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Abstract

The entropy conservative, curvilinear, nonconforming, p-refinement algorithm for hyperbolic conservation laws of Del Rey
Fernández et al. (2019), is extended from the compressible Euler equations to the compressible Navier–Stokes equations. A simple
and flexible coupling procedure with planar interpolation operators between adjoining nonconforming elements is used. Curvilinear
volume metric terms are numerically approximated via a minimization procedure and satisfy the discrete geometric conservation
law conditions. Distinct curvilinear surface metrics are used on the adjoining interfaces to construct the interface coupling terms,
thereby localizing the discrete geometric conservation law constraints to each individual element. The resulting scheme is entropy
conservative/stable, element-wise conservative, and freestream preserving. Viscous interface dissipation operators are developed
that retain the entropy stability of the base scheme. The accuracy and stability properties of the resulting numerical scheme are
shown to be comparable to those of the original conforming scheme (achieving ∼ p + 1 convergence) in the context of the viscous
shock problem, the Taylor–Green vortex problem at a Reynolds number of Re = 1, 600, and a subsonic turbulent flow past a sphere
at Re = 2, 000.

Keywords: compressible Navier–Stokes equations, nonconforming interfaces, nonlinear entropy stability, summation-by-parts
and simultaneous-approximation-terms, curved elements, unstructured grids

1. Introduction

For a certain class of partial differential equations (PDEs),
such as the linear wave propagation, high-order accurate meth-
ods are known to be more efficient than low order meth-
ods [1, 2]. Moreover, high-order methods are well suited to ex-
ploit the exascale concurrency on next generation hardware be-
cause their computational kernels are arithmetically dense and
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typically local (see, for instance, [3, 4]). Nevertheless, despite
their long history of development, their application to nonlinear
PDEs for practical application has been limited by robustness
issues, particularly in the context of h-, p-, and r-refinement al-
gorithms to better resolve multi-scale physics. Thus, nominally
second-order accurate discretization operators have dominated
commercial software development.

In the context of linear and variable coefficient problems,
the summation-by-parts (SBP) framework provides a system-
atic and discretization-agnostic methodology for the design
and analysis of arbitrarily high order, provably conservative
and stable numerical methods (see the review papers [5, 6]).
SBP operators are matrix difference operators that come en-
dowed with a high-order accurate approximation to integra-
tion by parts (IBP) that telescopes (i.e., results in boundary
terms). Over each element, the mimetic and telescoping prop-
erties allow a one-to-one match between discrete and contin-
uous stability proofs. The stability of the full spatial dis-
cretization is achieved by combining the local SBP mechan-
ics with suitable inter-element coupling and boundary condi-
tions procedures (e.g., the simultaneous approximation terms
(SATs) [7, 8, 9, 10, 11, 12, 13, 14, 15]).

For nonlinear problems, a provable stability analysis and
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general theory at the discrete level has remained far more elu-
sive. Nonetheless, progress has been made, in particular, Tad-
mor [16] developed entropy conservative/stable low order fi-
nite volume schemes that achieve entropy conservation by us-
ing two-point flux functions that when contracted with the
entropy variables result in a telescoping entropy flux. En-
tropy stability results by adding appropriate dissipation. Via
the telescoping property, the continuous L2 entropy stability
analysis is mimicked by the semi-discrete stability analysis
(for a complete exposition of these ideas, see Tadmor [17]).
The essence of Tadmor’s approach resulted in the construc-
tion of numerous entropy stable schemes. For example, Fjord-
holm et al. [18] have constructed high-order accurate essen-
tially non-oscillatory schemes and Ray et al. [19] have con-
structed low-order accurate unstructured finite volume dis-
cretizations.

Fisher and co-authors extended Tadmor’s approach to fi-
nite domains by combining the SBP framework with Tadmor’s
two point flux functions [20, 21, 22] to construct entropy sta-
ble semi-discrete schemes (see also the related work [23, 24]).
Since then, these ideas have been extended in numerous ways
(e.g. Refs. [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]).
This combination is attractive because it inherits all of the me-
chanics of SBP schemes for the imposition of boundary con-
ditions and inter-element coupling and therefore gives a sys-
tematic methodology for discretizing problems on complex ge-
ometries [25, 14]. Furthermore, the resulting discrete stabil-
ity proofs do not rely on the assumption of exact integration
(see for example the work of Hughes et al. [38]). Recently,
these ideas have been extended to achieve fully-discrete ex-
plicit entropy stable schemes for the compressible Euler [39]
and Navier–Stokes equations [40].

An alternative approach, developed by Olsson and
Oliger [41], Gerritsen and Olsson [42] and Yee et al. [43]
(see also [44, 24]), is based upon choosing entropy functions
that result in a homogeneity property on the compressible
Euler fluxes. Using this property, the Euler fluxes can be split
such that when contracted with the entropy variables stability
estimates result that are analogous in form to energy estimates
obtained for linear PDEs.

The objective herein, is to construct entropy stable discretiza-
tions for the compressible Navier–Stokes equations (NSE), ap-
plicable to high-order accurate p-adaptivity. The work is a nat-
ural extension of the entropy stable p-refinement algorithm for
the compressible Euler equations in Refs. [45, 46]. The inviscid
terms in the NSE are discretized without modifications using an
existing approach [25, 47, 14, 27]. The inviscid discretization
requires two sets of metrics: 1) volume metrics determined nu-
merically by solving a discrete Geometric Conservation Law
(GCL) constraint, and 2) surface metric terms that are speci-
fied. Viscous terms are discretized using a local discontinuous
Galerkin (LDG) approach, plus interior penalty (IP) dissipation
included on interfaces. The discretization of the viscous terms
is a natural extension of the curvilinear LDG-IP approaches
found in [25, 47, 14, 27], to include non-conforming interfaces,
and are entropy stable by construction.

The contributions of the paper are summarized as follows:

• The LDG-IP approach in Refs. [25, 47, 14, 27] is applied
and extended to the curvilinear nonconforming interface
problem.

– The viscous operator, written in terms of the entropy
variables, is discretized using an LDG approach with
macro-element discretizations. A provably stable
quadratic form results, provided that identical met-
rics are used in (both) curvilinear transformations.

– Viscous interface dissipation (the IP terms) are a gen-
eralization of the inviscid nonconforming interface
dissipation. A novel average of on-element and in-
terpolated off-element data leads immediately to an
entropy stable IP term.

– The resulting scheme is entropy stable and
freestream preserving.

• Numerical evidence is provided demonstrating that the
nonconforming algorithm 1) retains similar non-linear ro-
bustness properties and 2) achieves similar L2-norm con-
vergence rates, i.e., ∼ p + 1 (where p is the highest degree
polynomial exactly differentiated by the differentiation op-
erator) as that of the original nonlinearly stable conform-
ing algorithm [25, 27]

The paper is organized as follows. Section 2 delineates the
notation used herein. Section 3 reviews the nonconform-
ing algorithm for hyperbolic conservation laws of Del Rey
Fernández et al. [45, 48] in the context of the linear convec-
tion equation. The extension to viscous terms is demonstrated
by considering the convection-diffusion equation. The applica-
tion of the nonconforming algorithm to the viscous components
of the compressible Navier–Stokes equations is detailed in Sec-
tion 4 while numerical experiments are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. Notation

The notation used herein is identical to that in [45]; readers
familiar with the notation can skip to Section 3. PDEs are dis-
cretized on cubes having Cartesian computational coordinates
denoted by the triple (ξ1, ξ2, ξ3), where the physical coordinates
are denoted by the triple (x1, x2, x3). Vectors are represented by
lowercase bold font, for example u, while matrices are repre-
sented using sans-serif font, for example, B. Continuous func-
tions on a space-time domain are denoted by capital letters in
script font. For example,

U (ξ1, ξ2, ξ3, t) ∈ L2 ([
α1, β1

]
×

[
α2, β2

]
×

[
α3, β3

]
× [0,T ]

)
represents a square integrable function, where t is the temporal
coordinate. The restriction of such functions onto a set of mesh
nodes is denoted by lower case bold font. For example, the
restriction of U onto a grid of N1 × N2 × N3 nodes is given by
the vector

u =
[
U

(
ξ(1), t

)
, . . . ,U

(
ξ(N), t

)]T
,
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where, N is the total number of nodes (N ≡ N1N2N3) square
brackets ([]) are used to delineate vectors and matrices as well
as ranges for variables (the context will make clear which mean-
ing is being used). Moreover, ξ is a vector of vectors con-
structed from the three vectors ξ1, ξ2, and ξ3, which are vectors
of size N1, N2, and N3 and contain the coordinates of the mesh
in the three computational directions, respectively. Finally, ξ is
constructed as

ξ(3(i − 1) + 1 : 3i) ≡ ξ(i) ≡
[
ξ1(i), ξ2(i), ξ3(i)

]T ,

where the notation u(i) means the ith entry of the vector u and
u(i : j) is the subvector constructed from u using the ith through
jth entries (i.e., Matlab notation is used).

