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Summary 

Background: The trace metal ions Zn2+ and Cu2+ are increasingly recognized as endogenous 

modulators of neuronal transmission, hormone secretion and synaptic plasticity. Cav2.3-type 

voltage-gated Ca2+ channels (VGCCs) are among their most sensitive targets and have an 

expression pattern that coincides with the spatial distribution of histochemically reactive trace 

metals in the brain, suggesting that they could represent a main mediator for their reported 

neuro-modulatory effects. Although non-conserved histidine residues on the external side of 

domain I have been convincingly implicated in the effects of trace metals on Cav2.3 channel 

gating, the exact mechanisms involved and their (patho)physiological relevance remain 

incompletely understood. 

Aims: Aim of the articles compiled in the present thesis was to shed some light on the exact 

mechanisms of Zn2+- and Cu2+-induced Cav2.3 channel modulation and their potential relevance 

under normal and pathophysiological conditions. 

Methods: In publication 1, crystallographic data of a Ca2+-selective bacterial model channel was 

used as a framework to theoretically analyze eukaryotic VGCC structure, function and 

modulation by inorganic cations. In publication 2, general protocols for preparation and use of 

metal ion-buffered solutions were developed and a fluorescent Zn2+ sensor was used to illustrate 

the importance of proper metal ion-buffering. In publication 3, conventional and perforated 

patch-clamp recordings together with different inhibitors and cytosolic factors were used to 

study Cav2.3 channel run-down during electrophysiological recordings, which was critical to 

optimize the conditions for experiments performed in publication 6. In publication 4, the effects 

of intraperitoneal injection of the Zn2+ chelator DEDTC on blood glucose homeostasis, glucose 

tolerance and peptide hormone secretion in Cav2.3-deficient and -competent mice were analyzed, 

insulin secretion was examined in isolated islets of Langerhans from both genotypes and the 

Zn2+-dependence of DEDTC effects on cloned Cav2.3 channels was verified using whole-cell 

patch-clamp recordings. In publication 5, whole-cell patch-clamp and electroretinographic 

recordings were used to characterize a receptor-independent but Cu2+-dependent mechanism of 

Cav2.3 channel modulation by the glutamate-receptor agonist kainic acid (KA). In publication 6, 

whole-cell patch-clamp recordings were used to characterize Zn2+-induced changes in Cav2.3 

channel function and to develop a Markov model for Cav2.3 channel gating under control 

conditions and in the presence of physiological Zn2+ concentrations. 

Results: Publication 1 provided novel insights into eukaryotic VGCC function and modulation 

by trace metal ions. Publication 2 demonstrated the critical importance of proper metal ion 

buffering to avoid deviations between nominal and actual free metal ion concentrations. 

Publication 3 showed that run-down of Cav2.3 channel currents is associated with changes in 

channel gating and that it can be prevented or delayed by hydrolysable ATP through a 

mechanism that critically depends on protein phosphorylation by serine/threonine kinases. 

Publication 4 revealed severe glucose intolerance in Zn2+-depleted Cav2.3-deficient but not 

vehicle-treated Cav2.3-deficient or Zn2+-depleted wildtype mice. In addition, fasting glucose and 

glucagon levels were significantly higher in Cav2.3-deficient mice, whereas Zn2+ chelation 

significantly increased blood glucose and glucagon concentrations in wildtype but not Cav2.3-

deficient mice. Application of DEDTC significantly stimulated cloned human Cav2.3 channels 

when applied in the presence of Zn2+ but had no effect in the presence of the Zn2+ chelator 

CaEDTA. Publication 5 uncovered that KA can stimulate cloned human Cav2.3 channels in the 

absence of functional KA receptors by reversing Cu2+-induced suppression in vitro, presumably 

via formation of stable kainate-Cu2+ complexes. When the chelator tricine was used as a surrogate 

to study the receptor-independent effects of KA in the isolated bovine retina, it selectively 

reduced a late ERG b-wave component that was previously shown to be enhanced by 
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pharmacologic or genetic ablation of Cav2.3 channels. Publication 6 demonstrated that Zn2+-

induced changes in Cav2.3 channel function are complex and inconsistent with a single 

mechanisms of action. Computer simulations were used to show that most, but not all of the 

effects can be reconciled by a simplified Markov model that involves Zn2+ binding to a first site 

with an associated electrostatic modification and mechanical slowing of one of the voltage-

sensors and Zn2+-binding to a second, lower affinity site which blocks the channel and modifies 

the opening and closing transitions.  

Discussion: With regard to Zn2+-induced Cav2.3 channel modulation, the results in publication 6 

point to an intricate dependence on the prevailing neuronal properties and ionic conditions, 

which could profoundly influence and even invert the net Zn2+ action. Thus, due to Zn2+-induced 

parallel changes in activation and inactivation voltage-dependence, the net action is strongly 

affected by the holding potential, can be either inhibitory or stimulatory and may persist for 

several minutes after cessation of the Zn2+ signal. This could conceivably play a role for certain 

forms of synaptic sensitization or plasticity, and might also be relevant for e.g. the regulation of 

Cav2.3 channels in pancreatic islets, where sudden cessation of Zn2+ supply from β-cells is 

thought to serve as one of the switch-off signals for α-cell glucagon secretion. In support of the 

latter notion, the findings in publication 4 provide evidence for an involvement of Cav2.3 

channels in the Zn2+-mediated suppression of glucagon secretion during hyperglycemia and 

indicate that Cav2.3 channel dysfunction could lead to severe disturbances in glucose 

homeostasis, especially under conditions of Zn2+-deficiency. Based on the results of publications 5 

and 6, a decrease or reversal of Zn2+ and Cu2+-induced Cav2.3 channel suppression by 

endogenous (i.e. glutamate) or exogenous (i.e. KA) trace metal chelators, moderate acidification 

or depolarization of the neuronal resting membrane potential could also contribute to the pro-

convulsive role of Cav2.3 channels demonstrated in previous investigations, although the 

pathophysiological relevance of these finding in vivo remains to be firmly established. Finally, the 

findings in publication 3 suggest that protein phosphorylation is required for normal Cav2.3 

channel function and that it could modify the normal properties of currents carried by these 

channels.  

Conclusion: The articles compiled in this thesis provide several novel insights into the 

mechanisms underlying reciprocal Cav2.3 channel modulation by trace metal ions and trace metal 

chelators as well as first evidence for their importance under (patho)physiological conditions. 

Moreover, while still far from complete, the model developed in publication 6 provides a 

quantitative framework for understanding Zn2+ effects on Cav2.3 channel function and a first step 

towards the application of computational approaches for predicting the complex action of Zn2+ on 

neuronal excitability. 
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Zusammenfassung 

Hintergrund: Die Spurenmetallkationen Zn2+ und Cu2+ werden zunehmend als endogene 

Botenstoffe erkannt, welche in die Regulierung von neuronaler Erregbarkeit, Hormonfreisetzung 

und synaptischer Plastizität involviert sind. Cav2.3 spannungsgesteuerte Ca2+ Kanäle gehören zu 

deren sensibelsten Targets und weisen ein Expressionsmuster auf, das mit der Verteilung von 

histochemisch reaktiven Spurenmetallkationen im Gehirn übereinstimmt, so dass sie einen 

Hauptmediator für deren neuro-modulatorischen Effekte darstellen könnten. Obwohl nicht-

konservierte Histidinreste auf der extrazellulären Seite von Domäne I nachweislich eine Rolle für 

Spurenmetall-induzierte Veränderungen im Schaltverhalten von Cav2.3 Kanälen spielen, sind 

viele Fragen bezüglich der zugrundeliegenden Mechanismen und ihrer (patho)physiologischen 

Relevanz bisher unbeantwortet.     

Ziele: Ziel der in dieser Arbeit zusammengestellten Artikel war es, einen besseren Einblick in die 

exakten Mechanismen der Zn2+- und Cu2+-vermittelten Modulation von Cav2.3 Kanälen sowie 

deren potentieller Bedeutung unter normalen und pathophysiologischen Bedingungen zu 

erhalten.  

Methoden: In Publikation 1 wurden auf Basis kristallographischer Daten eines Ca2+-selektiven 

bakteriellen Modellkanals die Struktur, Funktion und Modulation von eukaryotischen Ca2+ 

Kanälen theoretisch analysiert. In Publikation 2 wurden generelle Protokolle für die Herstellung 

und Verwendung von Spurenmetallionen-gepufferten physiologischen Lösungen erarbeitet und 

deren praktische Bedeutung mit einem fluoreszenten Zn2+ Indikator untersucht. In Publikation 3 

wurden konventionelle und perforierte Ganzzell Patch-clamp Messungen sowie verschiedene 

Inhibitoren und zytosolische Faktoren verwendet um den Run-down von Cav2.3 Kanälen 

während elektrophysiologischer Messungen zu untersuchen und die Messbedingungen für die 

Versuche in Publikation 6 zu optimieren. In Publikation 4 wurde untersucht, wie intraperitoneale 

Injektionen des Komplexbildners DEDTC die Blutglukose-Homöostase, Glukosetoleranz und 

Peptidhormonfreisetzung in Cav2.3-defizienten und -kompetenten Mäusen beeinflussen. 

Außerdem wurde die Insulinfreisetzung in isolierten Langerhans Inseln beider Genotypen 

verglichen sowie die Zn2+-Abhängigkeit der Effekte von DEDTC auf rekombinante Cav2.3 Kanäle 

in Ganzzell Patch-Clamp Messungen verifiziert. In Publikation 5 wurden Ganzzell Patch-clamp 

Messungen und elektroretinographische Ableitungen zur Charakterisierung eines Rezeptor-

unabhängigen, Cu2+-abhängigen Mechanismus der Cav2.3 Kanal Modulation durch den 

Glutamatrezeptor Agonisten Kainsäure (KA) untersucht. In Publikation 6 wurden die 

elektrophysiologischen Effekte von Zn2+ auf rekombinante Cav2.3 Kanäle untersucht und ein 

Markov Model für deren Schaltverhalten unter Kontrollbedingungen sowie in Gegenwart 

physiologisch relevanter Zn2+ Konzentrationen entwickelt.  

Ergebnisse: Publikation 1 erbrachte neue Erkenntnisse zur Funktion eukaryotischer 

spannungsgesteuerter Ca2+ Kanäle und deren Modulation durch Spurenmetallkationen. 

