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Abstract

Contemporary climate models show that clouds are one of the key components in
the climate of the Arctic region experiencing rapid surface warming. Modeling of
the cloud impact on the Arctic amplification is still uncertain not only because cloud
life cycle is defined by large number of processes, but also because the clouds are
closely related to other components of the Arctic climate, such as atmospheric water
vapor, ocean, sea ice, and long-range air transport. In order to better understand
the role of clouds in the Arctic, in June 2016 the French-German Arctic research
station situated in Ny-Ålesund, Norway was complemented with a W-band cloud
radar within the Transregional Collaborative Research Center (TRR 172) "Arctic
Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback
Mechanisms (AC)3". This observation site became one of a few Arctic sites capable
of state-of-the-art cloud profiling with high temporal and spatial resolution. This
thesis summarizes the cloud macro and microphysical properties of clouds based
on the first two and a half years of cloud measurements at Ny-Ålesund. The total
occurrence of clouds was found to be ∼81%. The most predominant type of clouds
is multi-layer clouds with the frequency of occurrence of 44.8%. Single-layer clouds
occur 36% of the time. The most common type of single-layer clouds is mixed-phase
with a frequency of occurrence of 20.6%. The total occurrences of single-layer ice and
liquid clouds are 9% and 6.4%, respectively. A comparison of cloud occurrence at
Ny-Ålesund with a numerical weather prediction model revealed an overestimation
in the occurrence of single layer ice clouds and underestimation of the occurrence of
mixed-phase clouds.

The cloud properties were further related to occurrence of anomalous atmospheric
conditions often caused by transport of relatively warm and moist air from the North
Atlantic and circulation of dry and cold air in the Arctic region. Dry anomalies are
related to about 30% less cloud occurrence with respect to normal conditions. In
contrast, during moist conditions the cloud occurrence typically reaches 90–99%.
Excess and shortage in water vapor typically increases and decreases the amount
of condensed water in cloud, respectively. The changes in cloud properties during
moist and dry anomalies in turn affect the surface cloud radiative effect (CRE).
In winter, spring, and autumn the net surface CRE is dominated by the longwave
(LW) CRE and, therefore, during these seasons dry and moist conditions are related
to lower and higher cloud related surface warming in Ny-Ålesund, respectively. In
summer, shortwave CRE becomes dominant and moist conditions cause stronger
surface cooling relative to normal cases, while dry conditions tend to reduce the
cloud related surface cooling.

Moist anomalies show significant positive trends varying for different seasons from
2.8 to 6.4% decade−1. In contrast, the occurrence of dry anomalies has been de-
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clining at rates from −12.9 to −4% decade−1. A novel technique for the estimation
of LW CRE developed within this study shows that the long-term trends in the
thermodynamic conditions at Ny-Ålesund are related to significant positive trends
in longwave CRE of 3.4 and 2.2 W m−2 decade−1 in winter and autumn, respec-
tively. In summer, a negative trend of −1.8 W m−2 decade−1 was found, while no
significant trends were found for the spring season. The database with cloud profiles
obtained within this work can be used for an evaluation of numerical weather pre-
diction models, while radiative cloud properties estimated from reanalysis models
can be evaluated with long-term LW CRE retrieved with the developed method.



Zusammenfassung

Aktuelle Klimamodelle wie auch Beobachtungen zeigen, dass sich die Oberfläche der
Arktis schneller erwärmt als die globals Mitteltemperature, diesen Effect bezeichnet
man als "Arctic Amplicfication". Der Einfluss von Wolken auf "Arctic Amplifi-
cation" ist immer noch unsicher. Dies liegt nicht nur an den vielen verschiede-
nen Prozesse welche zum Teil noch nicht vollständig verstanden sind, sonder auch
an anderen Komponenten des Klimasystems wie Wasserdampfgehalt der Luft, In-
teraktion von Ozean oder Meereis mit der Atmosphäre, und dem Luftmassenfer-
ntransport in die Arktis. Um die Rolle arktischer Wolken besser zu verstehen,
wurde im Rahmen des überregionalen Forschungsverbundes (TRR 172) "Arctic Am-
plification: Climate Relevant Atmospheric and Surface Processes, and Feedback
Mechanisms (AC)3" im Juni 2016 die deutsch-französische Forschungsstation AW-
IPEV um ein W-Band-Radar ergänzt. Somit ist diese Beobachtungsstation eine
der wenigen in der Arktis, die "state-of-the-art" Wolkenbeaobachtungen mit ho-
her zeitlicher und räumlicher Auflösung ermöglichen. Diese Arbeit fasst die makro-
und mikrophysikalischen Eigenschaften der Wolken in den Messungen der ersten
zweieinhalb Jahre in Ny-Ålesund, Spitzbergen, zusammen. Dabei war es über 81%
der Beobachtungsyeitraumes bewölkt, 44.8% der Zeit dominierten Mehrschichten-
wolken beobachtet, 36% der Zeit einschichtige Wolken. Unter den Einschichtwolken
traten Mischphasenwolken mit 20.6% am häufigsten auf, Eiswolken mit 9% und
Wasserwolken mit 6.4%. Ein Vergleich der Auftretenshäufigkeit der verschiedenen
einschichtigen Wolkenarten zwischen nummerischen Wettervorhersage und Beobach-
tungen in Ny-Ålesund zeigte, dass das Vorkommen von einschichtigen Eiswolken im
Model überschätzt und das Auftreten von Mischphasenwolken unterschätzt wird.

Weiter wurden die Wolkeneigenschaften mit dem Auftreten von ungewöhnlichen
Wetterlagen detalieiert untersucht, insbesondere dem Anomalien des integrierten
Wasserdampfgehalt. Diese Anomalien werde durch den Luftmassenferntransport in
die Arktis herforgerufen. Eine feuche Anomalie wird durch den Transport von war-
men und feuchte Luftmassen, die mit Anströmungen vom Nordatlantik einherge-
hen, erzeugt, eine trockene Anomalie wird durch die arktische Zirkulationen her-
vorgerufen. Bei einer feuchten Anomalie kam es zu einer Wolkenauftretenswahrschein-
lichkeit von 90-99% bei den trockenen Anomalien wurde 30% weniger Wolkenbe-
deckung beobachtet, als unter normalen Bedinungen. Die Menge von verfügbarem
Wasserdampf beeinflusst die Menge an kondensiertem Wasser in der Wolke, was
zu Veränderungen der microphysikalischen Wolkeneigenschaften führt und somit zu
einer eine Veränderung des "Cloud radiative effect" (CRE) am Boden. Im Winter,
Frühling und Herbst ist der netto CRE in Ny-Ålesund vor allem von der lang-
welligen Strahlung abhängig und bringen so eine stärkere Oberflächenerwärnung
während negativer Feuchteanomalien mit sich. Im Sommer hat die kurzwellige
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Strahlung einen größeren Einfluss. Wolken, die während positiver Feuchteanoma-
lien auftreten haben einen negativen CRE und während negativer Feuchteanomalien
verringert sich die Kühlung, die mit den Wolken in dieser Jahreszeit einhergeht. Pos-
itive Feuchteanomalien zeigen je nach Jahreszeit positive Trends zwischen 2,8 und
6,4% pro Dekade. Im Gegensatz dazu nimmt die Auftretenshäufigkeit der negativen
Feuchteanomalien mit -12,9 bis -4% ab.

In dieser Arbeit wurde eine neue Methode zur Abschätzung des langwellingen CRE
entwickelt. Es konnte gezeigt werden, dass der langfristige Trends der thermody-
namischen Bedingungen in Ny-Ålesund mit dem signifikanten positiven Trends des
langwellingen CRE im Winter (3,4 W/m−2 pro Dekade) und Herbst (2,2 W/m−2

pro Dekade) in Verbindung steht. Im Sommer wurde eine Abnahme des langwellige
CRE um 1,8 W/m−2 pro Dekade ermittelt wo hingegen sich für den Früling kein sig-
nifikanter Trend zeigte. Dieser Datensatz, mit den hier abgeleiteten Wolkenprofilen,
kann auch zukünftig genutzt werden um numerische Wettermodelle zu evaluieren.
Ebenfalls können die Strahlungseigenschaften aus der in dieser Arbeit entwickel-
ten Methode benutzt werde um Reanalysedaten abgeleiteten langwelligen CRE zu
verglichen.
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Chapter 1

Introduction

It is well known that during the past 3 decades the Arctic climate has been drasti-
cally changing. The change in the annual near-surface temperature over the Arctic
region has been found to be a factor of 2 to 3 larger compared to the global average
(Solomon et al., 2007; Wendisch et al., 2017). In the period 1998–2012, the temper-
ature increase in the Arctic was persistent in contrast to the "hiatus" in the global
warming having been discussed in a number of studies (Wei et al., 2016; Huang
et al., 2017).

This amplification of warming in the Arctic is caused by several feedback mecha-
nisms. Among them are the reduced sea ice extent and high sea surface temperature
(Serreze et al., 2011; Hegyi and Taylor, 2018), changes in the atmospheric circula-
tion (Maturilli and Kayser, 2016; Overland et al., 2016; Overland and Wang, 2016;
Wu, 2017) and energy transport (Graversen and Burtu, 2016; Hwang et al., 2011),
surface albedo effect (Graversen et al., 2014), increased greenhouse effect of water
vapor, and clouds (Taylor et al., 2013; Yoshimori et al., 2017). A number of stud-
ies emphasize that the feedback mechanisms are interrelated in a complex way and
their relative importance is still unclear (Vihma et al., 2014; Yoshimori et al., 2017;
Wendisch et al., 2017; Block et al., 2019).

The analysis of contemporary climate models shows that on average the mean cloud
feedback is one of the major mechanisms opposing the Arctic amplification from
a top of atmosphere (TOA) perspective with relatively small contribution to the
warming at the surface (Pithan and Mauritsen, 2014). Modeling of the cloud im-
pact on the Arctic amplification is still uncertain (Hwang et al., 2011; Taylor et al.,
2013; Pithan and Mauritsen, 2014) due to a large number of microphysical processes
(Morrison et al., 2012) and complex relations between clouds and other feedback
mechanisms of the Arctic climate (Hwang et al., 2011; Graversen and Burtu, 2016).
As a result some models underestimate amount of super-cooled liquid water (Sand-
vik et al., 2007; Cesana et al., 2012; Komurcu et al., 2014; Cesana et al., 2015;
Nomokonova et al., 2019b), which may lead to a bias in the surface temperature
ranging from −7.8 to 0◦C (Kay et al., 2016; Miller et al., 2017).

Beyond the energy budget clouds are crucial for precipitation formation that sig-
nificantly affects the Arctic climate. Precipitated water forms rivers and sustains a
glacier flow into the sea, and thus influences the salinity of the Arctic ocean. Being
essential for snowmelt (Zhang et al., 1996), sea-ice reduction (Kay et al., 2008; Kay
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2 1. Introduction

and Gettelman, 2009) and affecting the permafrost stability, Arctic clouds have a
significant impact on productivity and variety in marine and terrestrial environments
and thus influence the Arctic ecosystem (Vihma et al., 2016).

Formation of Arctic clouds is a complicated process associated with aerosol-cloud
interactions, turbulence, phase transitions, heat and moisture exchanges between
the surface and the atmosphere (Morrison et al., 2012). The interaction of clouds
with radiation and aerosols remains the largest uncertainties in radiative forcing
models (Walsh et al., 2009; Myhre et al., 2013). Many of the processes are not well
resolved in global climate models (Klein et al., 2009; Vihma et al., 2016) indicating
that parameterization of cloud properties still needs improvements (Morrison et al.,
2008; Shupe et al., 2011).

Better understanding of Arctic cloud processes and feedbacks requires long-term and
accurate observations (Blanchard et al., 2014; Devasthale et al., 2016). In particular,
the knowledge of the vertical cloud structure and phase is crucial for an estimation
of the cloud radiative impact (Curry et al., 1996; Shupe and Intrieri, 2004; Liu
et al., 2012; Turner et al., 2018). In order to retrieve information on the vertical
distribution of clouds and their properties, active remote sensing instruments such
as lidars and cloud radars have to be exploited (Protat et al., 2006). However, there
are only a few Arctic sites that provide long-term continuous information about
the vertical cloud structure using the combination of ground-based remote sensing
measurements. These sites are illustrated in Fig. 1.1. Until recently, there were only
4 sites equipped with a variety of instruments including but not limited to a lidar,
a cloud radar, a microwave radiometer, and surface radiation and thermodynamic
measurement tools, namely Barrow (Alaska; de Boer et al., 2009; Verlinde et al.,
2016), Oliktok (Alaska; de Boer et al., 2019), Eureka (Canada; de Boer et al., 2009),
and Summit (Greenland; Shupe et al., 2013).

In January 2016 the German Research Foundation started the Transregional Collab-
orative Research Center (TRR 172) called "Arctic Amplification: Climate Relevant
Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" (Wendisch
et al., 2017). The aim of the (AC)3 project is to better understand relations between
all the components of the Arctic climate. Within this project space-borne, air-borne,
ship-borne, and ground-based observations are analyzed to improve representation
of local-to-global scale processes influencing the Arctic climate in models.

As a part of this project, comprehensive observations of the atmospheric column
have been performed at the French-German Arctic Research Base AWIPEV station,
operated by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research (AWI) and the French Polar Institute Paul Emile Victor (PEV), at Ny-
Ålesund. Within the (AC)3 project the instrumentation of the AWIPEV station,
was complemented with a cloud radar in 2016 and, thus, allows for state-of-the-art
vertically resolved cloud observations.

Ny-Ålesund (78.92◦N, 11.92◦E) is situated at the coastline of Spitsbergen of the
Svalbard archipelago. The Svalbard region is located in the area with the highest
warming temperature trend in the Arctic (Susskind et al., 2019). In addition, the
Svalbard region is often influenced by distinct synoptic regimes bringing either warm
moist air from lower latitudes or cold and dry air circulating in the Arctic area
(Dahlke and Maturilli, 2017; Mewes and Jacobi, 2019).
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Figure 1.1: Ground-based Arctic observatories with long-term range re-
solved cloud observations. The original map was taken from https://d-
maps.com/m/world/arctique/arctique10.pdf. Green circle marks and blue
stars show sites with ceilometer and radar-ceilometer observations, respec-
tively. The red circle indicates the measurement site analyzed in this thesis.

This thesis is devoted to a characterization of an impact of thermodynamic condi-
tions at Ny-Ålesund on cloud microphysical and radiative properties. The investiga-
tion is based on state-of-the-art active, passive, and in situ instruments, a numerical
weather prediction model and radiative transfer calculations routinely performed
within the (AC)3 project for Ny-Ålesund.

1.1 Role of clouds in the radiation budget

The Earth climate is a complex system defined by the energy exchange between
space and five climate components, namely atmosphere, hydrosphere, cryosphere,
lithosphere, and biosphere (Trenberth and Stepaniak, 2004). The major part of this
energy is received from the Sun in the form of electromagnetic waves. On average
the Solar irradiance S0 is 1361 W m−2 (Ohmura, 2012). The solar radiation consists
predominantly of shortwave (SW) radiation, which includes near-infrared and visible
wavelengths from 0.4–4 µm. On the way to the Earth’s surface the solar radiation is
partly attenuated by atmospheric components, such as gases, clouds, and aerosols.
SW radiation reaching the surface (F↓SW ) is partly absorbed by the surface, while
another part is reflected up (F↑SW ).

The Earth’s surface emits longwave (LW) radiation (F↑LW ) at wavelengths ranging
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from 4 to 100 µm. The atmospheric components also emit LW radiation. The LW
radiation can either reach the top of the atmosphere and escape to the space or
be absorbed by atmospheric components and the surface. The down-welling LW
radiation reaching the surface is further denoted as F↓LW .

The differences between incoming and outgoing radiation at the surface Q, also
known as the surface net radiation budget, indicate how much radiative energy is
absorbed by the surface:

Q = F↓SW − F↑SW︸ ︷︷ ︸
QSW

+F↓LW − F↑LW︸ ︷︷ ︸
QLW

. (1.1)

In the case when Q < 0, more energy leaves the surface and, thus, the surface is
radiatively cooled. When Q > 0 the surface is getting warmed by the radiation.

The effect of clouds on the radiation budget is characterized by the so-called cloud
radiative effect (CRE). In general, CRE at the surface and at the top of atmosphere
are often analyzed. Nevertheless, in this thesis the main focus is on the surface
radiation budget because the Arctic warming is more pronounced at the surface
(Serreze et al., 2009; Boeke and Taylor, 2018). In addition, Wild and Liepert (2010)
showed that the surface radiation budget is a key determinant of the intensity of
the hydrological cycle and may influence see and land ice coverage (van den Broeke
et al., 2009). Therefore, hereafter only CRE at the surface is considered. The
longwave (LW), shortwave (SW) and net CRE are defined as differences between
corresponding all-sky and cloud-free radiation budgets according to (Ramanathan
et al., 1989):

CRESW = QSW − (F↓clr,SW − F↑clr,SW)︸ ︷︷ ︸
QSWclr

, (1.2)

CRELW = QLW − (F↓clr,LW − F↑clr,LW)︸ ︷︷ ︸
QLWclr

, (1.3)

CRE = CRESW + CRELW , (1.4)

where F↓clr,SW, F↓clr,SW, F↑clr,LW and F↑clr,LW are surface down- and upwelling fluxes
for SW and LW, respectively, which would be if the sky were cloud free.

Based on space-borne observations Matus and L’Ecuyer (2017) estimated SW, LW,
and net CRE over the globe (Fig. 1.2). The authors showed that on average clouds
produce surface radiative cooling of 24.9 W m−2. The strongest cooling was found
to occur in the Tropical area. In contrast, the strongest surface radiative warming
by clouds is about 20 W m−2 in the polar regions.
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Figure 1.2: Annual average SW, LW, and net CRE at the surface. Figure
adapted from (Matus and L’Ecuyer, 2017). The numbers indicate global
averages of the corresponding CRE.

1.2 Role of clouds in the Arctic warming

The important role of clouds for the global climate was shown in many studies
(Taylor et al., 2013; Matus and L’Ecuyer, 2017). First, clouds are the second largest
contributor to the surface warming in polar regions in response to the anthropogenic
CO2 forcing. The surface warming due to green-house gases changes cloud properties
and consequently their radiative effect. The exact response of clouds to the surface
warming is not yet clear (Ceppi et al., 2017). Vavrus (2004) noticed that changes
in clouds caused by CO2 forcing may be associated with one third of the surface
global warming signal at all latitudes, with up to 40 % in the Arctic region. The
cloud-induced temperature response is associated with the enhanced downwelling
LW flux at the surface due to the increased presence of low-level liquid-containing
clouds. Second, most of the contemporary climate models show that from the top-
of-the-atmosphere perspective clouds enhance warming in the Tropical region with
a lesser impact in the Arctic region. This indicates, that clouds could be one of the
atmospheric components opposing the Arctic amplification at TOA (Taylor et al.,
2013; Pithan and Mauritsen, 2014; Block et al., 2019). Third, clouds tend to reduce
the temperature gradient between the poles and equator at the surface, while they
increase the gradient in the upper troposphere (Taylor et al., 2013).

The role of clouds in the global climate is inextricably linked to other components
of the climate and the water cycle. A change in one component often leads to
a response in many other components, which, in turn, have a feedback effect on
the initially changed component. The feedback effects are especially crucial for
the Arctic region having the complex environment characterized by a high seasonal
variability of the sea/land ice coverage, frequent temperature inversions, drier air
and lower temperatures with respect to the Tropics and mid-latitudes, transitions
between polar night and polar day. For instance, the high surface albedo due to
ice coverage leads to relatively low SW CRE (Miller et al., 2015), since the clouds
and snow-covered surface have similar albedo (Cox et al., 2016). In the longwave,
the surface downwelling flux depends on the atmospheric temperature (Cox et al.,
2015) and, therefore, in the case of temperature inversions low-level clouds can emit
at warmer temperatures than the surface (de Boer et al., 2011).
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Figure 1.3: The schematic diagram of feedback processes induced by the
surface warming in the Arctic. Figure adapted from (Boeke and Taylor,
2018). Remote feedback mechanisms are shown within the boarders of a
red rectangular box, local feedback mechanisms are inside the orange circle.

Boeke and Taylor (2018) illustrated the feedback mechanisms related to the surface
warming in the Arctic region (Fig. 1.3). The authors distinguish two major feedback
mechanisms: local and remote. The local mechanism includes processes evolving in
the Arctic region while the remote mechanism is related to an atmospheric poleward
heat and water vapor transport into the Arctic from the mid-latitude region.

