurations per plaquette triplet. The
transition into the degenerate flux manifold is further supported by the peak in the flux fluctuation
var(Wp)/T

2 (c), and the pseudospin correlator P (d) assuming its ground state value P = 1/9.
The shaded region indicates the temperature range where we obtained the numerical results from
multiple histogram reweighting.

Here, the grey shaded region indicates the low-temperature scale which has been
extrapolated with multiple histogram reweighting.

In Fig. 4.17, the dashed lines mark three relevant temperature scales. The tem-
perature T ′ = 0.51(5) is again associated with the fractionalization of spins. At
T ′′ ∼ 0.01, the system enters the constrained gauge manifold, and Tc = 0.0020(2)
is the critical temperature (which is extrapolated from the positions of the low-
T specific heat peaks). Interestingly, T ′′ corresponds to the temperature scale,
where, in other 3D Kitaev systems, we usually encounter the critical temperature
Tc, which is associated with the gauge-ordering transition. Here, the ordering
transition is suppressed by the gauge frustration. The characteristic signature for
this suppression is a shoulder-like structure of the specific heat Cv(T ) at T ′′ (a),
which does not change its shape nor position for increasing system sizes. This in-
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Chapter 4. Thermodynamic classification of 3D Kitaev spin liquids

dicates that the process of the system entering the constrained gauge manifold is
associated with a thermal crossover, not a phase transition. The plaquette triplets
assume the two-π-one-0 flux state locally and independently of each other. Again,
we have regarded the Z2 gauge field and itinerant Majorana contributions to the
specific heat separately, which is shown in the inset of Fig. 4.17 a. Here, we can
see that the thermal crossover at T ′′ ∼ 10−2 is a feature which is entirely deter-
mined by the fluctuations of the Z2 gauge field, which is expected and corroborates
the picture of the system entering the gauge-frustrated manifold. In consequence,
the quantifier of the flux fluctuations, (W 2

p −Wp
2
)/T 2 (Fig. 4.17 c) has its peak

at T ′′.
Above T ′′, the entropy per site S (Fig. 4.17 b) shows the typical behavior

known from other Kitaev spin liquids. Starting from the paramagnetic phase, the
entropy is S = ln(2), which corresponds to the two possible states of (unfraction-
alized) spins. Decreasing the temperature, the system releases half its entropy at
the fractionalization crossover at T ′ = 0.51(5). In the temperature region below
the gauge crossover at T ′′, the entropy assumes a value S = ln(3)/4, which is
expected for the constrained gauge manifold, where all plaquette triplet states are
energetically degenerate, and, hence, the number of possible flux configurations is
3Nt = 3N/4. Moreover, the pseudospin correlator P (d) assumes its characteristic
ground state value P = 1/9 right below T ′′.

Hence, all numerical results consistently confirm the existence of the con-
strained gauge manifold. However, the degeneracy of flux configurations is not
preserved down to T → 0. This follows most clearly from the fact that, below
the crossover temperature T ′′, the entropy S does not reach a plateau, but keeps
going down, and, at Tc, suddenly drops to zero. The specific heat Cv, on the other
hand, is not zero below T ′′, but continues rising for decreasing temperatures, until
it shows a very sharp peak at Tc. This peak, which is only visible in the reweighted
temperature region, has different shapes and positions for different system sizes, a
fact which suggests that it indicates the thermal phase transition that is suppressed
at the “usual” temperature scale T ∼ 10−2. The occurrence of this phase transition
can be explained by an additional selection mechanism between the flux configu-
rations within the constrained gauge manifold. In this picture, the plaquette triplet
states keep the two-π-one-0 flux states that are dictated by the interplay of their
plaquette length and the volume constraint, but a certain order arises among these
states.

4.4.4 Ground state selection

Since the extrapolated low-temperature results for the pseudospin correlator P at
T ≤ 0.002 do not give a clear picture on the selection mechanism within the
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constrained gauge manifold, we have resorted to analyzing snapshots of the flux
configurations in the QMC simulations to clarify the nature of the ground state
flux sector. Here, we see that those configurations are selected where the 0-fluxes
in the plaquette triplets form a zig-zag order along the columns of hexagonal sites
(Appendix C.8.2). This zigzag order is depicted for the limits of weak and strong
Jz-coupling in Fig. 4.18 (d-f).

For the geometric reasons outlined above, the orientation of the columnar
zigzag order is dependent on the anisotropy parameter Jz:

• For the isotropic coupling limit Jz = 1/3, there are three possible orienta-
tions of the zigzag order per column, since, here, it does not matter which
plaquette in a triplet takes the 0-flux.

• For Jz < Jx, Jy, the 0-fluxes are only located on the vertical plaquettes
(Fig. 4.18 d). Hence, there are two possible zigzag order states per column
(which are simply shifted with respect to each other by one plaquette).

• In the strong-Jz-limit, the 0-flux is bound to the horizontal plaquettes (Fig.
4.18 f). In consequence, for Jz � Jx, Jy, the unique gauge configuration
with all 0-fluxes located on the horizontal plaquettes prevails due to geo-
metric selection. However, there is an intermediate regime (which we find
to be in the region 1/3 ≤ Jz ≤ 0.4), where each column of hexagonal sites
chooses a state where the 0-fluxes on the horizontal plaquettes alternate with
0-fluxes on either of the two vertical plaquettes (Fig. 4.18 e).

What is the nature of columnar order and how does it emerge in the (8,3)c
Kitaev spin liquid? On a general level, we can explain the selection of the zigzag
gauge order by an interplay between the itinerant Majorana fermions and the Z2

gauge field. From the perspective of the Majorana fermions, the Z2 gauge field
forms a complex scattering potential, which constitutes the background for the
system of hopping Majoranas. Intuitively, it is plausible that the emergence of
some ordered configuration in this potential is energetically favorable for the Ma-
jorana system. This understanding on the formation of the gauge field ground state
can be further deepened by taking a look at the Majorana band structure. As we
can see in Fig. 4.18 (a-c), the selection of the columnar zigzag order by the gauge
field is accompanied by the Majorana fermions forming a semi-metal, where the
band structure shows nodal lines as topological features for all (an)isotropy limits.
For the different coupling parameters Jz, we see that the nodal lines only change
with respect to their shape and their position in the Brillouin zone of the system.
The bandstructures for all zigzag-ordered states and their respective Jz-couplings
are documented in Appendix C.8.3. Both effects, the formation of the collective
semi-metal state by the Majorana fermions, and the emergence of columnar zigzag
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(a) Nodal line (M1) (b) Nodal line (M2) (c) Nodal line (M3)

(d) Plaquette order M1 (e) Plaquette order M2 (f) Plaquette order M3

Figure 4.18: Majorana semimetals and columnar gauge ordering [143]. In the top line (a,b,c), the
nodal lines in the Majorana band structure are shown for varying coupling Jz . For each parameter,
there is a corresponding ground state of the Z2 gauge field (d,e,f), which is characterized by a
columnar zigzag order arising as the result of an interplay between the Majorana fermions and the
gauge field (d,e), which is a quantum effect. Only for strong Jz , this effect is overpowered by the
classical geometric selection of the horizontal plaquettes as carriers of the 0-fluxes (f).

order within the Z2 gauge field, can be understood as being two aspects of what is
one quantum effect. The collective state of the Majorana fermions in the gauge-
frustrated regime is similar to a thermal metal [216–218] (cf. Sec. 5.2.3). Here,
the gauge degeneracy in the (8,3)c Kitaev system assumes the role which is usu-
ally played by thermal disorder. At lowest temperatures, the Majorana fermions
pursue to form an energetically more favorable semimetallic state, which is free
of disorder. But, in order to do so, they have to enforce a (partial) lifting of the
macroscopic degeneracy in the Z2 gauge field, which is achieved by inducing the
columnar zigzag gauge order.

Hence, the phenomenon of gauge frustration can be understood not only as
a geometric curiosity in an exotic 3D lattice system, but, on a conceptual level,
as an intermediate phenomenon between two paradigmatic kinds of spin liquids.
Z2 spin liquids are characterized by gapped excitations in the gauge field and
spinon degrees of freedom that, in the gapped gauge background, remain non-
interacting. This renders the QSL state stable. In the Kitaev model, where the
low-energy region is generically described by a Z2 spin liquid, this property is
seen by fractionalized degrees of freedom that fully decouple, meaning that the
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4.4. Gauge frustration

Majorana system can be independently regarded for each different configuration
of the static Z2 gauge field.

The other paradigm is constituted by the U(1) spin liquids. In the deconfined
regime, the U(1) gauge field possesses gapless (photon) excitations, which remain
fluctuating at all temperature scales, and, therefore, mediate interactions between
the spinons down to T → 0. Therefore, U(1) spin liquids are generically unstable.
The stability of the spin liquid phase is further undermined by the instanton effect.

The gauge-frustrated Z2 spin liquid, on the other hand, exhibits interactions
between the Majorana fermions and the Z2 gauge field which remain relevant in
the quantum regime and determine the ground state order.

4.4.5 Phase Diagram

A thermal phase diagram for the (8,3)c Kitaev system in the Jz-T -plane summa-
rizes the results that have been discussed in the last sections (Fig. 4.19). Here,
the contour plot in the background shows the pseudospin correlator P . The green
and white data points indicate different signatures for the transitions in the sys-
tem. Starting at high temperatures, the green squares mark the temperatures at
which the plaquette fluxes Wp are half-ordered, meaning their average value is
Wp = −1/6. Here, the system is still in the disordered Z2 spin liquid phase for
all coupling parameters. The thermal crossover at which the systems enter the
constrained gauge manifold is marked by two different observables: 1. The green
circles, which indicate the position of the flux fluctuation peak (W 2

p −Wp
2
)/T 2,

and 2., the white circles, which show the temperature positions at which the pseu-
dospin correlator assumes the value P = 1/9. As discussed earlier, the thermal
phase transition that usually occurs at this temperature scale, is suppressed in the
(8,3)c Kitaev system down to Tc = 0.0020(2). Thus, it occurs within the con-
strained gauge manifold. Here, it is associated with the selection of the columnar
zigzag gauge order by the interplay between the Majorana fermions and the Z2

gauge field in the parameter regime 0.15 ≤ Jz ≤ 0.4. In the phase diagram,
this is indicated by the solid white squares, which mark the positions of the low-
temperature peaks in the specific heatCv. As we have discussed in the last section,
for Jz ≥ 0.4, the mechanism of the thermal phase transition is different, which is
indicated by the empty white squares. Here, it is not the interplay of Majoranas
and gauge field, but classical geometric selection which determines the gauge or-
dering. In this parameter region, it is only the horizontal plaquettes in the plaquette
triplets, which, due to the strong Jz-coupling, carry the 0-fluxes (Fig. 4.18 f). In
the contour plot, this is indicated by the yellow region, where the pseudospin cor-
relator is P = 1. Accordingly, we distinguish this unique gauge configuration
regime from the columnar gauge ordering regime at lower Jz, where the quantum
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Chapter 4. Thermodynamic classification of 3D Kitaev spin liquids

Figure 4.19: Finite-temperature phase diagram of the (8,3)c Kitaev spin liquid [143]. The con-
tour plot shows the pseudospin correlator P , Eq. (4.4). The green squares mark the tempera-
tures for which Wp = −1/6. The green circles indicate the position of the flux fluctuation peak
var(Wp)/T

2, while the white circles mark where the pseudospin correlator is P = 1/9. The solid
white squares indicate the low-T peaks in the specific heatCv , which are signatures for the thermal
phase transition that happens due to the quantum effect of columnar gauge ordering. The empty
white squares indicate the phase transition caused by classical geometric selection at Jz > 0.4.
Data shown is for the system size 4·4·6 (N = 768). In the lower panel, we have shown the ground
state energies of the different columnar states M1, M2, M3 (see the definition in Fig. 4.18).

effect prevails in the ground state selection. The columnar gauge ordering phase
is further separated by the described, different selections of columnar states. At
Jz = 1/3, each column can, individually, assume three different orientations (with
our without horizontal plaquettes carrying 0-fluxes), while for Jz < 1/3, only con-
figurations without horizontal plaquettes carrying 0-fluxes are selected. The latter
fact is reflected by the value of the pseudospin correlator in this regime, which is,
uniformly, P = 1/3 below the phase transition temperature Tc.

For further clarification of the selection mechanism within the constrained
gauge manifold, we show the ground state energies of the different columnar
states in the lower panel of Fig. 4.19). For Jz < 1/3, the columnar state M2
(red), which includes horizontal plaquettes, has a higher energy than M1 (blue).
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Both columnar states are degenerate at Jz = 1/3, and for 1/3 ≤ Jz ≤ 0.4, M2
gives the lowest energy. Here, the quantum effect still prevails, which favors the
zigzag ordering of 0-fluxes. Finally, it is at Jz > 0.4 that the unique flux state M3
becomes the ground state of the (8,3)c Kitaev system by classical selection.

We conclude this section by briefly going back to the discussion of the cor-
relation between critical temperatures Tc and the vison gap ∆ (Fig. 4.7). There,
we have seen that the (8,3)c Kitaev system has the lowest critical temperature of
Tc = 0.0020(2). This corresponds to a small vison gap ∆ = 0.0219(6). These re-
sults reflect the singular nature of the phase transition in the (8,3)c system. On the
one hand, the phase transition is still associated with gauge ordering. The critical
temperature Tc indicates the selection of the columnar gauge-ordered states, and it
is natural to think that the amount of energy needed to create visons has to reflect
that. On the other hand, both the nature of the ground state gauge configuration
and the way it is selected, are different from the conventional phase transition
mechanism in other 3D spin liquids. First, there is the intermediate step of the
system entering the constrained gauge manifold, whereas in the other systems,
the ground state gauge sector is directly entered from the disordered spin liquid
state. Secondly, the selection of the ground state gauge configuration is primarily
based on the interplay between the Majorana fermions and the Z2 gauge field.

Hence, it is a remarkable result that the correlation between Tc and ∆ is main-
tained for (8,3)c, although the phase transition mechanism here is more complex
than in the other 3D Kitaev systems.

4.5 Summary
In this chapter, we have presented a thermodynamic classification of elementary
bipartite 3D Kitaev systems. Based on numerical results from large-scale QMC
simulations, we have corroborated the understanding of the finite-temperature
physics of these systems, which is mainly characterized by two thermal transi-
tions. A high-temperature crossover at T ′ = 0.51(5) indicates the local fraction-
alization of spins into (itinerant) Majorana fermions and a (static) Z2 gauge field.
Its characteristic signatures are a peak in the specific heat Cv(T ), whose position
and shape is insensitive to the underlying lattice geometry and system size, and
the spin-spin correlator Sγγ assuming a finite low-temperature value. Here, the
system enters a disordered Z2 spin liquid phase, where its physics is determined
by the energy fluctuations in both fractionalized degrees of freedom.

A second thermal transition occurs at the lower temperature scale Tc ∼ J/100.
Here, the Kitaev systems undergo a phase transition. This is indicated by Cv-
peaks which are highly sensitive to the lattice geometry and diverge in the ther-
modynamic limit. The thermal phase transition is, for all three-dimensional sys-
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tems, determined by the ordering of the Z2 gauge field, and constitutes an inverted
Ising transition. It is here that the elementary plaquettes in the lattice assume the
energy-minimizing Z2 plaquette flux configuration, which is determined by the
plaquette length |p|. Our numerical results confirm that, for all considered 3D Ki-
taev systems, this ground state plaquette flux configuration follows the prediction
by Lieb’s theorem, although the geometric requirements to prove the statement
of this theorem are only fulfilled by one of the systems. The correlation between
the critical temperature Tc and the vison gap ∆ supports the understanding of the
physical mechanism which underlies the phase transition, namely the proliferation
of extended vison loops.

We have also presented and discussed a particular 3D Kitaev system whose
thermodynamic behavior falls out of the scheme outlined above. In the (8,3)c
lattice, a peculiar interplay between the elementary plaquette length and a vol-
ume constraint leads to a geometric frustration of the Z2 gauge field, for which
we introduced the term gauge frustration. Instead of undergoing the inverted
Ising phase transition and directly ordering into a unique flux configuration at
T ∼ J/100, the system is first subject to an additional thermal crossover and en-
ters a constrained gauge manifold, which consists of a macroscopic number of en-
ergetically degenerate Z2 plaquette flux states. For a wide range of (an)isotropies
in the bond couplings, we have shown that the suppressed thermal phase transi-
tion is finally caught up at Tc = 0.0020(2), where the Majorana fermions form
a semimetallic collective state and, thereby, force the Z2 gauge field to assume
a columnar zigzag order. This phenomenon is a quantum effect and makes this
Kitaev system, in some sense, a hybrid between a spin liquid with full decoupling
of the parton degrees of freedom (such as it is the usual case in Z2 spin liquids),
and one where the fractionalized degrees of freedom maintain a strong interaction
down to lowest temperatures (as in typical U(1) spin liquids).
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Chapter 5

Topological phases in a generalized
Kitaev model

In Sec. 2.3, we name two classes of spin liquids which are stabilized by the struc-
ture of the underlying lattice gauge theory. One class is formed by Z2 spin liquids,
where the gauge bosons are gapped, and which may possess gapless or gapped
spinon excitations. The 3D Kitaev systems we have focused on in the last chapter
belong to this class. Here, the QSL state is not only stable to quantum fluctua-
tions, but also to thermal fluctuations up to a critical temperature Tc, where it is
destroyed by an inverted Ising phase transition. In two spatial dimensions, on the
other hand, the destruction of the QSL state is a purely local phenomenon and
manifests itself in a smooth thermal crossover to the high-temperature phase.

A second class is given by spin liquids with broken time-reversal (TR) sym-
metry, which, depending on the spatial dimensionality of the system, leads to an
excitation gap also for the spinons. Here, the QSL ground state is stabilized up to
a finite-temperature phase transition even in 2D, and possesses a chiral spin liquid
phase, which is characterized by a finite Chern number of the corresponding Ma-
jorana band structure. The manifestation of this topologically non-trivial phase
is the simultaneous occurrence of a gapped bulk and gapless boundary modes,
which cannot be destroyed unless the bulk gap is closed.

In Kitaev models with broken TR symmetry, we find both aforementioned
scenarios realized: A Z2 spin liquid, which, belonging to symmetry class D, may
possess a topological ground state in two spatial dimensions [103, 106]. A general
way to break TR symmetry in a Kitaev model is to apply a magnetic field, while
for non-bipartite Kitaev systems, the ground state breaks TR symmetry even spon-
taneously, and no magnetic field is required [27, 30]. This is a consequence of the
odd plaquette length in such lattices, which causes the plaquette flux operators to
have imaginary eigenvalues Wp = ±i. As a consequence, TR symmetry break-
ing is a byproduct of flux ordering in such systems. Notable examples have been
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(a) Kitaev Shastry-Sutherland model (b) Ground state phase diagram

topological (2nd order)

topological (1st order)

trivial

(c) Majorana wavefunctions1

Figure 5.1: Kitaev Shastry-Sutherland model with staggered bond couplings and its ground state
phase diagram as explained in Sec. 2.3.3. There, we discuss the occurrence of zero-temperature
phases with a trivial, a first-order and a second-order topology.

analytically and numerically studied in 2D for the Yao-Kivelson model [30, 47],
which indeed possesses a topological ground state phase, and in 3D for the Kitaev
hypernonagon model [36, 90, 95]. QMC studies on these systems have shown that
the breaking of TR symmetry is accompanied by a thermodynamic behavior that
deviates from other Kitaev systems. In 2D, a thermal phase transition – instead
of a crossover – is measured for all (an)isotropy limits, which includes both the
chiral spin liquid and the topologically trivial ground state regime. In 3D, where
no topological ground state is present, the loop proliferation mechanism and the
spontaneous breaking of TR, along with a number of point group symmetries,
occurs at the same time, as a first-order phase transition [90].

Here, we report our numerical results on a generalized 2D Kitaev system on
the five-coordinated Shastry-Sutherland lattice (Kitaev Shastry-Sutherland model,
Fig. 5.1 a), which has been introduced in Sec. 2.3.3. The ground state phase dia-
gram of this model (Fig. 5.1 b) shows a notable variety of topological phases [83].
Apart from a chiral spin liquid and a topologically trivial phase, there is a par-
ticular choice of bond coupling parameters for which a second-order topological
insulator is realized, which has a trivial Chern number, but is characterized by the
occurrence of zero-dimensional corner modes. We call this phase a second-order
Kitaev spin liquid (SOSL). We have performed quantum Monte-Carlo simulations
for all these regimes of the model and investigated its finite-temperature behavior.
We verify the existence of a thermal phase transition for all (an)isotropy limits.
Most strikingly, above the chiral spin liquid phase, this phase transition possesses
a critical temperature Tc which is one order of magnitude larger than in other

1The Majorana wavefunctions for the Kitaev Shastry-Sutherland model have been calculated
and plotted by Dr. Vatsal Dwivedi.
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Kitaev systems. Moreover, the system is shown also to exhibit a thermal metal
phase, which is the third possible regime for symmetry class D beside the trivial
and non-trivial insulator.