Publikation 2 veranschaulichte die Wichtigkeit von Metallionen-Puffern zur Vermeidung von 

Abweichungen zwischen der nominellen und tatsächlichen freien Metallionenkonzentration in 

physiologischen Lösungen. Publikation 3 ergab, dass der Run-down von Cav2.3 Kanälen mit 

Veränderungen im Schaltverhalten verbunden ist, dass er durch hydrolisierbares ATP verhindert 

oder verlangsamt werden kann und dass Serin/Threonin Kinasen kritisch für die protektiven 

ATP Effekte sind. Publikation 4 ergab, dass Blutglukose und Serum Glukagon Spiegel in Cav2.3-

defizienten Mäusen im Vergleich zu Cav2.3-kompetenten Mäusen signifikant erhöht sind, 

während Zn2+ Depletion mit DEPC zu einem signifikanten Anstieg von Blutglukose und Serum 

Glukagon Spiegeln in Cav2.3-kompetenten aber nicht in Cav2.3-defizienten Mäusen führt. DEPC 

Behandlung führte außerdem zu einer schweren Glukoseintoleranz in Cav2.3-defizienten 

Mäusen, während die Glukosetoleranz in unbehandelten Cav2.3-defizienten sowie behandelten 
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und unbehandelten Cav2.3-kompetenten Mäusen unbeeinträchtigt war. In in vitro Versuchen 

stimulierte DEPC den Ca2+ Einfluss durch rekombinante Cav2.3 Kanäle in der Gegenwart von 

Zn2+ aber nicht in der Gegenwart des Zn2+ Komplexbildners CaEDTA. Publikation 5 ergab, dass 

KA rekombinante Cav2.3 Kanäle durch eine Umkehr Cu2+-induzierter Inhibition, die vermutlich 

auf Bildung stabiler Kainat-Cu2+ Komplexe beruht, auch in Abwesenheit funktioneller Glutamat 

Rezeptoren stimulieren könnte. Simulation der Rezeptor-unabhängigen Effekte von KA durch 

Applikation des Komplexbildners Tricin in der isolierten Rinderretina führte zur selektiven 

Abnahme in der Amplitude einer späten Komponente der elektroretinographischen b-Welle, für 

welche in früheren Arbeiten eine Stimulation durch genetische oder pharmakologische Ablation 

von Cav2.3 Kanälen gezeigt wurde. Publikation 6 ergab, dass die Zn2+-induzierten 

Veränderungen im Schaltverhalten von Cav2.3 Kanälen komplex sind und mehr als einen 

einzelnen Wirkmechanismus umfassen. Mittels Computersimulationen wurde gezeigt, dass die 

meisten, aber nicht alle, Effekte durch ein vereinfachtes Modell reproduziert werden können, bei 

dem Zn2+ Interaktion mit einer ersten Bindungstelle zu einer elektrostatischen Modifikation und 

mechanischen Verlangsamung eines der Spannungssensoren führt und Zn2+ Interaktion mit einer 

zweiten Bindungstelle von niedrigerer Affinität den Kanal blockiert und zu einer Verlangsamung 

des Öffnungs- und Schließverhaltens führt.  

Diskussion: Bezüglich der Zn2+-induzierten Modulation von Cav2.3 Kanälen deuten die 

Ergebnisse aus Publikation 6 auf komplexe Wechselwirkungen mit den vorherrschenden 

neuronalen und ionischen Bedingungen hin, welche die Zn2+ Wirkung beeinflussen und sogar 

umkehren könnten. So hängt der Gesamt Zn2+ Effekt auf Cav2.3 Kanäle aufgrund paralleler 

Veränderungen in der Spannungsabhängigkeit von Aktivierung und Inaktivierung stark vom 

Haltepotential ab, kann sowohl inhibierend als auch stimulierend sein und für mehrere Minuten 

nach Beendigung des Zn2+ Signals andauern. Neben einer möglichen Rolle für bestimmte 

Mechanismen der synaptischen Sensibilisierung und Plastizität könnten diese Effekte für die 

Regulation von Cav2.3 Kanälen in den Langerhans Inseln des Pankreas relevant sein, wo eine 

plötzliche Einstellung der Zn2+ Freisetzung aus β-Zellen als eines der Switch-off Signale für die 

Glukagon Freisetzung aus α-Zellen zu dienen scheint. Letztere Annahme wird durch die 

Ergebnisse in Publikation 4 untermauert, welche erste Belege für eine Rolle von Cav2.3 Kanälen 

für die Zn2+-vermittelte Inhibition der Glukagonfreisetzung unter hyperglykämischen 

Bedingungen liefern und zeigen, dass Cav2.3 Kanaldysfunktion, besonders in Kombination mit 

Zn2+-Defizienz, zu schweren Störungen der Glukosehomöostase führen könnte. Basierend auf 

den Ergebnissen der Publikationen 5 und 6 könnte eine Abnahme bzw. Umkehr der Zn2+ und 

Cu2+ vermittelten Inhibition von Cav2.3 Kanälen durch endogene (z.B. Glutamat) oder exogene 

(z.B. KA) Komplexbildner, mäßige Acidose oder Depolarisation des neuronalen 

Ruhemembranpotentials möglicherweise auch zur pro-konvulsiven Rolle dieser Kanäle 

beitragen, welche in früheren Arbeiten belegt wurde. Schließlich legen die Ergebnisse aus 

Publikation 3 nahe, dass Proteinphosphorylierung kritisch für die normale Funktion von Cav2.3 

Kanälen ist und ihre elektrophysiologischen Eigenschaften modifizieren könnte.    

Konklusion: Die in dieser Arbeit zusammengestellten Artikel liefern verschiedene neue 

Erkentnisse über die Mechanismen der reziproken Modulation von Cav2.3 Kanälen durch 

Spurenmetallkationen und Komplexbildner sowie erste Erkenntnisse zu ihrer möglichen 

Bedeutung unter (patho)physiologischen Bedingungen. Obwohl das in Publikation 6 erarbeitete 

Model als vorläufig anzusehen ist, bietet es eine quantitative Grundlage zum Verständnis der 

Effekte von Zn2+ auf Cav2.3 Kanäle und einen ersten Schritt in Richtung der Anwendung 

computerbasierter Methoden zur Prognose  der komplexen Wirkung von Zn2+ auf die neuronale 

Erregbarkeit. 
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1. Introduction 

1.1. Voltage-gated Ca2+ channels 

Under physiological conditions, intracellular Ca2+ levels are tightly controlled and 

maintained in the low nanomolar concentration range. Ca2+ can enter the cell through 

voltage-gated Ca2+ channels (VGCCs), which shape the electrical properties of excitable cells 

and represent the key link between electrical signals and non-electrical processes, such as 

transmitter release, peptide hormone secretion or gene transcription. The following sections 

will briefly describe their classification, structure and function. A more detailed description 

that goes beyond a mere recap of the literature is provided in publication 1 (Neumaier et al., 

2015). 

1.1.1. Classification and nomenclature 

Since their first recording in cardiomyocytes (Reuter, 1979, 1967), voltage-dependent Ca2+ 

currents in native membranes have been broadly classified into (I) low-voltage activated 

(LVA) currents which activate at membrane potentials near the resting level and display 

rapid inactivation kinetics and (ii) high-voltage activated (HVA) currents, which activate at 

somewhat more depolarized test potentials and display variable but typically less rapid 

inactivation kinetics (Carbone and Lux, 1984; Nowycky et al., 1985). Based on their 

biophysical and pharmacological properties, HVA currents were further subdivided into 

dihydropyridine-sensitive L-type (for long lasting), ω-conotoxin GVIA-sensitive N-type (for 

neuronal or neither T- nor L-type), ω -agatoxin IVA-sensitive P/Q-type (for Purkinje neurons) 

and partly SNX-482-sensitive R-type (for resistant or residual) currents, while LVA currents 

were assigned to a single group of T-type (for transient) currents (Llinás et al., 1992; 

Nowycky et al., 1985; Randall and Tsien, 1995; Tsien et al., 1987). Purification (Curtis and 

Catterall, 1984), reconstitution (Curtis and Catterall, 1986; Flockerzi et al., 1986) and 

molecular cloning (Tanabe et al., 1987) of the skeletal muscle Ca2+ channel in the late 1980s 

and subsequent homology screening of lambda-phage and cDNA libraries firmly established 

the existence of multiple, distinct Ca2+ channel α1-subunits (Catterall, 2011; Hille, 1992). They 

were originally named based on an alphabetical nomenclature, which assigned the letter S to 

the original skeletal muscle channel (i.e. α1S) and the letters A-F to subsequently identified α1-

subunits (Birnbaumer et al., 1994; Snutch et al., 1990; Snutch and Reiner, 1992). Today, 

VGCCs are classified based on amino acid sequence identity and named according to the 

same nomenclature used for other voltage-gated ion channels, where a given α1-subunit is 

identified by the principal permeating ion (i.e. Ca for Ca2+), the main physiological regulator 

(i.e. v for voltage) indicated as a subscript (i.e. Cav) and a numerical identifier that 

corresponds to one of three subfamilies (Cav1 through Cav3) and the order of discovery 

within that subfamily (Catterall et al., 2003; Ertel et al., 2000). Based on pharmacological and 

functional criteria, the Cav1 family (Cav1.1 through Cav1.4) has been convincingly linked to 

native L-type currents, the Cav2 family to native P/Q-type (Cav2.1), N-type (Cav2.2) and R-

type (Cav2.3) currents and the Cav3 family (Cav3.1 through Cav3.3) to native T-type currents.  
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1.1.2. Subunit composition 

Similar to other voltage-gated ion channels, native HVA channels are multi-subunit 

complexes comprised of a principal, transmembrane-spanning Cavα1-subunit, several 

auxiliary subunits of lower molecular weight and the ubiquitous intracellular Ca2+-sensor 

calmodulin (CaM), which associates with a CaM-binding domain in the cytoplasmic C-

terminal region. Expression levels and the properties of Cavα1-subunits vary with co-

expression of one of at least four Cavβ-subunits, one of at least four Cavα2δ-subunits and in 

some cases one of several putative Cavγ-subunits. Additional diversity arises from a number 

of possible splice variants and posttranslational modification of the Cavα1 or other subunits 

(Jones, 1998; Lacinová, 2005). LVA channels on the other hand lack the CaM-binding domain 

and are typically thought to consist only of a pore-forming Cavα1-subunit (Lacinová et al., 

1999; Lambert et al., 1997; Leuranguer et al., 1998).  

1.1.3. Structure 

As illustrated in Fig. 1, Cavα1-subunits are made up of four homologous repeats termed 

domains I through IV, each comprising six membrane-spanning helical segments (S1-S6) and 

a pore forming p-loop between S5 and S6 (Zhen et al., 2005). The first four segments of each 

domain have been shown to form the voltage-sensor modules (VSMs) responsible for 

coupling changes in membrane potential to channel opening. The remaining two segments 

make up most of the internal pore lining, with the p-loops forming the extracellular mouth of  

 

Figure 1. Subunit composition and transmembrane topology of high-voltage activated calcium channels. 

Inset shows quadrameric arrangement of homologous domains of the pore-forming α1 subunit at the cell 

membrane. For clarity, domain IV is shown aside from the membrane. Reprinted with permission from 

(Neumaier et al., 2015). 



12 
 

the pore and the Ca2+ selective filter region (Kim et al., 1993; Yang et al., 1993).  Cavβ-subunits 

are intracellular, hydrophilic proteins without transmembrane segments (Fig. 1), which bind 

to a high-affinity site located in the cytoplasmic linker between the first two homologous 

repeats of the Cavα1-subunit (Buraei and Yang, 2013). Cavα2δ-subunits are made up of two 

distinct subunits (α2 and δ), formed by post-translational cleavage of a single gene product 

and associated with each other via disulfide bonds (Ellis et al., 1988). As indicated in Fig. 1, 

the highly glycosylated α2-subunit resides on the extracellular side and is thought to be 

anchored in the plasma membrane by the smaller δ protein (Gurnett et al., 1996). 

1.1.4. Functional properties 

The classical view of voltage-gated ion channels assumes that transfer of ions across the 

membrane (permeation) is independent of the transitions between non-conducting and 

conducting states (gating) and vice versa. This assumption is conceptually useful and often 

necessary for interpretation of experimental findings, but there is convincing evidence for an 

interaction between gating and permeation in VGCCs (for details see publication 1). 