Boeke and Taylor (2018) consider the local mechanism as a combination of non-
radiative and radiative mechanisms. In the non-radiative mechanism an increase
in the surface temperature is associated with lower sea ice coverage, which leads
to more open water that in turn enhances amount of energy collected by the ocean
during the extended ice-free season (Serreze et al., 2009; Kapsch et al., 2013). Longer
periods of open ocean are related to a warmer, moister, and cloudier atmosphere
(Rinke et al., 2013; Palm et al., 2010; Kay and Gettelman, 2009; Mioche et al., 2015;
Bennartz et al., 2013). More clouds and water vapor in the atmosphere lead to a
stronger green-house effect, which further increases the surface temperature. On
the other hand, the same atmospheric changes lead to less SW radiation reaching
the surface. Another mechanism affects the surface temperature by the decrease in
the surface albedo caused by the sea/land ice retreat. In the case of the decreased
surface albedo, the surface absorbs more SW solar radiation, which leads to the
surface temperature increase. Hence, the effects of the described mechanisms on
the surface temperature due to the SW radiation oppose each other. The surface
warming induces the positive albedo feedback, which is partly counteracted by the
sun-shading effect by clouds in summer.
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The Arctic climate is significantly affected by air masses transported from the mid-
latitudes (Graversen and Burtu, 2016; Hwang et al., 2011). A number of studies
have already related the air transport and atmospheric rivers to amount of water
vapor, cloud properties, and the radiation budget (Hwang et al., 2011; Boisvert
et al., 2016; Mortin et al., 2016; Sedlar and Tjernström, 2017; Hegyi and Taylor,
2018). Hegyi and Taylor (2018) reported that the episodes of poleward atmospheric
water vapor transport are associated with periods of increased water vapor and cloud
cover resulting in enhanced downwelling longwave surface fluxes and reduced surface
cooling efficiency. Raddatz et al. (2013) analyzed the impact of cloud coverage and
increased water vapor on the longwave downwelling radiation using ground-based
observations installed at different sites in the Beaufort Sea–Amundsen Gulf region
of the Canadian Arctic. The authors found that the cloud coverage and water
vapor explain 84% of the variance of the longwave downwelling radiation, while the
remaining 16% are associated with cloud composition, cloud thickness and cloud-
base height. Raddatz et al. (2013) estimated differences in the longwave downwelling
radiation between cases with typical and maximum values of water vapor. The
authors associate the latter to moist intrusion events. The differences are 82 and
95 W m−2 in winter and 38 W m−2 and 45 W m−2 in summer for clear sky and cloudy
conditions, respectively. A limited number of studies show that air transportation
patterns may influence phase partitioning and amount of liquid in Arctic clouds
(Qiu et al., 2018; Tjernström et al., 2019).

A number of recent studies shows an evidence that warmer Arctic temperatures
may potentially change non-polar circulation and affect the weather at mid-latitudes
(Cohen et al., 2014; Walsh, 2014; Francis and Vavrus, 2015; Boeke and Taylor, 2018;
Coumou et al., 2018). However, it is often mentioned that currently there is no
consensus on how strong the influence of the Arctic warming on the mid-latitude
circulation is.

As depicted in Fig. 1.3, local and remote mechanisms defined by the energy ex-
change and the moisture transport, may have a strong impact on the Arctic cloud
properties (Cesana et al., 2012; Morrison et al., 2012). It still remains difficult to
fully understand the complexity of interactions between different components of the
Arctic climate and to assert how they influence the cloud evolution (Vihma et al.,
2014). Within the Coupled Model Intercomparison Project Phase 5 (CMIP5) Boeke
and Taylor (2016) analyzed 17 climate models and found a larger inter-model spread
in the surface radiation budget in the Arctic region. The authors noticed a large
divergence in the modeled cloud occurence and CRE among the analyzed models.
Differences in cloud occurrence and net surface CRE reached 60% and 40 W m−2,
respectively.

1.3 Studies on feedback processes in the Svalbard
region

Ørbæk et al. (1999) showed the uniqueness of the radiation regime in Svalbard.
In summer and autumn the radiation budget in the western and southern parts
of Svalbard are influenced by the open-ocean climate characterized by the sea fog
and the low albedo. In contrast, in winter and spring the radiation regime becomes
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more continental similar to the central Svalbard area (Gjelten et al., 2016). Complex
terrain in Svalbard leads to local variations in the surface radiation budget. These
variations become especially pronounced during the melting and freezing periods.
The radiation regime at Ny-Ålesund represents neither the oceanic nor continental
types of the Arctic radiation pattern, but rather their combination (Ørbæk et al.,
1999): ocean-like radiation climate in summer and autumn, and continental in the
winter and spring.

Ohmura (2012) analyzed almost 20 years of surface radiation observations at Ny-
Ålesund and found an increase in downwelling LW radiation and surface temperature
of 4.9 W m−2 decade−1 and 1.18 ◦C decade−1, respectively. The author stated that
the increase in the downwelling LW radiation expected from a sheer temperature
increase is 3.4 W m−2 decade−1, while the remaining change should be attributed
to changes in the atmospheric components such as greenhouse gases, water vapor
feedback, and cloud properties.

Maturilli and Kayser (2016) showed a highly pronounced warming and moistening
of the tropospheric column in the Svalbard region. Analyzing a 22-year dataset
(1993-2014) from radiosondes the authors found that during winter time there has
been a significant increase of atmospheric temperature (up to 3 K per decade) and
mean integrated water vapor (+0.83±1.22 kg m−2 per decade). This tendency in
winter is correlated with a strong increase in up- and downward longwave radiation
of +11.6±10.9 W m−2 and 15.6±11.6 W m−2, respectively (Maturilli et al., 2015).

Dahlke and Maturilli (2017) found a relation between the observed trend in warming
and moistening in the winter season in the Svalbard region and the increasing air
mass transport through the North Atlantic pathway and reduced flow from the
north. Nevertheless, the authors emphasized a lack of understanding of how the
circulation shift is connected to other feedback mechanisms including ocean heat
transport, sea ice dynamics, and cloud and water vapor radiative effects.

Isaksen et al. (2016) analyzed relationships between the surface air temperature at
5 stations at Spitsbergen and the sea ice concentration. The authors found that the
sea ice concentration outside the stations has been reduced on average from 58 to 6%
during the period 1997–2015. According to Isaksen et al. (2016), these changes in
the sea ice concentration may be important for the local climate. For instance, when
the fjord is open, energy is transfered from water to the air and, therefore, convection
develops. This transfer is blocked in the case of an ice-covered fjord. In this case,
surface inversions can occur (Isaksen et al., 2016). On the regional scale the climate
in Svalbard is sensitive to the location of the regional ice edge (Benestad et al.,
2002; Isaksen et al., 2016). Isaksen et al. (2016) found a high correlation between
the surface air temperature and the sea ice concentration for air masses coming from
East and North of Spitsbergen, which indicates an importance of the heat exchange
between open water in the Barents Sea and the atmosphere for the atmospheric
warming in Spitsbergen. Tetzlaff et al. (2014) analyzed an effect of polynya on the
surface temperature in Svalbard. The authors noticed that a larger extent of polynya
is related to higher surface temperatures and may increase the potential temperature.
The authors argue that polynya extent can lead to strong boundary layer convection,
which, in turn, can influence cloud occurrence and precipitation intensity. A number
of studies are focused on the energy interactions between the ocean, land, and the
atmosphere in the area of Svalbard (Weill et al., 2012; Meyer et al., 2017; Peterson
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et al., 2017). Nevertheless, such studies are mostly focused on non-radiative energy
transfer effects. Persson et al. (2017) recently showed an analysis of a complete
surface energy budget based on the multi year data set from the SHEBA (Surface
Heat Budget of the Arctic Ocean) campaign. Such an analysis for Ny-Ålesund
requires information on cloud radiative properties, which, until recently, were not
available.

The climate at Ny-Ålesund exhibits not only the trends in temperature and humidity
but also changes in occurrence of extreme events. For instance, Wei et al. (2016)
found significant negative (positive) changes in occurrence of cold (warm) extremes
over the last 3 decades. In addition, the authors report that the temperatures of
the coldest events increase by 2.3 ◦C decade−1, while temperatures of the hottest
events did not change much. The number of extreme events has also changed (Wei
et al., 2016). Cold spells are becoming less frequent (∼–3% decade−1), whereas
the occurrence of warm spells increased by ∼ 1.5% decade−1. Wei et al. (2016)
mentioned that the changes in temperatures can be associated with the sea surface
temperature and large-scale atmospheric circulation patterns. Yamanouchi (2018)
showed a case study with a contrast in cloud conditions and longwave radiation
during a transition from cold to warm periods. The authors concluded that the
cold periods are associated with low occurrence of clouds and relatively thin clouds,
while high cloudiness and thick clouds are typical for periods of warm and moist
intrusions. Since the author investigated only a short period, an analysis of longer
cloud observations is still needed. Yeo et al. (2018) investigated how the advection of
warm and cold air masses affects cloudiness, longwave fluxes at the surface and near-
surface temperature at Ny-Ålesund during winter. The authors analyzed a 10-day
period in February with alternating warm and cold conditions related to distinct
circulation patterns. During cold periods Yeo et al. (2018) observed a reduced
cloudiness and down-welling longwave flux of 200-230 W m−2. In contrast, warm
periods were associated with cloud occurrence close to 100 % and enhanced down-
welling longwave flux of 300 W m−2. For this study the authors used a ceilometer
and surface radiation measurements and, thus, could not analyze how warm and
cold air masses affect microphysical properties of clouds and their radiative effect.

1.4 Coupling of cloud and environmental properties
to SW and LW CRE

One of the most important cloud characteristics affecting the radiative properties of
clouds is their phase composition (Shupe and Intrieri, 2004; Sun and Shine, 1994;
Yoshida and Asano, 2005; Komurcu et al., 2014). Typically, according to the phase
composition clouds are classified into three categories: liquid, ice, and mixed-phase.
The first two categories consist purely of liquid and ice particles, respectively. A
mixed-phase cloud has liquid and ice phases coexisting within boundaries of the
cloud. Long-term in situ observations showed that liquid and ice particles have
distinct microphysical properties (Korolev et al., 2003). Liquid droplets have nearly
spherical shapes, sizes in the order of 10–20 µm, and the number concentration
ranging from 4×101 to 2×102 cm−3. Ice particles may have a vast variety of shapes
from pristine plates and columns to irregular-shaped aggregates and rimed particles
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(Bailey and Hallett, 2009; Kneifel et al., 2015). Size of cloud ice also varies in a wide
range from 20 µm to a few cm. The number concentration of ice particles observed
in the atmosphere ranges from 10−8 to 1 cm−3 (Kanji et al., 2017), which is several
order of magnitudes lower than for liquid droplets.

Particles in a cloud have a variety of sizes, which is characterized by a particle
size distribution (PSD) N(D), where D is the particle’s size. Typically, a PSD is
parameterized by an analytical function, such as generalized Gamma distribution or
log-normal distribution, which depend on few parameters. PSD is used to calculate
bulk physical properties of cloud particles, e.g. effective radius reff, and liquid and
ice water contents (LWC and IWC):

reff =

∫∞
0
r3N(D)dD∫∞

0
r2N(D)dD

, (1.5)

IWC = ρi

∫ ∞
0

V (D)Ni(D)dD, (1.6)

LWC = ρl

∫ ∞
0

V (D)Nl(D)dD, (1.7)

where ρ is the density, r is the radius of a sphere with equal surface area, V is
the volume of water in a particle, indexes i and l stand for ice and liquid water,
respectively.

A total amount of condensed water in a cloud layer (also known as cloud water path,
CWP) can be obtained by integration of vertical profiles of IWC and LWC within
the cloud boundaries. For a single mixed-phase cloud layer shown in Fig. 1.4 CWP
is defined as follows:

CWP =

∫ hi2

hi1

IWC(h)dh+

∫ hl2

hl1

LWC(h)dh. (1.8)

In Eq. 1.8 h denotes an altitude with indexes i and l indicating ice and liquid con-
taining parts of a cloud, and indexes 1 and 2 denote the lower and upper boundaries
of a corresponding part of the cloud.

The phase partitioning of a cloud is characterized by liquid water fraction (LWF),
which is the ratio of total mass of water in the cloud over CWP:

LWF =

hl2∫
hl1

LWC(h)dh

CWP
. (1.9)

In general, an atmospheric profile can have more than one cloud layer. Therefore,
often total amounts of ice and liquid water in a vertical profile are characterized by
liquid and ice water path (LWP and IWP), respectively:

LWP =

∫ ∞
0

LWC(h)dh, (1.10)

IWP =

∫ ∞
0

IWC(h)dh. (1.11)
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Figure 1.4: Schematic diagram of a typical thin single-layer mixed-phase
cloud containing a liquid layer close to the cloud top and ice virga below.

Shupe and Intrieri (2004) estimated how different cloud and environment properties
influence CRE. The authors considered the atmosphere divided into three layers:
the above-cloud atmosphere, the cloud layer, and the below-cloud atmosphere. In
this section these layers are denoted by indexes a, c, and bl, respectively. The cloud
fraction was assumed to be 1. With this model the authors obtained the following
first-order approximation of SW CRE:

CRESW ≈ tbsS0cos(z)(1− αs)tcs︸ ︷︷ ︸
cloudy sky

− tbsS0cos(z)(1− αs)︸ ︷︷ ︸
clear sky

= S0cos(z)tbs(1−αs)(tcs−1),

(1.12)

where z is the solar zenith angle, αs is the broadband surface albedo, tbs and tcs
are broadband SW atmospheric and cloud transmittances, respectively. The trans-
mittances tbs and tcs in Eq. 1.12 include direct and diffuse components. The direct
component is a fraction of the incident radiation passing through the atmosphere
without being scattered or absorbed. The diffuse component is a part of the incident
radiation that is scattered at least once before reaching the surface (in the case of
tbs) or cloud bottom (in the case of tcs). tbs is defined by properties of atmospheric
gases and aerosols, while tcs is defined by cloud macro and microphysical properties.

The differences between cloud liquid and ice discussed in Sec. 1.4 result in a di-
versity in CRE between liquid, ice, and mixed-phase clouds. Yoshida and Asano
(2005) analyzed how LWF influences the radiative properties of clouds in visible
and near-infrared parts of the radiation spectrum. The authors showed that for a
constant optical cloud thickness LWF does not have a strong effect at visible wave-
lengths. At near-infrared wavelengths the influence of LWF is more pronounced. A
decrease/increase in LWF lead to lower/higher reflectance and higher/lower absorp-
tance. Therefore, the total SW transmittance tcs becomes larger at higher LWF.
According to Eq. 1.12 this leads to more negative CRESW produced by ice clouds
with respect to liquid clouds with the same optical thickness. Nevertheless, many
liquid particles often have larger surface area per unit volume than relatively few
ice particles and, therefore, liquid clouds tend to have higher optical thickness and,
consequently, lower transmittance than ice clouds (Shupe and Intrieri, 2004).

Sun and Shine (1994) reported that radiative properties of clouds also depend on
how liquid and ice phases are mixed within the cloud boundaries. The simulations
performed by the authors showed that the uniform mixing assumption of liquid and
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ice within a cloud may lead to about 20% overestimation of the cloud single scatter-
ing albedo in comparison to cloud with layered and columnar phase arrangement.

The importance of the vertical profiles of liquid and ice for radiative properties of
clouds was also shown by Yoshida and Asano (2005). The authors analyzed the
sensitivity of cloud SW radiative properties to a change of liquid layer position
inside a mixed-phase cloud with fixed liquid and ice water paths. At visible wave-
lengths there was no dependence on the position. But reflectance and absorptance
of mixed-phase cloud at near-infrared wavelengths are strongly depended on the
vertical profile of the phase.

Equation 1.12 shows that beside the cloud microphysical properties, CRESW also
depends on the surface albedo and SZA. Typically, CRESW becomes more negative
with decreasing αs, since there is more contrast between less reflecting surface and
highly-reflecting clouds. Based on measurements from the Arctic Summer Cloud
Ocean Study (ASCOS) Sedlar et al. (2011) found that the decrease in αs by 0.01
leads to an increase in the CRESW magnitude by ±1.8 W m−2. Shupe and Intrieri
(2004) showed that for typical late-spring Arctic conditions the decrease in αs by
0.1 changes CRESW to more negative values by about 40 W m−2. SZA, which is the
angle between the zenith and the sun, affects the solar flux reaching the top of the
atmosphere. Therefore, when the sun is high in the sky (low SZA), the shading effect
of the clouds becomes stronger (Shupe and Intrieri, 2004), i.e. CRESW becomes more
negative.

According to Shupe and Intrieri (2004), LW CRE can be approximated as:

CRELW ≈ tbl(1− εcl)σTa4 + tblεclσT
4
c + σTbl

4 − εsσTs4︸ ︷︷ ︸
cloudy sky

−

tblσTa4 + σTbl
4 − εsσTs4︸ ︷︷ ︸

clear sky


= tblεclσ(Tc

4 − Ta4),

(1.13)

where tbl is the broadband LW transmittance of the below-cloud atmosphere; Ta
and Tc are effective temperatures of the above-cloud atmosphere and the cloud,
respectively; σ is the Stefan–Boltzmann constant, εcl and εs are the broadband
emissivities of cloud and surface, respectively.

Equation 1.13 shows that one of the key parameters defining radiative properties of
a cloud in the infrared is the cloud emissivity εcl. Smith et al. (1993) showed that
the contribution of the cloud emissivity to the downwelling LW radiation is an order
of magnitude larger than the contribution from the cloud reflectance, and, therefore,
εcl can be related to the cloud LW transmittance tcl, which is proportional to CWP
(Iacono et al., 2000):

εcl ≈ 1− tcl = 1− e−βdiffκabsCWP, (1.14)

where βdiff is the diffusivity factor typically assumed to be 1.66 (Ebert and Curry,
1992; Garrett et al., 2002) and κabs is the combined liquid and ice phase LW cloud
absorption coefficient.
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The cloud absorption coefficient κabs is a sum of the liquid water κl and ice absorption
κi coefficients weighted by the fraction of liquid and ice phase, respectively:

κabs = κlLWF + κi(1− LWF), (1.15)

According to Garrett et al. (2002) κl does not depend on microphysical properties of
droplets when their sizes are mostly below 10 µm. For larger droplets κl is inversely
proportional to the effective radius reff . The mass absorption coefficient for ice κi
can be defined as follows (Ebert and Curry, 1992):

κi =
σi

IWC
, (1.16)

σi here is the volume absorption coefficient (Ebert and Curry, 1992):

σi =

∫ ∞
0

A(D)

4
Qi(D)Ni(D)dD, (1.17)

where A is the surface area of an ice particle, Qi is the absorption efficiency of an
ice particle.

Shupe and Intrieri (2004) showed that values of LW CRE range from 0 to 85 W m−2

and depend on the amount of liquid in a column, which is characterized by LWP.
The upper limit of CRELW corresponds to clouds with LWP exceeding, depending
on a site, 30–50 g m−2 (Stephens, 1978; Shupe and Intrieri, 2004; Miller et al., 2015;
Ebell et al., 2020). Liquid-containing clouds with LWP exceeding the threshold act
as a black body, i.e. εcl = 1, and a further increase of LWP does not change their
LW radiative properties.

Since the amount of liquid water is typically related to the atmospheric temperature,
Sedlar et al. (2011) investigated how LW CRE is related to the cloud top temper-
ature. The authors reported that for cloud base temperatures below –10 ◦C the
observed LWP is primarily below 25 g m−2 and CRELW ranges from 10–30 W m−2.
For the temperatures above –10 ◦C LWP mostly exceeds 25 g m−2 and CRELW
varies from 50 to 85 W m−2.

Ebell et al. (2020) found that the limit in CRELW can be caused by clouds with IWP
exceeding 150 g m−2 based on observations at Ny-Ålesund. This is consistent with
Feofilov et al. (2015), who showed that the ice cloud emissivity does not strongly
depend on IWP for clouds with IWP > 100− 150 g m−2.

1.5 Estimation of CRE from observations

According to Eqs. 1.2 and 1.3 an estimation of CRE requires a knowledge on all-sky
SW and LW fluxes (QSW and QLW ) and those if the sky were cloud-free (QSWclr

and QLWclr). All sky fluxes can be continuously measured by radiation sensors. In
contrast, QSWclr and QLWclr cannot be directly measured under cloudy conditions
and have to be estimated. Several approaches exist to define the clear sky fluxes.

One approach is to substitute QSWclr and QLWclr by the net SW and LW fluxes
approximated from radiation measurements during clear sky conditions. Long and



14 1. Introduction

Ackerman (2000) developed a technique to identify clear sky scenes based on surface-
based observations of total and diffuse SW fluxes. The authors used the identified
cases to fit the clear sky flux functions using linear regressions. Regression coeffi-
cients are estimated for each day with more than 120 one-minute clear sky samples.
A span in the solar zenith angle should be at least 0.4 around the maximum local
Sun position. For cloudy days the regression coefficients are linearly interpolated.

Long and Turner (2008) proposed a method for continuous estimation of clear sky
downwelling LW. The authors identify clear sky cases based on the observed surface
downwelling LW flux, air temperature, and relative humidity. F↓clr,LW is parameter-
ized as follows:

F↓LWclr ≈ C(ew/Tamb)
1/7σT 4

amb, (1.18)

where Tamb is the ambient air temperature, ew is the water vapor pressure,and C
is the effective temperature/humidity lapse rate coefficient. The coefficient C is
calculated as:

C = k + a(RH)b, (1.19)

where coefficients k, a, and b are empirically determined from the identified clear
cases.

The methods based on the interpolation of clear sky fluxes to cloudy scenes are
straightforward and easy to implement. Since these methods use empirically derived
coefficients the results partly include long-term variability in atmospheric gases and
aerosols, which have an impact on the atmospheric radiative properties. On the other
hand, intra day variability in atmospheric components may introduce additional
uncertainties in the coefficient estimations. Furthermore, the methods use only
surface observations and are subjects to uncertainties related to variability in vertical
profiles of, for instance, water vapor. A major disadvantage of the described methods
is the requirement for a sufficient number of clear sky samples, and, for SW, a proper
range of zenith angles. For the Arctic region with a high cloud occurrence and polar
nights these requirements are often not satisfied.

Another approach of the CRE estimation is based on broadband radiative transfer
calculations. Such a method directly accounts for cloud properties as well as influ-
ence of any other atmospheric component included in the model. One of the widely
used models for the calculation of atmospheric radiative properties is the rapid ra-
diative transfer model (RRTMG, Mlawer et al., 1997; Barker et al., 2003). This
model requires information on aerosols, surface albedo, temperature and humidity
profiles, and cloud microphysics. The model outputs vertical profiles of SW and LW
fluxes. In order to estimate the contribution by clouds, the model is run twice with
and without clouds for the same other inputs. RRTMG determines the radiative
properties of clouds under the plane-parallel assumption, i.e. atmospheric parame-
ters are assumed to be homogeneous in horizontal dimensions and vary only in the
vertical direction. RRTMG does not take into account three-dimensional radiative
effects due to inhomogeneities of surface and broken clouds, multi-scattering effects
and atmospheric polarization.
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1.6 Observations of cloud properties in the Arctic

For an accurate estimation of CRE with a radiative transfer model, profiles of at-
mospheric components are required. Typically, retrieved profiles from ground-based
or/and space-borne measurements are used. Satellites with passive and active in-
strumentation on-board provide estimation of cloud and aerosol properties, and
radiative fluxes in a large-scale perspective (Cesana et al., 2012; Kay et al., 2016;
Sedlar and Tjernström, 2017; Wild et al., 2019).