In the following, we start with a brief recap of the model, a couple of technical
remarks on the implementation of the QMC simulation and the measurement of
some new observables. After that, we discuss our numerical results one by one for
the different regions of the ground state phase diagram, namely (i) the chiral spin
liquid regime (Sec. 5.2) and (ii) the second-order spin liquid regime (Sec. 5.3).

This chapter discusses work which has been reported in Refs. [219] and [83].

5.1 Model and method

5.1.1 Kitaev Shastry-Sutherland model
The Kitaev Shastry-Sutherland model (Fig. 5.1 a) is a generalized version of the
Kitaev model, which is formulated in terms on Γ-matrices representing spin-3/2
degrees of freedom on the vertices of the five-coordinated Shastry-Sutherland lat-
tice,

HKitaev = −
∑
〈j,k〉γ

JγΓγjΓ
γ
k. (5.1)

In Sec. 2.3.3, we show that this higher-order version of the Kitaev model pos-
sesses a solution which is analogous to Kitaev’s original solution approach for
the honeycomb model [82]. With the introduction of staggered bond couplings
J0 ± δJ on the horizontal and vertical bonds, and a coupling Jz on the diagonal
bonds, the model has been shown to exhibit the ground state phase diagram shown
in Fig. 5.1 b, with a topologically trivial phase, a chiral spin liquid phase with a
non-trivial first-order topology, and a second-order spin liquid phase with gapless
corner modes [83], Fig. 5.1 c.

5.1.2 QMC simulations
We have implemented the quantum Monte Carlo simulation in the Majorana ba-
sis of the generalized Kitaev model, as it is described in detail in Sec. 3.4. Here,
the local transformation of Γ-matrices to Majorana operators is used, Γγi = ibγi ci,
which, in the same way as for the standard Kitaev model, leads to an analytic
expression of the Majorana partition function ZMaj({uij}) in a fixed Z2 gauge
configuration {uij}, Eq. (3.42). Thus, we can sample the Z2 gauge field like a
classical Ising model on the lattice bonds, and calculate the Metropolis weights
in terms of the free energy F ({uij}). We remark that the local transformation
introduces an artificial extension of the Hilbert space, and the physical subspace
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can be restored by using a gauge transformation of the general form that is defined
in Eq. (2.51). However, in the derivation of the Majorana partition function, we
do not distinguish between physical and unphysical states in the fermionic Fock
space. This procedure is justified, since, for a given lattice system and gauge con-
figuration, those states differ with respect to their parity, which amounts to adding
or subtracting a single fermion. For a lattice system with N sites, the contribution
from unphysical states therefore only contributes deviations of the order 1/N to
the partition function, and, correspondingly, the physical observables that are ex-
tracted from it [145]. Unlike the 3D lattice systems discussed in Chapter 4, there
is no way to define a Jordan-Wigner transformation for the Shastry-Sutherland lat-
tice with the bond assignments defined as in Fig. 2.13, for which Jordan-Wigner
strings are located along all but one subset of bonds γ. Despite that, we have been
able to measure numerical results with a very systematic scaling behavior in the
SOSL phase (Fig. 5.20). In other regimes, we see similar finite-size effects as in
the 3D Kitaev systems (Fig. 5.4).

We perform QMC simulations for lattice systems with periodic boundary con-
ditions and linear size L = 10, which corresponds toN = 400 lattice sites. For all
simulations, we use the QMC-ED method. Every MC sweep is followed by an at-
tempted replica exchange. The simulations have been performed with 96 parallel
processes (95 replicas + 1 master process), which are logarithmically distributed
in the temperature interval [10−4, 10], and later supplemented with results from
simulations at larger temperatures.

Our calculations comprise two series of such parallel QMC simulations, each
of which includes a set of parameter points corresponding to a cut in the ground
state phase diagram (using the staggered bond coupling parameters Jz, J0± δJ as
defined in Fig. 2.13), namely:

1. Choosing the fixed bond coupling parameters J0 = 1, δJ = 0, and vary-
ing Jz from 0.1 to 4.0 in steps of 0.1. This corresponds to an inverted cut
through the horizontal axis of the ground state phase diagram, going from
the chiral spin liquid to the topologically trivial phase (Fig. 5.2). The results
for this series of simulations are discussed in Sec. 5.2.

2. Choosing the fixed bond coupling parameters Jz = 1, δJ = 0.7, and vary-
ing J0 from 0.1 to 0.65 in steps of 0.05. This corresponds to another hor-
izontal cut through the phase diagram, going from the chiral spin liquid
to the second-order spin liquid (Fig. 5.16). The results from this series of
simulations are discussed in Sec. 5.3. In addition, we have performed QMC
simulations within the SOSL regime, at constant J0 = 0.9 and for δJ → J0,
which corresponds to a tetragonal chain limit [220] of the Kitaev Shastry-
Sutherland model.
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5.1.3 Plaquette flux and chirality

In the definition of the plaquette flux operator Wp =
∏

(−iuij), Eq. (2.18), we
use a convention where we take the product of bond terms uij with clockwise ori-
entation along the plaquettes. While this choice of convention has no importance
for plaquettes with even length, the sign for odd loops Wl = ±i is changed if
the direction of measurement is reversed. Therefore, the average plaquette flux of
the triangular plaquettes in the Shastry-Sutherland lattice defines a chirality of the
system,

κ =
1

Nt

∑
t

Wt, (5.2)

where Wt = ±i is the flux for a single triangle, and Nt the number of triangles in
the lattice. The chirality changes sign under the time-reversal operation

TκT−1 = −κ, (5.3)

and the ground state of the higher-order Kitaev system breaks time-reversal sym-
metry spontaneously by selecting either of the two chiralities κ = ±i, which
corresponds to uniform configurations of Wt. In the paramagnetic regime, the av-
erage chirality is κ = 0, in analogy to the average fluxWp for plaquettes with even
length. Accordingly, as a measure for the ordering of the system, we consider the
modulus of the imaginary part of κ,

|Im(κ)| ∈ [0, 1], (5.4)

which is 0 for complete disorder, and 1 for any of the two ordered triangular
flux states. As it may be noted, this quantity bears strong resemblance to the
magnetization in the Ising model.

5.1.4 Chern number

As we briefly mention in Sec. 1.1.3, a manifestation of the chiral spin liquid phase
is the occurrence of gapless boundary modes that are topologically protected by
the bulk gap of the system, and the existence of these gapless boundary modes
can be tracked by a topological Z invariant, which is the Chern number. The
Chern number of the n-th energy band of an insulator is the integral of the Berry
curvature over the first Brillouin zone,

νn =
1

2π

∫
BZ

Ωn(k)dk, (5.5)
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with the Berry curvature Ωn(k) and Berry connection An(k) being defined by
[221]

An(k) = i 〈un(k)| ∇k |un(k)〉 ,

Ωn,µν(k) =
∂

∂kµ
An,ν(k)− ∂

∂kν
An,µ(k)

=
∑
m 6=n

Im
〈unk| ∂H(k)

∂kµ
|umk〉 〈umk| ∂H(k)

∂kν
|unk〉

(εnk − εmk)2
. (5.6)

Here, |un(k)〉 is the periodic part of the Bloch wavefunction of the n-th band,
|ψnk〉 = eikrunk(r). The curvature integral (5.5) is confined to integer values if the
2D surface it is taken over is a closed manifold, which is fulfilled for the Brillouin
zone [222]. The Berry connection An(k) is a local gauge potential and can be
thought of as a generalization of the real-space vector potential known from elec-
trodynamics to arbitrary parameter spaces (here, momentum space). The Berry
curvature Ωn(k), on the other hand, is a gauge-invariant quantity and can be inter-
preted as the (magnetic) field strength in momentum space, which corresponds to
the local gauge potentialAn(k)2. If the HamiltonianH(k) is adiabatically moved
along a closed path C in momentum space, the Berry curvature determines the
phase factor eiγn that the eigenstates |un(k)〉 ofH(k) pick up along this path, due
to the influence of other states |um(k)〉 [98]. The (gauge-invariant) Berry phase γ
that determines the phase factor,

γn =

∫
C
An(k)dk =

∫
S

Ωn(k)dk, (5.7)

is then the momentum-space analogon to a magnetic flux. Here, S is the surface
enclosed by the path C, and the relation between the line and the surface integral
is given by Stokes’ theorem.

Thus, the Chern number ν distinguishes phases with a different band structure
topology. If the Hamiltonian is continuously changed with respect to some pa-
rameter other than k, for instance a coupling strength J , the Chern number stays
unchanged as long as the band gap remains open under this continuous change.
Concretely, a nonzero Chern number indicates that the Berry connectionAn(k) of
the band structure cannot be defined as a global function over the entire Brillouin
zone [223].

Numerical calculation of the Chern number

In practice, we simulate real-space systems and sample Z2 gauge field configura-
tions {uij}. It is possible to consider these real-space systems as large unit cells

2Note that this gauge freedom has nothing to do with the Z2 gauge field of the Kitaev model!
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(supercells), and convert the real-space HamiltonianH({uij}) into a momentum-
space Hamiltonian Hk({uij}). Then, we can feed the configurations {uij} from
the QMC simulations into Hk({uij}), and calculate momentum-space quantities
as the Chern number ν. In our case, Hk ({uij}) is a 400 × 400 matrix represent-
ing a supercell of the system with L = 10. Of course, we are still numerically
restricted to finite momentum-space systems. Therefore, it is necessary for the
Chern number calculation to consider the underlying gauge quantities – the Berry
connection and curvature – not as continuous quantities, but on a discrete grid.
A widely used method for this is introduced in Ref. [223] and described in the
following.

The band structure of our system is always gapped in the ground state, mean-
ing that the eigenvalues εnk of Hk ({uij}) are nonzero for all n and k. However,
the band structure in general contains level crossings (εnk = εmk for some n,m
and k), such that a band-wise calculation of Chern numbers νn is not possible. In-
stead, we have to consider the above-defined quantities for the non-Abelian case,
where the Berry connection translates to a one-form A [224],

Aαβ = −i 〈uα|duβ〉 ,
Ω = dA− iA ∧A,

ν =

∫
BZ

tr

(
Ω

2πi

)
. (5.8)

We can write A in the matrix-valued form A = ψ†dψ [223–226], where ψ
is the M ×M -matrix that is composed of the multiplet (|u1(k)〉 . . . |uM(k)〉) of
eigenstates of Hk. In our case, we always use the M = N/2 eigenstates corre-
sponding to the lower half of eigenvalues, ε1, . . . , εN/2, for which the relaxed gap
opening condition εnk 6= εmk for n ≤ N/2 and m > N/2 is fulfilled.

We consider a discretized Brillouin zone, which is a square lattice of ni × nj
k-points kl. Usually, we choose ni = nj = 20. Links are described by their
k-points kl, kl + q̃i, with q̃i = q1/ni, q̃2 = q2/nj . For each link, a U(N) gauge
variable is defined by

Uq̃i(kl) =
det
(
ψ†(kl)ψ(kl + q̃i)

)
|det (ψ†(kl)ψ(kl + q̃i))|

, (5.9)

and serves to calculate the (gauge-invariant) plaquette field strength

F12(kl) = log

(
Uq̃1(kl)Uq̃2(kl + q̃1)

Uq̃1(kl + q̃2)Uq̃2(kl)

)
, (5.10)

for which
− π < 1

i
F12(kl) ≤ π. (5.11)
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Figure 5.2: Coupling parameters in the QMC simulations (1). We simulate an (inverse) cut
through the ground state phase diagram of the Kitaev Shastry-Sutherland model [83] by keep-
ing J0 = 1 and δJ = 0 fixed, and varying Jz from 0.1 to 4.0. This corresponds to moving from
the chiral spin liquid regime to the trivial phase (while all parameter points with Jz < 1, i.e.
J0/Jz > 1, lie outside the phase diagram.

The (numerical) Chern number of the band structure is now given by the sum over
all plaquette field strengths in the lattice,

ν̃ =
1

2πi

∑
l

F12(kl). (5.12)

It is shown in Ref. [223] that ν̃ ∈ Z and ν̃ → ν for a sufficiently fine discretization
of the Brillouin zone. The calculation can be performed for any gapped band
structure of the Majorana fermions.

5.2 Chiral spin liquid
We start the discussion of our numerical results with the first series of QMC sim-
ulations. Here, the choice of bond coupling parameters corresponds to an inverse
cut through the horizontal axis of the ground state phase diagram of the spin-3

2

Kitaev Shastry-Sutherland model, as is depicted in Fig. 5.2. We fix the coupling
parameters on the horizontal and vertical bonds to J0 = 1, δJ = 0, and vary the
parameter Jz on the diagonal bonds in steps of ∆Jz = 0.1 from 0.1 to 4.0 (cf.
Fig. 2.13 for the assignment of bond couplings). For Jz < 1, the parameter points
lie outside the ground state phase diagram that is given in Fig. 5.2. Thermal phase
diagrams for this series of parameter points are presented in Figs. 5.8 and 5.10,
which, apart from the positions of specific heat signatures, show the evolution
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Figure 5.3: Specific heat Cv(T ) of the spin- 32 Kitaev Shastry-Sutherland model. The system
shows the characteristic double-peak structure known from other Kitaev models (here shown in
comparison: the Kitaev honeycomb model): A high temperature peak at T ′ ∼ 2Jz indicates spin
fractionalization, and a low-temperature peak, here at Tc ∼ 0.1Jz , is the signature of a thermal
phase transition. Data shown is for the coupling parameter Jz/J0 = 1.2 and linear system size
L = 10 (L = 16 for the Kitaev honeycomb model).

of the chirality |Im(κ)| and the 4-plaquette flux Wp as functions of the coupling
Jz/J0 and the temperature T (Fig. 5.8), as well as the Chern number |ν| for the
different ground state regimes (Fig. 5.10). The most important observations are
discussed in the following.

5.2.1 Thermal phase transition
In the stated parameter regime, the specific heat Cv(T ) of the Kitaev Shastry-
Sutherland model shows the characteristic double-peak structure, which is gener-
ically encountered in Kitaev systems (Fig. 5.3). For each coupling parameter Jz,
there is a high-temperature peak with a maximum at T ′ ∼ 2Jz, which has the
same position and shape for all system sizes. Just as in the formerly discussed
models, this peak indicates a smooth thermal crossover, associated with the (lo-
cal) fractionalization of spins into Majorana fermions and a Z2 gauge field.

The low-temperature peak, on the other hand, is strongly sensitive to both
the coupling ratio Jz/J0 and the (linear) system size L, with respect to its posi-
tion and shape (cf. Fig. 5.4, where the Z2 gauge field contribution to the specific
heat Cv,GF(T ) is shown for different linear system sizes L). Its position in tem-
perature space varies from T ∼ 10−2Jz deep in the topologically trivial phase,
Jz/J0 � 2

√
2, to the considerably large temperature T ∼ 10−1Jz in the chiral

spin liquid regime, with a maximal value at Jz/J0 ∼ 1. Both for the chiral spin
liquid and the topologically trivial phase, we find that the low-temperature peak
shows a diverging behavior for increased linear system sizes L, a feature which
indicates a thermal phase transition. The position of the low-temperature peak
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(a) Jz/J0 = 2.8 (chiral spin liquid)
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(b) Jz/J0 = 2.9 (trivial phase)

Figure 5.4: Specific heat Cv,GF(T ) for different system sizes. A diverging low-temperature peak
is encountered for all parameter regimes, here: The chiral spin liquid phase (a) and the topologi-
cally trivial phase (b). This indicates that the spin-32 Kitaev Shastry-Sutherland model undergoes
a thermal phase transition which is associated with the ordering of the Z2 gauge field and the
spontaneous breaking of time-reversal symmetry. This is a major difference to Kitaev models on
bipartite 2D lattices.

can serve as an estimate for the critical temperature Tc of the thermal phase transi-
tion, and is shown as a function of Jz/J0 by the filled (open) circles for the chiral
(topologically trivial) phase in the phase diagrams presented in Figs. 5.8 and 5.10.

For Jz/J0 < 1, we find that the low-temperature peak splits up into two dif-
ferent peaks, which further separate from each other when the coupling ratio is
lowered to Jz/J0 → 0 (Fig. 5.9). Here, it is the lower peak (again at T ∼ 10−1Jz)
that is associated with a thermal phase transition, while the upper peak is the sig-
nature of another thermal crossover. This peak separation is explained by distinct
ordering temperatures for the Z2 flux on the square and triangle plaquettes, a phe-
nomenon which is further discussed in the next section.

There are two significant thermodynamic observations for this model which
have to be emphasized here. The first is the fact itself that the spin-3

2
Kitaev

Shastry-Sutherland model undergoes a thermal phase transition, a property which
distinguishes it from other two-dimensional Kitaev systems. The second is the
critical temperature Tc ∼ 10−1Jz in the chiral spin liquid regime, which is one
order of magnitude higher than in other Kitaev systems.

Spontaneous breaking of time-reversal symmetry

Concerning the occurrence of a thermal phase transition, we discuss in Sec. 2.2.6
that, in two spatial dimensions, the point-like nature of the vison excitations inher-
ently destabilizes the quantum spin liquid state of the Kitaev model. Whenever
such a vison excitation is created and encircled by Majorana fermions, the lat-
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(c) square-plaquette flux Wp

Figure 5.5: Specific heat Cv,GF(T ) (Z2 gauge field contribution) (a), absolute chirality |Im(κ)|
(b) and 4-plaquette flux Wp (c) for different parameter values in the topological chiral spin liquid
regime. The low-temperature peak indicates a thermal phase transition (dashed lines), which is
associated with the ordering of the (imaginary) fluxes Wt = ±i on the triangular plaquettes of the
Shastry-Sutherland lattice. The chirality κ = 1/Nt

∑
tWt is defined as the average 3-plaquette

flux of the system, and assumes one of the two ground state values κ = ±i, which are connected
by time-reversal symmetry. As long as Jz ≥ J0, the ordering of the triangle plaquettes also causes
the ordering of the average flux Wp on the square plaquettes at the same temperature scale.

ter picks up a phase π, which leads to their destructive interference. In 3D, this
only happens when the (loop-like) visons become system-spanning, which comes
with an energy cost that is comparable to the system size, and, hence, diverges
in the thermodynamic limit. This energy cost E is only counterbalanced in the
free energy F = E − TS of the system by a diverging configurational entropy S
provided by the system-spanning visons, which, however, requires a large enough
temperature T to become effective and allow for their proliferation. In 2D, in
contrast, the energetic cost for the proliferation of visons does not diverge in the
thermodynamic limit. Therefore, the thermal transition from the QSL state to the
confined regime is a smooth crossover here.

For Kitaev systems on non-bipartite lattice geometries, the situation is entirely
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Chapter 5. Topological phases in a generalized Kitaev model

Figure 5.6: Elemtary plaquettes in the Shastry-Sutherland lattice. The flux on the square plaque-
ttes Wp = uijujkukluli is given by the product of the triangle fluxes Wt1 = −iuijujkuki and
Wt2 = −iuikukluli, which is because uik · uki = −1. The ordering of the triangle plaquettes for
strong diagonal coupling Jz > J0 therefore causes the ordering of half the square plaquettes. The
other half of squares order at the same temperature to minimize the energy.

different. Here, the gauge-invariant Z2 plaquette flux assumes imaginary eigen-
values Wt = ±i on the elementary loops of the system, and these eigenvalues
change their sign under application of the time-reversal operator T . Therefore, the
ordering transition of the Z2 gauge field into a homogeneous flux configuration,
Wt = i or Wt = −i for all t, is necessarily accompanied by spontaneous breaking
of time-reversal symmetry. This suggests the occurrence of a (continuous) ther-
mal phase transition also in two spatial dimensions, which, for the present model,
is verified by our numerical results. Hence, the ordering mechanism is different
both from bipartite Kitaev models in 2D, for which there is no phase transition at
all, and from those in 3D, where the inverted Ising transition is not accompanied
by spontaneous symmetry breaking.

Associated with the spontaneous breaking of time-reversal symmetry, there
exists a local order parameter for the Kitaev Shastry-Sutherland model, which
is given by the chirality κ = 1/Nt

∑
tWt, an analogue to the magnetization

µ = 1/N
∑

i σ
z
i in the classical Ising model. Numerical results for |Im(κ)| and

the average flux on the 4-(square)-plaquettes Wp (with Wp = ±1) are shown in
Fig. 5.5 for different coupling parameter values Jz belonging to the chiral spin
liquid phase. Here, we see that the position of the specific heat peak Cv,GF(T )
corresponds to the temperature where |Im(κ)| sharply drops from the ground state
value |Im(κ)| = 1 to the large-temperature limit |Im(κ)| = 0. At the same transi-
tion temperature, we encounter the ordering of the square-plaquette fluxes.