1.1.4.1. Voltage-dependent activation 

Activation of all voltage-gated ion channels involves charge-moving conformational changes 

that produce measurable gating currents and have been shown to depend on charged 

residues in the S2, S3 and especially S4 segments of all four domains (Hille, 1992; Vargas et 

al., 2012). A possible mechanism for the process based on models for activation of Shaker K+-

channels is shown in Fig. 2A & B. At resting membrane (i.e. hyperpolarized) potentials, the 

permeation pathway is occluded by parts of the S6 segments, which form a hydrophobic 

cavity that is inaccessible for ions. Depolarization forces the positively charged S4 segments 

to rotate or tilt through a protein-lined pathway formed by the rest of the VSM, which leads 

to relocation of the S5 and S6 segments with formation of a water-filled and ion permeable 

crevice. Evidence from mutational studies (Beyl et al., 2016; García et al., 1997) and optical 

tracking of voltage-sensor movement (Pantazis et al., 2014) indicates that activation of only 

two of the four non-identical VSM may be sufficient to drive channel opening in VGCCs.   

1.1.4.2. Voltage- and Ca2+-dependent inactivation 

The extent of Ca2+ entry during prolonged depolarization is limited by voltage- or Ca2+-

dependent inactivation, which may involve distinct conformational changes and can vary 

with the exact subunit composition. Voltage-dependent inactivation (VDI) of HVA channels 

has been linked to parts of the pore-forming segments and intracellular linkers (Hering et al., 

2000; Stotz et al., 2000)  and proposed to involve a ‘hinged lid’ mechanism, where docking of 

the I-II linker to the cytoplasmic ends of the S6 segments occludes the inner pore vestibule 

(Fig. 2C)(Stotz et al., 2004, 2000). The process appears to be state- rather than truly voltage-

dependent and is subject to modulation by co-expressed Cavβ-subunits, which may modify 

mobility of the I-II linker (Stotz et al., 2004). Ca2+-dependent inactivation is largely restricted 

to otherwise non-inactivating (Cav1.1-Cav1.4) or certain neuronal channels (Cav2.1 and 

Cav2.2) and thought to be induced by formation of Ca2+/CaM complexes (Budde et al., 2002). 
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Figure 2. Conformational changes during activation and inactivation of VGCCs. Cartoon illustrating 

possible mechanisms of channel activation and inactivation based on models of activation for Shaker K+-

channels and fast VDI of Cav2.3 VGCCs. Only two of the four homologous domains are shown. (A) At 

resting membrane potentials, the permeation pathway is occluded by regions of the S6 segments which 

form parts of the channel lumen, resulting in a hydrophobic cavity that is inaccessible for ions. (B) During 

membrane depolarization, the positively charged S4 segments (yellow) rotate and decrease their tilt (see 

inset), leading to changes in the relative position of other segments and formation of a water-filled crevice, 

in which ions can traverse the channel. (C) Upon prolonged depolarization, the intracellular linker between 

domains I and II (highlighted in red) docks to a site composed, in parts, of the S6 segments of domains II 

and III (see inset), thereby physically occluding the inner vestibule of the channel and terminating the flow 

of ions. Reprinted with permission from (Neumaier et al., 2015). 

1.1.4.3. Selective permeation 

Under physiological conditions, VGCCs are almost exclusively selective for Ca2+, with 

estimated rate coefficients for overall Ca2+ transfer of 7.5 x 107 M-1 s-1 for HVA channels (Hess 

et al., 1986) and 0.3-0.5 x 108 M-1 s-1 for LVA channels (Carbone and Lux, 1987; Lux et al., 

1990). Selectivity is mainly conferred by a conserved high-affinity Ca2+ binding site in the 

pore region, which is formed by a ring of glutamate (and in LVA channels aspartate) 

residues located at equivalent positions in each of the four p-loops (EEEE/EEDD-locus) (Cens 

et al., 2007; Cibulsky and Sather, 2000; Ellinor et al., 1995; Shuba, 2014; Talavera et al., 2001; 

Tang et al., 1993; Yang et al., 1993). Several mechanisms have been proposed to account for 

the apparent paradox of high-affinity binding and high conductance, most of which are 

based on a combination of ion-pore and ion-ion interactions in the permeation pathway. In 

the classical ‘stairstep model’, low-affinity binding sites flanking the EEEE/EEDD-locus are 

thought to allow for stepwise entry and exit of Ca2+ ions from the pore, thereby lowering the 

energy required for dissociation from the high-affinity binding site (Dang and McCleskey, 



14 
 

1998). In the ‘car wash model’, the EEEE/EEDD-locus is thought to form a flexible, multi-ion 

binding site that can accommodate a single Ca2+ ion with high-affinity or multiple Ca2+ ions 

with lower affinity (Yang et al., 1993). Occupation by more than one Ca2+ ion could 

destabilize high-affinity binding due to electrostatic repulsion (Almers and McCleskey, 1984; 

Hess and Tsien, 1984), competition for binding moieties (Armstrong and Neyton, 1991; Yang 

et al., 1993) and / or conformational changes (Lux et al., 1990; Mironov, 1992). Support for a 

mechanism akin to the stairstep model has been provided by crystallographic data on the 

Ca2+-selective model channel CavAb, which was derived from the bacterial sodium channel 

NavAB. In this channel and several related constructs, the selectivity filter is formed by a 

central high-affinity DDDD-locus and two flanking low-affinity sites (Fig. 3A-C), which are 

at least partly conserved in human VGCCs (Fig. 3D). 

 

 

Figure 3. Functional organization of the selectivity filter in voltage-gated calcium channels. (A, B) 

Cartoon representation of the crystal structure of pAsp181Asn (a construct closely related to CavAb) 

showing three of the four identical domains with Ca2+ ions (green) bound to all three coordination sites in 

the selectivity filter. Note that the crystal structure likely reflects a mixed population of channels, in which 

either the central or the two flanking coordination sites are occupied. (C) State-diagram showing the two 

low energy states of occupation and possible intermediates. (D) Sequence alignment of residues making up 

the selectivity filter in CavAb and its derivatives with the corresponding residues in cloned human voltage-

gated calcium channels. Conserved residues are highlighted in bold. Reprinted with permission from 

(Neumaier et al., 2015). 
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1.1.4.4. Run-up and run-down 

Electrophysiological recordings associated with dialysis of the cytoplasm or excision of cell 

patches are almost invariably hampered by time-dependent changes in voltage-gated ion 

channel function. The most well-known form of these phenomena is a progressive decline of 

voltage activated currents after breakthrough into the whole-cell configuration (run-down). 

The process is typically thought to result from dilution of the cellular contents by the pipette 

solution and an associated loss of second messengers and intracellular signaling cascades 

(Becq, 1996). In some cases, run-down is preceded by a transient current facilitation, which 

could reflect a relief of tonic suppression and / or voltage- and time-dependent repriming 

(i.e. recovery from inactivation) (Elhamdani et al., 1995, 1994; Tiaho et al., 1993). While they 

remain a major obstacle for studies on the pharmacology and physiology of voltage-gated 

channels, these time-dependent changes can also provide insight into the modulation of 

channels in intact cells. For this reason, the hallmarks and mechanisms of run-down of L-

type Ca2+ currents have been subject to numerous investigations (Belles et al., 1988; Chad and 

Eckert, 1986; Hao et al., 1999; Hescheler et al., 1988; Martini et al., 2000; McDonald et al., 

1994; Mironov and Lux, 1991). Probably owing to their minor contribution to the total Ca2+ 

current in many non-neuronal cells, much less work has been devoted to characterizing the 

process in other HVA VGCCs. For example, native R-type currents, which are mainly 

mediated by Cav2.3-type VGCCs, are well known to exhibit both run-up and run-down 

(Almog and Korngreen, 2009; Benquet et al., 1999; Cota, 1986; Hilaire et al., 1997). Although 

some findings indicate that run-down may be associated with changes in R-type-like Ca2+ 

channel gating (Cota, 1986), the rapid loss of these currents in conventional 

electrophysiological recordings has generally prevented further characterization of the 

phenomenon in native cells. Some of the experiments performed in the present work were 

also hampered by time-dependent changes in Cav2.3 channel currents, which prompted us to 

investigate the process in more detail. The results of these experiments allowed us to develop 

experimental conditions that significantly delayed the occurrence of run-down and provided 

interesting insights into the importance of protein phosphorylation for the normal function 

of Cav2.3 channels, as described in more detail in publication 3 (Neumaier et al., 2018b).  

1.2. Cav2.3 voltage-gated Ca2+ channels 

Cav2.3-type VGCCs are the only molecular counterpart of native R-type currents so far 

identified and remain one of the most enigmatic members of the family of VGCCs, not least 

because they share biophysical properties with both HVA (high activation threshold; large 

single channel conductance; rapid deactivation kinetics) and LVA (equal permeability to Ca2+ 

and Ba2+; fast inactivation kinetics) channels (Bourinet et al., 1996; Soong et al., 1993; 

Wakamori et al., 1994). They are resistant towards most commonly used organic Ca2+ channel 

antagonists but highly sensitive to certain divalent trace metal ions (Zn2+, Cu2+ and Ni2+), 

which has been linked to non-conserved histidine residues on the external side of the domain 

I VSM (Kang et al., 2007; Shcheglovitov et al., 2012). In addition, Cav2.3 channels are sensitive 

to the tarantula toxin SNX-482 (IC50=20-60 nM), which is a relatively selective inhibitor when 
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compared to other VGCCs, but has been shown to be even more effective in suppressing A-

type K+-currents mediated by Kv4.3 channels (IC50<3 nM) (Kimm and Bean, 2014).   

1.2.1. Expression and general function 

Cav2.3 channel expression is most prominent throughout the central and peripheral nervous 

system (Grabsch et al., 1999; Schneider et al., 1994; Soong et al., 1993; Williams et al., 1994), 

but has also been detected in neuroendocrine (Grabsch et al., 1999; Pereverzev et al., 2002b; 

Vajna et al., 1998), cardiovascular (Galetin et al., 2013), reproductive (Cohen et al., 2014; 

Wennemuth et al., 2000), and gastrointestinal tissues (Grabsch et al., 1999). Insight into the 

functional roles of Cav2.3 channels has been facilitated by the generation of Cav2.3-deficient 

mice, which exhibit no major pathologies but are characterized by altered spatial memory 

(Kubota et al., 2001) and nociception (Saegusa et al., 2000), increased anxiety (Lee et al., 2002), 

cardiac arrhythmias and impaired autonomic control (Galetin et al., 2013; Weiergräber et al., 

2005), reduced susceptibility to chemically induced seizures and excitotoxicity (Dibué-Adjei 

et al., 2017; Weiergräber et al., 2007) and certain alterations in glucose homeostasis (Matsuda 

et al., 2001; Pereverzev et al., 2002a). Based on this relatively subtle phenotype and their 

preferential expression in rhythmically active tissues, a general function of Cav2.3 channels 

has been proposed to involve fine-tuning of rhythmogenesis in oscillatory networks 

(Schneider et al., 2015).  