A number of cloud studies is based on passive observations from the MODerate-
resolution Imaging Spectroradiometer (MODIS). Two instruments of this type are
carried by the Terra and Aqua satellites launched in December 1999 and May 2002,
respectively. MODIS has 36 spectral bands from 0.41 to 14.2 µm. King et al. (2013)
analyzed a decade of MODIS observations and showed that in the Arctic region the
average cloud occurrence is about 70%. The authors found 20% more clouds over
the Arctic ocean with respect to the land. Based on the algorithm by King et al.
(2010), King et al. (2013) analyzed properties of liquid and ice clouds. The authors
found a seasonal variability in occurrence of liquid and ice clouds. Over the land
liquid clouds were present in 20–30% of profiles during summer months while almost
no liquid clouds were detected in winter months. An opposite relation was found for
ice clouds with the maximum occurrence of 40% in winter and minimum of 15% in
summer. Over the ocean the authors found about a factor of 2 more liquid clouds.
The occurrence of ice clouds over the ocean was nearly equivalent in comparison to
profiles over the land. Effective sizes of liquid and ice particles were found to be
11–15 and 16–28 µm, respectively.

The detection of clouds over the Arctic region using passive space-born instruments
is challenging especially over snow covered surfaces and sea ice due to the low con-
trast in visible and thermal infrared bands between clouds and underlying surfaces
(Liu et al., 2010). For instance, Trepte et al. (2019) analyzed the cloud mask from
the Clouds and Earth’s Radiant Energy System (CERES), which is based on a cloud
detection algorithm from MODIS. The authors compared the CERES cloud mask
with the vertical feature mask from active space-borne observations. The results of
the comparison reveal an agreement in cloud cover in 90–99% of cases over snow-
free areas for day and night conditions. Over snow-covered areas the detection of
clouds agrees in 89–94% and 77–84% of cases during day and night time, respectively
(Trepte et al., 2019). It was found that a large part of clouds missed in CERES are
clouds with relatively low cloud optical depth (less than 1). In addition, the cloud
detection by visible and infrared space-borne instruments exhibits large uncertain-
ties during night time conditions due to a low thermal contrast between surface and
clouds (Frey et al., 2008; Trepte et al., 2019). Moreover, passive satellite sensors
can provide only a limited information on the cloud vertical structure (Zhang et al.,
2004) and have difficulties in providing accurate temperature and humidity profiles
for the lower atmosphere, which is particularly important for an estimation of the
LW downward flux (Wang and Liang, 2009).

Active space-borne instruments can improve the cloud detection and reduce the limi-
tations of satellite-based passive instruments. For instance, the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) and the 94 GHz cloud radar installed on
the CALIPSO and CloudSat satellites, respectively, are widely used for cloud in-
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vestigations. Measurements from CALIOP and the CloudSat radar are not affected
by the snow-covered surfaces and the lack of the sunlight during the polar night
Mioche et al. (2015). The CloudSat radar can profile almost all non-precipitating
clouds. But the CloudSat radar is often not sensitive to thin cirrus clouds, which
typically contain relatively small particles. CALIOP is more sensitive to optically
thin clouds. Thus, both instruments are typically used in synergy to provide more
reliable detection of clouds. Matus and L’Ecuyer (2017) analyzed the cloud fraction
on the global scale (gridded with the 2.5◦ x 2.5◦ spatial resolution) utilizing observa-
tions from CALIOP and the CloudSat radar for the period from 2007 to 2010. The
authors classified cloud profiles to liquid, ice, mixed and multi-layer. The results
showed that in the Arctic region the occurrence of clouds is about 75% with 28, 21,
13, and 13% of ice, multi layer, liquid, and mixed-phase clouds, respectively. The
authors found that at high latitudes, mixed-phase clouds are less common during
winter months as colder temperatures limit the presence of supercooled liquid water.

Mioche et al. (2015) analyzed the total cloud occurrence over the entire Arctic
region and Svalbard region for the period from 2007 to 2010 and compared the
results obtained from different satellite products and ground-based observations.
The authors obtained cloud types and properties using the DARDAR algorithm
(Delanoe and Hogan, 2010), which is based on combined observations from CALIOP
and the CloudSat radar. The results showed that the total cloud occurrence over
the Svalbard region is about 5–10% higher than the average over the entire Arctic.
In winter and spring this difference reaches 20%. Mioche et al. (2015) also reported
that mixed-phase clouds occur in 30% of winter and early spring profiles and 50%
during the other seasons. The authors found 10–15% higher occurrence of mixed-
phase clouds in the Svalbard region.

Cesana et al. (2012) analyzed ice- and liquid-containing clouds in the Arctic region
for the period from 2006 to 2011 using passive and active observations from the
CALIPSO satellite. The authors reported that ice-containing clouds were mostly
observed at altitudes above 4 km and in the temperature range from -30 to -60 ◦C.
Liquid-containing clouds were mostly found in the lowest 3 km at temperatures from
-25 to 0 ◦C. The authors found a spacial variability of the cloud fraction in the Arctic
region for different seasons. Liquid-containing clouds have the highest occurrence
of 0.65 in summer over the Barents and Greenland seas. In winter and spring the
fraction of liquid clouds is about 0.2 over the whole Arctic domain but it may exceed
0.5 in regions affected by the Aleutian and Icelandic Lows.

The detection of low-level clouds from the active space-borne observations has lim-
itations (Zygmuntowska et al., 2012; Mioche et al., 2015). The authors compared
the retrieved cloud occurrence from CALIOP and the CloudSat radar with ground-
based observations and found an underestimation in cloud detection by space-borne
instruments of 20% for altitudes between 0.5 and 2 km and 25% below 0.5 km. (Liu
et al., 2017) found 25–40% fewer clouds below 0.5 km from the same space-borne in-
struments in comparison to ground based instruments. Particularly, fewer ice clouds
and mixed-phase clouds were observed from space-borne observations between the
surface and 1 km height compared to ground-based observations. Blanchard et al.
(2014) showed that this limitation is related to the ground clutter contamination
and the strong attenuation of the lidar signal, especially by liquid and mixed-phase
clouds. In addition, availability of satellite observations for a certain location ranges
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from a few times per day to once in several weeks (Winker et al., 2009). Thus, con-
tinuous observations are often not available. In addition, satellite instruments have
relatively large footprints and coarse spacial resolution. Therefore, inhomogeneities
in atmospheric and surface properties are averaged out, which makes it difficult to
compare the retrievals based on space and ground-based observations.

Ground-based remote-sensing instruments provide continuous profiling of atmo-
sphere with high temporal and spacial resolution. Microwave radiometers allow
for temperature and humidity profiling as well as the estimation of total amounts
of water vapor and liquid water in a column (Loehnert, 2002; Rose et al., 2005).
Active ground-base measurements can be used for the discrimination between liq-
uid, ice, and mixed-phase clouds (Shupe, 2007; Illingworth et al., 2007), estimation
of IWC Hogan et al. (2006), LWC Frisch et al. (1998), and size of cloud particles
(Donovan and van Lammeren, 2001; Frisch et al., 2002; Delanoe and Hogan, 2008).
Thus, observations from a cloud radar, lidar, microwave radiometer are widely used
to get detailed macro and microphysical properties of clouds (Shupe et al., 2015),
which can be used as an input for a radiative transfer model (Shupe and Intrieri,
2004; Dong et al., 2010; Ebell et al., 2011; Turner et al., 2018). The ground-based
observations are particularly valuable for the Arctic region, where a large part of the
variability in the surface radiation is defined by low-level liquid-containing clouds
(Turner et al., 2007), which, as mentioned above, cannot be reliably detected from
space. Ground-based radiation sensors are often collocated with a set of atmospheric
profilers and, therefore, provide a continuous dataset that can be used to evaluate
the results of the used radiative transfer model (Ebell et al., 2011).

Many studies utilized ground-based remote sensing measurements in order to pro-
vide statistics on cloud phase, cloud macrophysical and microphysical properties for
several Arctic sites (Intrieri et al., 2002; Shupe et al., 2011; Shupe, 2011). A number
of cloud studies involved ship- and air-borne sets of instrumentation during inten-
sive observation campaigns such as SHEBA program (Uttal et al., 2002) focused on
the Beaufort sea region, Mixed-Phase Arctic Cloud Experiment (M-PACE) on the
North Slope of Alaska (Verlinde et al., 2007), ASCOS in the central Arctic (Tjern-
ström et al., 2014), and the recent ACLOUD/PASCAL campaign in the Svalbard
region (Wendisch et al., 2019).

Shupe et al. (2011) analyzed cloud properties at five observatories in the Arctic,
namely Atqasuk, Barrow, Eureka, Summit and Ny-Ålesund. The authors showed
that in general the total annual cloud occurrence among all these stations varies from
58-83 %. The highest occurrence of clouds was observed in autumn and ranged from
80 to almost 100%, while the lowest cloud occurrence of∼60% was typically observed
in winter and spring. Shupe et al. (2011) found an unique shift in the cloud annual
cycle at Eureka due to distinct meteorological patterns. At Eureka there are less
low-level summer clouds and more low- and mid-level winter clouds.

Shupe (2011) analyzed cloud phase at Barrow, Eureka, and for the SHEBA cam-
paign. The authors reported that ice clouds were the predominant type of clouds
with the occurrence up to 60–70% at all sites. Liquid phase was observed 56% of the
time at Barrow and during the SHEBA campaign but much less frequent at Eureka
(30%). It was also shown that the water saturation conditions were reached less
frequently at the Eureka station, which lead to lower occurrence of liquid-containing
clouds at this site in comparison to the other Arctic sites. Shupe et al. (2015) found
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that the monthly mean LWP ranged from 20–110 g m−2 at Barrow and was higher
than the monthly mean values of IWP varying from 5 to 70 g m−2 for all seasons.
The highest LWP was observed at Barrow in late summer and early autumn while
the largest IWP was observed in early autumn and middle of spring. For the Bar-
row dataset Shupe et al. (2015) found that the monthly median effective radius of
ice particles is about 35 µm throughout a year. The median effective size of liquid
particles was typically from 7 to 10 µm.

Shupe and Intrieri (2004) investigated the influence of cloud phase on SW and
LW radiation analyzing the data from the SHEBA field camp based on an ice-
breaking ship for the period from 1997 to 1998. The authors used the microphysical
profiles retrieved from ground-based observations and applied the Santa Barbara
Discrete Ordinate Radiative Transfer (DISORT) Atmospheric Radiative Transfer
(SBDART) algorithm (Ricchiazzi et al., 1998). The results showed that annually
averaged CRELW and CRESW for liquid-containing clouds were 52 and –21 W m−2,
respectively. For pure ice clouds CRELW and CRESW were found to be 16 and –
3 W m−2, respectively, indicating that liquid containing clouds are more radiatively
effective than ice clouds for the dataset analyzed by Shupe and Intrieri (2004).

Dong et al. (2010) analyzed 10-years of cloud observations at Barrow and found
that on average the net CRE at Barrow is 3.5 W m−2. The authors reported that
for regions located more to the south from the Barrow station the annual Net CRE
is negative (e.g. –17.9 W m−2, Alaska 60◦N) while to the north it becomes more
positive (e.g. 26.9 W m−2 during the SHEBA experiment). Such a latitudinal
dependence of CRE may result from the combined effect of SZA and the surface
albedo. For the Summit station Miller et al. (2015) found the annually averaged CRE
of 33 W m−2. CRE is positive during a year and shows a low seasonal variability,
which is opposite to other Arctic sites where CRE is negative in summer.

Until summer 2016 the AWIPEW station at Ny-Ålesund was equipped only with one
profiling instrument – ceilometer. Based on observations from the ceilometer Shupe
et al. (2011) analyzed macrophysical properties of clouds at Ny-Ålesund, such as
cloud occurrence, persistence, and cloud base height. An analysis of microphysical
and radiative properties of clouds, similar to the one conducted for the Barrow and
Summit stations, was not possible because there was no measurements available
from a cloud radar.

1.7 Focus and scientific questions of the thesis

Clouds are one of the major components of the Arctic climate and their accurate
representation in climate models is crucial for analysis of the radiation budget. Un-
derstanding of clouds is especially important for the Arctic regions experiencing the
fastest temperature increase over the last decades. The Svalbard island is currently
the only place with continuous active and passive atmospheric profiling located in
such a region. Even though, the Ny-Ålesund station is well equipped with instru-
ments continuously monitoring the atmosphere during several decades, the literature
review given in this chapter shows a lack of detailed cloud characterization at Ny-
Ålesund.
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The atmosphere in Svalbard and clouds in particular are strongly affected by the
long-distance air transport. Even though there is a general evidence how the air
transport influences clouds in the Svalbard area, more information is required in
order to link the cold and warm air intrusions with clouds and their radiative effect.
This link is one of the missing parts towards a complete surface energy budget similar
to those recently carried out by Persson et al. (2017) for the SHEBA campaign.
Profiling of cloud microphysical properties at Ny-Ålesund was not possible because
only one profiling instrument (ceilometer) was used until summer 2016, when a
cloud radar was installed within the (AC)3 project in order to close the gap in cloud
observations.

The aim of the current study is to answer the following questions:

• What characteristics do clouds have at Ny-Ålesund?

• How good can a numerical weather prediction model represent cloud properties
at Ny-Ålesund?

• How do moist and dry conditions influence cloud properties including occur-
rence, cloud types, IWP, and LWP at Ny-Ålesund?

• How do changes in cloud properties due to moist and dry conditions influence
CRE at Ny-Ålesund?

• Do long-term observations of the atmospheric state at Ny-Ålesund show sig-
nificant trends in the occurrence of moist and dry conditions over the last
decades?

• If there are trends in the occurrence of moist and dry conditions at Ny-Ålesund,
what is their impact on LW CRE?

In order to answer these questions, continuous atmospheric observations taken from
June 2016 to October 2018 at Ny-Ålesund within the (AC)3 project were used to
analyze cloud properties, surface radiation, fluxes, and atmospheric states. A state-
of-the-art set of passive, active, and in situ instruments utilized in this study is de-
scribed in Chapter 2. The widely used processing algorithm Cloudnet was applied
by the Finnish Meteorological Institute to the observations. Based on the cloud
categorization from Cloudnet, a cloud classification and microhysical retrievals were
used to estimate properties of ice and liquid cloud particles. Chapter 3 shows gen-
eral statistics of cloud properties and gives a comparison of the observations and
a numerical weather prediction model. Profiles of the retrieved cloud properties as
well as thermodynamic properties of the atmosphere were used by Ebell et al. (2020)
as an input for RRTMG simulations. In Chapter 4 cloud properties and CRE from
RRTMG are related to moist, dry, and normal conditions at Ny-Ålesund. Long-term
trends in occurrence of moist and dry conditions are analyzed in Sec. 4.5.

Since RRTMG requires profiles of cloud properties, the estimated CRE is only avail-
able from June 2016 onwards. Nyeki et al. (2019) showed that effects of cloud on
the surface radiation can be deducted from LW flux observations and cloud frac-
tion, which, as was shown by Long and Ackerman (2000); Long and Turner (2008),
can also be approximated from the surface flux measurements. In order to relate
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the long-term trends in atmospheric water vapor to changes in CRE, an algorithm
estimating CRE from available long-term observations is developed. The algorithm
is based on neural networks and uses different combinations of inputs, such as sur-
face LW fluxes, cloud base detection from a ceilometer, brightness temperatures
from a microwave radiometer, surface temperature and humidity. Chen et al. (2006)
have already shown that neural networks are capable of the LW CRE estimation.
The authors used cloud fraction, cloud base height, and cloud base temperature
retrieved from the lidar/radar synergy. In this study, the radar was not available
before June 2016. A long-term lidar dataset is available for Ny-Ålesund (Maturilli
and Ebell, 2018) but the dataset is not homogeneous because lidars of different types
were used (Sec. 2.3). Therefore, even though the developed algorithm is similar to
the approach by Chen et al. (2006), different input parameters were used. The de-
veloped method and its results are presented in Chapter 5. Finally, in Chapter 6 a
summary and an outlook for the future research are presented.

Parts of this thesis have been published:

• Nomokonova T., Ebell K., Löhnert U., Maturilli M., Ritter C., and O’Connor
E. (2019), Statistics on clouds and their relation to thermodynamic conditions
at Ny-Ålesund using ground-based sensor synergy. Atmospheric Chemistry
and Physics, vol. 19, no.6, pages 4105-4126, doi: 10.5194/acp-19-4105-2019.
Parts of this publication are mainly used in Chapters 2 and 3.

• Nomokonova T., Ebell K., Löhnert U., Maturilli M., and Ritter C. (2019), The
influence of anomalous atmospheric conditions at Ny-Ålesund on clouds and
their radiative effect. Atmospheric Chemistry and Physics Discussions, 1-34,
doi: 10.5194/acp-2019-985. This publication is mainly used in Chapters 2 and
4.

Datasets used for the analysis in this thesis have been published:

• Nomokonova T., and Ebell, K. (2019), Cloud microphysical properties re-
trieved from ground-based remote sensing at Ny-Ålesund (10 June 2016 –
8 October 2018). University of Cologne, PANGAEA, https://doi.pangaea.
de/10.1594/PANGAEA.898556.

• Nomokonova, T., Ritter, C., Ebell, K. (2019), HATPRO microwave radiometer
measurements at AWIPEV, Ny-Ålesund (2016 – 2018). PANGAEA, https:
//doi.org/10.1594/PANGAEA.902183.



Chapter 2

Instrumentation and data products

In this study a set of passive, active, and in situ instrumentation continuously run-
ning at the AWIPEV observatory was used. An overview of the measurement site
is shown in Fig. 2.1. A cloud radar and a microwave radiometer are installed at the
roof on the AWIPEW observatory building, while a ceilometer and radiation sensors
are mounted on the ground about 100 m away from the building. In addition, a
number of data products derived from the measurements or models are utilized. In
this chapter, a review of the instruments, data products, and models as well as a
short description of the measurement principles and retrieval methods are given.
Information for this chapter is partly taken from Nomokonova et al. (2019b) and
Nomokonova et al. (2019a).

2.1 Cloud radar

In this thesis two 94 GHz cloud radars, JOYRAD-94 and MIRAC-A (Fig.2.2), of the
University of Cologne are used. Both radars are of the same type and were manufac-
tured by Radiometer Physics GmbH (RPG). JOYRAD-94 and MIRAC-A are ver-
tically pointing radars and utilize frequency-modulated continuous wave (FMCW)
signals. Küchler et al. (2017) showed the details on the operational principle and
signal processing for JOYRAD-94. JOYRAD-94 was installed at the AWIPEV sta-
tion on 10th of June 2016 where it was operated until its replacement by MIRAC-A
in July 2017. In this study radar data until 8 October 2018 are used. Main hardware
parameters and operational settings of the radars are shown in Table 2.1.

The used cloud radars are active instruments which emit radiation in form of pe-
riodical frequency-modulated signals (also known as chirps) to the atmosphere and
receive a signal returned by atmospheric scatters. Ranging in FMCW radars is per-
formed by measuring frequency differences between the transmitted and received
signals, which are proportional to the distance at which the scatters are located.
The returned power Pr measured by the radars is defined by properties of scatters
and by radar specifications. In order to get a quantity independent on the radar
characteristics, Pr is usually converted to so called equivalent radar reflectivity fac-
tor (Z, radar reflectivity hereafter):

21
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Figure 2.1: Overview of the AWIPEV measurement site at Ny-Ålesund.

Figure 2.2: The 94 GHz cloud radars JOYRAD (a) and MIRAC-A (b)
mounted on the roof of the AWIPEV station at Ny-Ålesund.

Z = |Kw|−2CaPrr
2, (2.1)

where |Kw| is the dielectric factor of liquid water, Ca is the radar constant, which
takes into account the radar specifications, and r is range from the radar to the scat-
ters. Z has units of mm6 m−3 but often logarithmic units dBZ = 10 log10(mm6 m−3)
are used.

For spherical cloud particles with sizes much smaller than the wavelength, Z is
proportional to the sixth raw moment of the size distribution:

Z ∼
∫ ∞

0

D6N(D)dD. (2.2)

Here D is the size of a scatter and N(D)dD is a number of particles in a unit
volume with sizes ranging from D to D + dD. Equation 2.2 shows that in the case
of Rayleigh scattering the radar reflectivity is mostly dominated by a presence of
larger particles (Hogan et al., 2006).
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Table 2.1: Specifications of the used radars.

Parameter JOYRAD-94 MIRAC-A

Transmitted power [W] 1.5 1.2
Antenna gain [dBi] 50.1 46.5
Beam width [◦] 0.56 0.95
Polarisation Vertical
System noise figure [dB] 4–5
Sampling period [s] 2.5 2

Vertical resolution

4 m (100-400 m),
5.3 m (400-1200 m),
6.7 m (1.2-3 km),
17 m (3-10 km)

3.2 m (100-400 m),
7.5 m (400-1200 m),
9.7 m (1.2-3 km),
23.8 m (3-10 km)

Sensitivity at 5 km [dBZ] –40 –34

Sensitivities of JOYRAD-94 and MIRAC-A at 5 km distance for the settings given
in Table 2.1 are about –40 and –34 dBZ. The total radar reflectivity uncertainty
consists of the calibration bias which is within ±0.5 dB (Küchler et al., 2017),
the random error, and the gas/liquid attenuation uncertainty. The random error
depends on a number of independent measurements, which is for the 30 s sampling
varies from 60 to 120 for the used settings for both radars (see Table 2.1). Taking
into account the non-coherent averaging of the independent measurements (Bringi
and Chandrasekar, 2001, Eq. 5.193) the standard deviation of the random error is
in the order of 0.5 dB.