Oftentimes, monomials are discussed and the following no-
tation is used:

ξ j
l ≡

[
(ξl(1)) j , . . . , (ξl(Nl)) j

]T
,

and the convention that ξ j
l = 0 for j < 0 is used.

Herein, one-dimensional SBP operators are used to discretize
derivatives. The definition of a one-dimensional SBP operator
in the ξl direction, l = 1, 2, 3, is [49, 5, 6]

Definition 1. Summation-by-parts operator for the first
derivative: A matrix operator, D(1D)

ξl
∈ RNl×Nl , is an SBP opera-

tor of degree p approximating the derivative ∂
∂ξl

on the domain
ξl ∈

[
αl, βl

]
with nodal distribution ξl having Nl nodes, if

1. D(1D)
ξl
ξ j

l = jξ j−1
l , j = 0, 1, . . . , p;

2. D(1D)
ξl
≡

(
P(1D)
ξl

)−1
Q(1D)
ξl

, where the norm matrix, P(1D)
ξl

, is
symmetric positive definite;

3. Q(1D)
ξl

≡
(
S(1D)
ξl

+ 1
2 E(1D)

ξl

)
, S(1D)

ξl
= −

(
S(1D)
ξl

)T
, E(1D)

ξl
=(

E(1D)
ξl

)T
, E(1D)

ξl
= diag (−1, 0, . . . , 0, 1) = eNl eT

Nl
− e1l eT

1l
,

e1l ≡ [1, 0, . . . , 0]T, and eNl ≡ [0, 0, . . . , 1]T.

Thus, a degree p SBP operator is one that differentiates exactly
monomials up to degree p.

In this work, one-dimensional SBP operators are extended
to multiple dimensions using tensor products (⊗). The tensor
product between the matrices A and B is given as A ⊗ B. When
referencing individual entries in a matrix the notation A(i, j) is
used, which means the ith jth entry in the matrix A.

The focus in this paper is exclusively on diagonal-norm SBP
operators. Moreover, the same one-dimensional SBP opera-
tor are used in each direction, each operating on N nodes.
Specifically, diagonal-norm SBP operators constructed on the
Legendre–Gauss–Lobatto (LGL) nodes are used, i.e., a discon-
tinuous Galerkin collocated spectral element approach is uti-
lized.

The physical domain Ω ⊂ R3, with boundary Γ ≡ ∂Ω is
partitioned into K non-overlapping hexahedral elements. The
domain of the κth element is denoted by Ωκ and has boundary
∂Ωκ. Numerically, PDEs are solved in computational coordi-
nates, where each Ωκ is locally transformed to Ω̂κ, with bound-
ary Γ̂ ≡ ∂Ω̂κ, under the following assumption:

Assumption 1. Each element in physical space is transformed
using a local and invertible curvilinear coordinate transfor-
mation that is compatible at shared interfaces, meaning that
points in computational space on either side of a shared inter-
face mapped to the same physical location and therefore map
back to the analogous location in computational space; this is
the standard assumption that the curvilinear coordinate trans-
formation is water tight.

3. A p-nonconforming algorithm: Linear convection-
diffusion equation

The focus in this paper is on curvilinearly mapped elements
with conforming interfaces but nonconforming nodal distri-
butions, as occurs, for example, in p-refinement. The con-
struction of entropy conservative/stable discretizations for the
compressible Euler equations on Cartesian grids is detailed in
Friedrich et al. [46]. The extension to curvilinear coordinates
is covered in [45, 48] where a p-refinement, curvilinear, inter-
face coupling technique that maintains 1) accuracy, 2) discrete
entropy conservation/stability, and 3) element-wise conserva-
tion is presented. Herein, the technology presented in [45, 48]
is extended to the discretization of the viscous portion of the
compressible Navier–Stokes equations.

3.1. Scalar convection-diffusion equation: Continuous and
semi-discrete analysis

Many of the technical challenges in constructing conserva-
tive and stable nonconforming discretizations for the compress-
ible Navier–Stokes equations are also present in the discretiza-
tion of the linear convection-diffusion equation. For this reason,
the interface coupling procedure for the inviscid terms shown
in [45, 48] as well as their extension to viscous terms (the fo-
cus of this paper) is presented in the context of this simple lin-
ear scalar equation. The linear convection-diffusion equation in
Cartesian coordinates is given as

∂U

∂t
+

3∑
m=1

∂ (amU)
∂xm

=

3∑
m=1

∂2(bmU)
∂x2

m
, (1)

where (amU) are the inviscid fluxes, am are the (constant) com-
ponents of the convection speed, ∂(bmU)

∂xm
are the viscous fluxes,

and bm are the (constant and positive) diffusion coefficients.
The energy method can be used to determine the stability of (1).
It proceeds by multiplying (1) by the solution, (U), and after
using the chain rule yields

1
2
∂U2

∂t
+

1
2

3∑
m=1

∂
(
amU

2
)

∂xm
=

3∑
m=1

 ∂

∂xm

(
U
∂(bmU)
∂xm

)
−

(
∂(bmU)
∂xm

)2
 .
(2)

Integrating over the domain, Ω, using the integration by parts,
and the Leibniz rule yields

d
dt

∫
Ω

U2

2
dΩ+

1
2

3∑
m=1

∮
Γ

{(
amU

2
)
− 2U

(bmU)
∂xm

}
nxm dΓ + 2

∫
Ω

(
∂(bmU)
∂xm

)2

dΩ

 = 0,

(3)
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with nxm the mth component of the outward facing unit normal.
Eq. (3) demonstrates that the time rate of change of the norm
of the solution, ‖U‖2 ≡

∫
Ω
U2dΓ, depends on surface flux inte-

grals and a viscous dissipation term. Therefore, if appropriate
boundary conditions are imposed, Eq. (3) leads to an energy es-
timate on the solution and, hence, a proof of stability. The SBP
framework used in this paper mimics the above energy stability
analysis in a one-to-one fashion and leads to similar stability
statements on the semi-discrete equations.

Derivatives are approximated using differentiation matrices
that are defined in computational space and for this purpose,
Eq. (1) is transformed using the curvilinear coordinate transfor-
mation xm = xm (ξ1, ξ2, ξ3). Thus, after expanding the deriva-
tives with the chain rule as

∂

∂xm
=

3∑
l=1

∂ξl

∂xm

∂

∂ξl
,

∂2

∂x2
m

=

3∑
l,a=1

∂ξl

∂xm

∂

∂ξl

(
∂ξa

∂xm

∂

∂ξa

)
,

and multiplying by the metric Jacobian, (Jκ), (1) becomes

Jκ

∂U

∂t
+

3∑
l,m=1

Jκ

∂ξl

∂xm

∂ (amU)
∂ξl

=

3∑
l,a,m=1

Jκ

∂ξl

∂xm

∂

∂ξl

(
∂ξa

∂xm

∂(bmU)
∂ξa

)
.

(4)
Herein, Eq. (4) is referenced as the chain rule form of Eq. (1).

Bringing the metric terms, Jκ
∂ξl
∂xm

, inside the derivative and us-
ing again the chain rule gives

Jκ

∂U

∂t
+

3∑
l,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm
amU

)
−

3∑
l,m=1

amU
∂

∂ξl

(
Jκ

∂ξl

∂xm

)
=

3∑
l,a,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm

∂ξa

∂xm

∂(bmU)
∂ξa

)
−

3∑
l,a,m=1

∂ξa

∂xm

∂(bmU)
∂ξa

∂

∂ξl

(
Jκ

∂ξl

∂xm

)
.

(5)

The last terms on the left- and right-hand sides of (5) is zero
via the GCL relations

3∑
l=1

∂

∂ξl

(
Jκ

∂ξl

∂xm

)
= 0, m = 1, 2, 3, (6)

leading to the strong conservation form of the convection-
diffusion equation in curvilinear coordinates:

Jκ

∂U

∂t
+

3∑
l,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm
amU

)
=

3∑
l,a,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm

∂ξa

∂xm

∂(bmU)
∂ξa

)
.