1.2.2. Role of Cav2.3 channels in the brain 

In the CNS, highest densities of Cav2.3 channels can be detected in the hippocampus and 

other limbic regions, in the retina and in cortical neurons (Sochivko et al., 2002; Weiergräber 

et al., 2006b). They are expressed both presynaptically (Day et al., 1996) and postsynaptically 

(Day et al., 1996; Yokoyama et al., 1995) and have been shown to be involved in transmitter 

release and neuronal plasticity (Bloodgood and Sabatini, 2007; Dietrich et al., 2003; Gasparini 

et al., 2001; Yasuda et al., 2003), somatodendritic integration and action potential burst firing 

(Christie et al., 1995; Kavalali et al., 1997; Magee and Carruth, 1999; Magee and Johnston, 

1995). In addition, Cav2.3 channels are the third most extensively phosphorylated ion 

channels in mouse brain (Cerda et al., 2011) and depolarization has been shown to trigger 

bulk changes of their phosphorylation state in intact hippocampal slices (Hell et al., 1995). In 

the retina, Cav2.3 channels appear to be involved in GABA-ergic reciprocal inhibition of rod 

bipolar cells (Siapich et al., 2009), and genetic ablation or pharmacological suppression of 

these channels have been shown to selectively enhance a late b-wave component of the 

eletroretinogram (ERG) (Alnawaiseh et al., 2011; Lüke et al., 2005; Siapich et al., 2010). The 

exact physiological relevance of Cav2.3 channels in most other brain regions remains elusive, 

but there is increasing evidence for their involvement in a number of pathophysiological 

conditions. With regard to human patients, recent findings have implicated de novo gain-of-

function mutations in these channels with developmental and epileptic encephalopathies, 

which are characterized by intractable seizures, abundant epileptiform EEG activity and 

developmental impairments (Carvill, 2019; Helbig et al., 2018). A pro-ictogenic role of Cav2.3 

channels in convulsive generalized tonic-clonic and hippocampal seizures has also been 
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demonstrated in a number of animal studies, where their genetic ablation significantly 

reduced the susceptibility to kainic acid (KA)-induced seizures and neurodegeneration 

(Dibué-Adjei et al., 2017; Weiergräber et al., 2007, 2006a). In addition, treatment with the 

broad-spectrum antiepileptic drugs lamotrigine (LTG) or topiramate (TPM), both of which 

have been shown to inhibit cloned Cav2.3 channels (Hainsworth et al., 2003; Kuzmiski et al., 

2005), significantly reduced KA-induced seizures in wildtype but not Cav2.3-deficient mice 

(Dibué-Adjei et al., 2017), suggesting that Cav2.3 channels could be an important target for 

current antiepileptic treatments. 

1.2.3. Role of Cav2.3 channels for glucose homeostasis 

Animal studies have linked Cav2.3 VGCCs to α-cell glucagon secretion (Pereverzev et al., 

2005), β-cell insulin secretion (Jing et al., 2005; Matsuda et al., 2001; Pereverzev et al., 2002a) 

and δ-cell somatostatin (SST) secretion (Zhang et al., 2007), suggesting that these channels 

are critically involved in the regulation of blood glucose levels. Under hyperglycemic 

conditions, glucose homeostasis is primarily maintained by glucose-stimulated insulin 

secretion (GSIS) from pancreatic β-cells, which is thought to involve a triggering pathway of 

fast insulin secretion (first phase insulin response), and an amplifying pathway of sustained 

release (second phase insulin response). The molecular mechanisms underlying fast GSIS are 

relatively well established and have been shown to involve β-cell glucose uptake and 

metabolism followed by depolarization due to ATP-dependent closure of KATP channels, 

which triggers Ca2+-influx through Cav1.2 channels and secretion of a readily releasable pool 

of insulin vesicles. The sustained insulin response is much less well understood but thought 

to involve mobilization of a reserve pool of insulin vesicles for release. Genetic or 

pharmacological ablation of Cav2.3 channels selectively reduces the second phase insulin 

response in mice (Jing et al., 2005; Pereverzev et al., 2005), suggesting that β-cell Cav2.3 

channels are involved in the mobilization of insulin vesicles from the reserve pool. They 

could also play a role for the paracrine effects of SST released from δ-cells, as SST suppresses 

cloned Cav2.3 channels (Mehrke et al., 1997) and SNX-482 has been shown to prevent SST 

inhibition of insulin secretion from insulinoma cells (Mergler et al., 2008). According to the 

intra-islet insulin hypothesis, insulin released into the periportal circulation is carried to 

nearby α-cells, where it provides tonic suppression of glucagon secretion during 

hyperglycemia, while cessation of insulin secretion during hypoglycemia could serve as a 

switch-off signal that initiates α-cell glucagon secretion (Banarer et al., 2002; Maruyama et al., 

1984). Interestingly, Cav2.3 channels appear to be important for the former (i.e. suppression 

of glucagon release during hyperglycemia) but not directly involved in the latter (i.e. release 

of glucagon during hypoglycemia), as glucose-induced suppression of glucagon release is 

severely impaired or even reversed in Cav2.3-deficient mice (Jing et al., 2005), isolated islets 

from Cav2.3-deficient mice (Jing et al., 2005; Pereverzev et al., 2005) and SNX-482 treated 

islets from wildtype mice (Göpel et al., 2004; Jing et al., 2005) whereas SNX-482 fails to 

reduce glucagon secretion from wildtype islets in low glucose. As discussed in more detail in 

section 1.3.3 and assessed experimentally in publication 4 (section 2.4), there is increasing 

evidence that Zn2+ co-released with insulin from pancreatic β-cells could serve as an 
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additional, non-insulin signal for crosstalk to neighboring α-cells, which might exert its 

action in part by suppressing Cav2.3 channels. The pathophysiological relevance of these 

findings is corroborated by several studies linking variants in the gene encoding Cav2.3 

channels to impaired glucose homeostasis in human T2DM patients (Holmkvist et al., 2007; 

Muller et al., 2007; Trombetta et al., 2012).  

1.2.4. Role of Cav2.3 channels in the vascular system 

There is also evidence for a role of Cav2.3 channels in the vascular system, although again 

mainly in the context of certain pathophysiological conditions. For example, hemoglobin, 

which can be released into the brain extracellular space during hemorrhagic stroke, has been 

shown to induce up-regulation of Cav2.3 channels in cerebral vessels (Ishiguro et al., 2005) 

and there is evidence for an involvement of these channels in delayed cerebral vasospasm 

and ischemia after subarachnoid hemorrhage (Ishiguro and Wellman, 2008). In addition, 

work from our lab shows that unconjugated bilirubin (UCB), a degradation product of 

hemoglobin, alters Cav2.3 channel function in a heterologous expression system and 

attenuates transretinal signaling in the isolated retina from wildtype but not Cav2.3-deficient 

when applied at pathophysiologically relevant UCB:albumin molar ratios (Albanna et al., 

2019, 2017).  

1.3. Endogenous trace metal ions 

Trace metal ions like Zn2+ and Cu2+ are key structural components of numerous proteins and 

co-factors for enzymes involved in cellular respiration, catecholamine synthesis and 

antioxidant defense (Anzellotti and Farrell, 2008; Frederickson et al., 2005). In addition to 

their established structural and catalytic functions, endogenous Zn2+ and Cu2+ are 

increasingly recognized as potential modulators of neuronal transmission (Frederickson et 

al., 2005, 2000; Mathie et al., 2006) and synaptic plasticity (Pan et al., 2011). As noted above, 

Zn2+ has also been identified as a candidate auto- and / or paracrine signal for intra-islet 

crosstalk in the pancreas, which could be critically involved in the regulation of blood 

glucose homeostasis by insulin and glucagon (Ishihara et al., 2003).  

1.3.1. Trace metal speciation 

The biological effects of trace metal ions are determined by their chemical speciation, which 

is defined as the distribution among all free and ligand-bound species in solution (for details 

see publication 2). Under physiological conditions, the majority of Zn2+ and Cu2+ is tightly 

bound by a range of metalloprotein ligands, so that the pool that remains 

thermodynamically and kinetically accessible (i.e. loosely-bound) is usually orders of 

magnitude below the total concentration. This is especially important in the intracellular 

compartment, where even moderate increases in the loosely-bound Zn2+ or Cu2+ level are 

deleterious and ultimately associated with cell death. A detailed review of the tightly 

regulated intracellular trace metal homeostasis is beyond the scope of this work and can be 

found elsewhere (Colvin et al., 2010, 2003; Krężel and Maret, 2006). The present article will 

focus on the action of extracellular trace metal ions, noting that there is usually a large 

concentration-gradient favoring their passive entry into postsynaptic neurons. The latter is 
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under study as potential signaling pathway (Li et al., 2001) and important mechanism that 

may contribute to hippocampal neurodegeneration under certain pathophysiological 

conditions (Frederickson et al., 1988; Mathie et al., 2006). With regard to the extracellular 

compartment, an important implication of chemical speciation is that loosely-bound trace 

metal concentrations could be subject to modulation by a number of small organic molecules 

that are capable of acting as trace metal chelators. This is exemplified in publication 5 

(Neumaier et al., 2018a), where we provide in vitro evidence for a receptor-independent 

mechanism of Cav2.3 channel modulation by the excitatory amino acid KA that involves 

reversal of Cu2+-induced suppression. Additional implications are that suitable trace metal 

chelators can be used to antagonize the effects of endogenous trace metals, and that proper 

metal ion buffering should be used in experiments with metal ion-sensitive targets. The latter 

is important because even highly purified reagents contain small amounts of trace metal 

ions, so that estimated levels of Zn2+, Cu2+ and / or other unwanted metal ions in typical 

physiological solutions are in the nano- to micromolar concentration range (for details see 

publication 2). As described in one of the later sections, this may be sufficient for significant 

tonic suppression of certain Cavα1-subunits and could therefore also influence experimental 

findings. 

1.3.2 Zn2+ and Cu2+ signaling in the brain 

While 90% of total brain Zn2+ is tightly bound to zinc metalloproteins, much of the remaining 

10% forms a loosely-bound pool located in the presynaptic vesicles of so-called zinc-enriched 

neurons (Frederickson et al., 2000; Mathie et al., 2006). These neurons are not associated with 

a single neurotransmitter and have been shown to release Zn2+ both spontaneously and in an 

activity-dependent manner. Similar pools of loosely-bound Cu2+ that can be released 

following membrane depolarization have been detected in certain neurons that appear to be 

primarily associated with glutaminergic or adrenergic transmission (Kardos et al., 1989; Ono 

and Cherian, 1999; Sato et al., 1994). The distribution of loosely-bound Zn2+ and Cu2+ in the 

brain is not uniform, and highest concentrations are located in specific forebrain areas that 

include the hippocampus and other limbic regions, the neocortex and the retina (Anastassov 

et al., 2014, 2013; Charton et al., 1985; Hartter and Barnea, 1988; Kardos et al., 1989). Under 

physiological conditions, estimated resting or ‘tonic’ levels in the brain extracellular fluid are 

in the order of 5-25 nM for loosely-bound Zn2+ (Frederickson et al., 2006) and 0.1-0.8 µM for 

loosely-bound Cu2+ (Mathie et al., 2006). These values are frequently exceeded at mossy fiber 

synapses, where Zn2+ concentrations have been estimated to be in excess of 10-20 µM during 

basal synaptic activity and >100 µM during repetitive electrical stimulation or periods of 

intense activity (Kardos et al., 1989; Mathie et al., 2006; Vogt et al., 2000). During KA-induced 

epileptiform (or ictal-like) discharges, Zn2+ levels in the order of 300 µM have been estimated 

to be reached in the extracellular space (Assaf and Chung, 1984). Released metal ions could 

modulate neuronal activity through effects on a variety of voltage- and ligand-gated ion 

channels (Elinder and Arhem, 2003; Neumaier et al., 2015), which has made it difficult to 

predict the net action of Zn2+ and Cu2+. As such, their exact functional relevance in the brain 

remains controversial, although a number of experimental observations indicate that 



20 
 

especially Zn2+ could dampen excitability in limbic regions and serve as an intrinsic 

anticonvulsant. In mice, synaptic release and extracellular accumulation of Zn2+ have been 

shown to limit propagation of cortical spreading depression in vitro and in vivo (Aiba et al., 

2012). Zn2+ chelation or deficiency increases the susceptibility to KA-induced seizures 

(Takeda et al., 2005, 2003) and induces excitotoxicity and convulsions in healthy rats (Blasco-

Ibáñez et al., 2004) and rats subjected to non-lesioning over-excitation (Domínguez et al., 

2003). In addition, Zn2+ treatment has been shown to reduce dentate granule cell 

hyperexcitability in epileptic human patients (Williamson and Spencer, 1995). On the other 

hand, massive release of synaptic Zn2+ and its translocation into postsynaptic neurons has 

been proposed as a mechanism for hippocampal neurodegeneration, which occurs following 

seizures, ischemia or traumatic brain injury (Frederickson et al., 1988; Mathie et al., 2006). 