The used cloud radars have Doppler capabilities, i.e. they can track phase changes
between chirps caused by motions of atmospheric particles. From a sequence of
received signals cloud radars estimate Doppler spectra, which represent a velocity
distribution of the radar reflectivity. The radars calculate moments of Doppler
spectra, such as mean Doppler velocity, and spectrum width.

Profiles of the radar reflectivity factor and the mean Doppler velocity were used in
the Cloudnet algorithm (Sec. 2.6) for cloud detection, characterization, and micro-
physical retrievals. In this study, the analysis of the first year of radar observations
at Ny-Ålesund when JOYRAD-94 was operating is presented in Chapter 3. The
whole period of radar observations is investigated in Chapters 4 and 5.

2.2 Microwave radiometer HATPRO

The microwave radiometer (MWR) HATPRO (humidity and temperature profiler;
Rose et al., 2005) is a passive instrument that measures atmospheric brightness
temperatures (TB) with fourteen channels. Six K-band channels (from 22 GHz
to 28 GHz) are located on the right slope of the water vapor absorption line near
22 GHz. A 31.4 GHz channel is located in the atmospheric window and, thus, is more
sensitive to presence of atmospheric liquid water. TBs measured at K-band are used
for retrievals of integrated water vapor (IWV), LWP, and humidity profiles. Seven
V-band channels (from 51 GHz to 58 GHz) are located along the oxygen absorption
complex near 60 GHz and are used for vertical temperature profiling.
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Figure 2.3: MWR HATPRO mounted on the roof of the AWIPEV station
at Ny-Ålesund.

MWR has been measuring at AWIPEV station, Ny-Ålesund, since 24 March 2011
(Fig. 2.3). This instrument operates continuously but cannot provide reliable infor-
mation under rain conditions, when the instrument radome is wet. In these cases
TB data are flagged and excluded from an analysis.

In order to derive LWP and IWV as well as temperature and humidity profiles a
multivariate linear regression algorithm developed at the University of Cologne (Löh-
nert and Crewell, 2003) was used. The regression coefficients are obtained from TBs
simulated from a long-term radiosonde dataset. Since the algorithm relies on cli-
matological data for a certain location, the retrievals were adapted for an operation
at Ny-Ålesund (Nomokonova et al., 2019b). The site specific regression coefficients
were obtained from TBs simulated using a radiative transfer model (RTM). The
model was applied to a dataset of almost 3800 Ny-Ålesund radiosondes (from 2006
to 2016, Sec. 2.4). In addition to routinely applied GRUAN processing (Sec. 2.4)
for the RTM model the radiosonde data were quality controlled according to Nören-
berg (2008). Radiosondes that did not reach the 30 km height were extended with
climatological profiles.

Initially, the retrievals are directly applied to TBs measured by the MWR. Nev-
ertheless, the measured TBs are subject to offsets due to long-term drifts in the
receiver gains. Therefore, the radiometer measurements have been corrected for TB
offsets according to Löhnert and Maier (2012). The assessment of the TB offsets
allows reducing systematic errors in TBs originated from instrumental effects as well
as from radiative transfer simulations. The offsets were determined as an average
difference between simulated and measured TB under conditions with no liquid wa-
ter in the atmosphere. The differences were averaged for each period between two
absolute calibrations of the instrument. In order to identify radiosonde profiles with
no liquid water, 2 min standard deviations of LWP estimated by MWR were checked
within 20 minutes before and after a radiosonde launch. If all standard deviation
values of the LWP within the 40 minutes did not exceed 1.2 g m−2 the profile is
considered to be free of liquid-water. After the measured TBs have been corrected
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Figure 2.4: IWV comparison between MWR and radiosonde (only around
11 UTC radiosondes included) for the period from 2011 to 2017 (a) and
MWR and GPS (1131 days) for the period from 2013 to 2016 (b).

Temperature difference (MWR-RS) [°C]

(a) (b)

-2 0 2 4 6

H
ei

gh
t [

m
]

0

2000

4000

6000

8000

10000
bias
STD

H
ei

gh
t [

m
]

Absolute humidity difference (MWR-RS) [g/m3]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

2000

4000

6000

8000

10000
bias
STD

Figure 2.5: Difference in temperature (a) and relative humidity (b) between
MWR and radiosonde data for the period from 2011 to 2017. Blue and red
lines show the bias and the standard deviation, respectively.

for the corresponding offsets, the retrievals were applied to the corrected values of
the TBs.

In order to assess uncertainties, the variables retrieved from MWR were evaluated
using estimates from other sources. Figure 2.4a shows a comparison of the IWV
from MWR and radiosondes. The values are in a good agreement with root mean
squared error (RMSE) of 0.56 kg m−2. Another source of IWV is Global Positioning
System (GPS). The GeoForschungsZentrum Potsdam runs the EPOS software (Ge
et al., 2006) that provides IWV estimates with a temporal resolution of 15 min and
an accuracy of 1–2 kg m−2 (Dick et al., 2001; Gendt et al., 2004). For the comparison
IWV from MWR was averaged over 15 min intervals taken after GPS time samples.
The comparison between MWR and GPS IWV for the period from 2013 to 2016
(Figure 2.4b) shows a good agreement with RMSE of 0.85 kg m−2. These results
are consistent with Steinke et al. (2015), who compared IWV from MWR and GPS
for mid-latitudes and reported RMSE of 0.91 kg m−2.

Figure 2.5 shows differences between temperature and absolute humidity retrieved
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from MWR and measured by radiosondes. The bias in temperature is slightly height
dependent and is within ±0.5◦C. The standard deviation of the temperature differ-
ence increases from about 1 ◦C near the surface to 5 ◦C at 10 km height. The bias
in absolute humidity ranges from −0.01 to −0.05 g m−3 up to 10 km. The stan-
dard deviation of the absolute humidity difference ranges from 0.01 to 0.25 g m−3.
Uncertainty in LWP retrieved from MWR is typically 20-25 g m−2 (Rose et al.,
2005).

In this thesis LWP retrieved from MWR observations is used to quantify the total
amount of liquid in cloudy profiles. LWP is also utilized as an input for Cloud-
net (Sec. 2.6). Temperature profiles and IWV retrieved from MWR are used to
characterize atmospheric states at Ny-Ålesund in Chapter 4.

2.3 Ceilometer

Ceilometer is an active instrument which emits laser pulses into the atmosphere
and measures the return signal scattered by atmospheric particles. Since ceilometer
is sensitive to a high concentration of liquid particles and aerosols (Hogan et al.,
2006), it is suitable for detection of liquid layers and cloud base heights. However,
the near-infrared signal is strongly attenuated by liquid layers (optical depth more
than 3) and therefore, ceilometer can often miss the liquid particles above the lowest
optically thick liquid layer. Ceilometers are also used for detection of high level ice
cloud (Protat et al., 2006) but, as was shown by Bühl et al. (2013), the detection of
clouds with IWC less than 10−6 g/m3 is challenging.

Since 1992 ceilometers have been operated at the AWIPEV station in Ny-Ålesund
(Maturilli and Ebell, 2018). During this period three types of ceilometers were
used to provide cloud base height observations. The period of measurements and
technical characteristics of each ceilometer type are shown in Table 2.2. Due to
technical issues the ceilometer data was missing in February 1993, from February to
May 1997, from December 1999 to March 2000, and in March 2000 (Maturilli and
Ebell, 2018).

The maximum cloud reporting range for LD-WHX05 was up to 3650 m, which is
much lower in comparison to other two ceilometers (13 km). This might have led
to underestimation of cloud occurrence from 1992 to 1998. Maturilli and Ebell
(2018) noticed that in summer the cloud occurrence estimated from LD-WHX05
was consistent with the other two ceilometers, while in other seasons and especially
in winter LD-WHX05 showed unrealistically low cloud occurrence. Therefore, for
this study only the data from ceilometers LD-40 and CL51 were used in the analysis
of cloud occurrence.

For the Cloudnet algorithm (Sec. 2.6) attenuated backscatter profiles from the
ceilometer CL51 are utilized. The calibration technique applied to the measured
attenuated backscatter coefficient described in O’Connor et al. (2004) has uncer-
tainties of 10%.
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Table 2.2: Specification of ceilometers.

Type
(wavelength) Operation period Sampling [s] Range

resolution [m]
Maximum
range [km]

LD-WHX05 1 August 1992
to 13 July 1998 300 10 (below 300 m),

20 (above 320 m) 3.7

LD-40 (855 nm) 14 July 1998
to 24 August 2011 15 7.5 13

CL51 (905 nm) 25 August 2011
to 8 October 2018 12-20 10 13

Table 2.3: Radiosondes used for this study.

Type Period Temporal and vertical resolution

RS80-A 1993 to July 2002 1 s, 50 m (<10 km), 100 m
(<30 km)

RS90 23 July 2002 to 20 May 2006 1 s, 50 m (<10 km), 100 m
(<30 km)

RS92 21 May 2006 to May 2017 1 s, 5-7 m

RS41 May 2017 to October 2018 1 s, 5-7 m

2.4 Radiosondes

Radiosondes have been launched at AWIPEV at least once per day at around 11
UTC for more than two decades (Maturilli and Kayser, 2016). The radiosondes
provide vertical profiles of temperature, humidity, pressure, wind speed, and wind
direction.

From 21 of May 2006 to 2 May 2017 all radiosondes were of the type Vaisala RS92
and have been processed using the GRUAN version 2 data processing algorithm
(Sommer et al., 2012; Maturilli and Kayser, 2016). The processing corrects for errors
temperature due to the heating effect by solar radiation and for humidity errors due
to a radiation dry bias (Dirksen et al., 2014). Dirksen et al. (2014) reported that for
altitudes below 10 km the remaining uncertainties in temperature are up to 0.25◦C
and 0.15◦C for day and night time, respectively, and 4% for relative humidity. Since
2 May 2017 the radiosonde type was changed to Vaisala RS41. The accuracy of
the RS41 radiosonde type reported by manufacturer is 0.1◦C for temperature and
<2% for relative humidity. In the present work the radiosonde data were utilized
to characterize the thermodynamic state at Ny-Ålesund for the period from 1993 to
2018.

2.5 Baseline surface radiation network BSRN

The surface radiation measurements have been performed at the Ny-Ålesund AW-
IPEV station as a part of the Baseline Surface Radiation Network (BSRN) since
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Table 2.4: BSRN instruments and data used for this study.

Type Period of mea-
surements

Measured quantities

Precision Infared Ra-
diometer (Pyrgeometer),
(3500-50000 nm)

August 1992
to October
2018

longwave downwelling
radiation

Precision Infared Ra-
diometer (Pyrgeometer),
(3500-50000 nm)

August 1992
to October
2018

longwave upwelling
radiation

Hair Hygrometer August 1993
to 28 July
2002

2 m relative humidity

Humidity and Tem-
perature Transmitter
HMP233 (HUMICAP)

25 Octo-
ber 1999 to
October 2018

2 m relative humidity

Termometer sensor
PT100

28 July 2002
to October
2018

2 m temperature

August 1992. An overview of BSRN instruments used in this study is given in
Table 2.4.

Longwave radiation is measured with two precision infrared radiometers (PIR) man-
ufactured by The Eppley Laboratory, Inc. PIR has a thermopile detector which is
installed under a protective hemispheric interference filter transparent to the long-
wave radiation between 3.5 and 50 µm. One PIR measures upwelling radiation and,
therefore, is pointed to the ground. Another PIR measured downwelling radiation.
This instrument is shaded from the direct solar radiation in order to avoid tempera-
ture drifts by incoming solar radiation. Both PIRs are ventilated. The uncertainty of
the measured longwave fluxes reported by the manufacturer is 5 W m−2 with a zero
offset of 2 W m−2. Similarly, Lanconelli et al. (2011) repoted that the uncertainty
for the longwave downward radiation does not exceed ±10 W m−2.

The measured down- and upwelling longwave radiation for the period from 1992 to
2013 was obtained from the dataset described by Driemel et al. (2018). The period
from 2013 to 2018 is available at the PANGAEA repository.

Collocated meteorological observations started at Ny-Ålesund AWIPEV station in
August 1993 (Maturilli et al., 2013). 2-m temperature is measured by the PT-100
thermometer manufactured by the Thies Clima company. The thermometer is pro-
tected by a weather and thermal radiation shield and has a ventilator inside. The
temperature range is from -30◦ to +80◦C. The accuracy of temperature reported by
the manufacturer is ±0.1◦C. In the period from 1993 to 1999 relative humidity was
measured by a hair hygrometer from Thies Clima. This instrument was protected
by a weather and thermal radiation shield. The manufacturer reported the accu-
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Table 2.5: Cloudnet characteristics for Ny-Ålesund.

Property Value

Input parameters
(Instrument/model)

LWP (MWR), reflectivity factor and Doppler veloc-
ity (94 GHz radar), attenuated backscatter coefficient
(ceilometer CL51), hourly model analysis and forecasts
(GDAS1 or NWP ICON model)

Temporal resolution 30 s
Vertical resolution
(range)

20 m

Retrieved parame-
ters

Target classification, IWC

racy in relative humidity of 2% in the range 10 to 100% and ambient temperature
from -35◦ to +70◦C. In October 1999 the Thies Clima hygrometer was exchanged by
the Vaisala HUMICAP sensor. The reported accuracy of the HUMICAP sensor at
temperatures from -40◦ to +80◦C is ±1% for the measurement range from 0 to 90%
and ±2% for the range from 90 to 100%. The long-term 2 m temperature and rela-
tive humidity observations from 1993 to 2011 were obtained from the homogenized
dataset presented by (Maturilli et al., 2013).

2.6 Cloudnet data products

The Cloudnet algorithm suite (Illingworth et al., 2007) combines observations from
a synergy of ground-based instruments. Cloudnet output includes several products
such as a cloud target classification and microphysical properties (e.g. IWC, liquid
water content (LWC)). In order to provide the full vertical information on clouds,
Cloudnet requires measurements of a Doppler cloud radar, a ceilometer/lidar, a mi-
crowave radiometer, and thermodynamic profiles of a numerical weather prediction
(NWP) model. Table 2.5 gives an overview on the Cloudnet products used for the
cloud analysis and provides input parameters and model data for the Cloudnet al-
gorithm. For Ny-Ålesund, measurements are taken from the 94 GHz FMCW cloud
radars JOYRAD-94 and MIRAC-A (Sec. 2.1), the ceilometer CL51 (Sec. 2.3), and
the HATPRO MWR (Sec. 2.2) for the period from June 2016 to 8 October 2018.

Within Cloudnet, the measurements from different instruments are scaled to a com-
mon temporal and vertical grid of 30 s and 20 m, respectively. For the target
classification the lidar backscatter and Doppler radar parameters are analyzed in
combination with thermodynamic profiles of a model (Hogan and O’Connor, 2004).
The Cloudnet algorithm corrects the radar reflectivity for the attenuation by atmo-
spheric gases and liquid water. Temperature, humidity, and pressure profiles from
a model are used by the Cloudnet for the corrections. The two-way uncertainty of
the gas-attenuation estimated by Hogan and O’Connor (2004) is about 10%. The
uncertainty of 25 g m−2 in LWP from MWR causes about ±0.2 dB uncertainty in
the two-way attenuation at the W-band (Matrosov, 2009).

As an example, measurements from the radar and the ceilometer, and the Cloud-
net target classification on 29 September 2016 are shown in Fig.2.6. The target
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Figure 2.6: Radar reflectivity factor (top), lidar backscatter coefficient (mid-
dle) and Cloudnet target classification on 29 September 2016, AWIPEW
observatory at Ny-Ålesund (published in Nomokonova et al. (2019b)).
The quicklooks are taken from the official Cloudnet website (http://
devcloudnet.fmi.fi/).

classification consists of the categories such as aerosols, insects, melting ice, cloud
droplets, ice and supercooled droplets, drizzle/rain, and clear sky. In this study,
the Cloudnet target categorization is used to differentiate cloud phase (liquid, ice
and mixed-phase) and to identify different cloud types. For the classification the
Cloudnet algorithm also needs temperature profiles from model data. Model data
are taken from GDAS1 (Global Data Assimilation System) or NWP ICON.

The Global Data Assimilation System (GDAS; Kanamitsu, 1989) operated by the US
National Weather Service’s National Centers for Environmental Prediction (NCEP)
was used in the Cloudnet algorithm to provide thermodynamic information for the
period from 10 June 2016 to 31 January 2017. This system analyzes different type
of observations and maps the results on a grid used for model initializations. The
GDAS1 dataset (see https://www.ready.noaa.gov/gdas1.php for detailed infor-
mation) has 1◦ by 1◦ latitude-longitude grid and is initialised every 6 hours and
outputs an analysis timestep followed by forecasts with a temporal resolution of
3 hours on 23 pressure levels. The vertical resolution varies from 173 m near the
ground to 500 m at the height 2 km and to ∼2.5 km at the height of 15 km. The un-
certainties of the temperature and relative humidity profiles of GDAS1 are shown in
Fig. 2.7. The maximum errors in temperature and relative humidity do not exceed
-1+/-1.5 ◦C and -15+/-24%, respectively.

The ICON column output for Ny-Ålesund taken from the operational global ICON
model run is available since 1 February 2017 and has been used as an input for
the Cloudnet algorithm since then. The ICOsahedral Non-hydrostatic (Zängl et al.,
2015) modeling framework for global NWP and climate modeling is developed by
the German Weather Service and the Max Planck Institute for Meteorology. The
grid structure of ICON is based on an icosahedral (triangular) grid with an average
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Figure 2.7: Difference in temperature (a) and relative humidity (b) between
GDAS1 and radiosonde data. Radiosondes for the period from February
2017 to July 2017 at Ny-Ålesund are used. Blue and red lines show the bias
and the standard deviation, respectively. (published in Nomokonova et al.
(2019b))

resolution of 13 km. The averaged area of the triangular grid cells is 173 km2. In
the vertical dimension, the model has 90 atmospheric levels up to the maximum
height of 75 km. The vertical resolution ranges from 30 m at the lowest heights to
about 500 m at about 15 km height. The vertical resolution at the 2 km height
is about 260 m. In addition, for this study a column output for Ny-Ålesund taken
from the operational global ICON model run was also used to exemplarily show
how such an observational dataset of clouds can be used for a model evaluation. In
particular, vertical profiles of environment temperature and humidity, specific cloud
water content, specific cloud ice content, rain mixing ratio and snow mixing ratio
were used. The occurrence of different types of clouds in the ICON model is related
to temperature and humidity and the results are compared to the observational
statistics. ICON model runs over Ny-Ålesund column are performed twice a day at
00 UTC and 12 UTC with a forecast for 7.5 days (180 hours) and hourly output
intervals. The data only from the first 12 hours after the initialization of the model
run were used in our analysis. The uncertainties of the temperature and relative
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Figure 2.8: Difference in temperature (a) and relative humidity (b) between
the ICON column output over Ny-Ålesund and radiosonde data for the
period from February 2017 to October 2018. Blue and red lines show the
bias and the standard deviation, respectively. (published in Nomokonova
et al. (2019b))

humidity profiles of the ICON model are shown in Fig. 2.8. The maximum errors
in temperature and relative humidity at the altitude up to 10 km are -1.5+/-1.5 ◦C
and -5+/-20%, respectively.

For the target classification, the Cloudnet algorithm identifies the 0◦C isotherm
using the wet-bulb temperature calculated from the model data. Therefore, the
model uncertainties (Figs. 2.7 and 2.8) may lead to the liquid-ice misclassification
at temperatures close to 0◦C. In the case of precipitating clouds uncertainties of the
model are mitigated by the Cloudnet algorithm using radar Doppler observations.
The algorithm identifies the 0◦C isotherm by a significant gradient in the particles
vertical velocity.

For the analyzed period (10 June 2016 - 8 October 2018), the Cloudnet availabil-
ity is more than 90% availability for most of the months (Fig.2.9). Exceptions are
June-July 2016 due to installation and testing of the radar, February 2017 (soft-
ware update), October and December 2017 (due to technical issues), and October
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Figure 2.9: Cloudnet data availability for Ny-Ålesund for 10 June 2016 to
8 October 2018. Yellow bars correspond to clear sky profiles, dark blue
bars to cloudy profiles, white space means no Cloudnet data availability.
(adapted from Nomokonova et al. (2019b))

2018 (deinstallation of the MIRAC-A radar on 8th October). The total number of
available Cloudnet profiles is 2,313,647 that include 609,047 clear sky profiles and
1,704,600 cloudy profiles.