(7)

Now, consider discretizing Eq. (7) by using the following dif-
ferentiation matrices:

Dξ1 ≡ D(1D)⊗IN⊗IN , Dξ2 ≡ IN⊗D(1D)⊗IN , Dξ3 ≡ IN⊗IN⊗D(1D),

where IN is an N × N identity matrix. The diagonal matrices
containing the metric Jacobian and metric terms along their di-
agonals, respectively, are defined as follows:

Jκ ≡ diag
(
Jκ(ξ(1)), . . . ,Jκ(ξ(Nκ))

)
,[

J
∂ξl

∂xm

]
κ

≡ diag
(
Jκ

∂ξl

∂xm
(ξ(1)), . . . ,Jκ

∂ξl

∂xm
(ξ(Nκ))

)
,

where Nκ ≡ N3 is the total number of nodes in element κ. Using
this nomenclature, the discretization of (7) on the κth element
reads

Jκ
duκ
dt

+

3∑
l,m=1

Dξl

[
J
∂ξl

∂xm

]
κ

uκ =

3∑
l,m,a=1

bmDκ
ξl

J−1
κ

[
J
∂ξl

∂xm

]
κ

[
J
∂ξa

∂xm

]
κ

Dκ
ξa

uκ + SAT,

(8)

where SAT is the vector of the SATs used to impose both
boundary conditions and/or inter-element connectivity. Unfor-
tunately, the scheme (8) is not guaranteed to be stable. How-
ever, a well-known remedy is to canonically split the inviscid
terms into one half of the inviscid terms in (4) and one half of
the inviscid terms in (5) (see, for instance, [47]), while the vis-
cous terms are treated in strong conservation form. This process
leads to

Jκ

∂U

∂t
+

1
2

3∑
l,m=1

{
∂

∂ξl

(
Jκ

∂ξl

∂xm
amU

)
+Jκ

∂ξl

∂xm

∂

∂ξl
(amU)

}

−
1
2

3∑
l,m=1

{
amU

∂

∂ξl

(
Jκ

∂ξl

∂xm

)}
=

3∑
l,a,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm

∂ξa

∂xm

∂(bmU)
∂ξa

)
,

(9)

where the last set of terms on the left-hand side are zero by
the GCL conditions (32). Then, a stable semi-discrete form is
constructed in the same manner as the split form (9) by dis-
cretizing the inviscid portion of (4) and (7) using Dξl , Jκ, and[
J

∂ξl
∂xm

]
κ
, and averaging the results, while the viscous terms are

the discretization of the viscous portion of (7). This procedure
yields

Jκ
duκ
dt

+
1
2

3∑
l,m=1

am

{
Dξl

[
J
∂ξl

∂xm

]
κ

+

[
J
∂ξl

∂xm

]
κ

Dξl

}
uκ

−
1
2

3∑
l,m=1

{
am diag (uκ) Dξl

[
J
∂ξl

∂xm

]
κ

1κ
}

=

3∑
l,m,a=1

bmDκ
ξl

J−1
κ

[
J
∂ξl

∂xm

]
κ

[
J
∂ξa

∂xm

]
κ

Dκ
ξa

uκ,

(10)

where 1κ is a vector of ones of the size of the number of nodes
on the κth element (the SATs have been ignored as they are not
important for the current analysis). As in the continuous case,
the semi-discrete form has a set of discrete GCL conditions

3∑
l=1

Dξl

[
J
∂ξl

∂xm

]
κ

1κ = 0, m = 1, 2, 3, (11)

that if satisfied, lead to the following telescoping (provably sta-
ble) semi-discrete form

Jκ
duκ
dt

+
1
2

3∑
l,m=1

am

{
Dξl

[
J
∂ξl

∂xm

]
κ

+

[
J
∂ξl

∂xm

]
κ

Dξl

}
uκ =

3∑
l,m,a=1

bmDκ
ξl

J−1
κ

[
J
∂ξl

∂xm

]
κ

[
J
∂ξa

∂xm

]
κ

Dκ
ξa

uκ.

(12)
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Remark 1. The linear stability of semi-discrete operators for
constant coefficient hyperbolic systems, is not preserved by ar-
bitrary design order approximations to the metric terms. Only
approximations to the metric terms that satisfy the discrete GCL
conditions (11) lead to stable semi-discrete forms. In Del Rey
Fernández et al. [45] full details on how to approximate the
metric terms for inviscid terms for nonconforming meshes are
given; in the remainder of the paper it is assumed that the met-
ric terms used to discretize inviscid terms satisfy (11).

3.2. Scalar convection-diffusion equation and the nonconform-
ing interface

The nonconforming semi-discrete algorithms are presented
in a simplified setting by considering a single interface be-
tween two adjoining elements as shown in Figure 1. The el-
ements share a vertical interface and without loss of gener-
ality are assumed to have aligned coordinates. The noncon-
formity is assumed to arise from local approximations with
differing polynomial degrees (the analysis is equally valid for
other contexts such as finite difference blocks with conform-
ing faces but differing numbers of nodes). Specifically, the left
element has polynomial degree pL (low: subscript/superscript
L) and the right element has polynomial degree pH (high: sub-
script/superscript H) where pH > pL (see Figure 1).

Low element: pL, uL,
DL
ξl

, +side
High element: pH, uH,
DH
ξl

, -side

ξ1

ξ3

ξ2

Figure 1: Two nonconforming elements.

3.2.1. Review of the inviscid coupling procedure
First, the energy stable discretization appropriate for hyper-

bolic conservation laws presented in [45, 48] is reviewed. Thus,
we consider the discretization of the pure convection equation
written as

Jκ
∂U

∂t
+

1
2

3∑
l,m=1

{
∂

∂ξl

(
Jκ

∂ξl

∂xm
amU

)
+Jκ

∂ξl

∂xm

∂

∂ξl
(amU)

}

−
1
2

3∑
l,m=1

{
amU

∂

∂ξl

(
Jκ

∂ξl

∂xm

)}
= 0.

(13)

The basic idea is to construct a macro SBP operator that spans
both elements. A naive construction is the following operators
assembled for the three coordinate directions:

D̃ξ1 ≡

[
DL
ξ1

DH
ξ1

]
, D̃ξ2 ≡

[
DL
ξ2

DH
ξ2

]
, D̃ξ3 ≡

[
DL
ξ3

DH
ξ3

]
.

(14)

While the D̃ξ2 and D̃ξ3 macro element operators are by con-
struction SBP operators, the D̃ξ1 is not by construction an SBP
operator, despite the individual matrices composing D̃ξ1 being
SBP operators. Moreover, the D̃ξ1 operator provides no cou-
pling between the two elements. To remedy both problems,
special interface coupling must be introduced between the two
elements. For this purpose, interpolation operators are needed
that interpolate information from the H element to the L ele-
ment and vice versa. For simplicity, the interpolation operators
use only tensor product surface information from the adjoining
interface surface.

With this background, the general matrix difference opera-
tors between the two elements are constructed as

D̃ξl = P̃−1Q̃ξl = P̃−1
(
S̃ξl +

1
2

Ẽξl

)
. (15)

The D̃ξl , l = 1, 2 matrices satisfy the above decomposition and
therefore are SBP. What is necessary is to modify the D̃ξ1 oper-
ator. Consider the following modifications:

P̃ ≡ diag
[

PL

PH

]
,

S̃ξ1 ≡[
SL
ξ1

S̃12

S̃21 SH
ξ1

]
,

S̃12 ≡
1
2

(
eNL eT

1H
⊗ P(1D)

L I(1D)
HtoL ⊗ P(1D)

L I(1D)
HtoL

)
,

S̃21 ≡ −
1
2

(
e1H eT

NL
⊗ P(1D)

H I(1D)
LtoH ⊗ P(1D)

H I(1D)
LtoH

)
,

Ẽξ1 ≡ −e1L eT
1L
⊗ P(1D)

L ⊗ P(1D)
L

eNH eT
NH
⊗ P(1D)

H ⊗ P(1D)
H

 ,

(16)

and I(1D)
HtoL and I(1D)

LtoH are one-dimensional interpolation operators
from the H element to the L element and vice versa.

In order for D̃ξ1 to be SBP, S̃ξ1 must be skew-symmetric. The
block-diagonal matrices in S̃ξ1 are already skew-symmetric but
the off diagonal blocks are not. A careful examination reveals
that the interpolation operators need to be related in the follow-
ing manner:

I(1D)
HtoL =

(
P(1D)

L

)−1 (
I(1D)
LtoH

)T
P(1D)

H . (17)

Such interpolation operators are denoted as SBP preserving be-
cause they lead to a macro element differentiation matrix that
is an SBP operator. The interpolation operator, I(1D)

LtoH, is con-
structed to exactly interpolate polynomial of degree pL and can
be easily built as follows:

I(1D)
LtoH =

[
ξ0

H, . . . , ξ
pL
H

] [
ξ0

L, . . . , ξ
pL
L

]−1
,

where ξL and ξH are the one-dimensional nodal distributions in
computational space of the two elements. The companion in-
terpolation operator I(1D)

HtoL is sub-optimal by one degree (pL−1),
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as a result of satisfying the necessary SBP-preserving property
(see Friedrich et al. [46] for a thorough discussion).