However, the presynaptic origin of Zn2+ involved in this process remains controversial, since 

postsynaptic Zn2+ accumulation and cell death after KA-induced seizures or traumatic brain 

injury were the same or even increased in mice lacking Zn2+ transporter 3 (ZnT3), which are 

completely devoid of vesicular Zn2+ (Doering et al., 2010; Lee et al., 2000). Because 

intracellular metal ion buffering and sequestration are tightly coupled to the cells energetic 

and redox state, deleterious levels of Zn2+ could also be released from metallothioneins and 

other reservoirs located in damaged postsynaptic neurons themselves. The interpretation of 

experimental findings is further complicated by the fact that fluorescent probes used for Zn2+ 

staining have been shown to adhere non-specifically to the membrane of injured neurons 

(Hawkins et al., 2012). That notwithstanding and considering the many potential targets, it 

seems reasonable to assume that the effects of Zn2+ (and Cu2+) could include both 

compensatory (i.e. neuroprotective) and causative (i.e. neurotoxic) actions and that a 

complex interplay of factors determines their respective contribution under 

pathophysiological conditions. As exemplified in publication 6 (section 2.6), the magnitude 

and even direction of Zn2+ effects on a single target like Cav2.3 channels can be affected by 

factors such as the resting membrane potential or the exact ionic conditions.  

1.3.3. Zn2+ signaling in pancreatic islets 

It is well known that Zn2+ is present at high (millimolar) concentrations in β-cell insulin 

secretory vesicles and required for proper insulin biosynthesis, maturation and secretion 

(Emdin et al., 1980; Li, 2014). During the maturation process, insulin mono- and dimers 

aggregate in the presence of Zn2+ to form 2Zn-hexameric complexes, which significantly 

lowers their solubility and causes crystallization within the vesicles (Emdin et al., 1980; Li, 

2014). During hyperglycemia, the Zn2+-insulin complexes are released into the periportal 

circulation, where the higher pH of blood favors their rapid dissociation into free Zn2+ and 

insulin monomers (Li, 2014; Robertson et al., 2011). The resulting local Zn2+ concentrations in 

the extracellular space are estimated to be in the order of several hundred μM (Kim et al., 

2000), so that nearby cells are exposed to high levels of unbound Zn2+. As such, Zn2+ has long 

been recognized as a candidate signal for non-insulin paracrine crosstalk to neighboring α-

cells (Ishihara et al., 2003), and a number of recent findings provide support to this idea. For 

example, Zn2+ was reported to suppress pyruvate- or glucose-induced glucagon release in 
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static secretion and electrophysiological experiments with isolated murine islets and purified 

α-cells (Franklin et al., 2005; Gyulkhandanyan et al., 2008). Moreover, Zn2+ but not Zn2+-free 

insulin, has been shown to inhibit α-cell glucagon secretion in the perfused rat pancreas 

(Robertson et al., 2011; Zhou et al., 2007). It should also be noted however, that some studies 

failed to detect Zn2+-induced suppression of glucagon secretion (Ramracheya et al., 2010; 

Ravier and Rutter, 2005), so that the topic remains a matter of heated debate. Identification of 

Zn2+ targets expressed in α-cells and directly involved in glucagon secretion could evidently 

help to resolve these discrepancies and strengthen understanding of the role of Zn2+ for intra-

islet crosstalk. In publication 4, we provide in vitro and in vivo evidence for a role of Cav2.3 

channels as targets for the putative Zn2+-induced suppression of α-cell glucagon secretion. In 

addition and consistent with this idea, results obtained in publication 6 indicate that sudden 

cessation of Zn2+ supply could not only reverse suppression but also transiently stimulate 

Ca2+ influx through Cav2.3 channels under certain conditions. 

1.3.4. Metal ion effects on voltage-gated Ca2+ channels 

The function of all voltage-gated ion channels is more or less effectively altered by changes 

in the concentration of divalent cations, although the underlying mechanisms can vary 

considerably. They may be broadly classified into three general groups, which comprise (i) 

electrostatic effects of metal ions in the bulk solution (surface charge screening, Fig. 3A) or 

bound to charged regions on the channel surface (surface charge binding, Fig. 3B), which 

alter the local potential sensed by the VSMs, (ii) blocking effects of metal ions bound to intra-

pore sites, which physically occlude the permeation pathway (pore block, Fig. 3C) and (iii) 

non-electrostatic effects of metal ions bound to specific metal-binding sites (allosteric 

modulation, Fig. 3D). Under physiological conditions, surface charge effects are mainly of 

experimental relevance, as they are predicted to become significant only at supra-

physiological (i.e. high micro- to millimolar) trace metal concentrations. A notable exception 

may be the retina, where surface charge effects on VGCCs have been proposed to play a 

physiological role (Cadetti et al., 2004). The blocking action of Zn2+ and other trace metal ions 

was investigated in early single-channel studies in mouse myotubes, which found that Zn2+ 

blocks L-type currents carried by 110 mM Ba2+ in a weakly voltage-dependent manner, with 

half-maximal inhibition at 0 mV by approximately 500 µM nominal Zn2+ (Winegar and 

Lansman, 1990). Most later studies on the effects of Zn2+ have been done using the whole-cell 

configuration of the patch-clamp technique, which has the advantage that recordings can be 

performed with much lower (i.e. near physiological) concentrations of charge carrying ions. 

However, separation of effects mediated by the different mechanisms of action described 

above remains a non-trivial task, since all of them may contribute to the net action observed 

in macroscopic current recordings. In addition, few studies have been performed using metal 

ion-buffered solutions, and comparison of the available data is further complicated by 

differences in the experimental conditions, the exact tissue or subunit compositions studied 

and the electrophysiological parameters used to quantify suppression. For example, nominal 

Zn2+ concentrations which have been reported to produce half- maximal suppression of  
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Figure 4. Mechanisms of modulation of voltage-gated calcium channels by polyvalent inorganic cations. 

Sketch of the pore-forming α1-subunit in a closed conformation, showing two of the four homologous 

domains with their voltage-sensor modules (S4 segments highlighted in yellow) and local charges on the 

channel surface (green). (A) Multivalent cations (M2+ / M3+, orange) in solution can screen charges on the 

channel surface, thereby electrostatically reducing the local potential sensed by the voltage-sensors (B) 

Some cations can electrostatically decrease the total surface charge density by directly binding to and 

neutralizing certain surface charges, producing a more pronounced reduction in the local potential. (C) 

Most di- and trivalent metal ions can bind to sites at or within the pore region (pore block), thereby 

physically occluding the permeation pathway. (D) Some VGCCs have been shown to possess high-affinity 

allosteric metal binding-sites on their domain I voltage-sensor. Reprinted with permission from (Neumaier 

et al., 2015). 

native HVA currents range from 20-30 µM in acutely dissociated cortical neurons 

(Magistretti et al., 2003) or 70 µM in DRG neurons (Büsselberg et al., 1994) to 210 µM in 

cultured cortical neurons (Kerchner et al., 2000) or 250 µM in acutely dissociated pelvic 

neurons (Jeong et al., 2003). The effects of Zn2+ (and in some cases Cu2+) on individual Cavα1-

subunits have been studied in a number of recombinant expression studies, which are 

summarized in detail in publication 1. With regard to cloned Cav2.3 channels, half-maximal 

suppression of currents carried by 5 mM Ca2+ was observed at 1.3 µM Zn2+ or 18 nM Cu2+ 
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when experiments were performed using metal ion-buffered solutions. In addition, 

(sub)micromolar concentrations of Zn2+, Cu2+ and Ni2+ produced depolarizing shifts in 

channel voltage-dependence, a reduced sensitivity towards depolarization and a 

pronounced slowing of macroscopic activation (Kang et al., 2007; Shcheglovitov et al., 2012; 

Zamponi et al., 1996) resembling their action on native R-type currents in cortical (Castelli et 

al., 2003; Magistretti et al., 2003) and DRG neurons (Shcheglovitov et al., 2012). Molecular 

cloning studies identified three histidine residues located in the IS1-IS2 (His111) and IS3-IS4 

(His179 and His183) loops, which are not conserved in other HVA channels and thought to 

form a high-affinity extracellular binding pocket for certain divalent cations (Kang et al., 

2007; Shcheglovitov et al., 2012). Since Zn2+, Cu2+ and Ni2+ also alter activation gating in HVA 

channels lacking critical histidine residues (Castelli et al., 2003; Magistretti et al., 2003; 

Zamponi et al., 1996), it remains to be determined if additional metal binding sites exist or if 

the gating changes described above are exclusively related to the putative metal binding site 

in domain I. This and some other open questions are addressed in publication 6, which 

provides experimental evidence for the idea that multiple sites are involved in the effects of 

Zn2+ on Cav2.3 channel gating and proposes a model that can account for most, but not all of 

these effects. 

1.4. Aims of the present work 

The general aim of the present work was to shed some light on the exact mechanisms of Zn2+- 

and Cu2+-induced Cav2.3 channel modulation and their potential relevance under normal and 

pathophysiological conditions. In publication 1, we used crystallographic data of the Ca2+-

selective bacterial model channel CavAb as a framework to analyze eukaryotic VGCC 

structure, function and modulation by inorganic cations. In publication 2, we assessed the 

methodical difficulties of metal ion-buffering in physiological solutions, developed general 

protocols for preparation and use of (multi) metal ion-buffered solutions and experimentally 

verified the critical importance of proper metal ion-buffering. In publication 3, we used 

conventional and perforated patch-clamp recordings together with different inhibitors and 

cytosolic factors to identify signaling cascades involved in Cav2.3 channel run-down during 

cell dialysis, which was critical to improve the stability of recordings for the detailed 

assessment of Zn2+ effects described in publication 6 (see below). In publication 4, we 

compared the effects of Zn2+ chelation on glucose homeostasis and peptide hormone 

secretion in Cav2.3-deficient and wildtype mice to determine if Zn2+-inhibition of Cav2.3 

channels contributes to the suppression of glucagon secretion during hyperglycemia. In 

publication 5, we used whole-cell patch-clamp recordings in stably transfected HEK293 cells 

and ex vivo electroretinographic recordings from the bovine retina to characterize a receptor-

independent but Cu2+-dependent mechanism of Cav2.3 channel modulation by KA. Finally, 

in publication 6, we analyzed the concentration-dependent effects of Zn2+ as a prototype 

redox-inert trace metal ion on cloned Cav2.3 channel function and developed a semi-

mechanistic Markov model capable of reproducing most salient features of current through 

these channels in the absence and presence of physiologically relevant Zn2+ concentrations.  
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2. Results 

2.1. Publication 1: Progress in Neurobiology 129:1-36. 

 

Voltage-gated calcium channels: Determinants of channel function and 

modulation by inorganic cations. 