Based on the target classification, various cloud microphysical retrievals are applied
within Cloudnet. The Cloudnet IWC product, which is used in this study, is based
on a Z-IWC-T relation for 94 GHz (Hogan et al., 2006; Heymsfield et al., 2008):

log10(IWC) = 5.8× 10−4ZT + 9.23× 10−2Z − 7.06× 10−3T − 0.992, (2.3)

where Z is in dBZ and T is air temperature in ◦C. The Cloudnet IWC has a bias
error and typical random error of 0.923 dB and 1.76 dB, respectively. Hogan et al.
(2006) found that uncertainties of the IWC retrieval differ for different temperature
ranges and are estimated to be from –50% to +100% for temperatures below –40◦C
and ranging from –33% to 50% for temperatures above –20◦C. The numbers here are
root mean squared errors given with respect to the reference IWC. Evaluating the
method of Hogan et al. (2006), Heymsfield et al. (2008) found similar uncertainties,
except that there was a positive bias of about 50% for temperatures above –30◦C.
The authors estimated the uncertainties from 0% to +100% and from –50% to
+100% at temperatures above and below –30◦C, respectively. The uncertainty in
the radar reflectivity also influences the IWC retrieval. The total uncertainty of
2 dB corresponds to about +40/–30% uncertainty in IWC. Part of this uncertainty
is to be included into the uncertainty of the Z-IWC-T relation from Hogan et al.
(2006) because the relation was found empirically using radar observations. More
detailed information on the Cloudnet products can be found in Illingworth et al.
(2007).
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2.7 Cloud microphysical dataset

Using the target characterization, cloud areas with ice and liquid particles were
identified. For ice particles the effective radius reff,ice was calculated following the
method by Delanoë et al. (2007, Eq. 10):

reff,ice =
3 · IWC · 106

2ρi · αext
, (2.4)

where reff,ice is in µm, ρi is a density of solid ice (0.917 g cm−3), IWC is derived
using Eq. 2.3 and αext is a visible extinction coefficient derived according to Hogan
et al. (2006):

log10(αext) = 8.76× 10−4ZT + 9.28× 10−2Z − 5.13× 10−3T − 2.49. (2.5)

In Eq. 2.5 αext is in m−1, Z is the radar reflectivity at 94 GHz in dBZ, and T is
in ◦C. The retrieval algorithm for IWC and reff,ice was applied to range bins where
particles have been detected regardless of presence of liquid particles, since in the
case of coexisting ice and liquid particles Z is mostly dominated by the ice phase
Shupe and Intrieri (2004).

The uncertainties of the αext retrieval at 94 GHz estimated by Hogan et al. (2006)
vary for different temperature ranges. At temperatures above –20◦C the uncer-
tainties are similar to the uncertainties in IWC. For temperatures below –40◦C the
uncertainties in αext range from –62 to 160 %. However, Hogan et al. (2006) re-
ported that the larger error might be expected for αext, because Z is mostly defined
by larger particles while αext, which is proportional to the second moment of particle
size distribution, depends more on smaller ice particles. Hogan et al. (2006) esti-
mated relative uncertainty for reff,ice associated to the mass-size relationship to not
exceed 30 %. de Boer et al. (2009) reported that the assumed shape of ice particles
might result to 200 µm of uncertainties in the effective diameter estimated using
cloud radar and lidar techniques.

Retrievals of LWC and effective radius of cloud droplets reff,liq were applied to range
bins with a presence of cloud droplets according Cloudnet categorization product.
LWC and reff,liq for single-layer liquid clouds were derived following the methods
by Frisch et al. (1998) and Frisch et al. (2002), respectively. LWC is calculated as
follows:

LWC =
LWP · Z0.5∑M
i=1 Z

0.5 ·∆z
, (2.6)

where LWP is the liquid water path measured by MWR in kg m−2, Z is in mm6 m−3,
M is the number of range bins within the cloud, and ∆z is the range resolution of
Cloudnet (20 m). For the retrieval of reff,liq for single-layer liquid clouds it is assumed
that cloud droplets are lognormally distributed:

reff,liq =
Z1/6

2LWP1/3

(πρw
6

)1/3
(

M∑
i=1

Z0.5
i ∆z

)1/3

e−2σ2
x (2.7)
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where Z is in mm6 m−3, ρw is the water density (1000 kg m−3), σx is the logarithmic
spread of the distribution. σx is assumed to be constant with height and according
to Miles et al. (2000) is equal to 0.3 for typical marine clouds. The uncertainty of
reff,liq estimated by Frisch et al. (2002) is about 20%.

Equations 2.6 and 2.7 are only applicable to single-layer liquid clouds. In presence
of rain or drizzle few large droplets, which have relatively low contribution to LWC,
dominate the radar signal and, therefore, the assumed relations between Z, LWC,
and reff,liq are not valid. In addition, as has been mentioned in Sec. 2.2, measure-
ments from MWR in rain have larger uncertainties due to the wet radome. Thus,
the retrievals of LWC and reff,liq are not applied to profiles with rain and drizzle.

For mixed-phase clouds, in which ice and liquid particles may be present in the same
volumes, partitioning of the radar reflectivity associated with liquid and ice particles
is challenging and, therefore, methods by Frisch et al. (1998) and Frisch et al. (2002)
can not be directly applied. In these cases the approach by Shupe et al. (2015) is
followed. LWC profiles are calculated using the adiabatic assumption and scaled by
LWP from MWR. The same scaled-adiabatic assumption was used for profiles with
multi-layer liquid and mixed-phase clouds. For these cases the effective radius of
5 µm is assumed. This value corresponds to the median value of all reff,liq derived
at Ny-Ålesund using Eq. 2.7.

The dataset of the retrieved microphysical properties is published by Nomokonova
and Ebell (2019) and available online (https://doi.pangaea.de/10.1594/PANGAEA.
898556). The retrieved cloud microphysical properties are essential for evaluation
of profiles in NWP models and for cloud-radiation interaction studies. The derived
profiles of clouds and their microphysical properties, and the output of radiative
transfer model RRTMG described in Sec. 2.8.1 are used to calculate the cloud ra-
diative effect (denoted as CRE throughout the study) at Ny-Ålesund.

2.8 Model data products

2.8.1 Broadband radiative transfer model RRTMG

The rapid radiative transfer model RRTMG (Clough et al., 2005) performs broad-
band radiative transfer calculations of vertically resolved shortwave (SW) and long-
wave (LW) up- and downward fluxes and heating rates. Ebell et al. (2020) adapted
RRTMG for Ny-Ålesund and derived SW and LW up- and downward fluxes and
CRE. In this study the surface CRE, which is an output of the RRTMG model, is
analyzed with respect to periods with increased/decreased moisture and tempera-
ture and normal conditions at Ny-Ålesund. The analysis of the CRE during the
above-mentioned periods is presented in Chapter 4.

Ebell et al. (2020) estimated the uncertainties in CRE using 10-min averaged fluxes
observed by BSRN. The uncertainties in CRE depend on averaging time. For time
periods ranging from days to month, which are analyzed in this study, the uncer-
tainties are estimated to be smaller than 6.4, 2.0, and 6.7 W m−2 for SW, LW, and
net CRE, respectively. More detailed information on RRTMG and input parameters
used for calculations can be found in Ebell et al. (2020).
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2.8.2 Backward trajectories FLEXTRA

In order to analyze air transportation patterns and relate them to different at-
mospheric conditions at Ny-Ålesund, the output of the 3-dimensional FLEXTRA
trajectory model version 3.0 (Stohl et al., 1995; Stohl and Seibert, 1998; Stohl,
1998) was used. The calculations of the trajectories are based on data of the Eu-
ropean Centre for Medium range Weather Forecast (EMCWF) with the initial-
ized analyses every 6 hours and horizontal resolution of 1.125◦. The temporal
resolution of the backward trajectories is 3 hours. The precalculated FLEXTRA
files for the Zeppelin station (78.9◦N 11.88◦E) are available on the website, (see
https://projects.nilu.no//ccc/trajectories/evdc/ for detailed information). For this
thesis trajectories going 6 days back and having the arrival height of 1500 m were
used. Since Ny-Ålesund is surrounded by up to 1000-m high mountains, the arrival
height of 1500 m altitude was chosen in order to avoid orographic effects in the large
scale air transport.



Chapter 3

Classification of hydrometeors and
clouds at Ny-Ålesund, Svalbard

This chapter presents statistics of thermodynamic conditions and cloud properties
at Ny-Ålesund. For the first time, cloud properties at AWIPEV site were retrieved
using a synergy of a cloud radar, a ceilometer, and a microwave radiometer. The
characterization of clouds is based on outputs of the Cloudnet algorithm and includes
classification of hydrometeors and clouds, and estimation of ice and liquid water
paths. In Secs. 3.2 and 3.3 vertical hydrometeor distributions and occurrence of
different cloud types at Ny-Ålesund are analyzed. LWP and IWP of single-layer
clouds are shown in Sec. 3.4. In addition Sec. 3.4 shows how the cloud occurrence
is related to in-cloud temperature and relative humidity, since these parameters
strongly affect formation and development of cloud particles. These results are
compared to an output of the ICONmodel for Ny-Ålesund in Sec. 3.5. The content of
this chapter is as it is published in Nomokonova et al. (2019b), where the period from
June 2016 to July 2017 was analyzed. Nevertheless, cloud classification algorithm
described in this chapter is further applied to the whole period of observations until
October 2018. The results of this classification are used in the following chapters.

3.1 Thermodynamic conditions

It is well known that environmental temperature and humidity strongly influence
cloud formation and development. Therefore, the analysis was started with an
insight into the thermodynamic conditions during the period from June 2016 to
July 2017. In this section the representative of this time period was checked in
terms of thermodynamic conditions in comparison to the long-term mean.

Figure 3.1a shows the monthly mean atmospheric temperature based on the ra-
diosonde data for the period from June 2016 to July 2017. The atmospheric tem-
perature follows an annual cycle typical for the Northern hemisphere with higher
temperatures during summer and autumn and lower temperatures in winter and
spring. The lowest values of the monthly mean temperature in the lowest 50 m
were observed in March and January 2017 (-11◦ and -10◦C, respectively). The high-
est observed monthly mean temperature was +7◦C in July 2016. Looking at the
monthly mean temperature at 5 km height, the minimum and the maximum values

37
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Figure 3.1: Vertical profiles of monthly mean atmospheric temperature (a),
absolute (b) and relative humidity (c) from radiosonde observations at Ny-
Ålesund from June 2016 to July 2017. (published in Nomokonova et al.
(2019b))

of -41◦ and -17◦C were found in January and July, respectively. Despite the fact
that Ny-Ålesund is located at the coastline where the climate is supposed to be less
variable due to the impact of the ocean, the monthly mean temperature changes by
19◦ and 24◦C in the lowest 50 m and 5 km height, respectively. This large amplitude
of the temperature change at Ny-Ålesund can be explained by the regular occur-
rence of polar day and polar night. When a polar night begins in the beginning of
October, atmospheric temperature dramatically decreases and it starts to increase
again in late March (Fig.3.1a). Moreover, the smaller temperature variance at lower
altitudes might be related to processes between the surface and the atmosphere and
the conserved energy near the ground.

Figure 3.1b provides information on monthly mean absolute humidity from June
2016 to July 2017. In summer the water vapor is mostly concentrated in the lowest
1.5 km with the highest monthly mean values of up to 6 g m−3 in July 2016 and
July 2017. The water vapor in this altitude range is thus the main contributor to
the integrated water vapor (IWV). In winter, the monthly mean absolute humidity
is much lower with a minimum value of ∼1.5 g m−3 (January) in the lowest 1.5 km.

In terms of relative humidity with respect to water (RHw, Fig.3.1c), it can be seen
that the monthly mean RHw is highest in the lowest 2 km of the atmosphere. This
is in agreement with Maturilli and Kayser (2016). There is no strong seasonal
variability of the monthly mean RHw at altitudes higher than 4 km. In the lower
troposphere, the monthly mean RHw, following the temperature cycle, is higher in
summer and autumn (ranging from 60 to 94% in the lowest 2 km) and lower in
winter and spring (ranging from 52 to 81% in the lowest 2 km), except for March
2017. In March 2017, the coldest month in the period of this study, the monthly
mean absolute humidity was relatively low (1.7 g m−3) in the lowest 1.5 km while
monthly mean RHw was up to 85% (Fig.3.1c). In summer and autumn months high
values of monthly mean RHw occur from the surface to 1.7 km. In winter and spring,
the atmospheric layer near the surface is drier and high values of RHw appear from
0.3 to 1.5 km.

In order to determine if and in which way the thermodynamic properties were spe-
cial for the study period monthly mean tropospheric temperature anomalies are
presented in Fig. 3.2a. These anomalies have been calculated with respect to the
previous 23 years (1993-2015). Figure 3.2a shows that, compared to the long-term
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Figure 3.2: Anomalies of monthly mean atmospheric temperature (a) and
absolute humidity (b) from radiosonde observations at Ny-Ålesund from
June 2016 to July 2017. Anomalies are calculated with respect to the
monthly mean values of the previous 23 years (1993-2015). The blue line
corresponds to the IWV anomaly for the same time period. (published in
Nomokonova et al. (2019b))

mean, temperatures are higher for some particular summer months. For example,
July 2016 and June 2017 were warmer throughout the whole troposphere with max-
imum temperature anomalies of up to 2◦ and 4◦C, respectively. Winter months
were slightly warmer, too: the difference in atmospheric temperature was up to
2◦C in December 2016 and February 2017. January 2017 was much colder with a
temperature difference of down to -5◦C. In comparison to the previous 23 years,
atmospheric temperatures in March 2017 were higher in the upper troposphere (up
to 2◦C) and lower (-2◦C) in the lowest 1.5 km. The largest positive temperature
difference was found for autumn 2016, especially for October 2016 with maximum
temperature differences of up to +8◦C. Johansson et al. (2017) have already shown
that moisture intrusions from the North Atlantic can cause significant local warming
in some regions of the Arctic that can reach up to 8 ◦C. In addition, Overland et al.
(2017) analyzed the variability of the near-surface air temperature (at 925 mb level)
in the Arctic for the period from October 2016 to September 2017. The authors
reported that there was an extreme temperature anomaly exceeding 5◦C in the au-
tumn 2016 that is in agreement with the results of the present study. Moreover, the
authors showed that this extremely high temperature anomaly was associated with
a persistent and unusual pattern in the geopotential height field that separated the
polar vortex in the central Arctic into two parts. This situation lead to southerly
winds which transported warm air into the Arctic from the mid-latitude Pacific and
Atlantic oceans (Overland et al., 2017).

The observed anomalies in the monthly mean absolute humidity and IWV (Fig. 3.2b)
in principle follow the sign of the discussed temperature anomalies. Fig.3.2b shows
a correlation between the temperature and IWV increase. For instance, months
that have a positive temperature difference also have an increase in the absolute
humidity and IWV. Negative temperature differences correspond to decreases in the
absolute humidity. For example, January 2017 was particularly colder and drier
with anomalies in absolute humidity and IWV of ∼-0.5 g m−3 and ∼-0.8 kg m−2,
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Figure 3.3: Frequency of occurrence of profiles with ice, liquid and any kind
of hydrometeors. The frequency is given in % and normalized to the total
number of Cloudnet profiles for each month. (published in Nomokonova
et al. (2019b))

respectively.

Higher IWV values in comparison with the previous years were observed in June
2016, autumn 2016, December 2016 and July 2017. The differences in IWV varied
from 1 to 5 kg m−2 with largest contributions from the lowest 3 km. In October 2016,
the absolute humidity anomaly was highest (∼2 g m−3) in the lowest 3 km. This
led to a positive change in IWV of more than 5 kg m−2 in comparison with previous
years.

Thus, it turns out that the period from June 2016 to July 2017 had specific features
especially for some months. Maturilli and Kayser (2016) have shown that in gen-
eral a significant warming of the atmospheric column at Ny-Ålesund is observed in
January and February. The authors reported that this warming in winter is related
to the higher frequency of large-scale flow from south-southeast and less from the
north. However, in present study January 2017 was much colder in comparison to
the previous years. In January 2017, and also in the other winter months, the wind
direction occurred more frequently from south-southwest (not shown) in comparison
with the earlier period from 1993 to 2014 with wind direction dominated from south-
east. However, it is not clear yet what exactly caused the relatively cold January
2017.

3.2 Hydrometeor occurrence

From June 2016 to July 2017, cloudy profiles occur around 80% of the time (Fig.3.3).
The frequency of cloud occurrence is largest in October 2016 and June 2016 (∼92%)
and lowest in April 2017 (68%). In order to have a closer look on which types of



3.2 Hydrometeor occurrence 41

hydrometeors occur in the atmospheric column, Fig. 3.3 also gives an overview of
the frequency of occurrence of liquid and ice hydrometeors, separately.

For this statistics all the range bins in Cloudnet profiles for hydrometeor types were
checked. If a Cloudnet bin contains cloud droplets, rain or drizzle, then it is counted
as liquid. If ice particles have been detected in a range bin, then it was defined as ice.
Note that Cloudnet does not distinguish between snow and cloud ice. Mixed-phase
range bins are considered as both liquid and ice. Then profiles that contain at least
one "liquid" ("ice") bin are counted as liquid (ice) containing. Profiles containing
liquid and ice phases are counted in both classes.

Liquid hydrometeors (dashed black line in Fig.3.3) have the highest frequency of
occurrence during summer and autumn (70-80%) and the lowest in winter (∼36%).
A pronounced seasonal variability is thus visible. Ice (densely dashed black line in
Fig.3.3) occurs more often in autumn, winter and early spring with the frequency
of occurrence varying from 72 to 88%. In summer ice occurs typically around 58-
78% of the time. The frequency of ice occurrence does not show a clear seasonal
variability as the liquid phase.

Figure 3.4 shows vertical distributions of hydrometeors. For these statistics the
above-mentioned bin classification was used. The frequency of occurrence at a cer-
tain altitude was normalized to the total number of Cloudnet profiles in a corre-
sponding month. The highest frequency of occurrence was 60 and 70% in March
2017 and October 2016, respectively (Fig.3.4a, left panel). The lowest frequency of
occurrence was in July 2016 (<30%) while for the other months in summer 2016 the
frequency of occurrence of all hydrometeors was around 60%. In January 2017 the
occurrence of clouds above 3 km was less than 10% which correlates with low RHw

(Fig. 3.1c) at these altitudes and the lowest value of IWV (Fig. 3.2b).

The total vertical distribution (Fig. 3.4, right panel, solid black line) shows that
hydrometeors occur predominantly in the lowest 2 km with the maximum frequency
of occurrence of ∼53% at the height of 660 m. Above 2 km, the frequency of
occurrence is less than 30% and monotonically decreases with height. In terms of
seasons, the vertical frequency of occurrence of all hydrometeors reveals variations of
the maximum within±10% with highest values of frequency of occurrence in autumn
2016 of more than 60% (∼1 km height). In summer 2016, the hydrometeor frequency
of occurrence is in general higher than in summer 2017 indicating a pronounced year-
to-year variability which will be analyzed in future when multi-year datasets will be
available.

Liquid hydrometeors (Fig. 3.4b) occur most of the time in the lowest 2 km. Above
2 km, the frequency of occurrence of liquid is less than 5% and above 3 km almost no
liquid particles are observed. The frequency of occurrence of liquid has a maximum
at around 0.7-0.9 km height. Largest values of liquid phase occurrence vary from
40% to 50% in summer and autumn 2016. The maximum frequency of occurrence
in the winter months does not exceed 15%. A strong seasonal variability of liquid,
with high values in summer (32%) and lowest values in winter (12%) can be seen.
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Figure 3.4: Monthly, seasonal and total (for the whole time period) fre-
quency of occurrence of all hydrometeors (a), liquid (b) and ice (c) as a
function of height for the period from June 2016 to August 2017. Fre-
quency of occurrence is given in % and normalized to the total number of
Cloudnet profiles for each month. (published in Nomokonova et al. (2019b))
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The vertical occurrence of ice hydrometeors is shown in Fig.3.4c. Ice is mostly
present at altitudes below 2 km. On average the frequency of occurrence peaks at
around 700 m with values of 40%. In contrast to the ice occurrence anywhere in
a column (Fig. 3.3), which is not showing a strong seasonal variability, the vertical
distribution of ice phase shows a pronounced seasonal cycle, in particular in the
lowest 2 km. For higher altitudes, the seasonal variability is less pronounced. Above
2 km, the frequency of occurrence of ice decreases from ∼30% to less than 10% at
8 km.

Similar to liquid hydrometeors, the frequency of occurrence of ice is highest in the
lowest 2 km with values of 60 and 70% in October 2016 and March 2017, respectively
(Fig.3.4c, left panel). The lowest ice frequency of occurrence is found for the summer
months. In July 2016, which is the warmest month during the observation period,
the freezing level often reached altitudes up to 2 km and therefore almost no ice was
observed below this height. In January 2017 ice rarely occurred at heights larger
than 4 km, which was probably caused by presence of dry air. In the right panel
of Fig.3.4c it can be seen that the highest frequency of occurrence of ice phase is in
the lowest 2 km and around 52% in autumn, winter and spring.

3.3 Statistics on different types of clouds

In addition to the occurrence of hydrometeor types, a classification of clouds into
single-layer and multi-layer was also made. Single-layer clouds were furthermore
separated into liquid, ice and mixed-phase.

For the classification every Cloudnet profile was checked from the top to the bottom
for cloud layers. A cloud is defined here as a layer of at least three consecutive
cloudy height bins. Based on a number of identified cloud layers single-layer and
multi-layer clouds were classified. Cases were considered as multi-layer if two or
more cloud layers were separated by one or more clear-sky height bins. Figure 3.5
gives an overview of the cloud type occurrence at Ny-Ålesund for the whole period of
this study. The total occurrence for the whole period (right-most bar) shows 44.8%
(506,253 profiles) of multi-layer and 36% (406,810 profiles) of single-layer clouds.
Among single-layer clouds the most frequent type was mixed-phase, followed by
ice and liquid single-layer clouds with the cloud occurrence of 20.6, 9.0 and 6.4%,
respectively. Note that clouds were considered as mixed-phase if ice and liquid
phases were both present in the same cloud boundaries regardless whether liquid
and ice were in the same range bin or not. This implies that mixed-phase clouds
include not only cases with liquid cloud top and ice below but also cases when both
phases (ice and liquid) are present anywhere within the detected cloud layer.