The simultaneous ordering of triangle and square plaquettes is explained as
follows: In the Shastry-Sutherland lattice, every second square plaquette is com-
posed of two triangles, and the flux operator eigenvalue on a square plaquette is the
product of two triangular flux operator eigenvalues, Wp = Wt1 ·Wt2 . Therefore,
whenever such a pair of triangles orders into one of the two ground state con-
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5.2. Chiral spin liquid

figurations (+i,+i) or (−i,−i), the corresponding square-plaquette flux eigen-
value becomes Wp = −1, which is the expected π-flux ground state for squares.
The other half of the square plaquettes, which do not possess diagonal bonds,
assume π-fluxes independently at the same temperature, which minimizes the en-
ergy. Hence, it is the ordering of triangle plaquettes which determines the ordering
of half the square plaquettes, and triggers the ordering of the other half (Fig. 5.6).
This mechanism works as long as the coupling on the diagonal bonds Jz is larger
or equal the coupling J0 on the horizontal / vertical bonds. For the other limit,
Jz < J0, we encounter that the square plaquettes already order at higher tempera-
tures than the triangles (see Sec. 5.2.2).

In the topologically trivial phase Jz ≥ 2
√

2 = J−1
c , we find the same qualita-

tive behavior for the specific heat Cv,GF(T ), the chirality |Im(κ)| and the square-
plaquette fluxWp as for the chiral spin liquid regime (Fig. 5.7). Unlike in the Yao-
Kivelson model, we have found no indication that the phase transition changes
from second-order to first-order when Jz is tuned from the trivial to the CSL phase
[47]. Instead, we assume that the phase transitions in both regimes are continu-
ous. In the region below the quantum critical point J−1

c = 2
√

2, we find that the
low-temperature specific heat peak gets considerably sharp, reaching an extremal
values Cv > 40 for Jz = 2.5. A summary of the results for the specific heat Cv,
the chirality Im(κ) and the square-plaquette flux Wp is shown in the two thermal
phase diagrams in Fig. 5.8.

Critical temperature Tc

We have seen that the occurrence of a thermal phase transition in two spatial di-
mensions is a particular property of non-bipartite Kitaev systems with ground
states that spontaneously break time-reversal symmetry. In the Yao-Kivelson
model, however, the temperature scale of this phase transition has been shown
to be of the same (considerably small) order Tc ∼ 10−2J as the Z2 gauge transi-
tion in 3D Kitaev systems [47]. Also in bipartite 2D Kitaev systems, such as the
Kitaev honeycomb model, where the transition is a local crossover, the tempera-
ture scale is of the same order of magnitude.

In this sense, the Kitaev Shastry-Sutherland model distinguishes itself from all
so far known Kitaev models by possessing a phase transition that already happens
at a temperature Tc ∼ 10−1Jz, which is an entire order of magnitude larger. We
find this large critical temperature Tc in the entire chiral spin liquid regime, with a
maximum at Jz/J0 ∼ 1.2, as can be seen from the position of the low temperature
peaks, indicated as filled circles in the thermal phase diagrams in Fig. 5.8. The
transition temperature significantly starts to fall for Jz > 2, and reaches the order
of magnitude Tc ∼ 10−2Jz deep in the topologically trivial phase.

It can be concluded that the gauge ordering transition in Kitaev systems may
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(c) square-plaquette flux Wp

Figure 5.7: Specific heat Cv,GF(T ) (Z2 gauge field contribution) (a), absolute chirality |Im(κ)|
(b) and square-plaquette flux Wp (c) for different parameter values in the topologically trivial
regime. Here, the thermodynamic signatures are qualitatively the same as for the CSL phase.
As the quantum critical point J−1c = 2

√
2 is approached from either side of the ground state

phase diagram, the phase transition peak gets considerably sharper. The dashed lines indicate the
positions of the specific-heat peaks.

also happen at larger temperatures than Tc ∼ 10−2J . This raises the expectation
that the detection of the QSL phase in experiment might be facilitated in systems
with this property. Therefore, we have to ask what determines the high transition
temperature in the Kitaev Shastry-Sutherland model. The most obvious difference
to other Kitaev systems is the large coordination number c = 5 of the underlying
lattice. However, an attempt by us to introduce two additional diagonal bonds on
the empty square plaquettes of the Shastry-Sutherland lattice, and thereby con-
struct a toy model with increased coordination number c = 7, did not lead to
a further increase of the transition temperature. Therefore, we assume that the
reason for an increase in the transition temperature is more intricate than merely
considering the coordination number. Nonetheless, the search for other (general-
ized) Kitaev systems, which possess large transition temperatures, recommends
itself as an interesting theoretical endeavor for the future.
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5.2. Chiral spin liquid

(a) absolute chirality |Im(κ)| (b) square-plaquette flux Wp

Figure 5.8: Thermal phase diagram (1) for fixed coupling parameters J0 = 1, δJ = 0. The
transition temperatures of the system are given as a function of the coupling ratio Jz/J0 (white
/ black data points). The density plots show the chirality |Im(κ)| (a), and the average square-
plaquette flux operator eigenvalue Wp (b). The filled (open) circles indicate the position Tc of
the low-temperature peak in the chiral spin liquid (trivial) parameter regime. For both regimes,
the low-T peak is the signature of a thermal phase transition. For Jz < J0, we encounter an
additional partial flux-order phase above Tc, where the square plaquettes are already ordered,
while the triangle plaquettes remain disordered. A thermal crossover at T ′′ separates this phase
from the regime with full flux disorder (disordered Z2 spin liquid).

5.2.2 Partial flux ordering

We now discuss the phenomenon of partial flux ordering, which is encountered in
the regime Jz/J0 < 1. In the thermal phase diagrams in Fig. 5.8, the ordering of
the two different plaquette fluxes is shown as two contour plots. Fig. 5.8 a shows
the ordering of triangle plaquettes, which is measured in terms of the chirality
|Im(κ)|. The contour plot in Fig. 5.8 b shows the average flux operator eigenvalue
Wp on the square plaquettes. Both phase diagrams show homogeneously ordered
flux regions below the phase transition temperature Tc (the location of the low-T
peak), which is marked by the filled (open) circles for the chiral spin liquid (triv-
ial) phase. In the region below Jz/J0, the low-T specific heat peak splits up into
two peaks, which separate for Jz/J0 → 0. While the peak at lower temperatures,
which marks the phase transition, drops by one order of magnitude (thereby keep-
ing the ratio Tc ∼ 0.1Jz intact), the upper peak, which indicates a crossover and
is marked by open squares, remains almost constant at T ∼ 0.1J0. In the region
which is enclosed by the two peak functions, the values of the fluxes strongly
differ. While the square plaquettes assume an ordered configuration Wp = −1
below the upper peak (indicated as an additional yellow region in the lower left
corner of the phase diagram), the chirality remains |Im(κ)| = 0 (indicated as a
blue region in the same corner). Hence, in this region in the (Jz/J0)-T plane, the
flux ordering on the two sets of elementary plaquettes is decoupled.

Further details for this decoupling are presented in Fig. 5.9, where the gauge
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(c) absolute chirality |Im(κ)| (d) Visualization of partial flux ordering.

Figure 5.9: Partial flux ordering. For Jz < J0, the low-T specific heat peak Cv,GF(T ) splits
up into two peaks, which is caused by the separation of temperature scales for the ordering of
triangle and square plaquettes. At T ′′ ∼ 0.1J0, the ordering of square plaquettes is associated
with a thermal crossover, while the thermal phase transition caused by the ordering of triangle
fluxes happens at Tc ∼ 0.1Jz (dashed lines).

contribution to the specific heatCv,GF(T ) (a), the square-plaquette fluxWp (b) and
the chirality |Im(κ)| (c) are shown for the coupling parameters Jz ∈ {0.1, 0.3, 0.7},
along with a visualization of the regions of disordered and ordered triangle pla-
quettes (d). We can see that the upper peak of the specific heat is associated with
the ordering of the square-plaquettes. The temperature of this ordering transition
does not change much if Jz is lowered. The lower-T peak corresponds to the or-
dering of the chirality |Im(κ)|, which moves to lower temperatures for decreasing
Jz. Since the spontaneous breaking of time-reversal symmetry is only associated
with the ordering of triangle plaquettes, we can conclude that the lower-T spe-
cific heat peak indeed indicates a phase transition, while the upper peak is the
signature of a particular realization of the thermal crossover known from other
2D Kitaev systems. Here, the square plaquettes locally freeze into their ground
state configuration. The temperature scale for the ordering of plaquette fluxes is
always set by the bond coupling parameters. We have seen above that, as long
as the diagonal bond coupling Jz is larger than the coupling on the other bonds
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5.2. Chiral spin liquid

J0, the ordering of the triangles also determines the ordering of half the squares.
But this relation is not mutual. If Jz < J0, the square plaquettes order at a tem-
perature scale set by the value of J0, which here is T ′′ ∼ 0.1J0. This, however,
does not affect the flux values on the triangles, as a π-flux on a square plaquette
(Wp = −1) allows for the two triangle configurations (Wt1 ,Wt2) = (+i,+i) and
(−i,−i). Hence, above Tc ∼ 0.1Jz, the Jz-bonds on the triangles continue to in-
dividually flip between these two configurations. At Tc, a homogeneous triangle
configuration Wt = +i or −i is spontaneously selected for the entire lattice.

As a final remark, we note that the ordering of square-plaquette fluxes happens
faster for strong values of Jz, which is seen by comparing the sharp drop of Wp

in the Figs. 5.5 and 5.7 with the smaller slope of the Wp-curve in Fig. 5.9. The
T -region of flux ordering in Fig. 5.8 b is the yellow region above Tc / T ′′, which
evolves from relatively broad to very narrow as we go from small to large values
of Jz/J0. This observation is explained by the same argument as the decoupling of
the flux ordering for the two plaquette types. For Jz > J0, the coupling strength Jz
sets the temperature scale for the ordering of both triangle and square plaquettes.
For very strong Jz, this ordering happens as a sharp transition, explaining the
narrow yellow band at Jz � J0. In the other limit Jz < J0, the temperature
scale for the ordering of square plaquettes is determined by the constant coupling
parameter J0 = 1, making the transition less sharp.

5.2.3 Gapless-gapped transition at intermediate temperatures

Chern number results

How does the separation of the ground state phase diagram into a (topologically
non-trivial) chiral spin liquid and a trivial phase evolve at finite temperatures? We
have already seen that, at least along the phase diagram cut considered here, the
existence of the two phases does not manifest itself in qualitative differences in
the thermodynamic signatures. Both phases possess a low-temperature thermal
phase transition and a high-temperature crossover. The position of the transition
temperatures is a smooth function of the coupling ratio Jz/J0. And there is appar-
ently no such distinction as second-order versus first-order phase transition with
respect to the two ground state regimes. Aside from the discovery of the partially
flux-ordered phase, there are also no insights on the medium and high-temperature
regime which could be drawn from looking at the plaquette fluxes. Both the chi-
rality |Im(κ)| and the square plaquette flux Wp suggest that the thermal regime
above the phase transition is the usual disordered Z2 spin liquid phase, which is
characterized by itinerant Majorana fermions coupled to a disordered Z2 gauge
field, and that there is no further structure in this phase.

A more complex picture emerges when we look at the Chern number |ν| of
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Chapter 5. Topological phases in a generalized Kitaev model

Figure 5.10: Thermal phase diagram (2) for fixed coupling parameters J0 = 1, δJ = 0. The
transition temperatures of the system are given as a function of the coupling ratio Jz/J0 (black
data points). The density plot shows the Chern number |ν|, which distinguishes the chiral spin
liquid ground state (|ν| = 1) from the trivial phase (|ν| = 0). Above the thermal phase transi-
tion, the Chern number is only well-defined in gapped regions of the system. Such a band gap is
verified for Jz/J0 > 2 at high temperatures (Fig. 5.12), and for the partially flux-ordered phase
(Fig. 5.14). The gapless intermediate-temperature phase at Jz/J0 < 2 can be interpreted as an
effective thermal metal, where signatures of symmetry class D survive in the Majorana band struc-
ture (see Fig. 5.13). In Appendix D, we show Chern number results along different cuts of this
phase diagram.

the Majorana band structure as a function of the coupling ratio Jz/J0 and the
temperature T . Using the method which is explained in Sec. 5.1.4, we calculate
ν from the Z2 gauge field samples {uij}, which we have obtained in the QMC
simulation, and by considering the k-space HamiltonianHk({uij}) for the L = 10
supercell. The results are shown as a contour plot in the thermal phase diagram
in Fig. 5.10n (more details are shown in Appendix D). Below the thermal phase
transition, the system is always gapped and the Chern number ν therefore well-
defined also for finite temperatures. Here, we find that |ν| = 1 in the chiral spin
liquid regime, 0 < Jz < J−1

c , and |ν| = 0 in the trivial phase (with Jz > J−1
c ).

By comparing the result for ν with the chirality κ for different Z2 gauge field
configurations in the CSL phase, we learn that both quantities always carry the
same sign if we use the clockwise definition of the triangle plaquette fluxWt. A Z2

gauge field configuration {uij}, for which the Majorana band structure has a non-
trivial Chern number ν = 1, corresponds to a system with only clockwise fluxes,
κ = i. Likewise, ν = −1 corresponds to a system with only counterclockwise
fluxes, κ = −i. Hence, we can interpret the chirality of the Z2 gauge configuration
in the chiral spin liquid regime as an indicator for a right-moving (κ = +i) or left-
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5.2. Chiral spin liquid

(a) positive chirality κ = +i (b) negative chirality κ = −i

Figure 5.11: Chirality and edge modes in the chiral spin liquid phase. For Jz < Jc, the ground
state of the Kitaev Shastry-Sutherland system has a finite Chern number ν = ±1. Here, the sign
of ν corresponds to the sign of the chirality κ = ±i, and indicates a right-moving (ν = +1) or
left-moving (ν = −1) gapless edge mode (if the periodic system is cut along the two spatial axes).
In the topologically trivial phase, the chirality κ is not associated with an edge mode.

moving (κ = −i) gapless boundary mode, which would occur if the (periodic)
system was cut along the two spatial axes (Fig. 5.11). This boundary mode cannot
be destroyed by any continuous deformation of the HamiltonianHk which leaves
the bulk gap intact. At zero temperature, it is only destroyed at Jz = J−1

c , the
quantum critical point at which the bulk system itself becomes gapless. Beyond
the quantum critical point, for Jz > J−1

c , the chirality κ = ±i of the Z2 gauge
field is not associated with a gapless edge mode any more, and the Chern number
is ν = 0.

Above the thermal phase transition, the Chern number calculation is physically
meaningful only if the band structure of the Majorana fermions is gapped. This
is fulfilled for the blue regions in the phase diagram in Fig. 5.10: (i) for T > Tc
and Jz ' 2, and (ii) and in a small region around the square-ordering transition
temperature T ′′ for Jz < J0. Here, the numerical results indicate a constant, trivial
Chern number |ν| = 0 (note the top segment of the phase diagram, which gives
the Chern number results for T =∞).

Beyond these regions, where the contour plot of |ν| is orange, the situation is
less clear. Above the temperature limit which is set by critical temperature Tc for
Jz/J0 > 1, and the square-ordering crossover temperature T ′′ for Jz/J0 ≤ 1, the
system is gapless and the Chern number ν is ill-defined. Here, the relaxed gap
opening condition εnk 6= εmk for n ≤ N/2 and m > N/2 is violated, on which
the numerical calculation is based. The fact that the code produces results here
is only a consequence of numerical accuracy: εnk − εmk is not strictly zero in
the calculation, but some small, finite number. We have verified that the Chern
number results really reflect a gapless-gapped transition by calculating the band
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Figure 5.12: Band gap versus bond coupling parameter Jz/J0 for T =∞ (blue) and T = 0 (red)
[219]. The red curve shows the gapless point at J−1c = 2

√
2, while in the infinite-temperature

limit, we find a gapless-gapped transition for the Majorana fermions at J∞c ∼ 2, which separates
a thermal metal phase of the Majoranas from a trivial insulator. This limit describes the physical
behavior of the Kitaev Shastry-Sutherland model below the spin fractionalization crossover.

gaps for numerous coupling parameters Jz/J0 in the infinite-temperature limit.
The results are given in Fig. 5.12, where we can see that at T =∞, the gap of the
system opens for Jz/J0 ' 2 (the band gaps for T = 0 are given in the same plot,
where we can see the gapless point at Jz = J−1

c ).
Remarkably, we find that the disordered Z2 spin liquid regime of the Kitaev

Shastry-Sutherland model in the specified parameter range is not a homogeneous
phase, but further subdivided into a gapless and gapped region in terms of the
Majorana band structures. In our calculations, this subdivision even extends to
the high-temperature paramagnetic phase at T = ∞. However, we consider that
the description of the Kitaev spin system in terms of fractionalized quasiparticles
does not reflect the true physical behavior of the system above the fractionalization
crossover. Here, it is in the paramagnetic phase, and described by disordered
spins. Therefore, the gapless-gapped transition in the Chern number results at
T =∞ in Fig. 5.10 can be regarded as an artifact of the Majorana description.

Thermal metal

Below the fractionalization crossover, in contrast, the system is well described
by the fractionalized quasiparticles. Thus, the gapless-gapped transition seen in
Fig. 5.13 is a feature which truly belongs to the intermediate-temperature region.
Concretely, the gapless phase here can be interpreted as a thermal metal of Ma-
jorana fermions in the presence of a disordered background [216–218, 228–230].
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Figure 5.13: Low-energy density of states ρ(E) for the Kitaev Shastry-Sutherland model at T =
1.86 and Jz = 1.5 (inset: Jz = 2.2). The oscillations of ρ(E) follow the sinusoidal function
ρ(E) = α + sin(2πEL2)/(2πEL2) predicted by random matrix theory for the metallic state in
symmetry class D [218, 227]. This supports that the disordered Z2 spin liquid phase of the system
in the gapless limit can already be effectively described as a thermal metal, although time-reversal
symmetry is only broken at lower temperatures. For Jz > 2, the system becomes gapped (inset).

This phase is one of three possible regimes that may occur in free fermion sys-
tems with symmetry class D, namely beside the topological and trivial insulator
phase. In the intermediate-temperature regime of the Kitaev Shastry-Sutherland
model, the disordered background is obviously provided by the Z2 gauge field.
However, since the intermediate phase is situated at temperatures higher than Tc,
the system is, in the strict sense, not in symmetry class D anymore, because class
D requires broken time-reversal symmetry. Nonetheless, we find a clear signature
of the thermal metal phase when we look at the low-energy density of states ρ(E)
of the Majorana fermions in the intermediate temperature regime. For E → 0,
the DOS shows oscillations which are typical for class D, and correspond to a
characteristic sinusoidal function ρ(E) = α + sin(2πEL2)/(2πEL2) (with a fit
parameter α) that has been predicted by random matrix theory [218, 227] (see
Fig. 5.13 for the DOS at Jz = 1.5 and T = 1.86). This supports the idea that
signatures of symmetry class D survive in the gapless intermediate-temperature
regime of the Kitaev Shastry-Sutherland model, which allows for an effective de-
scription of this phase as a thermal metal. Notably, the gapless-gapped transition
is not an extension of the chiral to trivial transition at T = 0, which occurs at the
gapless quantum critical point Jz = J−1

c . Instead, the transition jumps from J−1
c

to J∞c ∼ 2. For Jz →∞, the Kitaev Shastry-Sutherland system transforms into a
dimer model.

Apart from the gapped intermediate-temperature phase at Jz > J∞c , the Chern
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Figure 5.14: IntegralN0(T ) = −
∫∞
E=0

∂nF (E,T )
∂E ρ(E)dE as function of the coupling ratio Jz/J0.