The semi-discrete skew-symmetric split operator given in
Eq. (10), discretized using the macro element operators D̃ξl , and
metric information J,

[
J

∂ξl
∂xm

]
, leads to the following:

J
dũ
dt

+
1
2

3∑
l,m=1

am

(
D̃ξl

[
J
∂ξl

∂xm

]
+

[
J
∂ξl

∂xm

]
D̃ξl

)
ũ

−
1
2

3∑
l,m=1

am diag
(
ũ
)
D̃ξl

[
J
∂ξl

∂xm

]
1̃ = 0,

(18)

where

ũ ≡
[
uT

L,u
T
H

]T
, J ≡ diag

[
JL

JH

]
,[

J
∂ξl

∂xm

]
≡


[
J

∂ξl
∂xm

]
L [
J

∂ξl
∂xm

]
H

 . (19)

As for the case in Eq. (10), a necessary condition for stabil-
ity is that the metric terms satisfy the following discrete GCL
conditions:

3∑
l=1

D̃ξl

[
J
∂ξl

∂xm

]
1̃ = 0. (20)

Recognizing that D̃ξ1 is not a tensor product operator, discrete
metrics constructed using the analytic formalism of Vinokur
and Yee [50] or Thomas and Lombard [51] will not in general
satisfy the discrete GCL conditions Eq. (20). The only viable
alternative is to solve for discrete metrics that directly satisfy
such GCL constraints.

Remark 2. Note that metric terms are assigned colors; e.g.,
the time-term Jacobian: J or the volume metric terms:

[
J

∂ξl
∂xm

]
.

Metric terms with common colors form a clique and must be
formed consistently. For example, the time-term Jacobian and
the volume metric Jacobian need not be equivalent. Another
important clique: the surface metrics, are introduced next.

The discrete GCL system (20) fully couples the approxima-
tion of the metrics in elements L and H. Implementation, how-
ever, is facilitated by decoupling the GCL computations into in-
dividual element-wise contributions. Examination of the skew-
symmetric split, curvilinear derivative operator reveals how this

is achieved. The derivative operator may be expressed as

P̃
(
D̃ξ1

[
J
∂ξ1

∂xm

]
+

[
J
∂ξ1

∂xm

]
D̃ξ1

)
=[

A11 A12
−AT

12 A22

]
+

(
Ẽξ1

[
J
∂ξ1

∂xm

]
+

[
J
∂ξ1

∂xm

]
Ẽξ1

)
,

A11 ≡

{
SL
ξ1

[
J
∂ξ1

∂xm

]
L

+

[
J
∂ξ1

∂xm

]
L

SL
ξ1

}
,

A12 =
1
2


[
J

∂ξ1
∂xm

]
L

(
eNL eT

1H
⊗ P(1D)

L I(1D)
HtoL ⊗ P(1D)

L I(1D)
HtoL

)
+

(
eNL eT

1H
⊗ P(1D)

L I(1D)
HtoL ⊗ P(1D)

L I(1D)
HtoL

) [
J

∂ξ1
∂xm

]
H

 ,
A22 ≡

{
SH
ξ1

[
J
∂ξ1

∂xm

]
H

+

[
J
∂ξ1

∂xm

]
H

SH
ξ1

}
,

(21)

with inter-element coupling appearing in the off-diagonal
blocks A12 and −AT

12. Replacing the highlighted off-diagonal
metric terms in (21) with known metric data, decouples the
GCL computation into two element-wise computations. The
off-diagonal metric data then become forcing terms for indi-
vidual GCL computations in each element. Note that the “sur-
face metrics” appearing in the off-diagonal blocks need not be
equivalent to those used for the volume metrics that appear on
the surfaces.

Construction details for the volume and surface metric terms
appear in [45, 48]. Careful specification of these terms is es-
sential when developing (non)linearly stable discretizations for
hyperbolic equations in curvilinear coordinates. The relevant
steps are summarized as follows:

• The highlighted surface metric terms are specified using
analytic metrics, resulting in two decoupled GCL compu-
tations.

• Each discrete GCL system is highly underdetermined and
is solved using an optimization approach that minimizes
the difference between the numerical and analytic volume
metrics

In contrast, the viscous terms need only use consistent metrics.
Further remarks are included in Section 4.2.

3.2.2. Extension to the convection-diffusion equation
In this section, with the inviscid terms appropriately dis-

cretized, the extension of these ideas to the viscous terms is de-
tailed. To make the presentation easier, and to match what will
later be done for the compressible Navier–Stokes equations, the
inviscid and IP terms are lumped into the terms Inv and IP, re-
spectively, while the viscous terms are simplified. Thus, Eq. (9)
reduces to

Jκ
∂U

∂t
+ Inv =

3∑
l,a=1

∂

∂ξl

(
Ĉl,aΘa

)
+ IP,

Ĉl,a ≡

3∑
m=1

Jκ
∂ξl

∂xm

∂ξa

∂xm
bm, Θa ≡

∂U

∂ξa
.

(22)
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A local discontinuous Galerkin (LDG) and interior penalty ap-
proach (IP) approach is used (see references [25, 47, 14, 27]).
The IP term is discussed in detail in Section 4.2.1. In the LDG
approach, the discretization of the viscous terms in Eq. (22)
proceeds in two steps. First, the gradients Θa are discretized,
then the derivatives of the viscous fluxes are discretized. Notice
that all of the metric terms are contained in the Ĉl,a term and
therefore the critical technology required for stability is to use
the SBP preserving macro element previously presented. Thus,
the discretization reads

dũ
dt

+ Inv =

3∑
l,a=1

D̃ξl

[
Ĉl,a

]
θ̃a + IP, θ̃a = D̃ξa ũ, (23)

where the inviscid terms are contained in Inv. The next theo-
rem demonstrates that the proposed discretization of the viscous
terms both telescopes the viscous fluxes to the boundary and
adds a dissipative term (thus mimicking the continuous energy
analysis and also resulting in a provably stable discretization
modulo appropriate boundary SATs).

Theorem 1. Assume that the inviscid terms, Inv, are discretized
as in Section 3.2 and neglect the IP term from the analysis. Then
the discretization (23) leads to a telescoping form that under the
assumption of appropriate boundary SATs is provably stable.

Proof. The semi-discrete analysis proceeds as in the continu-
ous case (the inviscid terms are completely dropped as they are
assumed to be correctly constructed). Multiplying Eq. (22) by
ũTP̃ gives

ũTP̃
dũ
dt

=

3∑
l,a=1

ũTP̃D̃ξl

[
Ĉl,a

]
D̃ξa ũ. (24)

Using the SBP property Q̃ξl = −Q̃T
ξl

+ Ẽξl , (24) reduces to

ũTP̃
dũ
dt

=

3∑
l,a=1

ũTẼξl

[
Ĉl,a

]
D̃ξa ũ −

3∑
l,a=1

(
D̃ξl ũ

)T
P̃

[
Ĉl,a

]
D̃ξa ũ.

(25)
The first term on the right-hand side is the discrete equivalent
of ∮

Γ̂

3∑
l,a=1

(
Ĉl,aU

∂U

∂ξa

)
nξl dΓ̂

and appropriate SATs need to be imposed to obtain an energy
estimate. The second term on the right-hand side is the discrete
equivalent to

−

∮
Ω̂

3∑
l,a=1

Ĉl,a

(
∂U

∂ξl

) (
∂U

∂ξa

)
dΩ̂,

and is negative semi-definite.

4. Application to the compressible Navier–Stokes equations

In this section, first the entropy stability of the continuous
compressible Navier–stokes equations is reviewed. Then, the

nonconforming algorithm for the diffusion equation is applied
to the viscous terms of the compressible Navier–Stokes equa-
tions. In order to obtain an entropy stable formulation, the
viscous terms are recast in terms of entropy variables, thereby
leading to a quadratic form that matches in form the terms in
the diffusion equation. This allows a direct application of the
algorithm for the diffusion equation to the compressible viscous
terms and entropy stability is proven in an analogous fashion to
linear stability.