Figure 3.5 also shows the monthly occurrence of different cloud types. The monthly
cloud occurrence, i.e. the sum of all different cloud types, corresponds to the fre-
quency of occurrence of all hydrometeors shown by a solid black line in Fig. 3.3. As
seen for liquid and ice hydrometeors (Fig. 3.3), the occurrence of single-layer liquid
and ice clouds also has a seasonal and monthly variability. About 15% of single-
layer liquid clouds were detected in summer but less than 2% in other seasons. The
occurrence of single-layer ice clouds was 15-20% in winter and spring and less than
5% in other months. Single-layer mixed-phase clouds and multilayer-clouds were
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Figure 3.5: Monthly frequency of occurrence of different types of single-
layer clouds (liquid, ice and mixed-phase), multi-layer clouds and clear sky
profiles for the period from June 2016 to July 2017. Last right column
showing the total frequency of occurrence. (published in Nomokonova et al.
(2019b))

present most of the time with typical values of frequency of occurrence of around
20% and 45%, respectively. Thus, during most of the time, cloud systems had a
complicated structure and/or consisted of both phases, liquid and ice, indicating
that they are related to complex microphysical processes. In turn, the observational
capabilities of these types of clouds are limited. In situations with multiple liquid
layers, whether warm or mixed-phase, partitioning the observed LWP from HAT-
PRO among these different layers is particularly challenging and results in larger
uncertainties (Shupe et al., 2015). A multi-layer cloud classification requires a re-
liable profiling of liquid layers, which is limited by significant attenuation of lidar
signals in the first liquid layer. Radar signals have better propagation through the
whole vertical cloud structure in comparison with a lidar. However, the radar re-
flectivity is often dominated by the scattering from relatively large particles which
mask the presence of small particles, like liquid droplets, being present in the same
volume. In the case of multi-layer mixed-phase clouds, liquid phase can thus not be
reliably detected based on radar reflectivity alone.

3.4 Single-layer clouds and their relation to ther-
modynamic conditions

Taking into account the above-mentioned limitations of multi-layer cloud observa-
tions the further analysis is concentrated only on single-layer cases. For the following
analysis of single-layer clouds LWP from HATPRO and the Cloudnet IWC product
was also used. Cases when this information was not available were excluded. In
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Figure 3.6: Frequency of occurrence of ice-only, liquid-only, mixed-phase
single-layer clouds based on Cloudnet categorization data (for lines with
circles, diamonds and stars profiles with liquid precipitation are not in-
cluded). The frequency is given in % and normalized to the total number of
Cloudnet profiles in each month. (published in Nomokonova et al. (2019b))

particular, profiles with the presence of liquid precipitation and flagged data due
to wet HATPRO radome were removed. The resulting dataset (Fig. 3.6, lines with
circles, stars and diamonds) was thus reduced to 149,960 profiles (37% of all single-
layer profiles) with 65,299 profiles (16%) for single-layer mixed-phase clouds, 59,364
profiles (15%) for single-layer ice clouds and 25,297 profiles (6%) for single-layer
liquid clouds only. Thus, all results are relevant for single-layer clouds without liq-
uid precipitation. Nevertheless, with this subset of single-layer clouds the monthly
variability can be still captured and thus the assumption is made that it is still
representative for all single-layer cloud cases.

Comparison of Fig. 3.6 and Fig. 3.5 shows that the occurrence variability of liquid
and ice single-layer clouds is similar. Occurrence of mixed-phase clouds differs be-
cause of the exclusion of liquid precipitation clouds which often contain ice phase
and melting layer and thus considered as mixed-phase. This is in agreement with
Mülmenstädt et al. (2015) who reported that most of the liquid precipitation is
formed including the ice phase. The maximum and minimum occurrence of single-
layer mixed-phase clouds of 25% and 4% were observed in May 2017 and June 2016
respectively. The annual-averaged top-height of single-layer mixed-phase clouds was
2 km (not shown). The findings of the present study are in a good agreement with
space-borne radar-lidar observations of clouds in the Svalbard region in the period
from 2007 to 2010 (Mioche et al., 2015). The authors showed that single-layer
mixed-phase clouds in the Svalbard region mostly occur in May.

The geometrical thickness of the single-layer clouds is shown in Fig.3.7a. The geo-
metrical thickness of a cloud is calculated as the distance between the upper border
of the uppermost cloud range bin and the lower border of the lowermost cloud range
bin. The thickness of single-layer liquid clouds varies between 60 to 2200 m with
mean and median values of 280 and 240 m, respectively. Less than 1% of observed
single-layer liquid clouds have a thickness larger than 800 m.



46 3. Classification of hydrometeors and clouds at Ny-Ålesund, Svalbard

Figure 3.7: Frequency of occurrence of cloud thickness for single-layer clouds
(a), of LWP for single-layer liquid and mixed-phase clouds (b) and of IWP
for single-layer ice and mixed-phase clouds (c) for the period from June
2016 to July 2017. The y-axis is shown in logarithmic scale. In the x-axes
∆ shows the bin width. The frequency of occurrence is normalized by the
total number of corresponding cloud type. (published in Nomokonova et al.
(2019b))

In contrast, single-layer mixed-phase clouds typically have a larger geometrical cloud
thickness which varies from 100 to 8500 m with the median and mean values of 1100
and 1500 m, respectively. In comparison with mixed-phase single-layer clouds, the
geometrical cloud thickness distribution for single-layer ice clouds is broader ranging
from 60 to 9500 m. The median and mean values of the geometrical cloud thickness
for single-layer ice clouds are 1500 and 2100 m, respectively. The mode of the
thickness distribution of single-layer ice clouds correspond to 800 m. Less than 1%
of single-layer mixed-phase and ice clouds have a geometrical cloud thickness larger
than 3 and 4.2 km, respectively.
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The frequency of LWP occurrence for liquid and mixed-phase clouds is shown in
Fig. 3.7b. Both types of clouds are characterized by relatively low values of LWP.
The median values of LWP for single-layer liquid and mixed-phase clouds are 17
and 37 g m−2, and mean values are 30 and 66 g m−2, respectively. More than 90%
of single-layer liquid and mixed-phase clouds have LWP values lower than 100 and
200 g m−2, respectively. It has to be noted that in particular in these LWP ranges,
the relative uncertainty in the retrieved LWP is quite large (see Sec. 2.2). Larger
LWP values in mixed-phase clouds might be related to their larger geometrical
thickness (Fig. 3.7a).

Median values of IWP for single-layer ice and mixed-phase clouds are 14.6 and
21.4 g m−2, and mean values are 273 and 164 g m−2, respectively (Fig. 3.7c). IWP
values exceeding 400 g m−2 are more frequent in single-layer ice clouds than in
single-layer mixed-phase clouds. However, for both cloud types the occurrence of
IWP values higher than 125 g m−2 is less than 3%.

A number of studies comparing observed and modeled LWP and IWP values for
Arctic regions have revealed the challenge for NWP models to accurately simulate
LWP and IWP. Tjernström et al. (2008) evaluated 6 regional models which were set
to a common domain over the western Arctic and found that one half of the models
showed nearly 0 bias in LWP while another half underestimated LWP by ∼20 g m−2.
The authors reported that some of the models showed -30 to 30 g m−2 biases in IWP.
In addition a low correlation between the observations and modeled IWP and LWP
was found. Most of the models showed too low variability of IWP. Karlsson and
Svensson (2011) compared 9 global climate models in the Arctic region. The authors
showed that mean and standard deviations of modeled IWP and LWP can vary by
a factor of 2. Forbes and Ahlgrimm (2014) concluded that such discrepancies may
be related to an insufficient representation of microphysical processes. Authors note
that one of the major challenges are phase partitioning and a parameterization of
cloud particle’s formation and development.

Klein et al. (2009) compared 26 models with air-borne and ground-based observa-
tions over the north Alaska (Barrow and Oliktok Point). The authors found that al-
though many models showed an LWP exceeding IWP (as observed), simulated LWP
values were significantly underestimated. Since climate and NWP models typically
parameterize cloud phase as a function of temperature, relations between temper-
ature and the phase partitioning for mixed-phase clouds at Ny-Ålesund were ana-
lyzed. Figure 3.8 shows the probability of liquid fraction, i.e. (LWP/(LWP+IWP)),
in mixed-phase clouds for different cloud top temperature ranges based on the Ny-
Ålesund radiosonde observations. In general, the liquid fraction increases with cloud
top temperature. Thus, high liquid fraction values in single-layer mixed-phase clouds
are found at cloud top temperatures ranging from -15◦ to 0◦C. The occurrence of
the liquid fraction of 0.4-0.6, implying that both phases are roughly equally present,
is relatively high for cloud temperature ranges between -25◦ and -15◦C but is rare
for cloud top temperatures below -25◦C. Almost no liquid was observed at the cloud
top temperatures below -40◦C. Non-zero liquid fraction below -40◦C is mostly asso-
ciated with thick clouds having a high cloud tops with a liquid layers detected at
lower altitudes.

In-cloud atmospheric temperature and humidity are important for NWP models as
these parameters determine the cloud particle’s formation and development. For
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instance, laboratory studies show that shapes of ice crystals are defined by the
environment temperature and humidity (Fukuta and Takahashi, 1999; Bailey and
Hallett, 2009). There is also some evidence that similar effects happen in the real
atmosphere (Hogan et al., 2002, 2003; Myagkov et al., 2016). Aggregation efficiency
and deposition growth rate are also temperature and humidity dependent (Hosler
and Hallgren, 1960; Bailey and Hallett, 2004; Connolly et al., 2012). Therefore, in
this study different cloud types were also related to environmental conditions un-
der which they occur. The frequency of occurrence of the different hydrometeors
in single-layer clouds as a function of in-cloud temperature and relative humidity
observed at Ny-Ålesund is shown in Fig.3.9 (a-d). Here, temperature and rela-
tive humidity were determined for each cloud bin between cloud boundaries. For
this analysis only single-layer-cloud profiles observed one hour before and after a
radiosonde launch were included. The atmospheric conditions were assumed not
change too much within this time period. For temperatures lower than 0◦C the
relative humidity with respect to ice (RHi) was used. Values of RHw were used
at temperatures exceeding 0◦C. For the cloud classification the method specified in
Sec. 3.3 was used.

All single-layer clouds were observed in the temperature range from -60◦ to +10◦C
(Fig. 3.9a). In some cases single-layer clouds appeared at low RHi and RHw (Fig. 3.9
a-d) that might be associated with hydrometeors falling from saturated to subsatu-
rated atmospheric layers. Another reason could be that the radiosondes, which drift,
do not provide representative information for the sampling volume of the zenith-
pointing ground-based instruments. However, cases with very low relative humidity
values occurred in less than 1% of the analyzed observations. According to Mc-
Grath et al. (2006) the uncertainties in temperature due to the radiosonde drifts in
the northern hemisphere do not exceed 0.4◦C up to 10 km altitude. Uncertainties
in relative humidity are about 3%.
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Figure 3.9: Two-dimensional histograms of in-cloud atmospheric tempera-
ture and relative humidity for all clouds (a,e), ice clouds (b,f), mixed-phase
clouds (c,g). For a, c, e and g ice and/or liquid phases are present. For
b and f only ice phase is present. Liquid phase of liquid-containing clouds
is shown in d and h. Only cases of single-layer clouds are included and
shown for observations (left) and for column output of NWP model ICON
over Ny-Ålesund (right). Frequency of occurrence is normalized by the total
number of bins of the correspondent single-layer clouds detected between
the period of one hour before and after radiosonde launch. (published in
Nomokonova et al. (2019b))

Figure 3.9b shows that ice clouds mostly occur in the temperature range from -45◦
to -5◦C including the temperature range (<-38 ◦C) of homogeneous nucleation. The
highest occurrence of ice was observed in the temperature range from -25◦ to -20◦C
and under conditions that are subsaturated with respect to water but saturated with
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respect to ice (Fig.3.9b). Observed ice particles mostly occur at RHis between 100
and 125%. Presence of ice at positive temperatures might be related to cases of
cloud type misclassification, for example, when a cloud was identified as ice instead
of mixed-phase. These cases might be also associated to uncertainties in the model
temperature profile used in the classification algorithm.

Mixed-phase clouds were observed at supersaturation with respect to ice (Fig.3.9c).
Most of the cases were located at the water saturation line. Frequently, mixed phase
occurs at temperatures from -25◦ to +5◦C with two maxima in the range of -15◦
to 0◦C. The temperatures of -15◦ and -5◦C correspond to the highest efficiency of
deposition growth of ice crystals at water saturation levels (Fukuta and Takahashi,
1999).

Liquid phase mostly occurs near water saturation at temperatures from -15◦ to
+5 ◦C (Fig.3.9d). Supercooled liquid was observed at temperatures down to -40◦C.
The lowest temperature limit for liquid clouds only was -30◦C (not shown).

3.5 Application for model evaluation

This observational cloud data set can provide useful information for a model evalu-
ation. As an example, this section presents a comparison of the NWP model ICON
with the observations at Ny-Ålesund. Note that the intention here is not to perform
a thorough model evaluation but to show the potential of such a dataset to test,
for example, if the dependence of the occurrence of clouds on the thermodynamic
conditions can be represented by the model.

The statistics on different types of clouds, their phases and the relation to atmo-
spheric conditions provide a useful dataset for a comparison with similar statistics
based on the model output. The identification of clouds in the model was based on
a 10−7 kg kg−1 threshold in specific cloud water content, specific cloud ice content,
rain mixing ratio and snow mixing ratio. And the classification of clouds were per-
formed using the same procedure as for the observations (see Sec. 3.3). The value
of the threshold in the hydrometeor contents was found empirically: the usage of
a lower threshold leads to the higher occurrence of ice clouds in the ICON model
which were not identified in observations. For a higher threshold less ice clouds were
present in the ICON model than in observations. According to the Z-IWC-T relation
from Hogan et al. (2006), the chosen threshold in the ice mixing ratio corresponds to
the radar reflectivity factor ranging from -55 to -32 dBZ at temperatures from -60◦
to -5◦C. In general, these values are close to the radar sensitivity, although at high
altitudes the radar sensitivity is about -40 dBZ (Küchler et al., 2017). Nevertheless,
most of the observed hydrometeors are located within 2 km from the surface (see
Sec. 3.2) and, therefore, the lack of sensitivity at high altitudes does not significantly
affect the results. For more detailed analysis of the uncertainties due to differences
between the instrument and the model sensitivity can be done using observation
simulators (e.g. Haynes et al., 2007). Such the analysis is out of the scope of the
current study and thus not investigated in the present study.

Right panels in Fig. 3.9 show the frequency of occurrence of different hydrometeors
in single-layer clouds as a function of in-cloud temperature and RHw based on the
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ICON model data. Figure 3.9e shows that modeled single-layer clouds occur within
the temperature range similar to the temperatures observed in clouds at Ny-Ålesund
(Fig. 3.9a). Figure 3.9f indicates that ice clouds in the ICON model typically exist
at temperatures from -65◦ to -5◦C. Both, the ICON model and observations, reveal
that ice particles typically occur at relative humidities higher than the saturation
over ice but lower than the saturation over water. The high occurrence of ice phase
in ICON is found at RHi up to 110%, while for the observations reveal RHi of up to
125% (Fig. 3.9b). The presence of ice particles at lower supersaturation over ice in
the ICON model in comparison with observations may be associated with ice nuclei
(IN) parameterization in the ICON model, which is known to be still a challenge (Fu
and Xue, 2017). It might be associated with a higher concentration of IN and, thus
ice particles, leads to faster deposition of water vapor onto the ice particle’s surface.
Therefore, a more efficient vapor-to-ice transition in the model could lead to lower
relative humidity. Similarly, the parameterization of deposition growth rate and
secondary ice processes may also have an impact on the in-cloud relative humidity.

Mixed-phase clouds in the ICON model appear near the water saturation (Fig. 3.9g)
that is consistent with the observations (Fig. 3.9c). The model mostly produces
mixed-phase clouds within the temperatures range from -10◦ to +5◦C, that is nar-
rower in comparison to the observations.

Modelled liquid phase occurs near water saturation at temperatures from -15◦ to
+5◦C (Fig.3.9h), which is in a good agreement with observations. In the ICON
model the occurrence of liquid phase at temperatures below -5◦C is only 6%, while
in the observations this occurrence is more than 30%.

Figure 3.10 summarizes temperature dependencies of hydrometeor occurrences in
the ICON model and in observations. The temperature distributions of single-layer
liquid clouds (solid red lines, Fig. 3.10) are narrow (-10◦ to +5◦C) for both, model
and observations, although, the observed distribution has larger values of occurrence.
The total distributions of the liquid phase (dashed red lines, Fig. 3.10) are different.
The observed distribution has larger and occupies a wider temperature range (-25◦
to +10◦C). In the model, most of the liquid phase is concentrated in the temperature
range from -10◦ to +5◦C. This difference leads to a divergence between mixed-phase
cloud occurrences (solid green lines, Fig. 3.10): the observed frequency distribution
for mixed-phase clouds shows a broader temperature range than the model. Sandvik
et al. (2007); Cesana et al. (2012) showed a similar difference between observed
and modelled single-layer mixed-phase clouds. For the modelling the polar version
of the nonhydrostatic mesoscale model from the National Center for Atmospheric
Research was used by Sandvik et al. (2007). The authors found that for temperatures
below -18◦ the liquid fraction in single-layer mixed-clouds was completely absent in
simulations.

Ice cloud observations (solid blue line in Fig. 3.10a) show a broad temperature range
from -60◦ to +5◦C. In comparison to the observations, the model (solid blue line in
Fig. 3.10b) shows a broader temperature range for single-layer ice clouds (-70◦ to
+5◦C). Due to the low occurrence of the liquid phase at temperatures below -5◦C
by the model most of the clouds at lower temperatures are classified as pure ice.
Therefore, the model shows significantly larger occurrence of ice clouds at tempera-
tures warmer than -20◦C. Also this explains similarities between modelled ice phase
in pure ice and ice-containing clouds (dashed blue line). In addition, the occurrence
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Figure 3.10: Distribution of in-cloud atmospheric temperature for different
types of single-layer clouds, liquid and ice phase for observations (a) and
NWP ICON model over Ny-Ålesund (b). (published in Nomokonova et al.
(2019b))

of simulated ice clouds is higher at temperatures below -40◦, which corresponds to
the homogeneous ice nucleation regime. Similar results were obtained by Cesana
et al. (2012), who compared the hydrometeor classification product from CALIPSO
observations and the climate model LMDZ5B (Hourdin et al., 2013) and found that
the model tends to overestimate occurrence of ice phase in the temperature range
from –50 to –10◦C.

3.6 Summary and conclusions

For the first time, clouds at Ny-Ålesund, Svalbard were statistically analyzed and re-
lated to the thermodynamic conditions under which they occur. An almost 14-month
long measurement period at Ny-Ålesund was analyzed and have been presented
statistics on vertically resolved cloud properties, hydrometeors and thermodynamic
conditions. The Cloudnet classification scheme, based on observations from a set
of ground-based remote-sensing instruments (active and passive), was applied in
order to provide vertical profiles of clouds, their macrophysical, microphysical prop-
erties and phase. In total 1,130,030 Cloudnet profiles (216,860 clear sky profiles and
913,170 cloudy profiles) are available for the period from June 2016 to July 2017.

The statistics on cloud properties and atmospheric thermodynamic conditions is
essential for a better understanding of cloud processes and can also be used for model
evaluation. In this study, the relation between cloud properties and thermodynamic
conditions from observations was compared to results from the NWP ICON model.

The thermodynamic conditions were derived from radiosonde data for the period
from June 2016 to July 2017 and were compared with previous 23 years. This com-
parison revealed that the analyzed period presented in this chapter differs from the
previous years. January 2017 was significantly colder with temperature differences
down to -5◦C while October 2016 was extremely warm with temperature anomalies
of more than +5◦C. Also, in comparison to the previous 23 years, IWV was lower
in January 2017 by 1 kg m−2 and more than 5 kg m−2 higher in October 2016.

The total occurrence of clouds is ∼81%. The highest frequency of occurrence is
in October 2016 (92%). Similar results of high cloud occurrence in summer and
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autumn at Ny-Ålesund based on micro-pulse lidar measurements were previously
found by Shupe et al. (2011). Nevertheless, the observed total occurrence of clouds
at Ny-Ålesund for the investigated period is higher than the one from Shupe et al.
(2011). The authors showed that the total annual cloud fraction at Ny-Ålesund for
the period from March 2002 to May 2009 was 61%. On the one hand, a different
time period was analyzed in this study. On the other hand, the occurrence of clouds
in Shupe et al. (2011) might be underestimated when only a lidar is used (Bühl
et al., 2013). However, our results are in a good agreement with a previous study by
Mioche et al. (2015). The authors used space-borne observations over the Svalbard
region for the period from 2007 to 2010. They applied the DARDAR algorithm
(Delanoe and Hogan, 2008, 2010) that utilizes measurements from CALIPSO and
CLOUDSAT. They showed that the cloud occurrence over the Svalbard region was
in the range from 70% to 90% having peaks in spring and autumn. Mioche et al.
(2015) found the lowest cloud occurrence in July, while the statistics in the present
study reveal the high cloud occurrence (∼80%) in this month. Also here, this differ-
ence might be related to the different periods investigated. Another reason might be
that the observed clouds in July are predominantly located at heights below 1.5 km.
These low-level clouds are difficult to capture by CloudSat due to its "blind zone" in
the lowest 1.2 km (Marchand et al., 2008; Maahn et al., 2014). Mioche et al. (2015),
for example, showed that the Ny-Ålesund ground-based measurements revealed the
highest cloud occurrence in summer (between 60% and 80%), while satellite obser-
vations showed the minimum in that season. The lowest cloud occurrence in the
study by Shupe et al. (2011) is around 50% in March. In present study, the lowest
cloud occurrence (∼65%) was also observed in spring. This might be associated
with a relatively low atmospheric temperature and less moisture being available in
the atmosphere. The increase of cloudiness in summer and autumn is probably due
to higher values of relative humidity at the site in comparison with other seasons.
Also sea-ice coverage might impact the cloud occurrence. As during summer and
autumn sea ice coverage is the lowest, areas of open water are larger and therefore,
that can lead to enhanced evaporation and latent heat exchange with the Arctic
atmosphere.