For finite temperatures, N0(T ) gives an estimate for the density of states close to the Fermi level
E = 0. The value N0(T ) = 0 therefore suggests a finite band gap. This is the case for the data
points with Jz/J0 < 0.3 and temperatures T = 0.02 − 0.04, which correspond to the partially
flux-ordered phase. We therefore assume that the partially flux-ordered phase is gapped, and that
the gap vanishes at the square-ordering crossover temperature T ′′.

number results suggest another gapped region for Jz < 1. Here, a narrow blue
stripe above the partially flux-ordered phase encloses the thermal crossover points
associated with the ordering of square plaquettes. For this stripe, the Chern num-
ber is apparently |ν| ∼ 0, while the contour plot for the partially flux-ordered re-
gion itself shows a similar orange shade as the gapless intermediate-temperature
phase, indicating an average 0 < |ν| < 1. To determine if the partially flux-
ordered phase is gapless or gapped, we consider the integral

N0(T ) = −
∫ ∞
E=0

∂nF (E, T )

∂E
ρ(E)dE, (5.13)

where ρ(E) is the Majorana density of states, and nF (E, T ) the Fermi function at
temperature T , whose derivative ∂nF (E,T )

∂E
has a peak in the vicinity of E = 0. For

T → 0, this peak becomes a negative Delta-function

∂nF (E, T )

∂E

T→0−−−→ −δ(E), (5.14)

and the integral N0(T ) just gives the density of states at the Fermi level E = 0,

N0(T )
T→0−−−→ ρ(E = 0). (5.15)

For finite temperatures, the Delta-function becomes a finite peak with a width
∆ε ∼ T (for small T ), and the integral N0(T ) provides an estimate for the density
of states in the vicinity of the Fermi level.
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5.2. Chiral spin liquid

We evaluate N0(T ) as a function of the coupling ratio Jz/J0 for different tem-
peratures T (Fig. 5.14). Since N0(T ) estimates the density of states at low E, it
is zero whenever the system is gapped. We can see in the plot that this is the case
for the temperatures T = 0.02 − 0.04J0, which lie well above the phase tran-
sition temperature Tc < 0.01J0 for Jz/J0 < 0.3, but below the square-ordering
crossover at T ′′ ∼ 0.1J0 (Fig. 5.10), and therefore right within the partially flux-
ordered phase. Thus, the results for N0(T ) suggest that the partially flux-ordered
phase is gapped. For increased temperatures, on the other hand, the values of
N0(T ) become finite for all coupling ratios Jz/J0, which includes the range of
the partially flux-ordered phase, and converge to zero only for very large values
of Jz/J0. This agrees qualitatively with results for the infinite-temperature band
gaps that are shown in Fig. 5.12.

For Jz/J0 < 1, we can conclude that the Kitaev Shastry-Sutherland system
starts in the gapped chiral spin liquid ground state at T = 0. For increasing
temperatures, it undergoes a thermal phase transition at Tc and enters the partially
flux-ordered phase, which is still gapped, but where the gap is shrinking when
T is raised. For T → T ′′, the gap vanishes, and the system enters the thermal
metal phase, which inherits some class-D-signatures of the CSL ground state.
The paramagnetic phase is finally reached at the spin fractionalization crossover
at T ′.

5.2.4 Vison gaps

We close the discussion of the first phase diagram cut by examining the relation
between the transition temperatures and the vison gaps3 of the system (Fig. 5.15).
Corresponding to the two sets of elementary plaquettes in the Shastry-Sutherland
lattice, we can distinguish two kinds of vison excitations. A pair of visons on
the triangle plaquettes is created by flipping a diagonal Jz bond, whereas flip-
ping a horizontal or vertical bond generates a pair of visons on the square pla-
quettes. Fig. 5.15 a shows the values of the critical temperature Tc as a func-
tion of the triangle-plaquette vison gap ∆t. Fig. 5.15 b shows the values of the
square-ordering transition temperature, which is T ′′ for Jz/J0 ≤ 0.9 and Tc for
Jz/J0 ≥ 0.9, as a function of the square-plaquette vison gap ∆s.

We can determine a pronounced linear correlation between Tc and ∆s for a
wide range of values ∆s ≤ 0.5, which corresponds to coupling parameter val-
ues Jz/J0 > 1.5 (orange and blue data points). For the partial-flux order limit
Jz/J0 < 1, there is apparently also a linear correlation between the square-
ordering temperature T ′′ and ∆s with a different (negative) slope (red data points).
This implies that a larger vison gap corresponds to a lower transition temperature

3The vison gaps have first been calculated by Dr. Vatsal Dwivedi.
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z

(a) 3-plaquette vison gaps (b) 4-plaquette vison gaps

Figure 5.15: Transition temperature of the triangle- / square plaquettes as a function of the vison
gap ∆t / ∆s. Both curves suggest correlations between the quantities, which supports results from
3D Kitaev systems (Fig. 4.7). The arrows indicate increasing values of Jz/J0.

T ′′ in this limit. For 1 ≤ Jz/J0 ≤ 1.5, where ∆s is the largest, the data points are
too close to each other to determine a functional relation. It is here that the T -∆s

curve “U-turns” after the gap ∆s reaches its largest value.
For the 3-plaquettes, we see a linear correlation between Tc and ∆t for the

trivial phase Jz/J0 > 2.8 and parts of the chiral phase Jz/J0 ≥ 2.3, where ∆t

has its maximum value. The pronounced “U-turn” of the Tc-∆t-curve thereafter
corresponds to moving Jz to lower values. For Jz/J0 ≤ 1, there is again a linear
correlation between both quantities.

These results are consistent with the correlation between the flux-ordering
temperature Tc and the vison gap ∆ for 3D Kitaev systems (Fig. 4.7). However,
the “U-turn”-behavior that is witnessed for both the T -∆s- and the Tc-∆t-curve
suggests that the relation between transition temperature and gap is not a simple,
global linear function T (∆) = m∆. Instead, the slope m is changed in different
parameter regions, whereas in the region of extremal ∆-values, there is no linear
correlation at all. Nonetheless, it can be stated that a general correlation between
both quantities is verified by these results.

5.3 Second-order spin liquid
In the second part of our results discussion, we look at the horizontal cut trough the
phase diagram which is depicted as a set of magenta points in Fig. 5.16. Here, we
choose a fixed diagonal bond coupling Jz = 1 and staggering parameter δJ = 0.7,
and modify the parameter for the horizontal and vertical coupling J0 in steps of
∆J0 = 0.05 from 0.1 to 0.65. This cut through the phase diagram starts in the
chiral spin liquid phase for low values J0 < Jc = 1

2
√

2
, and enters the second-

order topological insulator phase beyond the quantum critical point, for J0 > Jc.
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Figure 5.16: Coupling parameters in the QMC simulations (2). Another horizontal cut through the
ground state phase diagram of the spin-3/2 Kitaev model [83] is realized by keeping Jz = 1 and
δJ = 0.7 fixed, and varying J0 from 0.1 to 0.65 (magenta points). This corresponds to moving
from the chiral spin liquid to the second-order spin liquid phase. In addition, we examine the
evolution of thermal signatures in SOSL phase for the tetragonal chain approximation δJ → J0
at constant J0 = 0.9 (orange points). At J0 = δJ (red dottted line), the model is transformed into
decoupled chains of square plaquettes (Fig. 5.21).

Thermal phase diagrams analogous to the ones presented in the last section are
shown for this cut in Figs. 5.17 and 5.18, with the specific heat signatures, the
chirality |Im(κ)|, the square-plaquette flux Wp and the Chern number |ν| given as
functions of the coupling ratio Jz/J0 and the temperature T .

In the following, we discuss the occurrence of thermal transitions along this
horizontal cut through the phase diagram, and observe what is another kind of
partially flux ordered phase, which the Kitaev Shastry-Sutherland model exhibits
above the second-order spin liquid regime. The occurrence of this phase manifests
itself in an additional thermal crossover, which is presented in detail at the exam-
ple of another parameter point in the ground state phase diagram (the results for
which have formerly been presented in Ref. [83]). In addition, we discuss results
for the tetragonal chain limit of the system, which is constructed by increasing the
staggering parameters as δJ → J0.

5.3.1 Thermal transitions

Our numerical results confirm the existence of the low-temperature phase transi-
tion also for the second-order spin liquid regime of the Kitaev Shastry-Sutherland
model. In Figs. 5.17 and 5.18, the position of the corresponding low-temperature
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(a) absolute chirality |Im(κ)| (b) square-plaquette flux Wp

Figure 5.17: Thermal phase diagram (1) for fixed coupling parameters Jz = 1, δJ = 0.7, and
J0 ∈ [0.1, 0.65]. The transition temperatures of the system are given as a function of the coupling
ratio Jz/J0 (white / black data points). The density plots show the chirality |Im(κ)| (a), and the
average 4-plaquette flux Wp (b). Filled (open) circles indicate phase transition temperatures Tc
in the CSL (SOSL) regime. Open squares indicate thermal crossovers associated with partial flux
ordering (T ′′) and spin fractionalization (T ′).

peak in the specific heat Cv is indicated by the filled circles for the chiral spin
liquid, and by open circles for the second-order spin liquid (SOSL) regime. The
occurrence of the thermal phase transition is expected due to the fact that the
ground state of the SOSL phase also breaks time-reversal symmetry by order-
ing of the triangle plaquettes. This ordering is shown by the results for chirality
|Im(κ)| in Fig. 5.17a, which is |Im(κ)| = 1 below the low-temperature transi-
tion, and |Im(κ)| = 0 above. A finite-size scaling analysis of the low-temperature
peak in the SOSL phase is presented in Fig. 5.20 for the parameter point Jz = 1,
J0 = 0.9, δJ = 0.4, and shows that this peak diverges with the system size.

In Fig. 5.17, we see that the position of the low-T transition in temperature
space monotonously decreases if Jz/J0 is decreased. In the chiral spin liquid
phase, it shows the particularly high value Tc ∼ 0.1Jz for large values of Jz/J0, a
phenomenon which is discussed above. For Jz/J0 → J−1

c = 2
√

2, the transition
temperature reaches the order of magnitude Tc ∼ 10−2Jz, and, in the SOSL phase,
it is further lowered to Tc → 10−3Jz. We note that for Jz/J0 < 1.8, the transition
temperature Tc moves below the temperature range of our QMC simulations. In
this limit, where the coupling J0 − δJ on half of the lattice bonds approaches 0,
it is expected that the transition temperature rapidly decreases to lower tempera-
ture scales. At J0 = δJ , the Kitaev Shastry-Sutherland model becomes a set of
decoupled chains, where one half of the square plaquettes, namely the one that is
composed of two triangles, is connected by the diagonal Jz-bonds (see Fig. 5.21).
We closely examine the evolution of physical observables in this limit, which is
discussed in Sec. 5.3.3.

Above the thermal phase transition, we observe two additional peaks in the
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Figure 5.18: Thermal phase diagram (2) for fixed parameters Jz = 1, δJ = 0.7. The transition
temperatures of the system are given as a function of the coupling ratio Jz/J0 (white / black data
points). The density plot shows the Chern number |ν|, which is trivial |ν| = 0 in the SOSL and
partially flux-ordered phase, and finite, |ν| = 1, in the CSL phase.

specific heat at coupling parameters Jz/J0 . 6.7, which are marked by the
open squares in the phase diagrams in Fig. 5.17. Apart from the expected high-
temperature peak, which lies constantly at T ′ ∼ 2Jz, there is an additional peak
at T ′′ ∼ 10−1Jz. Both peaks show no divergence in the finite-size scaling analy-
sis and therefore suggest the occurrence of thermal crossovers at the correspond-
ing temperature scales (Fig. 5.20). While the high-temperature crossover at T ′ is
again associated with spin fractionalization, and separates the high-temperature
paramagnetic phase from the intermediate disordered Z2 spin liquid regime, the
intermediate-temperature crossover at T ′′ signals the transition of the system into
a particular phase with partially ordered square-plaquette fluxes. This version of
partial flux ordering in the SOSL phase is discussed in detail in the next section.

The numerical results for the Chern number |ν| are presented in the contour
plot in Fig. 5.18. As expected for the low-temperature limit, the chiral spin liquid
phase has a finite Chern number |ν| = 1 below Tc, whereas for Jz/J0 = J−1

c ,
we encounter a sharp cut, and |ν| = 0 in the second-order spin liquid (SOSL)
regime. We have discussed in Sec. 2.3.3 that the SOSL regime corresponds to
a second-order topological insulator in terms of the Majorana fermions, which is
characterized by a trivial Chern number and the absence of topologically protected
edge modes, but possesses corner modes. These corner modes are invariant under
deformations of the Hamiltonian which leave its anticommutation relation with
the mirror symmetry operatorsM11,M11 and the bulk gap intact, Eq. (2.54).

The occurrence of these topologically protected corner modes cannot be mea-
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Figure 5.19: Partial flux order II. In the SOSL phase, the partial flux ordering is determined by
the staggering of bond couplings (dashed / solid lines). At T < Tc, all square plaquettes have
a π-flux (green). At Tc, the plaquettes with only weak edge couplings J0 − δJ are the first to
become disordered, with π- and 0-fluxes (green / red). Within this partially flux-ordered phase at
Tc < T < T ′′, the squares with two weak and two strong bond couplings become disordered.
Finally, at T ′′, also the square plaquettes with strong couplings disorder.

sured in terms of the finite Chern number, but has been shown by analyzing the
Wannier band structure of the system in this phase in Ref. [83]. With the QMC
simulations presented here, we cannot directly access the topological features of
the SOSL phase, but investigate how this phase develops at finite temperatures.
Here, we find that the gapped nature of the ground state phases survives above the
finite-temperature phase transition for Jz/J0 . 6.7, where the partial flux ordered
phase inherits the vanishing Chern number |ν| = 0 from the SOSL phase (see the
blue region in Fig. 5.18). Above T ′′ (which is identical to Tc above Jz/J0 ∼ 6.7,
where no partial flux ordering occurs), the system enters the disordered Z2 spin
liquid regime, which is gapless for all parameters, although a gap is expected to
open in the tetragonal chain limit δJ → J0 [220]. The latter is suggested by the
Chern number results, and has been confirmed by calculations of the band gaps at
T =∞.

5.3.2 Partial flux order II
The phase diagrams in Fig. 5.17 reveal a particular kind of partially flux ordered
regime, which exists in the parameter range Jz/J0 . 6.7 and sets in above the
thermal phase transition at Tc. Here, things are slightly different from the situa-
tion seen before, for the chiral-trivial transition corresponding to the first phase
diagram cut. While there, we observe a small region where the square plaquettes
are fully ordered, while the triangle plaquettes remain disordered, the partial flux
order regime here is characterized by partial order of the square plaquettes, while
the triangle plaquettes remain fully disordered.
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5.3. Second-order spin liquid

This can be most clearly seen when comparing the two contour plots in Fig.
5.17, which show the chirality |Im(κ)| (Fig. 5.17 a) and the square-plaquette flux
operator eigenvalue Wp (Fig. 5.17 b) as function of Jz/J0 and T . We see that the
chirality is always ordered for T < Tc (indicated by the light blue region) and or-
dered for T > Tc (blue region). The square plaquette fluxes are also fully ordered
at T < Tc, which is shown by the yellow region indicating a flux operator eigen-
value Wp = −1. Full disorder of the square plaquettes is, however, only reached
above the intermediate-T crossover indicated by the open squares. Here, the re-
gion with fully disordered fluxes, Wp = 0, is shown in blue. The intermediate-
temperature regime between the crossover and the thermal phase transition on the
other hand appears as a green region in Fig. 5.17 b, which corresponds to average
flux operator eigenvalues −0.75 / Wp / −0.25. A visualization of this partial
flux order is shown in Fig. 5.19.

The occurrence of an intermediate partially flux-ordered regime is a generic
phenomenon of the Kitaev Shastry-Sutherland model in the SOSL phase. A more
detailed understanding of this regime can be gained from looking at the data
curves for Wp. In Fig. 5.20, we show numerical results for a parameter point be-
longing to the second (vertical) cut through the SOSL phase, which is depicted as
a set of orange points in Fig. 5.16. Here, we can see the specific heat Cv showing
a three-peak structure, with a low-temperature peak that strongly scales with the
system size, and two high-temperature peaks showing no such scaling behavior.
The critical temperature Tc, which is extrapolated from the positions of the low-T
peak, and the two crossover temperatures T ′ and T ′′ are indicated by the dashed
grey lines in all figures. This makes it easy to see that, at the high-temperature
peak at T ′, which corresponds to spin fractionalization, the square-plaquette flux,
measured by the operator eigenvalue Wp, slowly starts to order, and assumes the
value Wp = −0.25 just at the temperature of the intermediate crossover T ′′. In the
entropy S, the region below T ′′ exhibits a plateau. Lowering the temperature, the
square plaquette fluxWp further decreases until reaching the valueWp = −0.75 at
the position of the low-temperature specific heat peak. Here, at the thermal phase
transition, we find a sudden drop of Wp to the ground state value Wp = −1.

What is the explanation for the two characteristic transition values Wp =
−0.25/ − 0.75, which signal the ordering of three quarters / one quarter of all
Np square plaquettes? When looking at the Shastry-Sutherland lattice with the
staggered coupling parameters J0±δJ , we see that the latter is composed of three
different kinds of plaquettes: Every fourth plaquette contains diagonal Jz-bonds
and four (horizontal and vertical) bonds with strong coupling J0 + δJ . It is ex-
pected that these Np/4 plaquettes with strong coupling are the last to become
disordered if δJ is finite and the temperature is increased. Analogously, there is
another set of Np/4 plaquettes which possesses diagonal bonds and only weakly
coupling edges J0 − δJ . We can expect that only a small temperature is required
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Figure 5.20: Partial flux ordering in the SOSL phase (here, J0 = 0.9 and δJ = 0.4) [83].
The specific heat Cv (a,c) shows at three-peak structure, indicating a thermal phase transition
at T ∼ 0.01Jz and two thermal crossovers at T ′′ ∼ 0.25Jz and T ′ ∼ 2Jz . While the high-
temperature crossover is associated with spin fractionalization and the low-T phase transition with
spontaneous breaking of time-reversal symmetry, due to the ordering of triangles, the intermediate
crossover indicates a partial flux-ordering of square plaquettes (b), which is a consequence of
staggered bond couplings J0 ± δJ . This choice of coupling generates a hierarchy between the
square plaquettes of the lattice, which results in different ordering temperature scales. In the
entropy S (d), the partial flux order manifests itself as a plateau at intermediate temperatures.

to disorder these Np/4 plaquettes. The remaining Np/2 plaquettes has two edges
with strong coupling J0 + δJ and two edges with weak coupling J0 − δJ , which
suggests an intermediate temperature scale for their disordering.

Thus, the emergence of the partially flux-ordered phase at intermediate tem-
peratures can be explained as follows: At T = 0, all square plaquettes are in the
ordered π-flux phase. If the temperature is increased to the scale of the critical
temperature Tc, the triangle plaquettes become disordered. We saw in the last sec-
tion that the ordering of triangles implies the ordering of squares, but, on the other
hand, the squares may assume an ordered configuration even if the triangles re-
main disordered. Since the temperature scale for the ordering of triangles is set by
the diagonal bond coupling parameter Jz, the squares may order at higher temper-
atures if their bonds are equipped with a stronger coupling than Jz. In the last sec-
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5.3. Second-order spin liquid

Figure 5.21: Chain limit of the Kitaev Shastry-Sutherland model. For δJ → J0, the couplings on
one half of the lattice bonds vanish, and the system becomes a decoupled set of tetragonal chains
[220].

tion, δJ is chosen as zero, and all horizontal and vertical bonds have a coupling J0.
Here, on the other hand, the finite staggering parameter δJ leads to the described
hierarchy of plaquettes with respect to their bond couplings. For all choices of
parameters in the SOSL phase, we find that J0 − δJ < Jz, so the ordering of
triangles implies the ordering of square plaquettes with only weak bond coupling
J0 − δJ on the edges. Since these plaquettes form 1/4 of all square plaquettes,
their disordering explains the average flux operator eigenvalue Wp = −0.75 at the
critical temperature Tc. In the intermediate-temperature phase, the plaquettes with
two strong and two weak edge couplings become disordered due to thermal fluc-
tuations, which form 1/2 of all square plaquettes. Thus, the value of Wp slowly
rises from Wp = −0.75 to Wp = −0.25. The squares with only strong bond cou-
plings J0 + δJ become the last to disorder under thermal fluctuations. This partial
flux ordering / disordering is a purely local phenomenon, which is analogous to
the low-temperature flux ordering in the Kitaev honeycomb model. Therefore, it
only produces a smooth thermal crossover at the temperature T ′′ = 0.25Jz.

5.3.3 Tetragonal chain limit

In a final step, we examine the tetragonal chain limit [220] of the Kitaev Shastry-
Sutherland model by increasing the staggering parameter δJ → J0 (see the orange
points in the ground state phase diagram, Fig. 5.16). A visualization of this limit
is presented in Fig. 5.21. As δJ approaches J0, the coupling on the dashed bonds,
J0−δJ , vanishes, and the model effectively becomes a set of decoupled tetragonal
chains. These consist of the Np/4 plaquettes with diagonal Jz-bonds and only
strong edge couplings J0 +δJ , which are connected by the other half of Jz-bonds.
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(b) square-plaquette flux Wp

Figure 5.22: Observables in the tetragonal chain limit [83]. As we increase δJ → J0, the ordering
on three quarters of the square plaquettes (those which possess weak edge couplings), is effectively
suppressed along with the thermal phase transition. At the same time, the coupling J0 + δJ is
increased, which leads to a higher crossover temperature T ′′.