4.1. Review of the continuous entropy analysis

The entropy stable algorithm discretizes the skew-symmetric
form (in terms of the metric terms) of the compressible Navier–
Stokes equations, which are given as

Jκ
∂Qκ
∂t

+

3∑
l,m=1

1
2
∂

∂ξl

(
Jκ

∂ξl

∂xm
F

I
xm

)
+

1
2
Jκ

∂ξl

∂xm

∂F I
xm

∂ξl
=

3∑
l,m=1

∂

∂ξl

(
Jκ

∂ξl

∂xm
F

V
xm

)
.

(26)

The vectors Q, F I
xm

, and F V
xm

are the conserved variables, the
inviscid fluxes, and the viscous fluxes, respectively. The vector
of conserved variables is given by

Q =
[
ρ, ρU1, ρU2, ρU3, ρE

]T ,

where ρ denotes the density,U = [U1,U2,U3]T is the velocity
vector, and E is the specific total energy. The inviscid fluxes are
given as

F
I
xm

=
[
ρUm, ρUmU1 + δm,1P, ρUmU2 + δm,2P,

ρUmU3 + δm,3P, ρUmH
]T ,

where P is the pressure,H is the specific total enthalpy and δi, j

is the Kronecker delta.
The required constituent relations are

H = cPT +
1
2
U

T
U, P = ρRT , R =

Ru

Mw
,

where T is the temperature, Ru is the universal gas constant,
Mw is the molecular weight of the gas, and cP is the specific
heat capacity at constant pressure. Finally, the specific thermo-
dynamic entropy is given as

s =
R

γ − 1
log

(
T

T∞

)
− R log

(
ρ

ρ∞

)
, γ =

cp

cp − R
,

where T∞ and ρ∞ are the reference temperature and density, re-
spectively (the stipulated convention has been broken here and
s has been used rather thanS for reasons that will be clear next).

The viscous fluxes, F V
xm

, is given as

F
V
xm

=

0, τ1,m, τ2,m, τ3,m,

3∑
i=1

τi,mUi − κ
∂T

∂xm


T

. (27)
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The viscous stresses are defined as

τi, j = µ

∂Ui

∂x j
+
∂U j

∂xi
− δi, j

2
3

3∑
n=1

∂Un

∂xn

 , (28)

where µ(T ) is the dynamic viscosity and κ(T ) is the thermal
conductivity (not to be confused with the choice of parameter
for element numbering).

The compressible Navier–Stokes equations given in (26)
have a convex extension, that when integrated over the physi-
cal domain, Ω, depends only on the boundary data and negative
semi-definite dissipation terms. This convex extension depends
on an entropy function, S, that is constructed from the thermo-
dynamic entropy as

S = −ρs,

and provides a mechanism for proving stability in the L2 norm.
The entropy variables: W, are an alternate variable set related
to the conservative variables via a one-to-one mapping. They
are defined in terms of the entropy function S by the relation
W

T = ∂S/∂Q. The entropy variables are used extensively
in the stability proofs to follow. They also have the property
that they simultaneously symmetrize the inviscid and the vis-
cous flux Jacobians in all spatial directions. Greater details on
continuous entropy analysis is available elsewhere [52, 53, 47].

The proof of entropy stability for the viscous terms in the
compressible Navier–Stokes equations (26) is most readily
demonstrated by exploiting the symmetrizing properties of the
entropy variables: W ≡ ∂S/∂Q. Recasting the viscous fluxes
in the entropy variables results in

F
V
xm

=

3∑
j=1

Cm, j
∂W

∂x j
, (29)

with the flux Jacobian matrices satisfying Cm, j = (C j,m)T. Thus,
transforming (29) to curvilinear coordinates and substituting
the result into (26), results in the form of the Navier–Stokes
equations which is discretized:

Jκ
∂Qκ
∂t

+

3∑
l,m=1

1
2
∂

∂ξl

(
Jκ

∂ξl

∂xm
F xl

)
+

1
2
Jκ

∂ξl

∂xm

∂F xm

∂ξl
=

3∑
l,a=1

∂

∂ξl

(
Ĉl,a

∂W

∂ξa

)
,

(30)

where

Ĉl,a = Jκ
∂ξl

∂xm

3∑
m, j=1

Cm, j
∂ξa

∂x j
. (31)

The symmetric properties of the viscous flux Jacobians is pre-
served by the rotation into curvilinear coordinates: i.e., Ĉl,a =

(Ĉa,l)
T
. See [20, 13] for more details on their construction. This

form of the compressible Navier–Stokes equations, i.e., skew-
symmetric form plus the quadratic form of the viscous terms,
is necessary for the construction of the entropy stable schemes
developed in this paper. Note that the geometric conservation

laws (GCL) are used to obtain the skew-symmetric form from
the divergence form of the Navier–Stokes equations:

3∑
l=1

∂

∂ξl

(
Jκ

∂ξl

∂xm

)
= 0, m = 1, 2, 3. (32)

For simplicity, the continuous entropy stability analysis is
performed on the Cartesian form of the Navier–Stokes equa-
tions, given as

∂Q

∂t
+

3∑
m=1

∂F xm

∂xm
=

3∑
m, j=1

∂

∂xm

(
Cm, j

∂W

∂x j

)
. (33)

Assuming the entropy S is convex (this is guaranteed if ρ, T >
0), then the vector of entropy variables, W, simultaneously
contracts all the spatial fluxes as follows (see [22, 25, 13, 45]
and the references therein for more information):

∂S

∂Q

∂F xm

∂xm
=
∂S

∂Q

∂F xm

∂Q

∂Q

∂xm
=
∂Fxm

∂Q

∂Q

∂xm
=
∂Fxm

∂xm
, m = 1, 2, 3,

(34)
where the scalars Fxm (Q) are the entropy fluxes in the xm-
direction. Therefore, multiplying (33) byWT, integrating over
space gives∫

Ω

WT ∂Q

∂t
+

3∑
m=1

∂Fxm

∂xm

 dΩ =

∫
Ω

W
T

 3∑
m, j=1

∂

∂xm

(
Cm, j

∂W

∂x j

) dΩ.

(35)

The left-hand side of (35) reduces using (34) and WT ∂Q
∂t =

∂S
∂Q

∂Q
∂t = ∂S

∂t ; integration by parts is used on the right-hand side
to obtain∫

Ω

∂S

∂t
dΩ +

∮
Γ

3∑
m=1

Fxm nxm dΓ =

∮
Γ

 3∑
m, j=1

W
TCm, j

∂W

∂ξl
nxm

 dΓ −

∫
Ω

 3∑
m, j=1

∂WT

∂xm
Cm, j

∂W

∂x j

 dΩ.

(36)

Exploiting the symmetries of the Cm, j matrices, the last term on

the right-hand side of (36), i.e.
∫

Ω

 3∑
m, j=1

∂WT

∂xm
Cm, j

∂W

∂x j

 dΩ =∫
Ω

CdΩ, can be recast as

C ≡ −

[
∂WT

∂x1
,
∂WT

∂x1
,
∂WT

∂x1

] 
C1,1 C1,2 C1,3
CT

1,2 C2,2 C2,3

CT
1,3 CT

2,3 C3,3




∂W
∂x1

∂W
∂x2

∂W
∂x3


.

(37)
The term C is negative semi-definite, therefore (36) reduces to
the following inequality:∫

Ω

∂S

∂t
dΩ ≤

∮
Γ

3∑
m=1

−Fxm +

3∑
j=1

W
TCm, j

∂W

∂ξl

 nxm dΓ. (38)
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To obtain a bound on the solution, the inequality (38) is inte-
grated in time and assuming nonlinearly well posed boundary
conditions and initial condition, and positivity of density and
temperature, the result can be turned into a bound on the so-
lution in terms of the data of the problem (see, for instance,
[52, 53]).

4.2. A p-nonconforming algorithm for the compressible
Navier–Stokes equations

In this section, the p-nonconforming algorithm for the
convection-diffusion equation is applied to the compressible
Navier–Stokes equations. Herein, the focus is on discretizing
the viscous portion of the equations (the details on the inviscid
components are in [45, 48]). Recasting the viscous fluxes in
terms of entropy variables, and discretizing them using macro
element SBP operators yields the form

3∑
l,a=1

∂

∂ξl

(
Ĉl,a

∂W

∂ξa

)
≈

3∑
l,a=1

D̃ξl

[
Ĉl,a

]
D̃ξa w̃. (39)

Note that Eq. (39) is precisely the symmetric generalization of
the convection-diffusion operator to a viscous system; the sta-
bility proof follows immediately (included later in document).
Greater insight is provided by expressing the macro element as
an element-wise operator, a form that is closer to how a practi-
tioner might implement the algorithm.