The most predominant type of clouds is multi-layer clouds with the frequency of
occurrence of 44.8%. Single-layer clouds occur 36% of the time. The most common
type of single-layer clouds is mixed-phase with a frequency of occurrence of 20.6%.
The total occurrences of single-layer ice and liquid clouds are 9% and 6.4%, respec-
tively. The cloud occurrence of single-layer liquid and ice clouds has a pronounced
month-to-month and seasonal variability.

The analysis of 149,960 Cloudnet profiles with single-layer clouds only showed that
single-layer liquid and mixed-phase clouds typically have very low values of LWP
with median values of 17 and 37 g m−2 and mean values of 30 and 66 g m−2,
respectively. It has to be noted that these low values of LWP may significantly
affect shortwave and longwave radiation (Turner et al., 2007). These clouds with
LWP values between 30 and 60 g m−2 have the largest radiative contribution to the
surface energy budget Bennartz et al. (2013). The LWP of single-layer mixed-phase
clouds is larger than for single-layer liquid clouds. This result is in an agreement
with a study by Shupe et al. (2006). The authors reported that the LWP for mixed-
phase single-layer clouds is larger than for pure liquid clouds due to thicker liquid
layers in mixed-phase clouds.
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Turner et al. (2018) showed that in Barrow the occurrence of single-layer mixed-
phase clouds is lower than the one of single-layer liquid only cloud at LWP values
exceeding 120 g m−2. At LWP values below 120 g m−2 liquid only clouds become
dominant over mixed-phase clouds. The similar behavior was found for Ny-Ålesund
and shown in this chapter but with the transition at 50 g m−2.

The IWP statistics shows that in general single-layer ice clouds contain more ice
than single-layer mixed phase clouds with corresponding mean values of 273 and
164 g m−2, respectively. The median values of IWP for single-layer ice and mixed-
phase clouds are 14.6 and 21.4 g m−2, respectively. This difference might be related
to the cloud geometrical thickness. On average single-layer ice clouds are thicker
than mixed-phase clouds. Single-layer mixed-phase clouds have higher occurrence
than ice clouds for IWP values ranging from 25 to 400 g m−2. For IWP values
exceeding 400 g m−2 ice clouds were more frequent than mixed-phase.

The statistics on LWP and IWP for single-layer clouds, provided in this chapter,
show that most of the time single-layer clouds at Ny-Ålesund have very low LWP
which is within the uncertainty range (<30 g m−2). The retrievals of LWP can
be improved by using the infrared and higher frequencies of the MWR (Löhnert
and Crewell, 2003; Turner et al., 2007; Marke et al., 2016) in future studies. The
information from the 89 GHz passive channel of the FMCW radar and 183, 233
and 340 GHz frequencies of LHUMPRO (low humidity profiler) of the University
of Cologne can be used for reducing the uncertainty of LWP. In the present study,
the vertical profiles of clouds were analyzed and their horizontal distribution was
not taken into account. For the investigation of the spacial variability of the LWP
at the Ny-Ålesund and the influence of ocean and orographic effect, the azimuth
and elevation scans of HATPRO might be used in the future studies to extend the
analysis.

The analysis of cloud phase shows that liquid is mostly present in the lowest 2 km
with the highest occurrence in summer and autumn (especially, in October 2016) and
lowest in winter. However, in winter the occurrence of liquid hydrometeors is still
significant and reaches 12% at a height of 1 km. The occurrence of ice phase within
the first 2 km is lowest in summer (22%) and highest in October 2016 and March
2017 with 60% and 70%, respectively. The largest frequency of occurrence of ice
and liquid in October 2016 (> 50%) is related to strong temperature and humidity
anomalies in this month. According to Overland et al. (2017), the anomalies were
associated with warm air transported into the Arctic from mid-latitudes, the Pacific
and Atlantic oceans.

Since phase partitioning in NWP models depends on atmospheric conditions, re-
lations between cloud top temperature and liquid fraction are analyzed for mixed-
phase clouds. It was found that liquid is present at temperatures down to -40◦C.
The highest occurrence of liquid phase is at cloud top temperatures ranging from
-15◦ to 0◦C.

The occurrence of different cloud types at Ny-Ålesund was analyzed as a function
of environment conditions. In addition to observations the ICON model output
was used for these analyses. The results show that the temperature distribution
of single-layer liquid clouds is narrow with temperatures typically ranging from -
10◦ to +5◦C. Similar results are also found for the ICON model. However, the
distribution of the liquid phase for mixed-phase clouds is one of the major differences
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between the model and observations. The observed distribution ranges from -25◦
to +10◦C while in the ICON model liquid phase is concentrated in the temperature
range from -10◦ to +5◦C. This difference results in a significant divergence between
observed and modelled single-layer ice and mixed-phase clouds. The observed single-
layer mixed-phase clouds occur in a much wider temperature range (from -25◦ to
+5◦C) than in the ICON model (from -15◦ to +0◦C). Such differences have been
previously reported by Sandvik et al. (2007). The authors showed that models can
completely miss single-layer mixed-phase clouds below -18◦. Observed ice clouds
occur at temperatures from -60◦ to +5◦C while the model simulate ice clouds down
to -70◦C. The occurrence of modeled ice clouds is significantly larger than observed
at temperatures warmer than -20◦. Due to the lower occurrence of liquid phase in
the model at temperatures below -5◦ modeled clouds are often classified as pure ice.
Also the model shows the higher occurrence of ice clouds at temperatures below -40◦
where homogeneous ice nucleation takes place.

The results from the first year of observations presented in this chapter show the
potential of the dataset which provides vertically resolved cloud information. The
derived dataset of cloud classification and cloud microphysical properties can be
used to test the representation of clouds and their dependency on temperature and
humidity in models and therefore, for an evaluation of high-resolution models. The
analyzed dataset is also useful for satellite validation and the cloud radiation in-
teractions studies. In order to have, more robust statistics and also to account for
year-to-year variability long-term observations at Ny-Ålesund are needed. There-
fore, the measurements of cloud and thermodynamic profiles are still ongoing at
Ny-Ålesund within the (AC)3 project.





Chapter 4

The influence of anomalous
atmospheric conditions on clouds and
cloud radiative effect at Ny-Ålesund

The previous chapter already showed that atmospheric conditions at Ny-Ålesund are
highly variable. For example, increased and decreased values of atmospheric temper-
ature and humidity were observed in October 2016 and January 2017, respectively.
It was shown that these conditions were related to enhanced and suppressed cloud
occurrence, respectively. One of the factor that influences thermodynamic condi-
tions and defined their changes is the large scale circulation and air masses transport.
Many studies relate the advection of moist and warm air from the mid-latitudes with
Arctic climate change (Woods and Caballero, 2016; Graversen and Burtu, 2016; Jo-
hansson et al., 2017), while only a few are focused on cold intrusions (Kanno et al.,
2019). However, extreme cold events exhibit a stronger change in occurrence than
extreme warm events (Sillmann et al., 2013; Collins et al., 2013). Kanno et al.
(2019) reported that the occurrence of extremely cold air masses in the Arctic have
been reduced by about 80% over the past 60 years. The authors mention that even
though the main driver of this reduction is radiative forcing associated with green
house gases, the relations of the extreme cold air masses with other components of
the Arctic climate, such as humidity and cloudiness, have to be explored. Most of
the studies on the Arctic climate are focused on winter. Nevertheless, Mortin et al.
(2016) and Hegyi and Taylor (2018) pointed out the importance of the representation
of the atmospheric variability during the transition periods. Significant anomalies
in temperature,water vapor, and cloud properties initiate the surface melt in spring,
while in autumn these factors affect ice freeze-up. Maturilli et al. (2015) showed
that at Ny-Ålesund the trend in the net radiation budget is highest in summer.
Even though this trend does not directly translate into the surface temperature in-
crease, the additional radiation income may affect some other feedback mechanisms
in the Arctic. This chapter shows how thermodynamic conditions associated with
the large scale circulation influence cloud appearance at Ny-Ålesund and what im-
pact these phenomena have on the cloud radiative properties. The focus of this
chapter is not only on moist periods in winter season, but covers moist, dry, warm,
and cold anomalies in all seasons. Periods of decreased and increased IWV and tem-
perature are related to cloud occurrence, their liquid and ice water paths, and SW,
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LW, and net CRE. The definition of warm/cold and moist/dry anomalous periods
further used in this thesis is introduced in Sec. 4.1. Sections 4.2–4.4 show how cloud
properties change under anomalous conditions with respect to normal situations. In
Sec. 4.5 a long-term radiosonde dataset is used in order to check the occurrence of
moist and dry periods for trends over the last 25 years. The content of this chapter
was published in Nomokonova et al. (2019a).

4.1 Identification of anomalous periods

In this study 6-hour periods with distinct values of temperature and IWV were
analyzed. Throughout the study periods with decreased and increased values are
denoted by "-" and "+" signs prior to a variable symbol, respectively (e.g. "+T" cor-
responds to periods with increased temperature), while typical values are indicated
just by a variable symbol (e.g. "T").

In order to decide whether a period is associated with a particularly high (low)
value of water vapor and temperature, a dataset of 6-hourly mean values of IWV
and temperature at 1450 m from HATPRO for the period from 2011 to 2018 (this
period is used as reference throughout the study) was used. The 1450 m HATPRO
range bin was chosen to account for the large scale transport rather than local effects
which are related to the orography around Ny-Ålesund (Maturilli and Kayser, 2016).
This altitude is also the closest to the arrival height of the FLEXTRA backward
trajectories. Since the atmospheric conditions vary throughout a year, the 10th and
90th percentiles of the temperature and IWV were calculated for each month using
the reference dataset (Fig. 4.1). The percentiles of IWV and 1450 m temperature
are used as thresholds for the event classification. If a 6h-period has a mean IWV
value below the 10th or above the 90th percentile it is considered as dry ("-IWV")
or moist ("+IWV"), respectively. Otherwise it is assumed that the value of water
vapor of this period is normal ("IWV"). Similarly, "-T" and "+T" correspond
to a period with an average 1450 m temperature below the 10th or above the 90th
percentile, respectively. As many studies consider water vapor as a driver of changes
in radiative properties of the Arctic atmosphere, IWV was used as an indicator of
anomalous periods. Typical periods corresponding to the "IWV" class are further
denoted as normal. An anomalous period is one with "-IWV" (dry anomaly) or
"+IWV" (moist anomaly), regardless which temperature class the period has. In
addition periods when the water vapor anomalies are supported by temperature
anomalies, i.e. classes "-T -IWV" and "+T +IWV" were also analyzed.

Since the anomalies in temperature and IWV are often driven by certain weather
patterns which are related to the transport of air masses coming from lower or higher
latitudes (Maturilli and Kayser, 2016; Dahlke and Maturilli, 2017; Mewes and Jacobi,
2019; Wu, 2017), back trajectories were analyzed for all dry and moist anomalies. All
6-hourly periods were identified with an anomaly class within the analyzed period
and related to the FLEXTRA back trajectory files with corresponding reaching time.

Figure 4.2 shows 6-day-trajectories with the end point in Ny-Ålesund for "-IWV"
and "+IWV" anomalies in different seasons. 6-day trajectories are sufficient to
capture the air transportation to the Arctic. Graversen (2006) found a correlation
between intensity of the atmospheric northward energy transport across 60◦N and
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Figure 4.1: Monthly percentiles of 6-hourly (a) mean temperature at 1450
m and (b) IWV from microwave radiometer at Ny-Ålesund from 2011 to
2018 used as criteria for determination of periods of decreased (below 10th
percentile, blue line) and increased (above 90th percentile, yellow line)
T and IWV. Red line corresponds to the 50th percentile. (published in
Nomokonova et al. (2019a))

the Arctic warming/cooling with the time lag of about 5 days. As expected, the
occurrence of moist anomalies ("+IWV", red lines in Fig. 4.2) is associated with the
air transport from the south, while the dry anomalies ("-IWV", blue lines in Fig. 4.2)
related to the air coming from the north. There is a slight difference between the
seasons. In winter and spring, dry air typically circulates counterclockwise, from
North of Russia over the North Pole region and northern Greenland. Mewes and
Jacobi (2019) have shown that this kind of circulation happens when air from the
North Pacific flows into the Arctic. In summer, dry anomalies are mostly associated
with air coming from northern Canada and Greenland. In autumn, there are two
distinct pathways, from south-east and west, although the "-T -IWV" anomalies
are related to air coming predominantly from the west (not shown). Wet anomalies
are mostly driven by the air advected from the North Atlantic. In autumn and
summer, a significant part of moist events originates in the Scandinavian region and
Barents sea. The transport pathways for "-T -IWV" and "+T +IWV" events (not
shown) are in general similar to those of "-IWV" and "+IWV", respectively, which
is in agreement with the results found by Mewes and Jacobi (2019), who showed
that the air transport from the North Atlantic sector is typically associated with
the positive temperature anomaly, while the transport from Siberia and the North
Pacific is connected to a negative temperature anomaly in the Arctic.

Table 4.1 summarizes the occurrence of different types of periods for the analyzed
period from June 2016 to October 2018. The occurrence of moist anomalies in winter
and summer for the analyzed period is nearly the same as for the reference period,
when, according to the definition in the present study, the occurrence of moist and
dry anomalies was 10%. In spring and autumn the occurrence is 8 and 14.2%,
respectively. The increase in occurrence of moist anomalies during the polar-night
season of 2016-2017 was recently reported by (Hegyi and Taylor, 2018). The authors
analyzed the whole Arctic region and related the increase to more frequent moisture
intrusions from the Atlantic and Pacific regions. Results of the present study show
that the occurrence of dry anomalies is about 8% for winter and autumn. In spring
and summer dry anomalies were observed about 13% of time. Periods with "+T
+IWV" anomaly take a major part (about 67%) of all moist anomalous cases. In
contrast, occurrence of "-T -IWV" periods is only about 35% of all dry anomalies
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Figure 4.2: Backward trajectories (6 days) for the periods of +IWV and
-IWV anomalies arriving at Ny-Ålesund at 1500 m from June 2016 to Oc-
tober 2018. The black star shows the location of Ny-Ålesund. Numbers in
brackets show the number of back trajectories available for the correspond-
ing anomaly class. Note that the numbers might be different from those
provided in Table 4.1 due to the lower availability of the back trajectories
pathways. (published in Nomokonova et al. (2019a))

in all seasons except winter, when the occurrence is almost 90%. Thus, the dry
anomalies are not regularly accompanied by a negative anomaly in temperature,
while the opposite is valid for moist anomalies.

4.2 Impact on cloud occurrence and cloud phase

In this chapter the results on how the anomalous conditions are related to cloud
macro- and microphysical parameters such as occurrence, type, phase partitioning,
and LWP and IWP and cloud radiative properties are presented. For the character-
ization of clouds the cloud detection and classification method based on Cloudnet
described in Sec. 4.2.1 were applied. Note, that the method is applied on Cloudnet
profiles with no liquid precipitation.
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Table 4.1: Number of 6-hourly long periods with increased ("+IWV") and de-
creased ("-IWV") IWV for the whole period of cloud observations from 2016 to
2018 and for different seasons. Cases with both, increased and decreased T and
IWV ("+T +IWV" and "-T -IWV") are also shown. "IWV" corresponds to pe-
riods with normal IWV values, regardless which T class the period has. The %
values are with respect to all 6-hourly long periods included in the study. (from
Nomokonova et al. (2019a))

Type of
period

Winter, n
cases (%)

Spring, n
cases (%)

Summer, n
cases (%)

Autumn, n
cases (%)

all seasons,
n cases (%)

+T +IWV 45 (8.0) 32 (5.4) 53 (6.5) 66 (9.2) 196 (7.3)
+IWV 61 (10.9) 47 (8.0) 82 (10.0) 102 (14.2) 292 (10.9)
IWV 456 (81.1) 465 (78.9) 623 (76.1) 563 (76) 2107 (78.4)
-IWV 45 (8.0) 77 (13.1) 114 (13.9) 53 (7.4) 289 (10.7)
-T -IWV 40 (7.1) 28 (4.8) 37 (4.5) 18 (2.5) 123 (4.6)

4.2.1 Cloud occurrence

Figure 4.3 shows the frequency of occurrence (FOC) of different cloud types during
anomalous and normal conditions. Clouds are present in 70–80% of cases with
normal values of IWV. Among them about a half are multi-layer clouds.

In dry anomalous events, the FOC of clouds is in general lower and ranges from
26% in spring to 70% in summer. The decrease in FOC of clouds is mostly caused
by less frequent multi-layer clouds (MC), whose occurrence in "-IWV" conditions
drops by a factor of 2 to 4. During spring and autumn clouds are about a factor of
two more frequent during "-T -IWV" events than in "-IWV" cases. The enhanced
FOC of clouds may be due to a higher probability of cloud particle formation at
lower temperatures for a given amount of water vapor. Nevertheless, during winter
and summer there is less difference in cloud occurrence between "-IWV" and "-T
-IWV" events.

Unexpectedly high occurrence of clouds (∼92%) was found during "-T -IWV" episodes
in autumn. All "-T -IWV" events in autumn occurred from 26 to 30 September
2018. Such a short time period would probably not be representative for autumn
"-T -IWV" cases if a longer dataset were analyzed. According to the FLEXTRA
backward trajectories for this time period, air was primarily transported from the
northern Greenland area. As it will be shown below, the "-T -IWV" episodes in
autumn were also characterized by LWP and IWP values exceeding those under
normal conditions. A deeper understanding of this phenomenon requires further
investigations, which are out of the scope of this study and might be considered as
the topics for the future studies.

Higher availability of water vapor ("+IWV") leads to an increase in FOC of clouds
up to 90–99%. The increase is mostly caused by changes in MC, while the FOC of
single-layer clouds (SC) is not much affected. As it was mentioned in Sec. 4.1, moist
anomalies are often accompanied by positive temperature anomalies. Therefore,
differences in cloud occurrence between "+IWV" and "+T +IWV" events are small.
The findings of this work are in agreement with the study by Gallagher et al. (2018)
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Figure 4.3: Frequency of occurrence of different cloud types for different
anomaly periods for winter(a), summer(b), spring(c), and autumn (d). The
frequency is normalized to the total number of cases of each anomaly type
period. Numbers at the top of bars for each anomaly type show the number
of periods included in the corresponding anomaly type based on 6-hourly
mean IWV and 1450 m temperature. MC denotes multi-layer clouds, SMC,
SIC and SLC stand for single-layer mixed-phase, ice, and liquid clouds,
respectively. (published in Nomokonova et al. (2019a))

for Greenland. They showed that during atmospheric circulations associated with
increased (decreased) moisture, the number of clear sky scenes reduces (increases).

In winter, the FOC of SC is about 30% and does not strongly depend on the available
water vapor. Dry anomalies are characterized by nearly equal occurrence of single-
layer ice and mixed-phase clouds (denoted further as SIC and SMC, respectively),
while SMC occur a factor of 2 more frequent than SIC during moist anomalies
(Fig. 4.3a). This might indicate that SMC, which require a continuous water vapor
supply (Korolev and Mazin, 2003), are more persistent in moist conditions, while in
dry cases SMC glaciate faster (Korolev and Mazin, 2003).

During summer time a major part of SC are single-layer liquid clouds (SLC) and
SMC, with no clear correlation to IWV. During "+IWV" periods the formation
of drizzle and rain is expected to be more efficient. Liquid precipitation on the
surface often hampers MWR observations and, therefore, according to the Sec. 3.4
is excluded from the analysis. Thus, a part of liquid clouds may be eliminated. In
contrast, the high occurrence of SLC of 21% corresponding to "-IWV" event might
be caused by less efficient growth of liquid droplets, which results in less likelihood
of liquid precipitation.

In contrast to other seasons, in spring dry conditions reduce the occurrence of SC
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by about factor of 2. This may result from low availability of IWV, since March and
April are the two driest months at Ny-Ålesund (see Fig. 4.1). Nevertheless, during "-
T -IWV" events in spring, the FOC of SC is nearly the same as for normal conditions.
Since in spring the majority of SC contains ice, the enhanced FOC may result from a
higher efficiency of ice nucleation, which, as shown in a number of studies (DeMott
et al., 2010; Murray et al., 2012; Hoose and Möhler, 2012; Ladino Moreno et al.,
2013; DeMott et al., 2015), in general increases with decreasing temperature.

Autumn is also characterized by a high FOC of SC during "-T -IWV" periods. For
instance, SMC occur about 41% of the time, which is 3 times larger than for normal
conditions. However, all "-T -IWV" autumn events correspond to a single continuous
5-day episode that was observed from 26 to 30 September 2018. According to the
FLEXTRA backward trajectories air was primarily transported from the northern
Greenland area during this episode.

4.2.2 Cloud phase

Cloud ice and liquid have distinct microphysical properties. For instance, the size
of ice particles is in general larger than for liquid droplets while the latter have a
higher number concentration (Korolev et al., 2003). Ice particles can have a large
variety of shapes (Bailey and Hallett, 2009). In addition, liquid water and ice have
different dielectric properties (Ray, 1972). Thus, the phase composition of clouds
affects SW and LW radiative properties of clouds (Ebell et al., 2020). Therefore, the
occurrence of different types of hydrometeors in the atmospheric column (Fig. 4.4)
was also analyzed.