Felix Neumaier, Maxine Dibué-Adjei, Jürgen Hescheler, Toni Schneider 

 

Abstract: 
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and 

non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve 

high rates of Ca2+-selective flux, they possess an elaborate mechanism for selection of Ca2+ 

over foreign ions. It has been convincingly linked to competitive binding in the pore, but the 

fundamental question of how this is reconcilable with high rates of Ca2+ transfer remains 

unanswered. By virtue of their similarity to Ca2+, polyvalent cations can interfere with the 

function of VGCCs and have proven instrumental in probing the mechanisms underlying 

selective permeation. Recent emergence of crystallographic data on a set of Ca2+-selective 

model channels provides a structural framework for permeation in VGCCs, and warrants a 

reconsideration of their diverse modulation by polyvalent cations, which can be roughly 

separated into three general mechanisms: (I) long-range interactions with charged regions on 

the surface, affecting the local potential sensed by the channel or influencing voltage-sensor 

movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in 

the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and 

in some cases (III) short-range interactions with extracellular binding sites, leading to non-

electrostatic modifications of channel gating (allosteric effects). These effects, together with 

the underlying molecular modifications, provide valuable insights into the function of 

VGCCs, and have important physiological and pathophysiological implications. Allosteric 

suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn2+ and Cu2+ 

may play a major role for the regulation of excitability by endogenous transition metal ions. 

The fact that these ions can often traverse VGCCs can contribute to the detrimental 

intracellular accumulation of metal ions following excessive release of endogenous Cu2+ and 

Zn2+ or exposure to non-physiological toxic metal ions. 

Contributions to Publication 1: 

I independently reviewed the literature and conceptualized the article, performed all 

sequence alignments, calculations and simulations described in the text and shown in the 

figures, created all tables and figures, wrote the manuscript and handled the submission and 

revision process. I was also chosen to create the cover art for the corresponding issue of 

Progress in Neurobiology. 
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2.2. Publication 2: Acta Physiologica 222(3): e12988. 

 

A practical guide to the preparation and use of metal ion-buffered systems 

for physiological research. 

Felix Neumaier, Serdar Alpdogan, Jürgen Hescheler, Toni Schneider 

 

Abstract: 
Recent recognition that mobile pools of Zn2+ and Cu2+ are involved in the regulation of 

neuronal, endocrine and other cells has stimulated the development of tools to visualize and 

quantify the level of free trace metal ions. Most of the methods used to measure or control 

loosely bound metals require reference media that contain exactly defined free 

concentrations of the target ions. Despite the central importance of proper metal ion 

buffering, there is still a lack of international standards and beginners in the field may have 

difficulties finding a coherent description of how to prepare trace metal ion buffers, 

especially when experiments are to be performed in multimetal systems. To close this gap, 

we provide a guide for the design, preparation and use of metal ion buffered systems that 

facilitate immediate application under physiologically relevant ionic conditions. 

Thermodynamic and kinetic concepts of chemical speciation as well as general protocols and 

specific examples are outlined for the accurate preparation of single- and dual-metal ion 

buffers. In addition, experiments have been performed with FluoZin-3 to illustrate that metal 

ion-buffered systems are required for reliable preparation of nanomolar Zn2+ solutions and 

that dual-metal ion buffers can be used to calibrate suitable fluorescent Zn2+ sensors in the 

presence of millimolar Ca2+ concentrations. Together, the information provided should 

sensitize readers to the many potential pitfalls and uncertainties that exist when working 

with physiologically relevant concentrations of trace metal ions and enable them to 

formulate their own metal ion buffers for most in vitro applications. 

 

Contributions to Publication 2: 

I independently reviewed the literature and conceptualized the article, developed the 

protocols and performed the experiments with FluoZin-3, created all tables and figures, 

wrote the manuscript and handled the submission and revision process. 
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2.3. Publication 3: Journal of General Physiology 150(3): 491-510. 

 

Protein phosphorylation maintains the normal function of cloned human 

Cav2.3 channels. 

Felix Neumaier, Serdar Alpdogan, Jürgen Hescheler, and Toni Schneider 

Abstract: 
R-type currents mediated by native and recombinant Cav2.3 voltage-gated Ca2+ channels 

(VGCCs) exhibit facilitation (run-up) and subsequent decline (run-down) in whole-cell 

patch-clamp recordings. A better understanding of the two processes could provide insight 

into constitutive modulation of the channels in intact cells, but low expression levels and the 

need for pharmacological isolation have prevented investigations in native systems. Here, to 

circumvent these limitations, we use conventional and perforated-patch-clamp recordings in 

a recombinant expression system, which allows us to study the effects of cell dialysis in a 

reproducible manner. We show that the decline of currents carried by human Cav2.3+β3 

channel subunits during run-down is related to adenosine triphosphate (ATP) depletion, 

which reduces the number of functional channels and leads to a progressive shift of voltage-

dependent gating to more negative potentials. Both effects can be counteracted by 

hydrolysable ATP, whose protective action is almost completely prevented by inhibition of 

serine/threonine but not tyrosine or lipid kinases. Protein kinase inhibition also mimics the 

effects of run-down in intact cells, reduces the peak current density, and hyperpolarizes the 

voltage dependence of gating. Together, our findings indicate that ATP promotes 

phosphorylation of either the channel or an associated protein, whereas dephosphorylation 

during cell dialysis results in run-down. These data also distinguish the effects of ATP on 

Cav2.3 channels from those on other VGCCs because neither direct nucleotide binding nor 

PIP2 synthesis is required for protection from run-down. We conclude that protein 

phosphorylation is required for Cav2.3 channel function and could directly influence the 

normal features of current carried by these channels. Curiously, some of our findings also 

point to a role for leupeptin-sensitive proteases in run-up and possibly ATP protection from 

run-down. As such, the present study provides a reliable baseline for further studies on 

Cav2.3 channel regulation by protein kinases, phosphatases, and possibly proteases. 

 

Contributions to Publication 3: 

I independently conceptualized and performed all experiments, analyzed and interpreted 

the data, prepared all of the figures, wrote the manuscript and handled the submission and 

revision process.  

 

 



81 
 

 



82 
 



83 
 



84 
 



85 
 



86 
 



87 
 



88 
 



89 
 



90 
 



91 
 



92 
 



93 
 



94 
 



95 
 



96 
 



97 
 



98 
 



99 
 

 



100 
 

 



101 
 

2.4. Publication 4: Biochimica et Biophysica Acta 1853(5): 953-964. 

 

Diethyldithiocarbamate-mediated zinc ion chelation reveals role of Cav2.3 

channels in glucagon secretion. 

Irina Drobinskaya*, Felix Neumaier*, Alexey Pereverzev, Jürgen Hescheler, Toni 

Schneider 

* equal contribution 

 

Abstract: 
Peptide-hormone secretion is partially triggered by Ca2+ influx through voltage-gated Ca2+ 

channels (VGCCs) and gene inactivation of Zn2+-sensitive Cav2.3-type VGCCs is associated 

with disturbed glucose homeostasis in mice. Zn2+ has been implicated in pancreatic islet cell 

crosstalk and recent findings indicate that sudden cessation of Zn2+ supply during 

hypoglycemia triggers glucagon secretion in rodents. Here we show that 

diethyldithiocarbamate (DEDTC), a chelating agent for Zn2+ and other group IIB metal ions, 

differentially affects blood glucose and serum peptide hormone level in wild-type mice and 

mice lacking the Cav2.3-subunit. Fasting glucose and glucagon level were significantly higher 

in Cav2.3-deficient compared to wild-type mice, while DEDTC Zn2+-chelation produced a 

significant and correlated increase of blood glucose and serum glucagon concentration in 

wild-type but not Cav2.3-deficient mice. Glucose tolerance tests revealed severe glucose 

intolerance in Zn2+-depleted Cav2.3-deficient but not vehicle-treated Cav2.3-deficient or Zn2+-

depleted wildtype mice. Collectively, these findings indicate that Cav2.3 channels are 

critically involved in the Zn2+-mediated suppression of glucagon secretion during 

hyperglycemia. Especially under conditions of Zn2+ deficiency, ablation or dysfunction of 

Cav2.3 channels may lead to severe disturbances in glucose homeostasis. 

 

Contributions to Publication 4: 

I conceptualized and performed the whole-cell patch-clamp recordings, analyzed and 

interpreted the data from all experiments, prepared all tables and figures, wrote the 

manuscript and handled the submission and revision process. 
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2.5. Publication 5: Journal of Neurochemistry 147(3): 310-322. 

 

Reciprocal modulation of Cav2.3 voltage-gated calcium channels by copper(II) 

ions and kainic acid. 

Felix Neumaier, Isha Akhtar-Schäfer, Jan Niklas Lüke, Maxine Dibué-Adjei, Jürgen 

Hescheler, Toni Schneider 

Abstract: 
Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic 

glutamate receptors and commonly used to induce seizures and excitotoxicity in animal 

models of human temporal lobe epilepsy. Among other factors, Cav2.3 voltage-gated calcium 

channels have been implicated in the pathogenesis of KA-induced seizures. At 

physiologically relevant concentrations, endogenous trace metal ions (Cu2+, Zn2+) occupy an 

allosteric binding site on the domain I gating module of these channels and interfere with 

voltage-dependent gating. Using whole-cell patch clamp recordings in human embryonic 

kidney (HEK-293) cells stably transfected with human Cav2.3d and β3-subunits, we identified 

a novel, glutamate receptor-independent mechanism by which KA can potently sensitize 

these channels. Our findings demonstrate that KA releases these channels from the tonic 

inhibition exerted by low nanomolar concentrations of Cu2+ and produces a hyperpolarizing 

shift in channel voltage-dependence by about 10 mV, thereby reconciling the effects of Cu2+ 

chelation with tricine. When tricine was used as a surrogate to study the receptor 

independent action of KA in electroretinographic recordings from the isolated bovine retina, 

it selectively suppressed a late b-wave component, which we have previously shown to be 

enhanced by genetic or pharmacological ablation of Cav2.3 channels. Although the 

pathophysiological relevance remains to be firmly established, we speculate that reversal of 

Cu2+-induced allosteric suppression, presumably via formation of stable kainate-Cu2+ 

complexes, could contribute to the receptor-mediated excitatory effects of KA. In addition, 

we discuss experimental implications for the use of KA in vitro, with particular emphasis on 

the seemingly high incidence of trace metal contamination in common physiological 

solutions. 

 

Contributions to Publication 5: 

I conceptualized and performed the whole-cell patch-clamp recordings, was involved in 

interpretation of the ERG recordings, prepared all tables and figures, wrote the manuscript 

and handled the submission and revision process. 
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2.6. Publication 6: Journal of General Physiology 152(9): e202012585. 

 

Zn2+-induced changes in Cav2.3 channel function. An electrophysiological and 

modeling study. 