The discretization on the L element reads

JL
dqL

dt
+ IL

ns =

3∑
l,a=1

DL
ξa

[
Ĉl,a

]L
θL

a

−
1
2

(
PL

)−1
3∑

a=1

{(
eNL

(
eNL

)T
⊗ P(1D)

ξL
⊗ P(1D)

ξL
⊗ I5

) [
Ĉ1,a

]L
θL

a

−
(
eNL

(
e1H

)T
⊗ P(1D)

ξL
I(1D)
HtoL ⊗ P(1D)

ξL
I(1D)
HtoL ⊗ I5

) [
Ĉ1,a

]H
θH

a

}
+ IL

P,

(40)

where the interior penalty term, IL
P adds interface dissipation

for the viscous terms and will be discussed shortly. Moreover,
the viscous flux is discretized as

θL
a = DL

ξa
wL −

1
2

(
PL

)−1 {(
eNL

(
eNL

)T
⊗ P(1D)

ξL
⊗ P(1D)

ξL
⊗ I5

)
wL

−
(
eNL

(
e1H

)T
⊗ P(1D)

ξL
I(1D)
HtoL ⊗ P(1D)

ξL
I(1D)
HtoL ⊗ I5

)
wH

}
.

(41)

Similarly, on the H element

JH
dqH

dt
+ IH

ns =

3∑
l,a=1

DH
ξa

[
Ĉl,a

]H
θH

a

+
1
2

(
PH

)−1
3∑

a=1

{(
e1H

(
e1H

)T
⊗ P(1D)

ξH
⊗ P(1D)

ξH
⊗ I5

) [
Ĉ1,a

]H
θH

a

−
(
e1H

(
eNL

)T
⊗ P(1D)

ξH
I(1D)
LtoH ⊗ P(1D)

ξH
I(1D)
LtoH ⊗ I5

) [
Ĉ1,a

]L
θL

a

}
+ IH

P ,

(42)

where

θH
a = DH

ξa
wH +

1
2

(
PH

)−1 {(
e1H

(
e1H

)T
⊗ P(1D)

ξH
⊗ P(1D)

ξH
⊗ I5

)
wH

−
(
e1H

(
eNL

)T
⊗ P(1D)

ξH
I(1D)
LtoH ⊗ P(1D)

ξH
I(1D)
LtoH ⊗ I5

)
wL

}
.

(43)

The entropy stability properties of the resulting algorithm are
given in the next theorem.

Theorem 2. Assume that the inviscid and IP terms are en-
tropy conservative/stable and that appropriate SATs are uti-
lized. Then the discretization modeled by Eq. (40) through
Eq. (43) results in an entropy stable discretization.

Proof. For simplicity, the discretization is recast using the
macro element SBP operators and the inviscid and IP terms are
dropped, i.e.,

J
∂q̃
∂t

=

3∑
l,a=1

D̃ξl

[
Ĉl,a

]
D̃ξa w̃. (44)

Multiplying Eq. (44) by w̃TP̃ gives

w̃TP̃J
∂q̃
∂t

=

3∑
l,a=1

w̃TP̃D̃ξl

[
Ĉl,a

]
D̃ξa w̃. (45)

The temporal term contracts as follows:

w̃TP̃J
∂q̃
∂t

= 1̃TP̃J diag
(
w̃
) ∂q̃
∂t

= 1
T
P̃J

∂̃s
∂t
. (46)

Using Eq. (46) and the SBP property Q̃ξl = −Q̃T
ξl

+ Ẽξl on the
spatial terms results in

1
T
P̃J

∂̃s
∂t

=

3∑
l,a=1

w̃TẼξl

[
Ĉl,a

]
D̃ξa w̃ −

3∑
l,a=1

(
D̃ξl w̃

)T
P̃

[
Ĉl,a

]
D̃ξa w̃.

(47)
The first set of terms on the right-hand side are boundary terms
that approximate the surface integrals

3∑
l,a=1

∮
Γ̃

Ĉl,aW
T ∂W

∂ξa
nξl dΓ̃. (48)

Thus, the scheme telescopes to the boundaries where appropri-
ate SATs need to be imposed to obtain a stability statement. The
second set of terms on the right-hand side are negative semi-
definite and therefore add dissipation and approximate the fol-
lowing set of volume integrals:

3∑
l,a=1

∮
Ω̃

Ĉl,a

(
∂W

∂ξl

)T (
∂W

∂ξa

)
dΩ̃.

Remark 3. In contrast to the inviscid terms, the viscous terms
are constructed with only one set of metrics. They are used to
construct both sets of metrics appearing in the

[
Ĉl,a

]
matrices.

Herein, analytic metrics are used to approximate the viscous
terms, although one set of numerical metrics would also suffice.
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Remark 4. The base Euler scheme is element-wise conserva-
tive and freestream preserving [45, 48]. Element-wise conser-
vation is proven by using the framework of Shi and Shu [54]
where the scheme is algebraically manipulated into a finite-
volume like scheme by discretely integrating the semi-discrete
equations element by element. For the viscous contributions to
maintain the conservation properties of the base Euler scheme,
a unique flux needs to result at the interfaces; this is readily
demonstrated by discretely integrating the semi-discrete equa-
tions. Similarly, freestream preservation is easily demonstrated
by inserting a constant solution into the viscous discretization.

4.2.1. The internal penalty (IP) terms
The IP terms are design order zero interface dissipation terms

that are constructed to damp neutrally stable “odd-even” eigen-
modes that arise from the LDG viscous operator. They are cast
in terms of the entropy variables so that stability can be proven.
Specifically, the IP terms take the following form:

IL
P ≡ −

1
2

(
PL

)−1
(RL)T PL

⊥ξ1

(
JΓ̂L

)−1 C̃L
1,1 (RLwL − IHtoLRHwH)

−
1
2

(
PL

)−1
RT

LPL
⊥ξ1

IHtoL
(
JΓ̂H

)−1 C̃H
1,1 (ILtoHRLwL − RHwH) ,

IH
P ≡ −

1
2

(
PH

)−1
(RH)T PH

⊥ξ1

(
JΓ̂H

)−1 C̃H
1,1 (RHwH − ILtoHRLwL)

−
1
2

(
PH

)−1
RT

HPH
⊥ξ1

ILtoH
(
JΓ̂L

)−1 C̃L
1,1 (IHtoLRHwH − RLwL) ,

(49)

where

C̃L
1,1 ≡

1
2

(
Ĉ1,1 (RLqL) + Ĉ1,1 (IHtoLRHqH)

)
,

C̃H
1,1 ≡

1
2

(
Ĉ1,1 (RHqH) + Ĉ1,1 (ILtoHRLqL)

)
,

and the matrices JΓ̂L and JΓ̂H are diagonal matrices with the di-
agonal entries of JL and JH associated with the interface nodes
of element pL and pH, respectively. Moreover, the necessary
operators are defined as

RL ≡ eT
NL
⊗ INL ⊗ INL ⊗ I5, RH ≡ eT

1H
⊗ INH ⊗ INH ⊗ I5,

PL
⊥ξl
≡ P(1D)

L ⊗ P(1D)
L ⊗ I5, PH

⊥ξl
≡ P(1D)

H ⊗ P(1D)
H ⊗ I5,

IHtoL ≡ I(1D)
HtoL ⊗ I(1D)

HtoL ⊗ I5, ILtoH ≡ I(1D)
LtoH ⊗ I(1D)

LtoH ⊗ I5.

The stability/dissipativeness of the interface IP terms is now
proven.

Theorem 3. The added IP terms preserves the entropy stable
properties of the discretization.

Proof. Contracting the IP terms from element pL and pH,
adding the results and rearranging gives

wT
LPLIL

P + wT
LPHIH

P =

− (RLwL − IHtoLRHwH)T RT
LPL
⊥ξ1

JΓ̂L
−1ĈL

1,1 (RLwL − IHtoLRHwH)

−(ILtoHRLwL − RHwH)T PrmH
⊥ξ1

JΓ̂H
−1ĈH

1,1 (ILtoHRLwL − RHwH) ,
(50)

where the SBP preserving properties of the interpolation op-
erators (17) have been used. The resulting terms are negative
semi-definite.

Remark 5. The element-wise conservation properties of the
scheme are maintained by the IP terms. This is straightfor-
ward to demonstrate by discretely integrating the semi-discrete
equations. Moreover, the IP terms maintain the freestream pre-
serving properties of the scheme, which can be easily seen by
inserting a constant solution into the IP terms and noting that
they reduce to zero.