Numerical results for fixed coupling parameters Jz = 1, J0 = 0.9 and dif-
ferent choices for δJ are presented in Fig. 5.22. Again, we consider the specific
heat Cv and the average square-plaquette flux Wp, and focus on the intermediate-
temperature regime, where the thermal crossover associated with partial square-
plaquette flux ordering is situated. In the specific heat Cv (Fig. 5.22 a), we can
see that the increasing of δJ leads the thermal crossover peak at T ′′ to approach
the spin fractionalization peak at T ′, until both peaks form a joined double-peak
structure, while at the same time, the low-temperature peak at Tc, which is associ-
ated with the thermal phase transition, rapidly moves towards lower temperature
scales. This merging tendency of the two high-temperature specific heat peaks
is accompanied by the square-plaquette flux, measured in terms of the operator
eigenvalue Wp, showing a lower and lower slope below T ′′, until the (red) curve
for δJ = 0.89 saturates at Wp = −0.25 (Fig. 5.22 b).

We can understand this behavior with the arguments presented in the last sec-
tion, in the context of partial flux ordering. Lowering J0− δJ reduces the temper-
ature scale at which the dashed square plaquettes in Fig. 5.21 assume the ordered
π-flux configuration, and, at the same time, reduces the scale for the ordering of
triangle plaquettes. Therefore, as we increase δJ , the low-temperature phase tran-
sition peak moves towards T → 0, below the temperature range we performed
the QMC simulations in. Likewise, the ordering of half the square plaquettes with
two weak and two strong edge couplings is shifted to lower temperatures, which
manifests itself in the decreasing slope of Wp below T ′′. The partially flux or-
dered phase, where only the square plaquettes with strong edge coupling carry a
π-flux, thereby becomes a more and more stable phase in temperature space, espe-
cially as increasing δJ makes the edge coupling on these ordered plaquettes even
stronger and raises the crossover temperature T ′′. In the extremal case δJ → J0,
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the ordering of all plaquettes except the ones with strong edge couplings is fully
suppressed, and we observe the ordering at Wp = −0.25 down to lowest temper-
atures.

5.4 Summary
This chapter has presented quantum Monte Carlo results for the spin-3

2
Kitaev

Shastry-Sutherland model in different (topological) parameter regimes. With the
assignment of staggered bond coupling parameters, the ground state phase dia-
gram of the model separates into two chiral spin liquid phases with finite Chern
number ν = ±1, along with a topologically trivial and a second-order topological
insulator phase (which we dubbed second-order Kitaev spin liquid), the latter two
with ν = 0. All these ground state phases are characterized by spontaneous break-
ing of time-reversal symmetry, which is a consequence of the odd elementary pla-
quette length in non-bipartite lattice systems. Therefore, all ground state phases
of this system are separated from the intermediate-temperature (disordered spin
liquid) phase by a thermal phase transition. This distinguishes the system from
bipartite Kitaev models, where the gauge-ordering transition at low temperatures
is a smooth crossover. The occurrence of spontaneous symmetry breaking also
distinguishes the phase transition here from the inverted Ising transition in 3D Ki-
taev systems. A local order parameter is defined by the chirality κ. The critical
temperature in the chiral spin liquid regime, Tc ∼ 0.1Jz, is found to be one order
of magnitude larger than in other Kitaev systems.

Our QMC studies reveal that the existence of odd (triangle) and even (square)
plaquettes in this lattice manifests itself in the occurrence of different phases of the
generalized Kitaev model where the Z2 plaquette fluxes are only partially ordered.
In these partially flux-ordered phases, the triangle plaquettes always remain disor-
dered, while the square plaquettes either fully order at higher temperatures (which
happens in the coupling limit Jz < J0 above the chiral spin liquid phase), or par-
tially order according to the differing coupling scales of their edge bonds (which
has been shown to happen above the second-order spin liquid phase). The numer-
ical results confirm a correlation between the transition temperature and the size
of vison gaps on the triangle / square plaquettes for different coupling parameters.

Apart from the occurrence of partially flux-ordered phases, we have shown
that the intermediate-temperature phase above the chiral spin liquid separates into
a gapless and gapped part. The gapless phase can be described as an effective
thermal metal, in which signatures of symmetry class D in the Majorana band
structure survive the thermal phase transition at lower temperatures.

For the second-order spin liquid phase of the model, we have carefully ex-
amined the tetragonal chain limit δJ → J0, which is characterized by the sup-
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pression of the low-temperature phase transition along with an increase of the
square-ordering crossover temperature T ′′.
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Chapter 6

Summary and Outlook

In this thesis, we have presented numerical results from large-scale, sign-problem-
free quantum Monte Carlo simulations of 2D and 3D Kitaev systems. The low-
temperature behavior of these quantum spin liquid models is described by (itiner-
ant) Majorana fermions, which are coupled to an emergent (static) Z2 gauge field
[27]. Kitaev systems therefore belong to the class of Z2 spin liquids, for which
the physical behavior can be captured in terms of lattice Z2 gauge theories [50].
In particular, the elementary vison excitations of the Z2 gauge field are known
to be always gapped, while the Majorana fermions may form gapless or gapped
collective states.

Kitaev systems exhibit a high-temperature thermal crossover, which is asso-
ciated with the fractionalization of spins, and has been verified for all models
presented in this thesis. The primary focus of this work has been on the low-
temperature ordering of the Z2 gauge field into different flux configurations, which
are generally characterized by the presence or absence of Z2 plaquette fluxes. This
ordering is associated with a thermal transition, which, depending on the dimen-
sionality of the underlying lattice geometry, and on the presence or absence of
sublattice symmetry, may constitute a phase transition or a smooth crossover.

Our first study has been focused on Kitaev systems on a family of elemen-
tary, tricoordinated 3D lattices. We have verified that the ground state Z2 flux
configurations in these models follow the prediction of Lieb’s theorem, which
relates the energy-minimizing flux to the plaquette length. The validity of this
theorem for the considered lattice systems had been unclear, since all but one of
them lack the geometric requirements for the theorem’s proof and rigorous ap-
plication. We have also shown that all considered 3D Kitaev systems undergo
a low-temperature thermal phase transition, which is a particular realization of
an inverted Ising transition. With respect to the Z2 gauge field, it constitutes a
deconfinement-confinement transition that separates different topological regimes
of the (loop-like) vison excitations in 3D, namely the high-temperature regime
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of proliferating system-spanning visons, versus a low-temperature phase charac-
terized by the absence of such macroscopic visons. We have corroborated this
understanding of the thermal phase transition by showing a clear (linear) correla-
tion between the critical temperature and the size of the vison gap.

Apart from supporting this general understanding of the gauge thermodynam-
ics in 3D, we have introduced the concept of “gauge frustration”, a phenomenon
which is shown to occur in the Kitaev model on a particular 3D lattice. Here, a
peculiar competition between the elementary plaquette length and a volume con-
straint on the plaquette fluxes prohibits a unique Z2 flux order for a wide range
of coupling (an)isotropies, and leads to the emergence of a highly-degenerate,
geometrically frustrated gauge manifold at low temperatures. Thereby, the ther-
mal phase transition is suppressed to a lower temperature scale, and realized as
an interplay between the Majorana fermions and the Z2 gauge field, which fi-
nally forces the latter into a non-trivial columnar zigzag order. We understand the
phenomenon of gauge frustration as an intermediate scenario between the con-
ventional Z2 spin liquid, which is characterized by a full decoupling of Majorana
fermions and gauge field, and a U(1) spin liquid, where the parton degrees of
freedom typically remain strongly interacting down to lowest temperatures.

In a second study, we have investigated a generalized 2D version of the Kitaev
model on the five-coordinated Shastry-Sutherland lattice. Here, the ordering of
the Z2 gauge field at low-temperatures is accompanied by the spontaneous break-
ing of time-reversal symmetry, a consequence of the odd plaquette length in this
non-bipartite lattice system. Because of the symmetry breaking, the ordering tran-
sition is here, unlike in bipartite 2D Kitaev systems, also associated with a thermal
phase transition. In addition, the dimensionality of the lattice allows for the occur-
rence of topological ground states, namely a chiral spin liquid and a second-order
spin liquid regime. We show that the critical temperature of the thermal phase
transition is particularly large in the chiral spin liquid phase. Moreover, the model
possesses a number of (intermediate-temperature) regimes which are character-
ized by a partial ordering of Z2 fluxes, a result which we show by presenting two
thermal phase diagrams for different parameter regimes of the model.

With respect to the method, we have shown in this thesis that the quantum
Monte Carlo approach for Kitaev systems introduced by Nasu and Motome [44]
can be extended to a Majorana representation based on Kitaev’s original, local
transformation approach. This modification is possible without the implementa-
tion of an explicit reprojection of the Majorana system to the physical subspace,
which is supported by scaling arguments and benchmark calculations [145].

This work has treated a number of fields in condensed matter physics which
are currently dynamically evolving. On the experimental side, there are various
recent approaches for the observation of gauge fields in condensed matter systems,
such as optical lattices [231–234]. We have outlined in the introductory chapter of
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this thesis that also the hunt for spin liquids is an ongoing mission which includes
a broad range of activities [3–8]. In particular, a better understanding of the Kitaev
spin liquid and the search for its possible material realizations remain a very active
field [38, 43, 73]. From the numerical side, there are numerous lines of research
which are suited to support these endeavors. We finish this concluding chapter
by naming a few selected paths which have a close physical and methodological
relation to the work presented here.

One important line of numerical research is focused on Kitaev systems in
magnetic fields. In his original work [27], Kitaev has shown that a small mag-
netic field perturbation leads to the emergence of a gapped spin liquid with non-
Abelian topological order, which is eventually destroyed by an enforced ferromag-
netic ordering at a certain critical field strength. The understanding of this well-
established scenario for ferromagnetic Kitaev systems has recently been supple-
mented by an exact diagonalization study of their antiferromagnetic counterparts,
which turn out to exhibit a more complex behavior. Here, at intermediate field
strengths, the gapped Z2 spin liquid has been shown to undergo a Higgs transition
to a U(1) spin liquid, where the elementary gauge excitations are gapless (mass-
less) [235]. From the perspective of quantum Monte Carlo simulations, it has to be
noted that the introduction of a magnetic field term leads to a non-vanishing com-
mutation relation between the Kitaev Hamiltonian and the plaquette flux variable
Wp, and therefore lies beyond the scope of the method presented in this thesis.
However, such systems have been investigated with a continuous-time quantum
Monte Carlo method, which works in the spin basis of the model [236]. These
theoretical studies are complemented by numerous experimental activities on Ki-
taev systems in magnetic fields [118–125].

A modification of the quantum Monte Carlo method used in this thesis is based
on the explicit reprojection of the Majorana system into the physical subspace.
This approach has also introduced a way to measure dynamical spin correlation
functions and structure factors for configurations of Z2 fluxes, which may lead
to the establishment of new physical signatures for fractionalization in Kitaev
systems [206, 207].

Finally, an older line of research has opened an interesting perspective by com-
bining Monte Carlo simulations with machine learning techniques [237], and has
been explicitly introduced for double-exchange models [238, 239]. The exten-
sion of such machine-learning-based Monte Carlo techniques to Kitaev systems
remains an open task in computational physics.
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Appendix A

Kitaev model

A.1 Lieb’s Theorem
1 The problem of finding the flux ground state for a half-filled band of hopping
electrons has been intensely studied in mathematical physics in the early 1990’s.
The interest for this problem roots in the attention on an intriguing phenomenon
that arises in the context of correlated electron systems and superconductivity.
It had been noticed that under certain conditions, i.e. in systems with a high
electron density, the effect of diamagnetism can be reversed. In these systems, the
application of a magnetic field does in fact not raise, but lower the energy.

This discovery has led to the formulation of the flux phase conjecture, which
states that on a planar square lattice with free hopping electrons, the energy min-
imizing magnetic flux is π per square, if the electron filling factor is 1

2
. More

general, it has been stated that on planar lattices, the optimum flux choice per pla-
quette (circuit) is π for plaquettes containing 0 (mod 4) sites, and 0 for plaquettes
with 2 (mod 4) sites. This conjecture has been proven by Lieb and coworkers for
several lattice graphs, such as rings, trees of rings, ladders and necklaces [85],
which has laid the foundation for the later formulation of Lieb’s theorem [86].

The set up for Lieb’s theorem is a finite graph Λ, consisting of |Λ| sites, which
are indexed by x, y, and hopping amplitudes txy = |txy|eiφ(x,y) (with φ(x, y) =
−φ(y, x) and txx = 0 for all x). The quest is for the numbers φ(x, y) which
minimize the electronic ground state energy of the tight-binding Hamiltonian
K = −∑x,y txyc

†
xcy (in fact, different fluxes for up- and down-spins are also al-

lowed, as well as further terms in the Hamiltonian, which introduce longer range
density-density or spin-spin interactions). It had been formerly proven [85] that
the spectrum of the Hermitian matrix T = {txy} only depends on the numbers φ
trough the fluxes. The latter are defined on closed loops (circuits), i.e. sequences

1This appendix has been published in Ref. [214].
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Figure A.1: Reflection symmetry in Lieb’s theorem [86]. Square lattice with periodic boundary
conditions in the horizontal direction (the sites on the left hand side and on the right hand side are
the same). The thin black lines are mirror lines. All the bond couplings (indicated in red, purple
and blue) are mirror-symmetric. Lieb’s theorem states that a flux π per square minimizes the en-
ergy for the plaquettes that are cut in half by the mirror lines. Since the mirror symmetry condition
is also fulfilled if the mirror lines are moved by integer multiples of the horizontal lattice vector
(indicated in black), it is proven that the π flux is the optimal choice for any square plaquette. The
theorem includes the statement that a 0-flux optimizes the mirror-symmetric hexagonal plaquette.
It can be generalized to a D-dimensional lattice with (D-1)-dimensional hyperplanes that do not
intersect any vertices.

of connected lattice points x1, x2, ..., xn, x1 (with txi,xi=1
6= 0 for all i) by

Φ =
n∑
i

φ(xi, xi+1) mod 2π. (A.1)

Note that in the Kitaev model, the Z2 gauge field uij corresponds to the hopping
phase factor eiφ(x,y in the general setup, and the loop operator eigenvalue Wp to
the exponentiated flux term eiΦ. The ground state energy ofK is given by the sum
over the negative eigenvalues of T

E0 =

N/2∑
λ=1

ελ(T ). (A.2)

The flux conjecture is proven for systems with a certain periodicity requirement.
The lattice Λ has to be (at least) half-periodic in the horizontal direction. Then, it
can be cut into two half-cylinders, with the cutting lines intersecting only bonds,
such that the two half-cylinders are mirror images of each other in terms of the
bond couplings |txy| (Fig. A.1). The proof of Lieb’s theorem, which we do not
reproduce in detail here, now shows that the energy-minimizing flux is π for the
squares containing the cutting lines. If in addition to the aforementioned geo-
metric requirement, reflection symmetry of the bond couplings is fulfilled for any
choice of cutting lines, it follows from Lieb’s theorem that π is the optimal flux
choice for every square of Λ.

The theorem includes the prediction of the respective ground state fluxes of
hexagonal, octagonal and further plaquettes with the same argument. It can be
further generalized to D-dimensional hypercubes instead of squares, if reflection
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symmetry is realized with respect to (D-1)-dimensional hyperplanes. Then, Lieb’s
theorem states that π is the optimal flux choice for each two-dimensional square
plaquette that is cut by the hyperplane. Also here, it follows that the flux is optimal
for every plaquette if periodicity in (D-1) dimensions is fulfilled. Among the 3D
Kitaev systems, the reflection symmetry condition is completely fulfilled only for
(8,3)b, while in (8,3)n, seven out of eight elementary plaquettes per unit cell are
mirror-symmetric in the described way.

An alternative proof of Lieb’s theorem has later been presented by Macris
et al. [87], which makes use of the same symmetry requirements as the proof
by Lieb. To summarize, we see that the applicability of the mirror symmetry
argument is a sufficient, but not a necessary condition for the validity of the flux
phase conjecture.
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Appendix B

Quantum Monte Carlo simulations
on Kitaev systems

B.1 The projection operator

The projection operator for the Kitaev model in the Majorana basis is defined as
the symmetrization over all Z2 gauge transformations Di,

P =
∏
i

(
1 +Di

2

)
. (B.1)

P commutes with HKitaev and defines a projection, as P2 = P . Its eigenvalues
are {0, 1}. It can be rewritten as [144]

P =
N∏
i=1

(
1 +Di

2

)
=

1

2N
(1 +D1)(1 +D2)...(1 +DN)

=
1

2N

(
1 +

∑
i

Di +
∑
i<j

DiDj + ...+
N∏
i=1

Di

)

=
1

2N

∑
{i}⊂Λ

∏
i∈{i}

Di. (B.2)

In the last step, Λ = {1, 2, ..., N} denotes the set of site indices, and the sum is
over all subsets {i} ⊂ Λ. If a term Di1 ...Dik corresponding to a subset {i} is
multiplied by the whole product

∏N
i=1 Di, the result is another term which corre-
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sponds to the complementary subset Λ\{i} [144],

(Di1 ...Dik) ·
N∏
i=1

Di = D1D2... Di1Di1︸ ︷︷ ︸
=1

... DikDik︸ ︷︷ ︸
=1

...DN , (B.3)

which follows from D2
i = 1. Therefore, P can be rewritten as the product [144]

P =

 1

2N−1

∑̃
{i}

∏
i∈{i}

Di


︸ ︷︷ ︸

:=S

·
(

1 +
∏N

i=1Di

2

)
︸ ︷︷ ︸

:=P0

. (B.4)

In the operator S, the tilded sum
∑̃

indicates the restriction of the summation to
half of the subsets: Λ\{i} is not included if {i} is.

The product of all single-vertex gauge transformation operators Di in P0 can
be evaluated by [144]

N∏
i=1

Di = bx1b
y
1b
z
1c1...b

x
Nb

y
Nb

z
NcN

=
∏
i

bxi
∏
j

byj
∏
k

bzk
∏
l

cl. (B.5)

Now, the operators bγi are commuted with each other, such that the bond operators
ûγij can be rebuilt by replacing bγi b

γ
j = −iûγij . This reordering leads to a prefactor

(−1)φ, where the exponent φ depends on the connections of sites in the lattice
[144],

N∏
i=1

Di = (−1)φ ·
∏
〈i,j〉

uij · (−i)N
N∏
l=1

cl︸ ︷︷ ︸
=:π̂c

. (B.6)

Based on the transformation of the Majorana fermions ci to normal modes (using
b′i = b2i, b

′′
i = b2i+1) [144],

ci =
N∑
j

Qijbj, (B.7)

the Majorana parity operator π̂c can be replaced by a fermionic parity operator π̂
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via [144]

π̂c = det(Q)
N∏
i=1

bi (B.8)

= det(Q)

N/2∏
λ=1

(1− 2nλ)︸ ︷︷ ︸
=:π̂

. (B.9)

The final expression for P0 results as [144]

2P0 = 1 + (−1)φ ·
∏
〈i,j〉

uij · det(Q) · π̂. (B.10)

The phase factor φ has arisen due to the reordering of the operators bγi , and there-
fore depends on the connections in the lattice. It leads to a sign±1. For a fixed Z2

gauge field configuration {uij}, both the product
∏
uij and the determinant of the

transformation matrix Q are fixed and give signs ±1. Thus, for a certain lattice
and a certain gauge field configuration, the eigenvalue of P0 solely depends on the
parity operator π̂ =

∏
(1− 2nλ). Explicitly, if 2P0 is applied to a given fermionic

Fock state |n〉,
2P0 |n〉 ∈ {0, 1}. (B.11)

If the eigenvalue is 0, the state |n〉 is clearly projected out by P , implying it cannot
be a physical state [144].

B.2 Numerical performance
Having presented the analytical background of the quantum Monte Carlo ap-
proach in Sec. 3.4, we here discuss a number of technical details of its imple-
mentation. First of all, our simulation program is written in the C++ programming
language [240]. For matrix operations, we use the linear algebra library Armadillo
[241, 242]. Simulations have been performed on the JUWELS high-performance
cluster at Forschungszentrum Juelich and the CHEOPS cluster at the University
of Cologne.

Apart from this general information, we explain the concrete implementation
of the parallel tempering method [179–183] that is used to improve the numerical
convergence in the low-temperature limit. Afterwards, we discuss the equilibra-
tion and convergence behavior of the simulations. Finally, after looking at the
computational efficiency of the program, we present a simple way to address its
bottleneck, namely the exact diagonalization required in each Monte Carlo update.
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(a) Single spin-flip acceptance rate
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(b) Replica exchange (swap) acceptance rate

Figure B.1: Single spin-flip and swap acceptance rate in the QMC simulation on the Kitaev
honeycomb model (L = 16). In the region between T ∼ 10−2 and T ∼ 10−1, the single-flip
acceptance rate (a) drops nearly to zero, while the swap acceptance rate (b) shows a sharp valley
here. The T -region corresponds to the thermal crossover of the system (cf. Fig. 3.2).