Felix Neumaier, Serdar Alpdogan, Jürgen Hescheler, Toni Schneider 

Abstract: 
Loosely bound Zn2+ ions are increasingly recognized as potential modulators of synaptic 

plasticity and neuronal excitability under normal and pathophysiological conditions. Cav2.3 

voltage-gated Ca2+ channels are among the most sensitive targets of Zn2+ and are therefore 

likely to be involved in the neuromodulatory actions of endogenous Zn2+. Although histidine 

residues on the external side of domain I have been implicated in the effects on Cav2.3 

channel gating, the exact mechanisms involved in channel modulation remain incompletely 

understood. Here, we use a combination of electrophysiological recordings, modification of 

histidine residues, and computational modeling to analyze Zn2+-induced changes in Cav2.3 

channel function. Our most important findings are that multiple high- and low-affinity 

mechanisms contribute to the net Zn2+ action, that Zn2+ can either inhibit or stimulate Ca2+ 

influx through Cav2.3 channels depending on resting membrane potential, and that Zn2+ 

effects may persist for some time even after cessation of the Zn2+ signal. Computer 

simulations show that (1) most salient features of Cav2.3 channel gating in the absence of 

trace metals can be reproduced by an obligatory model in which activation of two voltage 

sensors is necessary to open the pore; and (2) most, but not all, of the effects of Zn2+ can be 

accounted for by assuming that Zn2+ binding to a first site is associated with an electrostatic 

modification and mechanical slowing of one of the voltage sensors, whereas Zn2+ binding to 

a second, lower-affinity site blocks the channel and modifies the opening and closing 

transitions. While still far from complete, our model provides a first quantitative framework 

for understanding Zn2+ effects on Cav2.3 channel function and a step toward the application 

of computational approaches for predicting the complex actions of Zn2+ on neuronal 

excitability. 

 

Contributions to Publication 6: 

I independently conceptualized and performed all experiments, analyzed and interpreted 

the data, developed and optimized the Markov model, performed the simulations, prepared 

all tables and figures, wrote the manuscript and handled the submission and revision 

process. 
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3. Discussion 

The exact role of Cav2.3 channel modulation by endogenous Zn2+ and Cu2+ remains elusive, 

but our results provide evidence for a potential (patho)physiological relevance. For example, 

the findings in publication 4 indicate that Cav2.3 channels are critically involved in the Zn2+-

induced suppression of glucagon secretion and that glucose tolerance in Cav2.3-deficient 

mice is highly sensitive to Zn2+ chelation, so that dysfunction of these channels under 

conditions of Zn2+-deficiency could lead to severe disturbances in glucose homeostasis. In 

addition, in publication 5 we show that the excitatory amino acid KA can reverse 

suppression by physiological Cu2+ concentrations in vitro and stimulate Ca2+ influx through 

cloned Cav2.3 channels even in the absence of functional glutamate receptors. These and 

other findings prompted us to re-assess the effects Zn2+ as a prototype redox-inert trace metal 

ion on Cav2.3 channel function. The results described in publication 6 reveal that Zn2+-

induced Cav2.3 channel modulation is complex and inconsistent with a single mechanism of 

action, that it can be either inhibitory or stimulatory and that it may persist for several 

minutes even after cessation of the Zn2+ signal. To account for these findings, we have 

developed a preliminary Markov model that describes well many qualitative and 

quantitative features of the experimental data and could provide a starting point for future 

studies on the intricate effects of endogenous Zn2+ (and Cu2+) on Cav2.3 channel function in 

neuronal, neuroendocrine and possibly other tissues. Below, I will briefly summarize our 

findings with regard to the mechanisms of Cav2.3 channel modulation by trace metal ions 

and trace metal chelators and discuss potential implications for Cav2.3 channel function in 

the brain and endocrine pancreas.  

3.1. Mechanisms of Cav2.3 channel modulation by Zn2+ and Cu2+ 

(Sub)micromolar concentrations of Zn2+, Cu2+ or Ni2+ produce depolarizing shifts in the 

voltage-dependence of cloned Cav2.3 channel gating, a reduced slope of the activation curve, 

a pronounced slowing of activation and a decrease in the maximum macroscopic 

conductance (Drobinskaya et al., 2015; Kang et al., 2007; Neumaier et al., 2018a; 

Shcheglovitov et al., 2012; Zamponi et al., 1996). Although histidine residues in the domain I 

VSM have been implicated in the shift and slowing (Kang et al., 2007; Shcheglovitov et al., 

2012), the underlying mechanisms, their dependence on the experimental conditions and the 

potential role of additional metal binding sites remain incompletely understood. We have 

addressed some of these questions in publication 6, the results of which indicate that 

multiple sites contribute to the effects of Zn2+. For example, concentration-response curves 

for the shift and slowing obtained under near-physiological ionic conditions revealed 

separable high- and low-affinity components, which could also be distinguished based on 

their sensitivity to histidine modification by DEPC. With 4 mM free Ca2+ as the charge 

carrier, the high-affinity effects were half-maximal at Zn2+ concentrations in the order of 4.2-

4.6 µM and produced, at most, a shift by approximately 20 mV and a two- to three-fold 

slowing of activation. These effects were reduced or prevented by histidine-modification 

with DEPC, suggesting that they result from Zn2+ binding to the putative metal binding site. 

Consistent with this assumption, computer simulations showed that both effects could be 
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well described by assuming that a single, bimolecular reaction between Zn2+ and a site on the 

channel results in electrostatic modification and mechanical slowing of one of the voltage-

sensors. Moderate acidification (from pH 7.4 to 7.0) or a decrease in the extracellular Ca2+ 

concentration (from 4 to 2 mM) significantly increased or decreased respectively, the 

apparent KZn value for high-affinity shift and slowing, indicating that there is competition for 

binding between Zn2+, Ca2+ and protons. However, while Ca2+ concentrations neither affected 

the maximum effects mediated by high-affinity binding, nor activation under control 

conditions (i.e. Ca2+ appeared to antagonize Zn2+ binding competitively), acidification 

reduced the maximum Zn2+ action and produced effects similar to Zn2+ under control 

conditions. The latter is consistent with previous findings that protons affect Cav2.3 channel 

gating by interaction with histidine residues in the proposed metal binding site (Cens et al., 

2011) and indicates that they are less effective than Zn2+, possibly because of their lower 

charge. Protons have also been shown to reduce the slope of the activation curve and to 

decrease the unitary conductance, which has been linked to a histidine residue in one of the 

pore loops of domain I (Cens et al., 2011). Our findings indicate that Zn2+ could act in a 

similar manner, since histidine-modification also prevented the Zn2+-induced slope reduction 

and a voltage-independent component of instantaneous current suppression, both of which 

became half-maximal at Zn2+ concentrations four to five times higher than the shift and 

slowing (KZn~20 µM) and were not reproduced by the model described above. Higher 

concentrations of Zn2+ also produced an additional shift and up to 5-fold slowing of 

activation and a weakly voltage-dependent block of instantaneous currents, which became 

half-maximal at Zn2+ concentrations in excess of 100 µM and were largely insensitive to 

acidification or histidine-modification. In principle, all of these effects could reflect time- and 

voltage- or state-dependent unblock, in which case re-block of channels upon repolarization 

should have accelerated macroscopic deactivation. However, depolarization actually 

increased the degree of block and high concentrations of Zn2+ produced a subtle but 

significant deceleration of channel deactivation, indicating that the slowing was not directly 

related to intrinsically voltage- or state-dependent block. Based on circumstantial evidence 

and a previously proposed mechanism, we have instead assumed that Zn2+-binding to a low 

affinity, superficial intra-pore site could block the channel and allosterically modify the 

opening and closing transitions. Computer simulations based on this idea are in reasonable 

agreement with the experimental data for free Zn2+ concentrations up to approximately 300 

µM, but other models could almost certainly account for the slowing as well. As Zn2+-

induced slowing of activation appears to be a common feature of all HVA but not LVA 

VGCCs, the underlying site may be conserved in other members of the family. For example, 

all HVA channels contain a putative EF-hand like motif that has previously been implicated 

in their differential sensitivity to Zn2+ block and is located external to the selectivity filter 

EEEE-locus (Sun et al., 2007), so that it could also account for the shallow voltage-

dependence of block. 
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3.2. Trace metal chelators as functional Cav2.3 channel agonists 

Amino acids like histidine, cysteine or L-glutamic acid (L-Glu) have long been known for 

their ability to bind trace metal ions like Zn2+ and Cu2+. More recently, L-Glu was identified 

as a potential agonist for Cav2.3 channels that acts by reversing Zn2+- or Cu2+-induced 

suppression (Shcheglovitov et al., 2012). Transient relief of tonic Cav2.3 channel inhibition by 

these metal ions following release of L-Glu into the synaptic cleft has been proposed to affect 

synaptic transmission and plasticity in the brain. In line with these observations, the results 

from publication 5 indicate that KA, a conformationally restricted analogue of L-Glu, is 

capable of reversing tonic Cu2+-induced suppression of cloned Cav2.3 channels, presumably 

by formation of stable kainate-Cu2+ complexes (Neumaier et al., 2018a). Thus, KA stimulated 

Cav2.3 channels in the presence of 50 nM nominal Cu2+ by shifting channel voltage-

dependence to more negative test potentials, increasing their voltage-sensitivity and 

accelerating the time-course of activation, consistent with a reversal of trace metal-induced 

suppression. In addition, the effects were independent of the presence of functional 

glutamate receptors but depended on pre-existing suppression by Cu2+ and could be 

reproduced by Cu2+ chelation with tricine. In brain slice recordings from the hippocampal 

area, co-administration of the related neurotoxin domoic acid with Zn2+ or Cd2+ has also been 

shown to result in the formation of trace metal-neurotoxin complexes (Hoedemaker et al., 

2005), supporting the experimental relevance of our findings in in vitro systems. In addition, 

when tricine was used as a surrogate for the receptor-independent action of KA in the 

isolated bovine retina, it produced effects consistent with increased GABAergic reciprocal 

inhibition of rod bipolar cells due to reversal of Cav2.3 channel suppression in amacrine cells 

(Neumaier et al., 2018a). Brain tissue concentrations of KA reached after systemic 

administration have not been established (Berger et al., 1986), but are likely to be much lower 

than the millimolar concentrations of L-Glu that may be transiently reached in the synaptic 

cleft. However, KA is resistant to enzymatic degradation or reuptake, binds Cu2+ much more 

tightly (logKCuL=10.1 & logKCuL2=7.6 compared to logKCuL=8.2 & logKCuL2=6.4 for L-Glu) 

(Aydin and Yirikogullari, 2010; Burns et al., 2007; Shuaib et al., 1999) and effectively reversed 

Cu2+-induced suppression at concentrations 10-times lower than L-Glu (Neumaier et al., 

2018a). As such, the pathophysiological relevance of our observations in in vivo animal 

models of KA-induced seizures remains to be established, but they support and extent 

previous findings that endogenous or exogenous trace metal-binding compounds could 

profoundly alter excitability by indirectly modifying the function of Cav2.3 and numerous 

other metal-sensitive targets (Boldyrev, 2001; Coddou et al., 2002; Eimerl and Schramm, 1993; 

Nelson et al., 2007; Shcheglovitov et al., 2012; Thio and Zhang, 2006; Trombley et al., 1998; 

Wakita et al., 2014).  