In Section 5, two problems are used to characterize the non-
conforming algorithms 1) the viscous shock problem, and 2) the
Taylor-Green vortex problem. For both, the boundary condi-
tions are weakly imposed by reusing the interface SAT mechan-
ics. For the viscous shock problem, the adjoining element’s
contribution is replaced with the analytical solution.

5. Numerical experiments

This section presents numerical evidence that the proposed
p-nonconforming algorithm retains the accuracy and robust-
ness of the spatial conforming discretization reported in [25,
13, 28, 27]. We use the unstructured grid solver developed at
the Extreme Computing Research Center (ECRC) at KAUST.
This parallel framework is built on top of the Portable and
Extensible Toolkit for Scientific computing (PETSc) [55], its
mesh topology abstraction (DMPLEX) [56] and scalable or-
dinary differential equation (ODE)/differential algebraic equa-
tions (DAE) solver library [57]. The systems of ordinary differ-
ential equations arising from the spatial discretizations are inte-
grated using the fourth-order accurate Dormand–Prince method
[58] endowed with an adaptive time stepping technique based
on digital signal processing [59, 60]. To make the temporal
error negligible, a tolerance of 10−8 is always used for the time-
step adaptivity. The two-point entropy consistent flux of Chan-
drashekar [61] is used for all the test cases.

The errors are computed using volume scaled (for the L1 and
L2 norms) discrete norms as follows:

‖u‖L1 = Ω−1
c

K∑
κ=1

1T
κPκJκabs (uκ) ,

‖u‖2L2 = Ω−1
c

K∑
κ=1

uκPκJκuκ,

‖u‖L∞ = max
κ=1...K

abs (uκ) ,

where Ωc is the volume of Ω computed as Ωc ≡
K∑
κ=1

1T
κPκJκ1κ.

5.1. Viscous shock propagation

For verification and characterization of the full compressible
Navier–Stokes algorithm, the propagation of a viscous shock
is used. For this test case an exact time-dependent solution is
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known, under the assumption of a Prandtl number of Pr = 3/4.
The momentumV(x1) satisfies the ODE

αV
∂V

∂x1
− (V − 1)(V −V f ) = 0; −∞ ≤ x1 ≤ +∞, t ≥ 0,

(51)

whose solution can be written implicitly as

x1 −
1
2
α
(
log

∣∣∣(V(x1) − 1)(V(x1) −V f )
∣∣∣

+
1 +V f

1 −V f
log

∣∣∣∣∣∣ V(x1) − 1
V(x1) −V f

∣∣∣∣∣∣
)

= 0,
(52)

where
V f ≡

UL

UR
, α ≡

2γ
γ + 1

µ

PrṀ
. (53)

HereUL/R are known velocities to the left and right of the shock
at −∞ and +∞, respectively, Ṁ is the constant mass flow across
the shock, Pr is the Prandtl number, and µ is the dynamic vis-
cosity. The mass and total enthalpy are constant across the
shock. Moreover, the momentum and energy equations become
redundant.

For our tests,V is computed from Equation (52) to machine
precision using bisection. The moving shock solution is ob-
tained by applying a uniform translation to the above solution.
The shock is located at the center of the domain at t = 0 and the
following values are used: M∞ = 2.5, Re∞ = 10, and γ = 1.4.
The domain is given by

x1 ∈ [−0.5, 0.5], x2 ∈ [−0.5, 0.5], x3 ∈ [−0.5, 0.5], t ∈ [0, 0.5].

A grid convergence study is performed to investigate the or-
der of convergence of the nonconforming algorithm. We use
a sequence of nested grids obtained from a base grid (i.e., the
coarsest grid) which is constructed as follows:

• Divide the computational domain with four hexahedral el-
ements in each coordinate direction.

• Assign the solution polynomial degree in each element to a
random integer chosen uniformly from the set {ps, ps + 1}.

• Approximate with a psth-order polynomial the element in-
terfaces.

• Perturb the nodes that are used to define the psth-order
polynomial approximation of the element interfaces as fol-
lows:

x1 = x1,∗ +
1

15
L1 cos (a) cos (3b) sin (4c) ,

x2 = x2,∗ +
1
15

L2 sin (4a) cos (b) cos (3c) ,

x3 = x3,∗ +
1
15

L3 cos (3a) sin (4b) cos (c) ,

where

a =
π

L1

(
x1,∗ −

x1,H + x1,L

2

)
,

b =
π

L2

(
x2,∗ −

x2,H + x2,L

2

)
,

c =
π

L3

(
x3,∗ −

x3,H + x3,L

2

)
.

The lengths L1, L2 and L3 are the dimensions of the
computational domain in the three coordinate directions
and the sub-script ∗ is the unperturbed coordinates of the
nodes. This step yields a “perturbed” psth-order interface
polynomial representation.

• Compute the coordinate of the LGL points at the element
interface by evaluating the “perturbed” psth-order polyno-
mial at the tensor-product LGL points used to define the
cell solution polynomial of order ps or ps + 1.

The element interfaces are perturbed as described above to test
the conservation of entropy and therefore the freestream condi-
tion.8

8In a general setting, element interfaces can also be boundary element inter-
faces.
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Conforming, p = 1 Invisible mortar, p = 1 and p = 2
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 5.43E-02 - 6.54E-02 - 1.40E-01 - 4.48E-02 - 5.99E-02 - 2.16E-01 -
8 2.04E-02 -1.41 2.92E-02 -1.16 8.42E-02 -0.73 1.39E-02 -1.69 2.21E-02 -1.44 7.01E-02 -1.62
16 5.56E-03 -1.87 8.45E-03 -1.79 2.85E-02 -1.57 3.39E-03 -2.04 5.94E-03 -1.89 1.95E-02 -1.85
32 1.44E-03 -1.94 2.23E-03 -1.92 8.12E-03 -1.81 8.74E-04 -1.96 1.50E-03 -1.99 5.24E-03 -1.89
64 3.68E-04 -1.97 5.66E-04 -1.98 2.26E-03 -1.84 2.12E-04 -2.04 3.70E-04 -2.02 1.34E-03 -1.97
128 9.28E-05 -1.99 1.43E-04 -1.99 6.05E-04 -1.90 5.21E-05 -2.03 9.21E-05 -2.01 3.74E-04 -1.84

Table 1: Convergence study of the viscous shock propagation: p = 1 with p = 2; density error.
.

Conforming, p = 2 Invisible mortar, p = 2 and p = 3
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 1.78E-02 - 2.68E-02 - 1.36E-01 - 1.26E-02 - 2.28E-02 - 1.41E-01 -
8 2.93E-03 -2.60 5.05E-03 -2.41 5.98E-02 -1.19 2.00E-03 -2.65 4.08E-03 -2.48 4.88E-02 -1.53
16 3.86E-04 -2.92 6.93E-04 -2.87 1.09E-02 -2.45 2.85E-04 -2.81 5.90E-04 -2.79 9.85E-03 -2.31
32 5.55E-05 -2.80 1.03E-04 -2.74 2.23E-03 -2.29 4.40E-05 -2.70 9.28E-05 -2.67 1.66E-03 -2.57
64 8.96E-06 -2.63 1.79E-05 -2.53 4.96E-04 -2.17 7.47E-06 -2.56 1.57E-05 -2.56 4.30E-04 -1.95
128 1.46E-06 -2.66 2.99E-06 -2.58 8.96E-05 -2.47 1.20E-06 -2.64 2.54E-06 -2.63 8.20E-05 -2.39

Table 2: Convergence study of the viscous shock propagation: p = 2 with p = 3; density error.
.

Conforming, p = 3 Invisible mortar, p = 3 and p = 4
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 4.45E-03 - 7.52E-03 - 7.51E-02 - 3.19E-03 - 6.22E-03 - 6.34E-02 -
8 3.40E-04 -3.71 6.50E-04 -3.53 1.19E-02 -2.66 2.57E-04 -3.63 5.41E-04 -3.52 1.12E-02 -2.50
16 2.67E-05 -3.67 5.36E-05 -3.60 1.20E-03 -3.30 2.09E-05 -3.62 4.61E-05 -3.55 1.05E-03 -3.41
32 1.95E-06 -3.77 4.25E-06 -3.66 1.25E-04 -3.26 1.64E-06 -3.67 3.81E-06 -3.60 9.23E-05 -3.51
64 1.48E-07 -3.72 3.67E-07 -3.53 1.12E-05 -3.48 1.20E-07 -3.77 2.91E-07 -3.71 1.00E-05 -3.21

Table 3: Convergence study of the viscous shock propagation: p = 3 with p = 4; density error.
.