B.2.1 Parallel Tempering

A large part of the physically interesting behaviour of the Kitaev model happens
at very low temperatures. This is particularly true for the physics of the emergent
Z2 gauge field, which is the focus of this work. The ordering of the Z2 gauge
field takes place at a very small temperature scale of T ∼ J/100. While in two-
spatial dimensions, this ordering is accompanied by a thermal crossover, where
the Z2 plaquette flux degrees of freedom locally freeze into their respective ground
state configuration, the situation in three dimensions is different. Here, the gauge-
ordering comes with a thermal phase transition.

Both low temperatures and phase transitions have a notorious slowing-down
effect on Monte Carlo simulations. For low temperatures, the single spin flip
Monte Carlo weights α = e−β∆F get exponentially small, such that the single
spin-flip acceptance rate typically drops to zero here (Fig. B.1 a). In the thermal
region around a phase transition, on the other hand, the autocorrelation function,
Eq. (3.15), for consecutive configuration samples diverges. Thus, subjecting the
Z2 gauge field {uij} only to the presented single spin-flip update is not sufficient
to reach an appropriate convergence of the simulation down to the interesting
temperature region T ≤ 0.01.

Therefore, we additionally implement the parallel tempering method [179–
183] to the QMC simulation, which is also known by the name replica exchange.
Here, a Monte Carlo run consists of a set of parallel simulations (processes), which
run at different temperatures Ti. Each process has its own system configuration
Ci (here, a Z2 gauge field configuration {ujk}), and consists of the usual single
spin-flip updates of the gauge field, followed by ED calculations. With parallel
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tempering, after a number of Monte Carlo sweeps, the processes additionally per-
form swaps with their neighboring processes. The processes i and j attempt an
exchange of their configurations, which is, analogously to the single spin-flip step,
accepted according to the Metropolis criterium [44],

α = min (1, p(Ci, Cj)) ,

p(Ci, Cj) =
e−βiF (βi,Cj)−βjF (βj ,Ci)

e−βiF (βi,Ci)−βjF (βj ,Cj)
, (B.12)

with inverse temperature β and free energy F . Note that the free energy has
to be calculated four times. Apart from the actual free energy of process i (j),
calculated in the gauge field configuration Ci (Cj) at inverse temperature βi (βj),
which appear in the denominator and have been, ideally, saved within each Monte
Carlo process, there are, in addition, the “mixed" free energies (gauge field Ci
with temperature βj and vice versa) in the numerator.

One swap consists of one replica exchange proposal per pair of neighbouring
processes (i, i + 1), with i ∈ {1, . . . , Np} and Np being the number of paral-
lel processes. We always start with the processes at lowest temperatures T1, T2

(Fig. B.2). This way, it is possible that the configuration C1 wanders through the
whole temperature space to process Np within one swap. In our QMC simula-
tions, we typically perform simulations with Np = 64−96 parallel processes. We
perform one swap after every Monte Carlo sweep.

The accessible temperature range of the Monte Carlo simulation with paral-
lel tempering depends on the lattice system and the choice of coupling parame-
ters. Typically, this limit is set by the critical temperature, which decreases for
anisotropic coupling parameters Jγ . In the best cases, we can reach convergence
of our numerical results down to temperatures T ∼ 10−4, using logarithmically
distributed sets of temperature points on intervals [Tmin, Tmax], that span all phys-
ically relevant temperature scales. Typically, we choose Tmin = 10−4 − 10−3 and
Tmax = 10 − 100. In fact, including processes with high temperatures into the
swap has turned out to be important to improve the numerical convergence.

Further improvements on the convergence of Monte Carlo with parallel tem-
pering can be reached if, instead of using a generic linear or logarithmic distribu-
tion of temperature points, the temperature set is adjusted to the performance of
the replica exchanges via advanced ensemble optimization techniques [243, 244].
Generally, the distribution of temperature points has to be chosen such that the
densities of states ρ(E) at neighbouring temperature points have a finite overlap,
i.e. for each pair of neighbouring temperature points, there have to be energy states
that are occupied at both temperatures. For the replicas, which can be thought of
as performing a random walk in temperature space, the “amount of overlap” de-
termines the local diffusivity between temperatures Ti, Ti+1. If this diffusivity is
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Figure B.2: Replica exchange scheme for one parallel tempering step (swap). One swap consists
of one exchange proposal for replicas at neighbouring processes (i, i + 1). We always start with
the processes at lowest temperatures T1, T2, and move forward to higher temperatures.

low in some T-region, for example the region surrounding a thermal crossover or a
phase transition, the rate of accepted swaps goes down (Fig. B.1 b). In this case, it
is possible to enhance the mobility of the replicas by inserting more temperature
points into the respective region. A measure for the replica mobility in the full
simulation interval [Tmin, Tmax] is given by the round-trip current [243, 244]

j = D(T )H(T )
df

dT
. (B.13)

A “round trip” refers to a replica moving from Tmin to Tmax and backwards.
In Eq. (B.13), D(T ) is the local diffusivity, H(T ) the probability distribution of
the temperatures (H(T ) ∝ 1/∆T ), and the function f ,

f(T ) =
n+(T )

n+(T ) + n−(T )
, (B.14)

is a ratio of histograms n+(T ) and n−(T ), which count the replicas moving “right”
in T-space (“+”), i.e. coming from Tmin and moving towards Tmax, and those mov-
ing “left” (coming from Tmax and moving towards Tmin). These histograms are
recorded during the QMC simulation. An example plot for the function f(T ) is
given in Fig. B.3. Having the values of f(T ) for a given distribution of tempera-
ture points at hand, an improved distribution H(T ), which maximizes the round
trip current j, can be easily generated. In Ref. [243, 244], it is shown that the
optimized set is given by

Hopt(T ) ∝ 1√
D(T )

, (B.15)

and the n-th temperature point of the optimized set can be obtained by numerical
integration ∫ T ′n

T ′0

Hopt(T )dT =
n

N
, (B.16)
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Figure B.3: Histogram ratio function f(T ) for the QMC simulation on the Kitaev honeycomb
model (L = 16). f(T ) gives a ratio for the histograms n+ and n−, which, during the Monte
Carlo simulation with parallel tempering, measure the replicas coming from Tmin and Tmax. The
number of “right-moving" replicas n+ decreases in the region of the thermal crossover of the Hon-
eycomb Kitaev system (Fig. 3.2). The function f(T ) is used to generate an optimized ensemble
of temperature points.

where N is the total number of temperature points.
We have carefully analyzed the function f(T ) for our QMC simulations. For

the study of most Kitaev systems, it is not necessary to further optimize the distri-
bution of temperature points, so we keep the initial, logarithmic distribution. For
the (9,3)a Kitaev system, which is the only 3D Kitaev system that possesses a first-
order phase transition at low temperatures, ensemble optimization techniques have
been proven useful to increase the numerical convergence in the region around the
critical temperature [90].

B.2.2 Equilibration and convergence
The time series for the energy Ef as a function of Monte Carlo sweeps Nsw shows
the significant speedup in convergence which is reached if parallel tempering is
implemented in the QMC simulation (Fig. B.4). Typically, physical observables
reach their equilibrium value after < 10000 Monte Carlo sweeps for low tem-
peratures T ≤ 0.01, and much faster for higher temperatures. In order to achieve
converged results for all data points, we experience that, usually, a simulation time
of the order of 10.000 sweeps is required.

Thus, we perform a typical QMC simulation with 10.000 Monte Carlo sweeps
for the thermalization, followed by 10.000 - 50.000 sweeps for the measurements.
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Figure B.4: Time series for the internal energy Ef of the Kitaev Shastry-Sutherland model (L
= 10) with (blue) and without replica exchange (red). The simulations are started from different
random seeds at T = 0.019.

B.2.3 Computational cost

The computationally most expensive step in the simulation is the exact diagonal-
ization of the fermionic sector, which is required in every Monte Carlo update.
For the calculation of the free energy F in the Metropolis weights e−β∆F the full
set of eigenvalues {ελ} of the matrix iA, Eq.2.9, is needed.

The usual matrix diagonalization techniques used by standard linear algebra
libraries are based on the tridiagonalization of the matrix and scale cubically with
the matrix size, i.e. involve a computational cost of O(N3) for an N ×N matrix.
We have verified this cubic scaling for our simulations (Fig. B.5).

For a whole Monte Carlo sweep, which consists of N attempted single spin-
flip updates, the computational scale is therefore O(N4). In practice, this re-
stricts the accessible system sizes with this QMC method on state-of-the-art high-
performance clusters in reasonable amounts of time to ∼ 1000 (see Fig. B.5).
Therefore, an exhaustive study of 3D Kitaev models asks for a significant speed-
up of the Monte Carlo update.

The Majorana matrix iA is either saved or constructed on the fly during the
simulation. Although it is sparse (every spin has three interaction partners, so
each row in the matrix contains only three nonzero elements), we cannot resort to
faster eigensolver techniques like the Lanczos algorithm [155], since we need the
full spectrum {ελ}.
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Figure B.5: Computation time for one Monte Carlo step (single spin-flip update with exact di-
agonalization) as a function of system size. Due to the exact diagonalization needed to calculate
Metropolis weights, the computation time scales cubically with the system size. Hence, in double-
logarithmic scale, the time per MC step is straight line with a slope m = 2.96(4) ≈ 3.

B.2.4 Numerical Improvements
Since the exact diagonalization of the fermions is the computational bottleneck
step in our QMC method, numerical improvements of the simulation mainly have
to address this issue.

The standard ansatz to make ED calculations faster is to search for suitable
symmetries of the underlying system, which might enable to rewrite the matrix
in a block-diagonal form. This is also an option for Kitaev systems, most of
which are defined on bipartite lattices. In this case, we can use the sublattice
symmetry and reorder the numbering of the sites according to the sublattices A
and B. Sites in sublattice A are numbered by 1, . . . , N/2, and those in sublattice B
byN/2+1, . . . , N With this transformation, the Majorana Hamiltonian, Eq. (2.9),
assumes the form [145]

H ({uij}) =
(
cTA cTB

)( 0 M
−MT 0

)
︸ ︷︷ ︸

=iA

(
cA
cB

)
, (B.17)

where the vectors cA/B denote the Majorana fermions which live on the lattice
sites in sublattice A/B.

Now, instead of diagonalizing the whole matrix iA, it is sufficient to perform
a singular value decomposition (SVD) of the block matrix M . The singular val-
ues of M are the eigenvalues {ελ} of iA (since iA is Hermitian, its eigenvalues
come in pairs ±ελ, such that the calculation of the negative or positive half is suf-
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Figure B.6: Computation time for one Monte Carlo step with exact diagonalization / singular
value decomposition. On bipartite lattice systems, the Majorana Hamiltonian can be brought into
a block-diagonal form, Eq. (B.17). Instead of exactly diagonalizing the full Hamiltonian, it is com-
putationally more efficient to perform a singular value decomposition of its off-diagonal subblock
with size N/2×N/2, in order to obtain the eigenvalues {ελ}.

ficient). The numerical cost of SVD also scales cubically with the matrix size,
but, since M has only a size N/2 × N/2, the calculation time for an N -site sys-
tem is significantly reduced, and larger systems become accessible. We confirm
this improvement of the computational scaling with benchmark calculations up to
N = 512 (Fig. B.6).

The block transformation with subsequent SVD is a faster approach for bipar-
tite Kitaev systems and best-suited if obtaining the full set of eigenvalues {ελ} is
really necessary in each Monte Carlo update.

B.3 GF-KPM
We give a number of technical remarks on the concrete implementation of the
QMC-KPM method.

• The number M of Chebyshev moments that have to be taken into account
depends on the lattice, and, in particular, its size. For small systems, a gauge
field update comes with a larger relative change in the free energy ∆F/F .
Thus, a higher precision in the calculation of ∆F is required, and therefore,
M needs to be chosen larger. For medium-sized and large systems (N ≥
600), choosing M = 256 − 512 turned out to be sufficient to achieve good
accordance with results from QMC-ED simulations (see Fig. 3.4, where an
example for a benchmark plot is given). In addition, a closer analysis of
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Figure B.7: Benchmark calculations for Im log(d(E + iε)). The black line shows the exact func-
tion, which is calculated from the eigenvalues ελ, ε′λ [147], and the colored lines the Chebyshev-
approximated function with expansion order M = 500, 1000, 1500, 10000. It can be seen that the
best approximation is achieved for M = 1000.

the Chebyshev expansion of the function Im log(d(E + iε)) shows that the
approximation does not further improve for expansion orders M � 1000
(Fig. B.7).

• In practice, the numerical integration of ∆F has to be restricted to the half-
open interval [0, s) (s being the bandwidth ofH) to achieve good precision.
We used the extended trapezoidal rule for semi-open intervals [245]∫ xM=s

x1=0

f(x)dx ≈ h

(
1

2
f1 + f2 + · · ·+ fM−2 +

3

2
fM−1

)
+O

(
1

M2

)
,

(B.18)
where fi := f(xi). For optimized results, the number M of equally-spaced
abscissa points xi on the interval [0, s) should correspond to the number of
Chebyshev moments.

• Since the recursive calculation of the moments 〈i|Tm(H/s) |i〉 is done by
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subsequent matrix-vector multiplications, this step is the most expensive
part in each Monte Carlo update. In order to reach maximal efficiency,
the sparse matrices and vectors should be stored in the compressed row-
storage format (CRS) [246]. In this format, the numerical effort for the
multiplication of N -sized matrices and vectors scales with O(N). This,
in the end, also determines the linear scaling of the whole algorithm (see
Fig. 3.3). With the GF-KPM method, lattice system sizes up to N ∼ 2800
become computationally accessible.

In addition, it has to be remarked that the GF-KPM method gives sufficiently
exact results only for the free energy change during the MC update and cannot
be used for the calculation of thermodynamic observables. Hence, an exact di-
agonalization of the Hamiltonian remains necessary after each sweep, in order to
calculate observables from the eigenvalues {ελ}. The latter are also needed to
compute the Boltzmann weights for the replica exchange, Eq. (B.12), since here,
swapped configurations differ in general by more than two matrix entries. This
implies that the matrix ∆ in Eq. (3.53) does not necessarily have a low rank, such
that more than four Green’s functions are needed for expressing the function d(E),
and the decisive advantage of the GF-KPM method is lost.

Finally, the GF-KPM method is not applicable to all lattice systems. Our
simulations have shown that it fails with systems whose density of states (DOS)
shows exotic features like δ-functions. In our studies, we faced this problem with
the lattices (10,3)d and (8,3)c, the latter in case of strong anisotropy in the Jγ-
couplings.

B.4 Thermodynamic observables

The partition function of the Kitaev system can be written as a double trace, where
the outer trace is effectively a sum over classical Z2 gauge field configurations
{uij} (Sec. 3.4.1). For each gauge field configuration, the partition function of
the Majorana fermions ZMaj({uij}) can be regarded separately, and it has the
analytical form [44]

Z =
∑
{uij}

N/2∏
λ=1

(
2 cosh

(
βελ
2

))
︸ ︷︷ ︸

=:ZMaj({uij})

. (B.19)

Accordingly, the thermodynamic observables can be numerically measured for
each Z2 gauge field configuration {uij} that is sampled in the QMC simulation.
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Most of them are direct derivations of ZMaj({uij}), such as the free energy [44],

F ({uij}) = −T lnZMaj({uij})

= −T
N/2∑
λ=1

ln

(
2 cosh

(
βελ
2

))
. (B.20)

Analogously, we obtain the internal energy Ef ({uij}, T ) = 〈E〉F of the Majo-
rana system [44],

Ef ({uij}, T ) = tr{ci}H ({uij}) e−βH({uij})

= − 1

ZMaj({uij})
∂

∂β
ZMaj({uij})

= −∂ lnZMaj({uij})
∂β

= − ∂

∂β

N/2∑
λ=1

ln

(
2 cosh

(
βελ
2

))
= −

N/2∑
λ=1

2 sinh
(
βελ
2

)
2 cosh

(
βελ
2

) · ελ
2

= −
N/2∑
λ=1

ελ
2

tanh

(
βελ
2

)
, (B.21)

which, for low temperatures, β → ∞, converges against the ground state energy
E = −∑λ ελ/2, Eq. (2.15).

For the calculation of the specific heat Cv(T ), the fluctuations in the Z2 gauge
field and the itinerant Majorana fermions can be regarded separately, as has been
formerly shown at the example of a double-exchange spin ice model, where the
partition function has an analogous structure [215]. The full specific heat Cv is
the sum

CvT = Cv,GF(T ) + Cv,MF(T ). (B.22)

Cv,GF(T ) denotes the contribution from the gauge fluctuations,

Cv,MF(T ) =
1

T 2

(〈
E2
f ({ujk})

〉
MC
− 〈Ef ({ujk})〉2MC

)
, (B.23)

where the bracket 〈...〉MC indicates averaging over Monte Carlo samples. Cv,MF(T )
is given by the Monte Carlo average of the fermionic fluctuations,

Cv,MF(T ) =
1

T 2
〈〈E2〉F − 〈E〉2F 〉MC . (B.24)
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Here, we use the notation 〈E〉F = Ef ({uij}, T ). For the evaluation of Eq. (B.24),
the only term which is left to calculate is 〈E2〉F ,

〈E2〉F = tr{ci}H2 ({uij}) e−βH({uij})

=
1

ZMaj({uij})
∂2

∂β2
ZMaj({uij})

=
1

ZMaj({uij})
∂

∂β

N/2∑
µ=1

εµ sinh

(
βεµ
2

)
·
∏
λ 6=µ

2 cosh

(
βελ
2

)
=

1

ZMaj({uij})

N/2∑
µ=1

(
ε2µ
2

cosh

(
βεµ
2

)
·
∏
λ 6=µ

2 cosh

(
βελ
2

)

+ εµ sinh

(
βεµ
2

)
·
∑
ν 6=µ

εν sinh

(
βεν
2

)∏
λ 6=ν

2 cosh

(
βελ
2

))

=

N/2∑
λ=1

ε2λ
4

+
∑
µ 6=λ

ελεµ tanh

(
βελ
2

)
tanh

(
βεµ
2

)
. (B.25)

We can check that

〈E2〉F − 〈E〉2F =

N/2∑
λ=1

ε2λ
4

(
1− tanh2

(
βελ
2

))
= −∂〈E〉F

∂β
. (B.26)

Hence, the Majorana contribution to the specific heat is [44]

Cv,MF(T ) = − 1

T 2

〈
∂Ef ({ujk})

∂β

〉
MC

. (B.27)

The entropy S(T ) can be calculated by numerical integration over the specific
heat,

S/N = log(2)−
∫ T=∞

T

Cv(T )

NT
dT. (B.28)

There also exists a numerically improved version based on the integration over
the internal energy, for which the statistical errors are typically far smaller than
for the specific heat Cv(T )) [45],

S/N = log(2) + β〈Ef
N
〉MC −

∫ β

0

〈Ef
N
〉MCdβ. (B.29)
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Finally, we can calculate the spin-spin correlator Sγγ(T ) as [46]

Sγγ(T ) =
2

N

〈∑
〈i,j〉γ

〈
σγi σ

γ
j

〉〉
MC

=
2

N

〈∑
〈i,j〉γ

〈
−iuγijcicj

〉〉
MC

=
2

N

〈∑
〈i,j〉γ

− N/2∑
λ=1

〈λ| − iuγij |λ〉 tanh

(
βελ
2

)〉
MC

, (B.30)

where |λ〉 is the eigenvector ofH corresponding to the eigenvalue ελ.

197



Appendix B. Quantum Monte Carlo simulations on Kitaev systems

198



Appendix C

Thermodynamic classification of 3D
Kitaev spin liquids

C.1 Lattice definitions

In the following, we document the geometric definitions (unit cells and lattice vec-
tors) of the elementary, tricoordinated 3D Kitaev systems. The lattice definitions
and the assignments of the Kitaev couplings Jγ correspond to those in Ref. [36].

C.1.1 (10,3)x lattice family

The (10,3)x family contains the tricoordinated lattices with elementary loop length
|p| = 10, which comprise the lattices (10,3)a (hyperoctagon), (10,3)b (hyperhon-
eycomb), (10,3)c and (10,3)d. The definitions of unit cells and lattice vectors are
given in the table C.1 and pictured in Figs. C.1, C.2.

Generally, the elementary tricoordinated 3D lattices and their fundamental
symmetries can be easily and systematically understood by looking how they are
mutually related and connected with a couple of known tricoordinated 2D lattices
[36]. For instance, the lattices (10,3)a (hyperoctagon lattice) and (10,3)d can be
regarded as two different three-dimensional versions of the square-octagon lat-
tice. As the name of the latter already tells, it consists of two different kinds
of elementary plaquettes. Square plaquettes with length |p| = 4 are arranged to
a square lattice, and connected by diagonal bonds, such that additional, octago-
nal plaquettes (|p| = 8) are formed. Starting from this 2D lattice, one arrives
at the (10,3)a system by replacing the square plaquettes with co-rotating spirals,
which expand in the third dimension. The arising geometry does not possess any
more closed loops of length 4 nor 8 - instead, the elementary plaquette now has
a length |p| = 10. Likewise, the (10,3)d lattice is constructed from the square-
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(a) (10,3)a (b) (10,3)d

Figure C.1: Unitcells of (10,3)a and (10,3)d [36, 93].