3.3. Cav2.3 channel modulation by endogenous brain Zn2+ and Cu2+ 

The conditions under which vesicular Zn2+ and Cu2+ are released during synaptic activity and 

their exact functional significance remain enigmatic, making it difficult to predict the 

implications of Zn2+- or Cu2+-induced Cav2.3 channel modulation for neuronal transmission. 

However, a remarkable consequence of the parallel changes in activation and inactivation 
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voltage-dependence described in publication 6 is that, depending on the resting membrane 

potential (RMP) of a cell, Zn2+ could both, inhibit or stimulate Ca2+ influx via Cav2.3 channels. 

For example, currents were inhibited by application of 5.4 μM free Zn2+ when they were 

evoked from a holding potential of -80 mV, but potentiated by the same free Zn2+ 

concentration when they were evoked from a holding potential of -60 mV. Washout of Zn2+ 

resulted in a further transient current stimulation that was followed by a progressive decline 

back to the control level, presumably due to time-dependent entry into one or more 

inactivated states. Hence, even though rises in the synaptic free or loosely-bound Zn2+ 

concentration during neuronal activity are likely to be transient, they could endow Cav2.3 

channels with a form of ‘short-term memory’ that alters their properties even after cessation 

of the Zn2+ signal. This could provide a mechanism to transiently increase their availability 

following release of Zn2+ into the synaptic cleft, with potential implications for certain forms 

of synaptic sensitization or plasticity. The holding potential-dependence of Zn2+ effects could 

also be involved in the pro-ictogenic role of Cav2.3 channels observed in previous studies 

(Dibué-Adjei et al., 2017; Weiergräber et al., 2007, 2006a), since depolarization of the neuronal 

RMP due to e.g. spreading depolarization or paroxysmal depolarizing shifts could lead to a 

decrease in the inhibitory action or even reverse the direction of Zn2+ effects from inhibition 

to stimulation. In addition, our findings in publications 4-6 show that mild acidosis, as 

typically observed during seizures, or trace metal chelation by endogenous (i.e. L-Glu, 

carnosine, glutathione) or exogenous (i.e. KA, DEDTC) agents could significantly reduce the 

effects of Zn2+ or Cu2+ on Cav2.3 channel gating regardless of the holding potential. Since even 

very small changes in ion channel function (Thomas et al., 2009) and synaptic gain (Du et al., 

2019) can lead to seizure-like activity, it seems conceivable that reduced Cav2.3 channel 

suppression by Zn2+ could contribute to the ictogenic processes when the brain moves into a 

pro-seizure state. However, further studies on Zn2+-induced Cav2.3 channel modulation will 

clearly be required to firmly establish the kinetics, magnitude and direction of Zn2+ effects on 

native Cav2.3 channels in different cells, as they could be influenced by a number of factors 

such as subunit-composition or alternative splicing. For example, Cavβ-subunits have been 

shown to differentially modify the time-course of Cav2.3 channel recovery from inactivation 

at depolarized test potentials (Jeziorski et al., 2000), which could in turn alter the dynamics of 

Zn2+-induced modulation. Likewise, co-expression of different Cavβ-subunits has been 

shown differentially affect the gating effects of Ni2+ on cloned Cav2.1 channels (Zamponi et 

al., 1996), suggesting that auxiliary subunits could also directly influence trace metal-induced 

VGCC modulation.  

3.4. Cav2.3 channels as a target for paracrine Zn2+ signals in the pancreas 

The two most important findings of our study on the role of Cav2.3 channels for blood 

glucose homeostasis are that (i) fasting glucose and glucagon levels are significantly higher 

in Cav2.3-deficient compared to wildtype mice, while (ii) the correlated increase of blood 

glucose and serum glucagon levels observed during Zn2+-chelation in wildtype mice is 

severely blunted in Cav2.3-deficient mice (Drobinskaya et al., 2015). Thus, Cav2.3-deficiency  
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Figure 5. Schema of putative Zn2+-mediated functional coupling between insulin and glucagon release. (A) 

In the presence of normal or high blood glucose concentrations, ATP level in β-cells increases, leading to 

closure of KATP channels, depolarization and co-secretion of insulin and Zn2+. In downstream α-cells, Zn2+ 

counteracts glucagon release by activation of KATP channels and inhibition of Cav2.3 channels. (B) Under 

conditions of hypoglycemia, ATP level in β-cells decreases, leading to disinhibition of KATP channels, K+ 

efflux and thus hyperpolarization with closure of voltage-gated Ca2+ channels. The resulting switch off of 

Zn2+ release from upstream β-cells is associated with closure of KATP channels and disinhibition of Cav2.3 

channels in α-cells, which ultimately leads to release of glucagon. Reprinted with permission from 

(Drobinskaya et al., 2015).  

appears to impair the coupling between blood glucose levels and glucagon secretion rather 

than reducing glucagon release per se, which could explain previous findings that glucose 

challenge produces a paradoxical stimulation of glucagon release in Cav2.3-deficient mice 

(Jing et al., 2005). According to the Zn2+ switch-off hypothesis, Zn2+ co-secreted with insulin 

during hyperglycemia could hyperpolarize α-cells by opening KATP channels, leading to 

closure of Na+ and Ca2+ channels and suppression of glucagon release (Fig. 5A) 

(Gyulkhandanyan et al., 2008; Slucca et al., 2010; Zhou et al., 2007). Sudden cessation of Zn2+ 

release during hypoglycemia could conversely depolarize α-cells through closure of KATP 

channels, leading to Na+ and L-type Ca2+ channel-dependent action potential firing and 

(during the peak of the AP) local Ca2+ influx through P/Q-type channels, which then 

mediates glucagon secretion (Fig. 5B). Considering their intermediate threshold for 

activation, Cav2.3 channel dis-inhibition upon cessation of Zn2+ supply could conceivably 

serve to amplify the effects of KATP channel closure, providing sufficient depolarization for 

subsequent Na+ and L-type Ca2+ channel-dependent AP firing. However, the fact that Cav2.3-

deficiency did not reduce overall glucagon release indicates that Cav2.3 channel opening per 
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se may not be a critical requirement for α-cell secretion, but could instead alter P/Q-type 

channel-dependent exocytosis by e.g. modifying the threshold or peak height of the APs. 

This would be consistent with their proposed role for fine-tuning of rhythmogenesis in 

oscillatory networks (Schneider et al., 2015) and with the fact that Cav2.3 channel inactivation 

at typical α-cell membrane potentials would be predicted to limit their contribution to Ca2+ 

influx and thus secretion. On the other hand, the Zn2+-induced changes in inactivation 

voltage-dependence described in publication 6 could significantly increase their availability 

at rest. Upon cessation of Zn2+-supply, rapid reversal of Zn2+-induced suppression could 

allow for a brief burst of Ca2+ influx before time-dependent inactivation would again limit 

the number of channels available for activation. Given the synchronous nature of basal 

insulin and glucagon secretion, it is tempting to speculate that (cessation of) Zn2+ release 

from pancreatic β-cells could provide some kind of impulse generator for pulsatile α-cell 

glucagon secretion, possibly triggered by Cav2.3 channels, which synchronizes the release of 

both peptide hormones. However, it has also been proposed that the suppression of 

glucagon secretion during hyperglycemia is independent of Zn2+ and results from α-cell 

glucose metabolism and closure of KATP channels, which depolarizes the cell sufficiently to 

inactivate Na+ and L-type Ca2+ channels (Göpel et al., 2004, 2000; Gromada et al., 2004). In 

this view, electrical activity and global Ca2+ oscillations remain preserved during 

hyperglycemia, but the lower AP peak height associated with Na+ and L-type Ca2+ channel 

inactivation reduces P/Q-type Ca2+ channel mediated exocytosis. Here a Zn2+-induced 

depolarizing shift in the voltage-dependence of α-cell Cav2.3 channels could allow them to 

remain active during hyperglycemia, where they might be involved in maintaining electrical 

activity and global Ca2+ oscillations. Further studies will therefore be required to define both, 

the direction of Zn2+ effects on α-cell Cav2.3 channels during hyperglycemia, and their exact 

role for regulating glucagon secretion. 

Another interesting observation of our study was that isolated islets from Cav2.3-deficient 

mice exhibit increased basal insulin secretion and reduced insulin content but normal GSIS, 

while the peripheral insulin response in vivo was significantly reduced by about 50% in 

Cav2.3-deficient mice (Drobinskaya et al., 2015). A similar 50% decrease of second phase 

insulin secretion was previously observed during in situ perfusion of pancreata from Cav2.3-

deficient mice (Jing et al., 2005), suggesting that it is not related to increased postprandial 

insulin clearance. Instead, Cav2.3 channels could also be involved in Zn2+-induced autocrine 

feedback inhibition of basal insulin secretion, so that their ablation results in excessive 

insulin release and depleted insulin stores, akin to β-cell exhaustion in rodent models of type 

2 diabetes mellitus (T2DM) (Grill et al., 1987; Kergoat et al., 1987). In non-diabetic rats, 

transient upregulation of insulin release with tolbutamide to lower β-cell insulin contents has 

been shown to selectively reduce the second phase insulin response by about 50% 

(Hosokawa and Leahy, 1997).  Basal in vivo insulin secretion is only moderately increased in 

Cav2.3-deficient compared to wildtype mice (Jing et al., 2005; Matsuda et al., 2001; 

Pereverzev et al., 2005), suggesting that neurally mediated feedback loops or other islet-

extrinsic factors could partly counter-balance intrinsic hyperinsulinemia to keep insulin 
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levels below the detrimental range. Interestingly however, we also observed that Cav2.3-

deficient mice exhibit signs of pre-diabetes followed by a progressive loss of glycemic 

control, which is consistent with previous reports that these animals may develop symptoms 

of T2DM, such as insulin resistance, glucose intolerance and overweight (Matsuda et al., 

2001). As such, they could be a valuable model for certain aspects of human T2DM, an idea 

that is reinforced by several studies linking variants in the gene encoding Cav2.3 channels to 

impaired glucose homeostasis in human T2DM patients (Holmkvist et al., 2007; Muller et al., 

2007; Trombetta et al., 2012). In particular, in Pima Indians, where a variant of the human 

Cav2.3 gene has been linked young-onset T2DM (Muller et al., 2007), high fasting plasma 

insulin concentrations predicted T2DM independent of insulin resistance, pointing to a 

causative role of basal hyperinsulinemia (Weyer et al., 2000). Based on our findings, Zn2+ 

supplementation could possibly preserve glucose tolerance in these patients and provide a 

general interventional approach for certain patient populations with T2DM. 

3.5. Conclusion 

Endogenous trace metal ions are increasingly recognized as potential modulators of 

neuronal transmission and neuroendocrine function and have been implicated in a number 

of pathophysiological conditions. Our findings confirm and extent previous findings about 

the high sensitivity of Cav2.3 channels to physiologically relevant concentrations of Zn2+ or 

Cu2+ and indicate that multiple metal binding sites are likely to be involved in the action of 

trace metal ions on these channels. In addition, they provide evidence for a potential 

pathophysiological relevance of Zn2+-induced Cav2.3 channel modulation in the context of 

T2DM and possibly epilepsy. Finally, we have developed a preliminary model that 

reproduces most salient features of Cav2.3 channel currents in the absence of trace metals and 

can also account for the hallmarks of Zn2+-induced Cav2.3 channel modulation. While still far 

from complete, our model provides a quantitative framework for understanding Zn2+ effects 

on Cav2.3 channel function and a first step towards the application of computational 

approaches for predicting the complex effects of Zn2+ on neuronal excitability.    
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