Conforming, p = 4 Invisible mortar, p = 4 and p = 5
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 1.21E-03 - 2.28E-03 - 2.50E-02 - 1.11E-03 - 2.18E-03 - 2.99E-02 -
8 8.50E-05 -3.83 1.54E-04 -3.88 3.04E-03 -3.04 6.17E-05 -4.16 1.21E-04 -4.16 2.25E-03 -3.73
16 2.75E-05 -4.95 5.66E-06 -4.77 1.52E-04 -4.32 2.14E-06 -4.85 4.88E-06 -4.64 1.51E-04 -3.90
32 1.16E-07 -4.57 2.54E-07 -4.48 7.54E-06 -4.33 8.93E-08 -4.58 2.18E-07 -4.48 6.89E-06 -4.45
64 5.21E-09 -4.48 1.11E-08 -4.52 4.01E-07 -4.23 3.53E-09 -4.66 9.00E-09 -4.60 2.79E-07 -4.63

Table 4: Convergence study of the viscous shock propagation: p = 4 with p = 5; density error.
.

Conforming, p = 4 Invisible mortar, p = 4 and p = 5
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 5.14E-04 - 8.81E-04 - 1.14E-02 - 3.87E-04 - 7.30E-04 - 1.07E-02 -
8 1.07E-05 -5.59 2.21E-05 -5.32 4.95E-04 -4.52 8.12E-06 -5.57 1.83E-05 -5.32 4.57E-04 -4.55
16 1.91E-07 -5.81 4.10E-07 -5.75 1.11E-05 -5.47 1.44E-07 -5.82 3.39E-07 -5.76 1.08E-05 -5.41
32 3.59E-09 -5.73 8.71E-09 -5.55 2.88E-07 -5.27 2.85E-09 -5.66 7.25E-09 -5.55 2.32E-07 -5.54

Table 5: Convergence study of the viscous shock propagation: p = 5 with p = 6; density error.
.

Conforming, p = 4 Invisible mortar, p = 4 and p = 5
Grid L1 Rate L2 Rate L∞ Rate L1 Rate L2 Rate L∞ Rate
4 1.17E-04 - 2.31E-04 - 3.18E-03 - 9.95E-05 - 2.09E-04 - 3.35E-03 -
8 1.66E-06 -6.13 3.18E-06 -6.18 9.00E-05 -5.15 1.27E-06 -6.29 2.61E-06 -6.32 4.98E-05 -6.07
16 1.50E-08 -6.80 3.43E-08 -6.54 9.62E-07 -6.55 1.17E-08 -6.77 2.88E-08 -6.50 9.54E-07 -5.71
32 1.51E-10 -6.63 3.72E-10 -6.53 1.31E-08 -6.20 1.10E-10 -6.73 2.98E-10 -6.60 1.64E-08 -5.86

Table 6: Convergence study of the viscous shock propagation: p = 6 with p = 7; density error.
.
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For all the degree tested (i.e. p = 1 to p = 7), the order of
convergence of the conforming and nonconforming algorithms
is very close to each other. However, note for both the L1 and L2

norms the nonconforming algorithm is more accurate than the
conforming one. In the discrete L∞ norm instead, the noncon-
forming scheme is sometimes slightly worse than the conform-
ing scheme; this results from the interpolation matrices being
sub-optimal at nonconforming interfaces.

5.2. Taylor-Green vortex at Re = 1, 600

The purpose of this section is to demonstrate that the noncon-
forming algorithm has the same stability properties as the con-
forming algorithm. To do so, the Taylor–Green vortex problem
is solved, which is a flow that degenerates to turbulence over
time; therefore its solution is representative of the behavior of
the algorithm for the solution of under-resolved turbulent flows.

The Taylor–Green vortex case is solved on a periodic cube
[−πL ≤ x, y, z ≤ πL], where the initial condition is given by

U1 = V0 sin
( x1

L

)
cos

( x2

L

)
cos

( x3

L

)
,

U2 = −V0 cos
( x1

L

)
sin

( x2

L

)
cos

( x3

L

)
,

U3 = 0,

P = P0 +
ρ0V

2
0

16

[
cos

(
2x1

L
+ cos

(
2x2

L

))] [
cos

(
2x3

L
+ 2

)]
.

(54)

The flow is initialized to be isothermal, i.e., P/ρ = P0/ρ0 =

RT0, and P0 = 1, T0 = 1, L = 1, and V0 = 1. Finally, the
Reynolds number is defined by Re = (ρ0V0)/µ, where µ is the
dynamic viscosity.

The solver that is used is implemented in a compressible
fluid dynamics code. Therefore, to obtain results that are rea-
sonably close to those found for the incompressible Navier–
Stokes equations, a Mach number of M = 0.05 is used. The
Reynolds number is set to Re = 1, 600, and ρ0 = γM2, where
γ = 1.4. The Prandtl number is set to Pr = 0.71. A perturbed
grid with eight hexahedrons elements in each coordinate direc-
tion is used. This grid is constructed by perturbing the element
interfaces as previously described, with the exception that the
interfaces are approximated using the minimum solution poly-
nomial degree set in the simulation. All the computations are
performed without additional stabilization mechanisms (dissi-
pation model, filtering, etc.), where the only numerical dissipa-
tion originates from the upwind inter-element coupling proce-
dure.

Figure 2 shows the time rate of change of the kinetic energy,
dke/dt, for the non conforming algorithm using a random dis-
tribution of solution polynomial order between i) p = 2 and
p = 12, ii) p = 7 and p = 13, and iii) p = 13 and p = 15.
The incompressible DNS solution reported in [62] is plotted as
a reference. All simulations are stable on a variety of meshes
with poor quality, which provides numerical evidence that the
nonconforming scheme inherits the same stability characteris-
tics of the conforming algorithm [25, 13, 63, 28].
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Figure 2: Evolution of the time derivative of the kinetic energy for the Taylor–
Green vortex at Re = 1, 600, M = 0.05.

5.3. Flow around a sphere at Re = 2, 000

In this section, we test our implementation within a more
complicated setting represented by the flow around a sphere at
Re = 2, 000 and M = 0.05. With this value of the Reynolds
number the flow is fully turbulent. In this case, a sphere of
diameter d is centered at the origin of the axes, and a box is
respectively extended 20d and 60d upstream and downstream
the direction of the flow; the box size is 30d in both the x2 and
x3 directions. As boundary conditions, we consider adiabatic
solid walls at the surface of the sphere [15] and far field on all
faces of the box. The surface of the sphere is first triangulated
using third order simplices, and a boundary layer composed of
triangular prisms is extruded from the sphere surface for a to-
tal length of 3d. The rest of the domain is meshed with an
unstructured tetrahedral mesh. We then obtain an unstructured
conforming hexahedral mesh by uniformly splitting each tetra-
hedron in four hexahedra, and each prism in three hexahedra,
resulting in a total of 22,648 hexahedral elements. Figure 3
shows a zoom of the grid near the sphere. The colors indicate
the solution polynomial degree used in each cell. The quality
of the elements is good in the boundary layer region whereas
in the other portion of the domain is fairly poor. This choice is
intentional to demonstrate the performance of the algorithm on
non-ideal grids.

We compute the time-average value of the drag coefficient,
〈CD〉, and we compare it with the value reported in in literature
[64]. Figure 4, shows a time window of the evolution of the
drag coefficient. To compute 〈CD〉we average the flow field and
hence the aerodynamic forces for 200 time units. From Table 7,
it can be seen that the computed time-average drag coefficient
matches very well the value reported in literature.

〈CD〉

Munson et al. [64] 0.412
Present 0.414

Table 7: Time-average drag coefficient of a sphere at Re = 2, 000, M = 0.05.
.
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Figure 3: Polynomial order distribution for the mesh around a sphere at Re =

2, 000, M = 0.05.
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Figure 4: Sample of the evolution of the drag coefficient around a sphere at
Re = 2, 000, M = 0.05.

6. Conclusions

In this paper, the entropy conservative
p−refinement/coarsening nonconforming algorithm in [45, 48]
is extended to the compressible Navier–Stokes equations. The
viscous terms are transformed into a quadratic form, in terms
of the entropy variables, so that entropy conservation/stability
of the original compressible Euler code is maintained. An
LDG-IP type approach is used in discretizing the viscous terms
and entropy stability of the scheme is proven. The accuracy
and stability characteristics of the resulting numerical schemes
are shown to be comparable to those of the original conforming
scheme, in the context of the viscous shock problem, the
Taylor–Green Vortex problem, and a turbulent flow past a
sphere.
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