(a) (10,3)b (b) (10,3)c

Figure C.2: Unitcells of (10,3)b and (10,3)c [36].

octagon lattice by replacing the square plaquettes with counter-rotating spirals,
i.e., here, neighbouring spirals have an opposite winding direction. (10,3)a and
(10,3)d can therefore be regarded as geometric “partner” lattices. Their elemen-
tary symmetries differ on the grounds of the different rotating behavior of the bond
spirals. While the (10,3)a lattice breaks inversion symmetry, (10,3)d is inversion-
symmetric [36]. In both cases, the canonical assignment of Kitaev couplings is
realized by choosing the diagonal bonds as z-bonds, and place the x- and y-bonds
along the square-shaped spirals. With this choice, a Jordan-Wigner transforma-
tion can be most easily performed along the xy-spirals (Fig. C.16), which leads to
a Z2 gauge field {η} that is located solely on the diagonal bonds.

Similarly, the lattices (10,3)b and (10,3)c can be constructed from the honey-
comb lattice (which, in Schläfli notation, is denoted by (6,3)a). (10,3)b (hyper-
honeycomb lattice) can be visualized in terms of parallel xy-zigzag chains along
two perpendicular directions, which are connected by z-bonds. The honeycomb
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lattice is regained as the 2D projection of this system, which can be seen if the
lattice is regarded from a 60 degree angle. In (10,3)c, on the other hand, the
xy-zigzag chains form along three different directions that are 120-degree rotated
against each other. In close analogy to the formerly discussed pair of lattice sys-
tems, (10,3)b is inversion symmetric, while (10,3)c breaks inversion symmetry
[36]. Again, there is a natural implementation of the Jordan-Wigner transforma-
tion along the xy-spirals in both lattices (Fig. C.17).

(10,3) a
Lattice vectors: a1 = (1, 0, 0) a2 =

(
1
2
, 1

2
,−1

2

)
a3 =

(
1
2
, 1

2
, 1

2

)
Unit cell: r1 =

(
1
8
, 1

8
, 1

8

)
r2 =

(
5
8
, 3

8
,−1

8

)
r3 =

(
3
8
, 1

8
,−1

8

)
r4 =

(
7
8
, 3

8
, 1

8

)
(10,3) b
Lattice vectors: a1 = (−1, 1,−2) a2 = (−1, 1, 2) a3 = (2, 4, 0)

Unit cell: r1 = (0, 0, 0) r2 = (1, 2, 1) r3 = (1, 1, 0)
r4 = (2, 3, 1)

(10,3) c

Lattice vectors: a1 = (1, 0, 0) a2 =
(
−1

2
,
√

3
2
, 0
)

a3 =
(

0, 0, 3
√

3
2

)
Unit cell: r1 =

(
1
4
, 1

4
√

3
, 1

2
√

3

)
r2 =

(
3
4
, 1

4
√

3
, 2√

3

)
r3 =

(
1
2
, 1√

3
, 7

2
√

3

)
r4 =

(
3
4
, 1

4
√

3
, 1√

3

)
r5 =

(
1
2
, 1√

3
, 5

2
√

3

)
r6 =

(
1
4
, 1

4
√

3
, 4√

3

)
(10,3) d
Lattice vectors: a1 =

(
1
2
,−1

2
, 0
)

a2 =
(

1
2
, 1

2
, 0
)

a3 =
(
0, 0, 1

2

)
Unit cell: a = 1

4
·
(
2−
√

2
)

c = 1
2

r1 =
(
0,−a, 3

4
c
)

r2 =
(
−a, 0, 1

2
c
)

r3 =
(
0, a, 1

4
c
)

r4 = (a, 0, 0) r5 =
(
−a,−1

2
, 1

4
c
)

r6 =
(
0, a− 1

2
, 1

2
c
)

r7 =
(
a,−1

2
, 3

4
c
)

r8 =
(
0,−a− 1

2
, 0
)

Table C.1: Lattice definitions of the (10,3)x family [36, 93].

C.1.2 (8,3)x lattice family

The (8,3)x family contains the tricoordinated lattices with elementary loop length
|p| = 8, which comprise the lattices (8,3)a, (8,3)b (hyperhexagon), (8,3)c and
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(a) (8,3)a (b) (8,3)b

Figure C.3: Unitcells of (8,3)a and (8,3)b [36].

(a) (8,3)c (b) ((8,3)n

Figure C.4: Unitcells of (8,3)c and (8,3)n [36].

(8,3)n. The definitions of unit cells and lattice vectors are given in the tables C.2,
C.3 and are pictured in Figs. C.3, C.4.

For two of the systems in this family, we find a similar geometric relation
as amongst the (10,3)x systems. (8,3)a and (8,3)b can be regarded as three-
dimensional versions of a 2D lattice, which is the “decorated honeycomb" lattice
[30, 47]. Similarly to the (10,3)a / d pair, the lattices (8,3)a and (8,3)b differ with
respect to the mutual rotation orientation of their bond spirals. In (8,3)a, the tri-
angular plaquettes of the decorated honeycomb lattice are replaced by co-rotating
“triangular” spirals in the third dimension, while (8,3)b possesses counter-rotating
spirals. Likewise, (8,3)a is the chiral partner in this pair, which breaks inversion
symmetry, while (8,3)b preserves inversion-symmetry. The latter is also the only
3D lattice system which possesses all the required mirror symmetries to allow for
the application of Lieb’s theorem.

Unlike the pair (8,3)a / b, the other two lattices have a unique geometric struc-
ture and cannot be geometrically related in a similar manner to another of the 3D
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systems which are considered here. (8,3)n can be regarded as a system of layers of
a generalized version of the square-octagon lattice, where each square plaquette
possesses an additional vertex per bond. Here, seven out of the eight elementary
plaquettes are mirror-symmetric, with a mirror plane that does not cut through any
of the lattice sites. (8,3)c is special due to the occurrence of gauge-frustration as
a consequence of a particular volume constraint.

In addition, there is an important geometric property that distinguishes all
(8,3)x lattices from their counterparts with loop length 10. Unfortunately the lat-
tice geometries of the (8,3)x systems do not allow for an assignment of Kitaev
couplings that works as orderly as, for example, in the (10,3)a / d pair, where the
xx- and yy-interactions could be located entirely on the bond spirals. Instead,
for the (8,3)a and (8,3)b lattice, there are unique bond assignments (up to permu-
tation of the three bond types), which preserve most of the lattices’ point-group
symmetries, and where the x-, y- and z-bonds are related by a threefold rotation
symmetry [36]. With these assignments, the bond spirals on both systems carry
all sorts of interactions. For (8,3)c and (8,3)n, the situation is similar.

This fact has an important consequence for the analytic foundation of our
quantum Monte Carlo simulations. While for the lattice systems (10,3)a and
(10,3)d, there are easy implementations for the Jordan-Wigner transformation
along spirals or (parallel) zigzag chains, there is no such simple realization here.
Instead, the Jordan-Wigner strings have to be winded through the lattices in a more
complicated way, and always end up with different lengths for finite systems (Figs.
C.18 and C.19). For this reason, there is no elegant choice of boundary conditions
to reduce the finite-size effects. However, finite-size effects are less pronounced
in the (8,3)x systems than in the (10,3)x family.

C.2 Remarks on finite-size effects
For some systems, for example (10,3)a, (10,3)b, (8,3)n, the divergence of the spe-
cific heat peak is somewhat concealed by an unsystematic scaling behavior of the
peaks, which is a finite-size effect. On most lattice systems, we experience this
effect up to linear system sizes L = 4−5, and the scaling behavior gets systematic
beyond these sizes. For (10,3)a and (10,3)b, on the other hand, the finite-size ef-
fect remains present up to L = 7, and for (8,3)n, where the unit cell is particularly
large, up to L = 5, which has been the largest accessible system size in the QMC
simulation. Typically, the occurrence of finite-size effects depends on the choice
of boundary conditions, and is stronger on systems which are implemented with
periodic boundary conditions. Here, it is reinforced by the summation over un-
physical states in the Monte Carlo simulation, respectively the ignoring of parity
terms upon the closing of Jordan-Wigner strings.
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(8,3) a

Lattice vectors: a1 = (1, 0, 0) a2 =
(
−1

2
,
√

3
2
, 0
)

a3 =
(

0, 0, 3
√

2
5

)
Unit cell: r1 =

(
1
2
,
√

3
10
, 0
)

r2 =
(
−3

5
,
√

3
5
, 2
√

2
5

)
r3 =

(
1
10
, 3
√

3
10
,
√

2
5

)
r4 =

(
4
10
,
√

3
5
,
√

2
5

)
r5 =

(
0, 2
√

3
5
, 0
)

r6 =
(
− 1

10
, 3
√

3
10
, 2
√

2
5

)
(8,3) b

Lattice vectors: a1 =
(

1
2
, 1

2
√

3
,
√

2
5
√

3

)
a2 =

(
0, 1√

3
, 2
√

2
5
√

3

)
a3 =

(
0, 0,

√
6

5

)
Unit cell: r1 =

(
1
10
, 1

2
√

3
,
√

2
5
√

3

)
r2 =

(
1
5
,
√

3
5
,
√

6
5

)
r3 =

(
3
10
, 11

10
√

3
, 4
√

2
5
√

3

)
r4 =

(
1
5
, 2

5
√

3
, 2
√

2
5
√

3

)
r5 =

(
3
10
, 3
√

3
10
,
√

6
5

)
r6 =

(
2
5
, 1√

3
,
√

2√
3

)
(8,3) c

Lattice vectors: a1 = (1, 0, 0) a2 =
(
−1

2
,
√

3
2
, 0
)

a3 =
(

0, 0,
√

2
5

)
Unit cell: r1 =

(
−1

5
, 4

5
√

3
, 1

10

)
r2 =

(
0, 7

5
√

3
, 1

10

)
r3 =

(
1
5
, 4

5
√

3
, 1

10

)
r4 =

(
1
2
, 1

2
√

3
, 3

10

)
r5 =

(
0, 1√

3
, 1

10

)
r6 =

(
3
10
, 7

10
√

3
, 3

10

)
r7 =

(
1
2
, 1

10
√

3
, 3

10

)
r8 =

(
7
10
, 7

10
√

3
, 3

10

)
Table C.2: Definitions of the lattices (8,3)a - (8,3)c [36].
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(8,3) n

Lattice vectors: a = (1, 0, 0) b = (0, 1, 0) c =
(

0, 0, 4
2
√

3+
√

2
,
)

a1 = a a2 = b a3 = 1
2
(a + b + c)

Unit cell: x =
√

3+
√

2

2(2
√

3+
√

2)

z = 1
8

r1 = x · a +
(

1
2
− x
)
· b + c

4

r2 = (1− x) · a +
(

1
2
− x
)
· b + c

4

r3 =
(

1
2

+ x
)
· a + b

2
+
(

1
2
− z
)
· c

r4 = (1− x) · a +
(

1
2

+ x
)
· b + c

4

r5 = x · a +
(

1
2

+ x
)
· b + c

4

r6 =
(

1
2
− x
)
· a + b

2
+
(

1
2
− z
)
· c

r7 = (1− x) · b + z · c
r8 = x · b + z · c
r9 =

(
1
2
− x
)
· a + x · b + c

4

r10 = a
2

+
(

1
2
− x
)
· b +

(
1
2
− z
)
· c

r11 =
(

1
2

+ x
)
· a + x · b + c

4

r12 =
(

1
2

+ x
)
· a + (1− x) · b + c

4

r13 = a
2

+
(

1
2

+ x
)
· b +

(
1
2
− z
)
· c

r14 =
(

1
2
− x
)
· a + (1− x) · b + c

4

r15 = x · a + z · c
r16 = (1− x) · a + z · c

Table C.3: Lattice definition of (8,3)n [36].
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Appendix C. Thermodynamic classification of 3D Kitaev spin liquids

On lattices where the geometry allows for Jordan-Wigner strings that have
approximately the same length, we find that the introduction of boundaries appar-
ently remedies the finite-size effect and leads to a more systematic scaling behav-
ior already for smaller systems. This is the case for (10,3)b and (10,3)d. It is not
the case for the lattices of the (8,3)x-family, where the Jordan-Wigner strings have
very different lengths in finite systems. Based on the argument that finite-size ef-
fects are overcome for most lattice systems by just going over to larger systems,
we have preferred to keep the boundary conditions, in principal, periodic. Only
for (10,3)d, where the resulting improvement is the largest, we have applied all
QMC simulations with open boundary conditions in the a2- and a3-direction.

Apart from the described finite-size effects, for some systems (e.g. (8,3)a,
(10,3)c), we also note the appearance of a numerical even-odd effect on the peak
height with respect to the linear system size L. Due to this effect, the statistical
error of the extrapolated critical temperature estimate Tc is increased for these
systems. Even-odd effects also appear in the average plaquette flux Wp and result
in a ground state value |Wp| < 1. This effect arises from additional volume
constraints on the plaquette fluxes that may appear in small, finite systems.

C.3 Numerical results for the 10-loop lattices
The described geometric relations between the lattice systems manifest them-
selves in the physical properties of the Kitaev systems. It is remarkable that both
portrayed geometric pairs in the (10,3)x family also appear as pairs of neigh-
bouring points in the plot of the critical temperature Tc versus the vison gap ∆
(Fig. 4.7). Thus, (10,3)a and (10,3)d, as well as (10,3)b and (10,3)c, possess
both similar vison gaps and critical temperatures. This property distinguishes the
(10,3)x lattice systems from those in the (8,3)x-family.

In the following, we discuss the numerical results for the different lattice sys-
tems individually.

C.3.1 (10,3)a
The hyperoctagon lattice possesses 4 vertices and 2 linearly independent loop op-
erators per unit cell (see Fig. C.1). From Ref. [36], it is known that the exact
solution of the Kitaev model at the isotropic coupling point possesses topological
Fermi surfaces, i.e. Fermi surfaces that encapsule Weyl nodes situated at finite
energy. With projective symmetry arguments, it is shown in Ref. [36] that the
latter property is related to the fundamental symmetries of the lattice geometry.
(10,3)a has a non-trivial sublattice symmetry, i.e. a sublattice symmetry which is
not invariant under the translation vectors of the entire lattice, and thus requires
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Figure C.5: Specific heat Cv(T ) and plaquette fluxWp for (10,3)a. The systems are implemented
with periodic boundary conditions in all spatial directions. For this choice of boundary conditions,
the low-temperature peak of Cv(T ) shows finite-size effects up to the linear scale L = 7, which
manifest themselves in an unsystematic scaling behavior of the peak height. The extrapolation of
the Tc-value from this data is documented in Fig. C.14 and gives a result T̃c = 0.0044, which
is close to the literature value Tc = 0.00405(9) (dotted line) [45]. The convergence of W p to
Wp ∼ 0.8 instead of 1 for L = 6 is also a finite-size effect, which is sometimes seen for systems
with (semi-)periodic boundary conditions due to additional volume constraints.

an enlargement of the unit cell for the implementation of a sublattice gauge trans-
formation. At the same time, the lattice breaks inversion symmetry. Otherwise,
the Weyl nodes would be constrained to lie exactly at the Fermi energy [36, 93].

Our analytical calculation of the zero-temperature density of states ρ(E) veri-
fies the occurrence of the Fermi surface, which manifests itself in a finite DOS at
E → 0 (Fig. 4.12 a). In the numerical result, the DOS at E → 0 is also finite, but
the quality of the results in this region does, in principle, not allow for a distinction
between true low-E features and effects that just arise from the finite temperature.

The elementary plaquettes of this lattice do not fulfill the mirror symmetry
requirements for Lieb’s theorem to be applicable here. At the same time, it is ex-
plained in Ref. [36] that a uniform configuration of 0-fluxes (Wp = +1) for all pla-
quettes, which would be the prediction by this theorem for length-10-plaquettes,
is consistent with all point-group symmetries of the lattice. A uniform configu-
ration of π-fluxes, on the other hand, is forbidden by a volume constraint. It is
therefore expected by symmetry that the ground state assumes the uniform 0-flux
configuration. The QMC results confirm this (Figs. 4.1, C.5).

The low-temperature peaks of the specific heat Cv(T ) are in close vicinity to
each other for the different linear system sizes L = 5, 6, 7. At the same time,
the scaling behaviour of the peak height remains unsystematic up to these sizes.
This is a mixture of a finite-size and an even-odd-effect (appendix C.2). Ref. [45]
has presented QMC results with a more systematic scaling behavior of the low-
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Figure C.6: Specific heat Cv(T ) and plaquette flux Wp for (10,3)d [214]. Data shown is for
systems with periodic boundary condition in the a1− and open boundary conditions in the a2-
and a3-direction. This choice of boundary conditions allows for an exact solution in terms of
equal-length Jordan-Wigner strings, which manifests itself in a systematic scaling behavior of the
low-temperature peak. The extrapolated value for the critical temperature is Tc = 0.00462(1),
which is marked by the dotted line (see Fig. C.14 for the details of the analysis).

temperature peak for systems with semi-open boundary conditions. Our extrapo-
lated estimate for the critical temperature, T̃c = 0.0044 (fitted only from the peak
data for the system sizes L = 5, 7) is close to the literature value Tc = 0.00405(9).
Note that it is usual that small deviations between the Tc-estimates arise if those
are extrapolated from systems with different boundary conditions.

In this system, the plaquette flux W p also shows a finite-size effect. For L =
6, the flux does not order at Wp = 1 for T → 0, but at a finite value Wp ∼ 0.8.
This effect is also seen in other systems with periodic or semi-periodic boundary
conditions. On small systems, these boundary conditions may lead to unusual
constraints on plaquettes that are partially spanned by periodic bonds. In all cases,
this effect vanishes if the simulation is performed on larger systems.

C.3.2 (10,3)d

The inversion-symmetric partner system of the hyperoctagon lattice has a rather
large unit cell, with 8 sites and 8 elementary loop operators (Fig. C.1). In addition
to the inversion symmetry, it possesses a glide mirror symmetry. The latter makes
this lattice the only non-symmorphic system in the present classification of 3D
Kitaev models, a fact which has been outlined in an earlier study on the ground
state of this system in Ref. [93]. In this paper, it is shown that the additional
symmetry is responsible for a very specific feature of the (10,3)d Kitaev system.
Its ground state possesses nodal lines that are, in contrast to the generic case, not
gapped out to an even number of Weyl nodes upon applying time-reversal (TR)
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C.3. Numerical results for the 10-loop lattices

symmetry breaking. Instead, the nodal lines remain stable under breaking of TR
symmetry.

In the Majorana DOS, the signature of the nodal line ground state is the lin-
earity of the DOS in E for small E, which, again, can be seen in our analytical
DOS-results (Fig. 4.12). In the numerical DOS at small T, this linear behavior
cannot be seen, which, in this particular case, is not an issue of numerical preci-
sion, but due to the open boundary of the system. The semi-open system possesses
a drumhead surface state [93], and this surface state appears as a peak in ρ(E) at
E = 0.

(10,3)d is the only lattice system where the GF-KPM method fails. Usually,
such a failure is related to exotic features in the DOS, such as singularities. Al-
though the DOS of (10,3)d has a peculiar shape when compared to the other lattice
systems, we cannot identify a specific feature here that inhibits the approximation
of the density of states in terms of Green’s functions. However, as a consequence
of the failure of GF-KPM, all simulations that are presented here have been per-
formed with the QMC-ED method. This technical restriction limits the accessible
linear system size to L = 5 (N = 1000 sites). In order to counterbalance the
finite-size effects which are expected to show up in this range of L, we have per-
formed the QMC simulations on systems with open boundary conditions in the
a2- and a3-direction. The Hamiltonian of this system is equivalent to the one ob-
tained by a Jordan-Wigner transformation, where the Jordan-Wigner strings are
composed of the x- and y-bonds along the counterrotating spirals. In particu-
lar, they have equal length. This generally leads to a more systematic scaling
behaviour of the low-temperature peak, which is also the case here (Fig. C.6).
The low-temperature peaks lie almost exactly at the same temperature T ′′ for all
system sizes. From these peaks, we have extrapolated the critical temperature
Tc = 0.00462(1) (Fig. C.14). The peak positions nicely coincide with the inflec-
tion point of the average plaquette flux Wp. Unlike in (10,3)a, the plaquette fluxes
order at Wp = 1 for all system sizes.

C.3.3 (10,3)b
The hyperhoneycomb lattice is the inversion-symmetric 3D version of the hon-
eycomb lattice, and the most prominent lattice in this classification. In fact, it is
realized in nature as the Iridium sublattice in the material β-Li2IrO3 [91]. (10,3)b
has 4 sites and 2 linearly independent loop operators per unit cell (Fig. C.2). It
has a trivial sublattice symmetry and a ground state band structure that possesses
a nodal line [36].

Accordingly, the Majorana DOS is E-linear for smallest energies, as we can
see from the analytic calculation (Fig. 4.13 a).

Although Lieb’s Theorem is not applicable for this lattice, the uniform 0-flux
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Figure C.7: Specific heat Cv(T ) and plaquette flux Wp for (10,3)b, with periodic boundary con-
ditions (a,b) and open boundary conditions in the a1- and a2-direction (c,d). While the periodic
system shows strong finite-size and even-odd effects in the low-temperature peak, the scaling
behavior of the semi-open system is very systematic, which is due to the underlying exact so-
lution with equal-length Jordan-Wigner strings. The literature value for the critical temperature
Tc = 0.00519(9) is, in all plots, indicated by the dotted vertical line [44]. As we can see, the
low-temperature peaks of the periodic systems are shifted with respect to Tc, which is not unex-
pected for differing boundary conditions. The finite-size effect in Wp for the periodic systems
with L = 5, 6 is the same as for the (10,3)a system.

configuration predicted to appear on plaquettes with length 10 is adopted by the
ground state. Again, this flux configuration preserves all point group symmetries
of the lattice [36]. The smallest vison loop has length 6 and is generated by flip-
ping an x- or y-bond [36].

Numerical results for the specific heat Cv and the average plaquette flux Wp

are given in Fig. C.7. Here, we can compare the results for systems with peri-
odic boundary conditions in all spatial directions (a,b), and for systems with open
boundary conditions in the a1- and a2-direction (c,d). Again, on the system with
semi-open boundary conditions, we can perform a Jordan-Wigner transformation
without closing the JW strings. Therefore, we don’t have to neglect non-trivial
parity terms when calculating thermodynamic observables. This is precisely what
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Figure C.8: Specific heat Cv(T ) and plaquette flux Wp for (10,3)c [214]. Data shown is for
systems with periodic boundary conditions in all directions. Here, the low-temperature peak of
Cv shows a more systematic behavior for the periodic system than (10,3)b, although an even-odd
effect on the peak height is noticeable. The extrapolated critical temperature is Tc = 0.0049(2).
The average plaquette flux Wp for L = 5 converges to a finite value Wp ∼ 0.8, which is a
finite-size effect.

has been done in an earlier QMC study on hyperhoneycomb systems with semi-
open conditions, which has yielded the literature value for the critical temperature,
Tc = 0.00519(9) [44]. Here, the JW strings, which are given by the xy-zigzag
chains in the lattice, have the same length, which usually leads to a more sys-
tematic scaling behavior of the thermal signatures. This is also the case here,
where the low-temperature peak is getting sharper with increased system sizes in
the semi-open system, whereas, in the periodic system, it still shows a noticeable
finite-size and a drastic even-odd effect (with the low-temperature peak for L = 6
being far taller than the ones for L = 5, 7). The extrapolated critical temperature
T̃c,1 = 0.0048(1) is close to the literature value for the semi-open systems. For pe-
riodic systems, the estimate T̃c,2 = 0.0063(4) is shifted, which is not unexpected
for systems with different boundary conditions.

A finite-size effect is also visible in the plaquette flux results for the periodic
systems. For L = 5, the flux converges to a finite value Wp ∼ 0.8 (instead of
Wp = 1 for T → 0, which is similar to the behavior of the (10,3)a system.

C.3.4 (10,3)c

The (10,3)c lattice is the chiral counterpart of (10,3)b, as it breaks inversion sym-
metry. (10,3)c also has a larger unit cell, which contains six sites (Fig. C.2). There
are three length-10 and three length-12 loop operators per unit cell, which form
three closed volumes, thus leaving 3 linear independent loop operators per unit
cell. The ground state of the Kitaev system has two nodal lines [36].
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Appendix C. Thermodynamic classification of 3D Kitaev spin liquids

The nodal line band structure manifests itself in the E-linear behavior of the
Majorana DOS (Fig. 4.13 c). Apart from that, the analytical Majorana DOS shows
a very dominant van-Hove singularity at E ∼ 1.3, which also appears in the
numerical DOS results.

Also in this case, all point group symmetries of the lattice are preserved by the
uniform 0-flux configuration [36], and the latter is confirmed by the QMC results.
As discussed in the introductory part of this section on the geometric relations
between the lattices, the geometric “partnership" with (10,3)b manifests itself in
very similar vison gaps ∆ and critical temperatures Tc.

Here, the low-temperature peak in the specific heat Cv shows a more system-
atic behavior for systems with periodic boundary conditions than in the case of
(10,3)b (Fig. C.8), yielding a critical temperature estimate Tc = 0.0049(2). An
even-odd effect is, however, visible, since the peak for L = 6 is smaller than the
peaks for L = 5, 7.

The average plaquette flux Wp for L = 5 converges to a finite value Wp ∼ 0.8,
which is a finite-size effect known also from the lattices (10,3)a and (10,3)b.

C.4 Numerical results for the 8-loop lattices

Despite the close relation of (8,3)a and (8,3)b, both lattices possess very different
vison gaps ∆ and critical temperatures Tc, which is unlike their counterparts in
the (10,3)x family.

We continue with a brief, individual discussion of the geometric specifics and
numerical results for each lattice.

C.4.1 (8,3)a

(8,3)a has a relatively large unit cell, containing 6 sites (Fig. C.3). There are
three loop operators of length 8 (plus three of length 14) per unit cell. The Ki-
taev system on the (8,3)a lattice has a Majorana metal ground state whose band
structure possesses topological Fermi surfaces. The emergence of this topological
band structure is determined by the same symmetry arguments as in the case of
(10,3)a, namely the occurrence of both a non-trivial sublattice symmetry and a
broken inversion symmetry [36].

We see the signature of the Fermi surface as a finite Majorana DOS at lowestE
in the analytical DOS (Fig. 4.10 a). Actually, the shape of the DOS is very similar
for (8,3)a and (8,3)b, with the exception of the low-E region. Interestingly, both
lattices have a dominant van-Hove singularity at E ∼ 1, which is also visible in
the numerical DOS results.
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Figure C.9: Specific heat Cv(T ) and plaquette flux Wp for (8,3)a [214]. The specific heat Cv
shows a similar even-odd effect as (10,3)c. The critical temperature estimate Tc = 0.0044(8)
is indicated by the dotted vertical line. There are no finite-size effects appearing in the average
plaquette flux Wp.

On the (8,3)a Kitaev system, Lieb’s theorem is not applicable. However, tak-
ing Lieb’s theorem as a guideline, we expect all length-8 plaquettes to order with
a π-flux (Wp = −1), and all length-14 plaquettes to order with a 0-flux. This
configuration again preserves all point-group symmetries of the lattice [36] and is
therefore expected to be assumed by the ground state. The QMC results confirm
this (Fig. C.9).

(8,3)a has the lowest vison gap and one of the lowest critical temperatures
among all 3D Kitaev systems. The specific heat Cv shows a similar even-odd
effect as the one that is observed for (10,3)c, with the low-temperature peak for
L = 6 being smaller than for L = 5, 7. For L = 7, however, the peak is the
sharpest. The critical temperature estimate is Tc = 0.0044(8).

There are no finite-size effects visible in the average plaquette flux Wp.

C.4.2 (8,3)b
With a similar geometry as (8,3)a, the (8,3)b lattice possesses six sites per unit cell
(Fig. C.3). Here, inversion symmetry is preserved, which, in combination with a
non-trivial sublattice symmetry, determines the existence of gapless Weyl points
instead of Fermi surfaces[36].

In the Majorana DOS, the Weyl point band structure manifests itself in an
E-quadratic behavior for E → 0. Except for the low-E region, the DOS has a
similar shape as the one of (8,3)a.

(8,3)b is the only lattice among the elementary tricoordinated 3D systems
which, globally and for each plaquette, has a mirror symmetry with mirror planes
that do nut cut through any of its vertices, which is the geometric requirement for
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Figure C.10: Specific heat Cv(T ) and average flux W p for (8,3)b [214]. Here, the low-
temperature peak of the specific heat is the sharpest, showing a systematic increase for growing
system sizes. (8,3)b is the only system where Lieb’s theorem applies, and also has the largest
critical temperature of all 3D Kitaev systems, Tc = 0.0079(3).

Lieb’s theorem. The theorem is therefore applicable here and predicts a π-flux per
length-8 plaquette. This ground state flux configuration preserves the point-group
symmetries of the lattice [36], and is confirmed by the QMC results (Fig. C.10).

In drastic contrast to its geometric counterpart (8,3)a, (8,3)b has the largest
critical temperature Tc = 0.0079(3) of all the lattices regarded in this article, and
the second-largest vison gap ∆ = 0.0532(3).We see no finite-size effects in the
specific heat for linear system sizes L = 5, 6, 7. Instead, the low-temperature
peak, which is particularly sharp, diverges for increased system sizes, without
wandering in temperature-space. This allows for the extrapolation of the critical
temperature Tc with a relatively small error estimate. Also, no finite-size effects
appear in the plaquette flux curves Wp.

C.4.3 (8,3)n
The unit cell of (8,3)n is the largest of the lattices considered here, having 16
sites and 8 linearly independent loop operators of lengths 8 and 10 (Fig. C.4). In
Ref. [36], it is shown to be the only 3D Kitaev system which does not possess a
gapless Majorana phase. Analytic results for the Majorana DOS ρ(E) confirm the
occurrence of a band gap at the isotropic coupling point (Fig. 4.11).

Interestingly, the symmetries of the elementary plaquettes of the (8,3)n lattice
allow for the application of Lieb’s theorem for all but one plaquette. It has been
laid out in Ref. [36] that a uniform configuration of π-fluxes also preserves all the
point-group symmetries of the lattice. The QMC results confirm this.

The vison gap ∆ = 0.005397(10) of the (8,3)n Kitaev system is the largest
of all systems considered here, and correlates with a large critical temperature
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Figure C.11: Specific heat Cv(T ) and average flux W p for (8,3)n. The vison gap ∆ =
0.005397(10) of the (8,3)n Kitaev system is the largest of all systems considered here, which
correlates with a large critical temperature Tc = 0.0071(3). The data for Cv shows finite-size
effects for the considered system sizes, resulting in a non-systematic scaling behavior of the low-
temperature peak. The results for the average plaquette flux Wp show no finite-size effects.

Tc = 0.0071(3). Not unexpectedly for a system with such a large unit cell,
the computational restriction on the accessible system sizes with quantum Monte
Carlo prevents us from overcoming the realm of noticeable finite-size effects. As
we can see in the plot of the specific heat Cv (Fig. C.11), there is no system-
atic divergence of the low-temperature peak for L = 3, 4, 5. However, for larger
systems, the peak appears to move slightly towards lower temperatures, which
facilitates the extrapolation of a Tc-estimate. The QMC results for the average
plaquette flux Wp show no finite-size effects.

C.5 Vison gaps
The vison gap ∆ is the energy difference between the ground state flux configu-
ration of the Kitaev system and the configuration with the smallest possible flux
excitation, which is generated by carefully picking the right Z2 gauge variable uij
and flipping it. It is calculated by exact diagonalization of the Majorana Hamilto-
nian in the respective gauge sectors. For most systems, we use the vison gap data
from Ref. [36]. We have rescaled this data to Kitaev couplings Jγ = 1/3, and
refitted it to obtain improved estimates on the standard deviation. For the lattice
systems (8,3)c and (10,3)d, we have performed all the vison gap calculations. The
results for all systems are presented in the Figs. C.12 and C.13.
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Figure C.12: Vison gaps for the lattices of the (10,3)x family [36]. The blue-shaded regions
indicate the intervals for the least-squares fit.
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Figure C.13: Vison gaps for the lattices of the (8,3)x family [36]. The blue-shaded regions indi-
cate the intervals for the least-squares fit.
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Figure C.14: Critical temperature estimates for the (10,3)x lattice family. The literature values for
(10,3)a (a) and (10,3)b (b) are indicated, along with their error estimates, by the horizontal black
(green) line [44, 45]. For (10,3)a, we have also extrapolated Tc for a different system with periodic
boundary conditions. For (10,3)b, we have extrapolated a Tc-estimate for systems with open-open-
periodic (blue) and periodic boundary conditions (red). The specific heat plots corresponding to
the peak positions presented here are shown in Figs. C.5 - C.8.

C.6 Critical temperatures

We obtain the estimates for Tc from the positions T ′′ of the low-temperature
specific-heat peaks as a function of the inverse system size 1/N , and extrapo-
lating them for the thermodynamic limit N → ∞. The extrapolation plots are
documented in the Figs. C.14 and C.15.

For the lattice systems (10,3)a and (10,3)b, values for Tc have formerly been
presented in Refs. [44] and [45]. We have used these values for the verification
of the correlation between Tc and the vison gap ∆, and compared them with own
simulation results (Fig. C.14 a, b). The results for the (10,3)b (hyperhoneycomb)
system with semi-periodic boundary conditions reproduce the value of Tc from
Ref. [44]. The results for the system with periodic boundary conditions lead to a
deviating Tc estimate, which is a typical effect for changed boundary conditions.
We see the same effect for (10,3)a. A Tc-estimate for the (9,3)a Kitaev system has
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Figure C.15: Critical temperature estimates for the (8,3)x lattice family. The specific heat plots
corresponding to the peak positions presented here are shown in Figs. C.9 - C.11.

been published in Ref. [90].

C.7 Jordan-Wigner transformation
On the Hamiltonian-level, the difference between the local transformation and the
Jordan Wigner ansatz is the number of Z2 gauge variables in the system. The
local transformation generates Z2 gauge variables uij on all bonds, while the Z2

gauge variables η in the JW-transformed Hamiltonian only live on one subclass
of bonds (here, the z-bonds). For a system with open boundary conditions, both
Hamiltonians are equivalent if the gauge field in the local version is fixed on the
x- and y-bonds. However, benchmark calculations on small Kitaev clusters have
shown that the QMC simulation based on the local transformation gives results
that are within the error bars of the data points obtained from a QMC simulation
with JW strings (Fig. 3.1), even for very small systems, where the deviations are
expected to be the largest. We can therefore conclude that the error arising from
the local transformation ansatz, where the Hilbert space is artificially enlarged for
each spin, is negligible in the large-scale QMC simulations. The interpretation
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(a) (10,3)a (b) (10,3)d

Figure C.16: Jordan-Wigner strings for (10,3)a and (10,3)d. Jordan-Wigner strings can be defined
along the x- and y-bonds, while the z-bonds host the Z2 gauge variable η. For (10,3) a (d), the JW
strings extend along the co-rotating (counter-rotating) spirals.

(a) (10,3)b (b) (10,3)c

Figure C.17: Jordan-Wigner strings for (10,3)b and (10,3)c. The JW strings are defined along
x- and y-bonds (yellow). For both lattices, they extend along the zigzag chains. Individual JW
strings are highlighted in blue.

is that on systems with a well-defined JW-transformed Hamiltonian of the form
in Eq. 2.34, the additional gauge variables uij of the local transformation only
lead to an overcounting of physical states. Thus, the existence of a Jordan-Wigner
solution on a given Kitaev system ensures us that the results are correct, even
if the QMC simulation is based on the local transformation ansatz. Therefore,
we have checked that for all elementary, tricoordinated three-dimensional lattices
considered in this thesis, there is a well-defined Jordan-Wigner transformation if
appropriate bond subsets are chosen for the one-dimensional strings (see Figs.
C.16 - C.19).

220



C.7. Jordan-Wigner transformation

(a) (8,3)a (b) (8,3)b

Figure C.18: Jordan-Wigner strings for (8,3)a and (8,3)b. For both lattices, the JW transformation
is defined along x- and y-bonds (yellow). Individual JW strings are highlighted in blue.

(a) (8,3)c (b) (8,3)n

Figure C.19: Jordan-Wigner strings for (8,3)c and (8,3)n (yellow). On (8,3)c, the JW transfor-
mation can be defined along x- and y-bonds, while on (8,3)n, it is of more advantage to use y-
and z-bonds for the JW-strings, in order to avoid closed JW strings. Individual JW strings are
highlighted in blue.
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C.8 Gauge frustration in the (8,3)c Kitaev model

C.8.1 Pseudospin Correlator
The pseudospin correlator defined in Eq. (4.4) can be used to identify the ground
state manifolds of the different (an)isotropic regimes of the (8,3)c Kitaev system.
It can be easily seen that ‖Wm‖ =

√
3 for all m ∈ {a, b, c} and

Wm ·Wn

‖Wm‖‖Wn‖
=

{
−1

3
, m 6= n

1, m = n
(C.1)

For large temperatures T , all (four) possible 3-flux states are allowed, so we expect
P to average to 0. For the low temperature regime of the isotropic system (Jx =
Jy = Jz), the pseudospins Wa, Wb, Wc from Eq. (4.3) are equally distributed in
the system, giving the correlator expectation value

Pabc =
1

9

(
1 + 1 + 1− 6 · 1

3

)
=

1

9
, (C.2)

For the weak-Jz limit, only the pseudospins Wb, Wc are selected, resulting in

Pbc =
1

4

(
1 + 1− 2 · 1

3

)
=

1

3
, (C.3)

while for the strong-Jz limit, all plaquette triplets select the state Wa, leading to

Pa = 1 . (C.4)

C.8.2 Flux snapshots
We see the emergence of a columnar zigzag plaquette flux order in the (8,3)c
Kitaev model in low-temperature snapshots of the flux configurations, which are
taken during the QMC simulation. We document the relevant snapshots for the
isotropic system (Jz = 1/3) and the system where the gauge degeneracy is par-
tially lifted (Jz = 0.25). For Jz � 1/3, the nature of the ground state is de-
termined by the geometric selection of the plaquette flux order, which has been
verified with measurements of the pseudospin correlator P and shown in the finite-
temperature phase diagram (Fig. 4.19).

C.8.3 Band structures
In Fig. 4.18, we define the ground state plaquette flux orders for the different
(an)isotropic limits of the (8,3)c Kitaev system, and show the nodal line struc-
tures of the corresponding Majorana semimetal ground state. The plaquette flux
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(a) Jz = 1/3, system size 5 · 5 · 6, T = 0.0015 (b) Jz = 0.25, system size 6 · 6 · 6, T = 0.0021

Figure C.20: Snapshots of flux configurations for Jz = 1/3 (a) and Jz = 0.25 (b). Black
spheres indicate π-fluxes, white spheres 0-fluxes. We can distinguish the M1-plaquette-flux or-
der (Fig. 4.18) in (b) from the M2-order in (a), which also allows for 0-fluxes on the horizontal
plaquettes.

orders comprise the columnar zigzag orders M1 and M2, which emerge due to
the interplay of the Majorana fermions with the frustrated Z2 gauge field, which
is a quantum effect. The third plaquette order M3 is the result of the classical ge-
ometric selection of the horizontal lattice plaquettes to carry the 0-fluxes, which
happens in the limit Jz ≥ 0.4.

In the following, we document the band structures for the different ground
state gauge orders M1 - M3 (Figs. C.21 - C.25).

Figure C.21: Columnar zigzag gauge order M1 and corresponding band structure. Black: Jz =
1/3, blue: Jz = 0.25.
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Figure C.22: Columnar zigzag gauge order M1 and corresponding band structure. Black: Jz =
1/3, blue: Jz = 0.25.

Figure C.23: Columnar zigzag gauge order M2 and corresponding band structure. Black: Jz =
1/3, red: Jz = 0.42.

Figure C.24: Columnar zigzag gauge order M2 and corresponding band structure. Black: Jz =
1/3, red: Jz = 0.42.
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Figure C.25: Unique gauge order M3 and corresponding band structure. Black: Jz = 1/3, red:
Jz = 0.42.
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Appendix D

Topological phases in a generalized
Kitaev model

D.1 Average Chern number
In Sec. 5.2.3, we show numerical results for the average Chern number |ν| of the
Majorana band structure in fixed Z2 gauge field configurations. The calculation
method is described in Sec. 5.1.4. In the following Figs. D.1 - D.4, we present
ν-histograms, band structures and detailed Chern number results for different pa-
rameter points (cuts) in phase diagram 5.10.
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(a) Jz = 1.5, T = 0.0075
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(b) Jz = 1.5, T = 0.105

Figure D.1: Chern number histograms for two different temperatures at the parameter point
Jz = 1.5 (in phase diagram 5.10). In the intermediate-temperature regime, the occurrence of
integer Chern number results is an artifact, since here, the system is in a gapless phase.
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Figure D.2: Band structures near E = 0 for different parameters values Jz at T =∞ (in phase
diagram 5.10), showing the transition from the gapless to the gapped high-temperature phase.
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Figure D.3: Average chern number 〈|ν|〉 for different horizontal (constant temperature) cuts in
phase diagram 5.10.
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Figure D.4: Average chern number 〈|ν|〉 for different vertical (constant Jz) cuts in phase dia-
gram 5.10.
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