In general, profiles with liquid phase (sum of green and orange columns in Fig. 4.4)
occur more often during moist periods and less often during dry periods. The FOC
of liquid containing profiles during "+IWV" and "-IWV" was characterized by the
change of more than +30 and -30% relative to normal conditions. Only in summer
the increase in FOC of liquid containing profiles between moist and normal periods is
8%. The increase in FOC of clouds in "+IWV" events was mostly related to higher
occurrence of MC. FOC of liquid containing clouds during "+IWV +T" and "-IWV
-T" anomalies do not differ much from the corresponding water vapor anomalies in
all seasons except autumn, when all events corresponded to the single continuous
5-day episode with air masses transported from northern Greenland mentioned in
Sec. 4.2.1.

Ice containing profiles (sum of blue and green columns in Fig. 4.4) occur more often
under "+IWV" and "+IWV +T" conditions and less during "-IWV" and "-IWV
-T". The change in ice containing profiles is mostly defined by the change in pro-
files with both liquid and ice (green columns in Fig. 4.4), since FOC of pure ice
phase (blue columns in Fig. 4.4) varies only slightly with change in IWV. Gallagher
et al. (2018), who investigated the influence of atmospheric circulations on cloud
composition in Greenland, similarly showed that moist/dry conditions lead to in-
crease/decrease in occurrence of mixed-phase clouds, which are the dominant type
of liquid containing clouds in the Arctic (Shupe et al., 2006). Gallagher et al. (2018)
also noted that ice clouds are not constrained by circulation types to the same degree
as mixed-phase clouds.
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Figure 4.4: Frequency of occurrence of different types of hydrometeors dur-
ing different anomaly periods for winter(a), summer(b), spring(c), and au-
tumn (d). Numbers at the top of bars for each anomaly type show the
number of periods included in the corresponding anomaly type based on
6-hourly mean IWV and 1450 m temperature. (published in Nomokonova
et al. (2019a))

4.3 Impact on LWP and IWP

Moist and dry anomalies influence not only the cloud occurrence and composition
but also water content. Thus, LWP and IWP were linked to the different types
of anomalies (Fig. 4.5). Note, that LWP and IWP were only calculated for liquid-
containing and ice-containing profiles, respectively. Clear-sky cases were not added
for calculations of the statistics of LWP and IWP.

Following the changes in occurrence of liquid- and ice-containing clouds, LWP and
IWP increase under moist conditions and decrease under dry conditions. "+IWV"
anomalies cause an increase in mean LWP by a factor of 1.5–2.0 relative to normal
conditions and also increase the variability in LWP. During dry anomalies, LWP
is significantly lowered and does not exceed 12 and 94 g m−2 in winter/spring and
summer/autumn periods, respectively. Gallagher et al. (2018) recently showed that
atmospheric circulation types associated with enhanced water vapor in Greenland
often lead to increased LWP. The authors also showed that opposite is valid for dry
conditions, when decreased values of LWP are more likely. Note, that the unexpected
two-fold LWP increase during the "-T -IWV" periods in autumn correspond to the
5-day episode with air mass transported from northern Greenland mentioned in
Sec. 4.2.1. Moist anomalies correspond to an increase in mean IWP by a factor 3
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Figure 4.5: LWP (a) and IWP (b) for different anomaly periods and different
seasons. Boxes indicate the 25th and 75th percentiles. Upper and lower
whiskers show the 95th and 5th percentiles. The white boxes include all
cases within a season. Mean (median) values are shown by the orange in
black (black) circle marker. (published in Nomokonova et al. (2019a))

relative to normal conditions in winter and spring, and by a factor of 2 in summer
and autumn. In winter and spring, dry conditions decrease mean IWP values by
an order of magnitude, which may be related to a strong reduction in occurrence of
ice containing clouds and less efficient ice particle growth during "-IWV" events. In
contrast, during summer and autumn, mean IWP is reduced by a factor of 1.3.

Thus, the results reveal a strong impact of the anomalous periods on LWP and
IWP and, in particular in winter and spring. Even though mean IWP values during
normal conditions are nearly the same in winter and autumn, relative changes in
IWP caused by dry and moist anomalies differ drastically among the two seasons.
In winter, wet and dry conditions lead to a 3-fold increase and 10-fold decrease,
respectively. In contrast, the increase in autumn is a factor of 2 and there is almost
no decrease. Since the anomaly type cannot fully explain this effect, it is probably
also related to other factors. One of such factors could be aerosols. Weinbruch et al.
(2012); Lange et al. (2018); Jung et al. (2018); Wex et al. (2019) have shown that
concentration and chemical composition of cloud condensation (CCN) and ice nuclei
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(IN) also have a seasonal variability in the Arctic region. DallOsto et al. (2018) and
Lange et al. (2018) found that accumulated aerosol mode is dominant in winter
season, while in summer ultrafine aerosol population becomes more abundant. Jung
et al. (2018) showed that the seasonal change in the aerosol type affects the activation
ability of CCN in the Svalbard region and found the highest activation efficiency
in winter and lowest in summer, with intermediate values in spring and autumn.
Wex et al. (2019) investigated the annual cycle of IN particles in different Arctic
regions. The authors found that IN concentration is often an order of magnitude
higher in summer and autumn than in winter and spring. Note, that within this
study aerosols are not analyzed.

4.4 Impact on surface cloud radiative effect

In the previous sections, the changes of cloudiness and amount of liquid and ice in
a column under various atmospheric states were presented. Liquid-containing and
pure ice clouds have a different impact on the radiation budget at Ny-Ålesund (Ebell
et al., 2020) and occurrence of these types of clouds varies for dry and moist condi-
tions. Therefore, the surface CRE was also estimated under different atmospheric
conditions. Figure 4.6 summarizes the surface SW, LW, and net CRE for different
anomaly periods.
During moist anomalies the mean LW CRE increased to 60–70 W m−2 in winter,
spring, and autumn. Thus, the mean LW CRE, enhanced under moist anomalies
in winter, spring, and autumn, can exceed the typical mean LW CRE in summer
(Fig. 4.6b, white box). This increase in mean LW CRE is associated with high
cloud occurrence, which mostly exceeds 90% under moist conditions. In addition
"+IWV" cases typically characterized by high mean LWP and IWP exceeding 90
and 200 g m−2, respectively. In summer the mean LW CRE during moist anomalies
becomes lower than under normal conditions. This effect may be caused by influence
of water vapor in presence of optically thick clouds as was previously described by
Cox et al. (2015). The authors found that for higher relative humidity LW CRE is
typically lower. Ebell et al. (2020) identified a similar effect at Ny-Ålesund, where
the decrease in LW CRE at the surface for higher IWV corresponds to clouds with
LWP exceeding 300 g m−2. In general, relative humidity at Ny-Ålesund is high
in summer (Maturilli and Kayser, 2016; Nomokonova et al., 2019b). Moreover, in
"+IWV" cases even higher values of relative humidity would be expected, since on
average there are no positive temperature anomalies relative to normal conditions.
Dry anomalies correspond to a reduction of the mean LW CRE to 29–32 W m−2 in
winter and spring and to 5–11 W m−2 in summer and autumn. Hence, the depen-
dence of the mean LW CRE on IWV is more pronounced in winter and spring than
in autumn and especially in summer. Such behavior though is not directly related
to changes in IWV itself but rather to coupling of the changes in IWV to cloud prop-
erties. As it was previously shown, dry anomalies are associated with reduced cloud
occurrence, amount of liquid-containing clouds, LWP, and IWP, while increased val-
ues of these parameters are related to moist periods. In summer the cloud properties
do not show as strong change during dry anomalies with respect to normal condi-
tions as in other seasons, which may reflect into the smaller corresponding change
in LW CRE.
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Figure 4.6: SW (a), LW (b), and net cloud radiative effect (c) at the surface
for different anomaly periods and different seasons. Boxes indicate the 25th
and 75th percentiles. Upper and lower whiskers show the 95th and 5th per-
centiles. The white boxes include all cases within a season. Mean (median)
values are shown by the orange in black (black) circle marker. (published
in Nomokonova et al. (2019a))

Besides the influence of cloud occurrence and microphysical properties, the LW
CRE also depends on altitude at which clouds occur. Figure 4.7 shows cloud base
height (CBH) measured by the ceilometer for the analyzed period. Note, that due
to the instrument limitations (see Sec. 2.3), which are related to the attenuation
of the ceilometer signal in optically thick clouds, only the lowest CBH was taken
into account. Throughout a year, CBH is mostly below 2 km. During moist and
dry anomalies CBH either does not change or slightly decreases, which may cause
an increase in LW CRE. Although, Yeo et al. (2018), who analyzed the dependence
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Figure 4.7: Cloud base height of liquid-containing clouds for different
anomaly periods and different seasons. Boxes indicate the 25th and 75th
percentiles. Upper and lower whiskers show the 95th and 5th percentiles.
The white boxes include all cases within a season. Mean (median) val-
ues are shown by the orange in black (black) circle marker. (published in
Nomokonova et al. (2019a))

of LW fluxes measured at Ny-Ålesund on CBH, showed that the mean LW CRE
of clouds within the lowest 2 km does not differ by more than 10 W m−2. Only
dry anomalies in spring and moist anomalies in summer are related to higher CBH.
Taking into account low cloud occurrence during dry conditions in spring the increase
in CBH should not change LW CRE much. In summer the increase in CBH during
moist conditions could be another factor (in addition to the effect of water vapor
described above) preventing an increase in LW CRE.

The SW CRE is only significant when the sun is above the horizon. Thus, the
strongest SW CRE can be found in summer. Under normal conditions in summer
and spring the mean SW CRE is -115 and -19 W m−2. An absolute change in
CRESW can in general be caused by three main factors: cloud properties, SZA,
and surface albedo (αs). The 6-fold difference in the mean SW CRE in spring and
summer might be associated with the changes only in surface albedo and SZA, since
FOC of clouds, LWP, and IWP vary only slightly.

A number of studies have already shown that the surface albedo under clear sky
and cloudy conditions can alter the SW CRE at the surface (Shupe and Intrieri,
2004; Miller et al., 2015; Miller et al., 2017; Ebell et al., 2020). Ebell et al. (2020)
found that at Ny-Ålesund the surface albedo (ratio between upward and downward
SW fluxes at the surface retrieved by the RRTMG) exceeds 0.8 when the surface
is covered by snow and is below 0.15 in bare tundra. For the analyzed period, the
change in the mean surface albedo between normal conditions and anomalies does
not exceed ±0.05 in spring and ±0.1 in summer and autumn. Shupe and Intrieri
(2004) showed that SW CRE is nearly proportional to 1− αs. The changes in SW
CRE between normal and anomalous conditions caused by the variability in the
surface albedo do not exceed 30% in spring and 15% in summer and autumn.
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In addition to the surface albedo, the SW CRE at the surface depends on SZA
(Minnett, 1999; Miller et al., 2018). Ebell et al. (2020) showed that in Ny-Ålesund
the lowest SZA, which corresponds to the highest position of the sun, is in summer
with the minimum of 55◦ in June. In spring values of SZA are larger.

There are two ways SZA can influence differences in SW CRE between anomalous
and normal cases: (1) an anomaly can have a dominant daytime of occurrence, while
normal conditions are uniformly distributed over a day, and (2) an anomaly can
concentrate in a certain part of a season. In order to check for changes in SW CRE
between anomalous and normal cases caused by diurnal cycles of SZA the periods
whether anomalies have a dominant time of occurrence were checked . It was found
that for the analyzed period normal and anomalous cases were nearly uniformly
distributed among 6-hourly periods and therefore time of a day is neglected in the
following analysis. In order to mitigate the remaining effects of SZA due to the
sparse distribution of anomalies over seasons the approach of Sengupta et al. (2003)
was followed and adapted to calculate the normalized SW CRE at the surface:

nCRESW =
CRESW

F↓clr,SW − F↑clr,SW
, (4.1)

where CRESW is the surface SW CRE, and F↓clr,SW and F↑clr,SW are down- and
upwelling SW fluxes at the surface that would be if the sky were cloud free.

Under normal conditions the mean nCRESW is -0.2 and -0.45 in spring and summer,
respectively. Dry conditions increase the mean nCRESW to nearly 0 and -0.2 in
spring and summer, respectively. In moist events the mean nCRESW decreases
below –0.4. Since the effects of SZA are mitigated in nCRESW, the variability in
mean nCRESW for different anomalies is mostly defined by cloud properties and the
surface albedo.

The relative change in CRESW is unsusceptible to differences in SZA but only when
anomaly cases are uniformly distributed over a season. For anomaly cases uniformly
distributed over a season no difference it is also expected in surface albedo between
anomaly and normal conditions. Thus, similar relative changes in CRESW and
nCRESW and near-zero change in the surface albedo indicate similar SZA and surface
albedo for anomaly and normal cases, while the diversion would show that anomaly
cases were sparsely distributed over a season.

Table 4.2 summarizes changes in CRESW, nCRESW, and the surface albedo related
to dry and moist anomalies. The results show that dry cases are related to positive
absolute changes in SW CRE, thus pointing to less efficient SW surface cooling by
clouds relative to normal conditions. The largest difference of 67.2 W m−2 is in
summer, when the cloud can produce the strongest SW shading (Shupe and Intrieri,
2004; Ebell et al., 2020). In spring and summer CRESW, nCRESW change by nearly
the same factor and the absolute change in the surface albedo does not exceed 0.05.
Similar relative changes in CRESW, nCRESW and near-zero absolute change in the
surface albedo indicate that the difference in the mean SW CRE is mainly caused by
changes in cloud properties and not by SZA. In autumn CRESW changed by –94%
while nCRESW changed by –60%. The difference in the relative changes indicates
that it is caused by SZA because dry autumn cases were not uniformly distributed
over the season. The absolute change in the surface albedo was 0.45. Thus, the
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difference in SW CRE between dry and normal cases under dry conditions in autumn
were caused by all three factors, i.e. cloud properties, SZA, and the surface albedo.
The direction of the changes in CRESW is consistent with Shupe and Intrieri (2004),
who showed that an increase in the surface albedo corresponds to a reduction in the
cloud induced surface SW cooling.

During moist anomalies SW CRE is more negative than for normal conditions. In
summer the relative changes in CRESW and nCRESW are close and the surface albedo
is not altered by more than 0.06. Therefore, it was concluded that the change in the
mean SW CRE of –25.6 W m−2 is mainly caused by cloud properties. In spring and
autumn the absolute change in the surface albedo is also relatively low. Nevertheless,
the relative changes in CRESW and nCRESW differ. This indicates that the absolute
change in the mean SW CRE is likely caused not only by cloud properties but also
by SZA.

Gallagher et al. (2018) showed an effect of moist and dry anomalies on CRE. The
authors analyzed the Summit site in Greenland, where typical IWV values are in the
order of 1–3 kg m−2 (Pettersen et al., 2018), which is drier than at the Ny-Ålesund
station (see Fig. 4.1). Gallagher et al. (2018) used data from 2011 to 2015. The
authors found that the southern transport pattern, associated with increase in IWV
by 0.69 kg m−2, leads to a change in LW and SW CRE of +13 and –3 W m−2,
respectively, relative to corresponding typical values. Since Gallagher et al. (2018)
did not analyze seasons separately, in order to compare the results, the results
of present study were also averaged over the whole analyzed period. The mean
differences between "+IWV" and "IWV" for LW and SW CRE for Ny-Ålesund were
found to be +21.2 and -10.2 W m−2, respectively. In contrast, northern circulation
pattern in Greenland leads to decrease in IWV by 0.34 kg m−2 changes LW and SW
CRE by -6.1 and 0.1 W m−2 (Gallagher et al., 2018). Our results for Ny-Ålesund
are -21.5 and 21.6 W m−2, respectively. Note, that the absolute values may differ
because of more humid environment in Svalbard. Nevertheless, the sign of the LW
CRE change is the same. SW CRE values are difficult to compare due to and possible
differences in SZA and surface albedo. For instance, the change in SW CRE at the
Summit station could be closer to 0 due to high albedo in Greenland throughout
a year, while at Ny-Ålesund the surface albedo is less than 0.15 in summer (Ebell
et al., 2020).

Figure 4.6c depicts a relation of the net CRE to anomaly types. As was reported
by Curry et al. (1996), due to the absence of sunlight in the Arctic region during
the polar night the LW CRE is dominant and the Arctic clouds warm the surface.
Therefore, the mean net CRE in autumn and winter is mostly defined by LW CRE.
Influences of water vapor anomalies have been previously discussed in details.

In summer and spring both LW and SW contribute to the mean net CRE resulting
in -71.5 and 24.7 W m−2 under normal conditions, respectively. Dry conditions
correspond to less positive LW and less negative SW CRE, which lead to the mean
net CRE of -19 and 4.3 W m−2 in summer and spring, respectively. During moist
periods LW CRE increases relative to normal conditions in spring and does not
change much in summer, while SW CRE becomes more negative in both seasons.
Thus, the mean net CRE under moist conditions in spring changes to 31.5 W m−2

and to –101 W m−2 in summer.
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4.5 Trends in anomaly occurrence

Since IWV anomalies show a strong impact on cloud properties and their radiative
effect, the next question is how the occurrence of dry and moist conditions at Ny-
Ålesund has changed in the last decades. The MWR observations at Ny-Ålesund
are only available since 2011, and, therefore, cannot be used for such a long-term
analysis. Instead, the radiosonde observations were used for the estimation of the
occurrence of "-IWV" and "+IWV" events for the time frame from 1993 to 2018.
Note, that 6-hour averaged values of IWV from MWR used for the previous analysis
cannot be obtained from radiosondes. Therefore, the IWV value for each radiosonde
profile was estimated and the profile was classified using the thresholds defined in
Sec. 4.1. Even though, results obtained from a radiometer would probably have
been slightly different, the radiosondes still show a tendency in the IWV anomalies.

Figure 4.8 shows changes in anomaly occurrences. According to a two-sided t-test,
dry and moist anomalies in all seasons show significant trends with the 95% con-
fidence level except for moist anomalies in spring. Dry anomalies have significant
negative trends in all seasons, which are especially pronounced in autumn and win-
ter with values of -10.7 and -12.9% decade−1, respectively. About a half of the
profiles in autumn and winter of 1993 corresponded to dry anomalies. These trends
might be associated with changes in atmospheric circulation found by Dahlke and
Maturilli (2017) for the Svalbard region. The dry events in spring and summer also
exhibit negative trends but the decrease of their occurrence is at lower rates of –
6.8 and –4% decade−1, respectively. The highest rate of trends for "+IWV" cases
were found for winter and autumn with slopes of 5.6 and 6.4% decade−1, respec-
tively. Our results are in line with Mewes and Jacobi (2019), who showed that in
winter the occurrence of North Atlantic and North Pacific pathways has increased
and decreased, respectively. The North Atlantic and North Pacific air transports
are associated with increased and decreased surface temperature and IWV in the
Svalbard region (Dahlke and Maturilli, 2017).

Taking into account the link between anomaly types, cloud properties, and CRE
(Figs. 4.3–4.6), it is concluded that during the last 25 years the changes in the
occurrence of dry and moist anomalies at Ny-Ålesund may have lead to an in-
crease in cloud occurrence, LWP, and IWP in all seasons. In turn, this could have
enhanced the cloud related surface warming in autumn, winter, and spring but pro-
duce stronger cooling in summer. If the trends of anomaly occurrence continue in
the future, it is expected that CRE will become more positive in autumn, winter,
and spring and more negative in summer.

4.6 Summary and conclusions

This chapter is devoted to the analysis of anomalous, in terms of IWV and temper-
ature at 1450 m altitude, atmospheric conditions at Ny-Ålesund. The main focus is
on the impact of anomalous conditions on cloud properties and their CRE. Within
this work, anomalies are defined as a deviation of 6-hour averaged IWV and/or
temperature below and above 10th- and 90th percentile of the corresponding pa-
rameter over the reference period from 2011 to 2018. Different anomaly types were
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Figure 4.8: Frequency of occurrence of moist ("+IWV", red line) and
dry ("-IWV", blue line) events using radiosonde data from 1993-2018
for different seasons (winter (a), summer (b), spring (c), autumn (d)).
The red and blue lines correspond to the frequency of occurrence of dry
and moist events, respectively. The dashed lines show the linear trend.
Dotted lines show the 95th confident intervals for the trends derived
by the bootstrapping resampling method. The significance (p value) of
the two-sided t-test at 95% level is shown in brackets. (published in
Nomokonova et al. (2019a))

related to air flows using backward trajectories FLEXTRA and cloud observations
from Cloudnet. The output of the rapid radiative transfer model recently applied
by Ebell et al. (2020) to the Ny-Ålesund observations was used to associate the
anomaly types to a variation in CRE.

A number of studies on anomalous conditions in the Arctic concentrate only on
moist intrusions and/or cover only the winter season (Woods and Caballero, 2016;
Graversen and Burtu, 2016; Johansson et al., 2017; Hegyi and Taylor, 2018). In
this chapter the focus is not only on warm and moist events, but also on dry and
cold anomalies, which have recently been shown to have an impact on the Arctic
climate (Sillmann et al., 2013; Collins et al., 2013; Kanno et al., 2019). This chapter
also covers all seasons since, for example, surface melt and ice freeze-up in transition
periods strongly depend on anomalies in temperature and water vapor (Mortin et al.,
2016; Hegyi and Taylor, 2018).

The periods of positive and negative anomalies in temperature and water vapor are
correlated with large-scale air transport. Most of the moist events are associated
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with air flow from the North Atlantic, while dry periods are mainly caused by
air circulating in the Arctic region. This finding is in agreement with previous
studies (Maturilli and Kayser, 2016; Dahlke and Maturilli, 2017; Wu, 2017; Mewes
and Jacobi, 2019). An analysis of seasonal variability of transport pathways shows
that in autumn and summer a significant part of moist events originates from the
Scandinavian region and Barents sea. In winter and spring dry conditions were
associated with counterclockwise air circulations over the North Pole region. This
is in agreement with the results from Mewes and Jacobi (2019), who showed that in
winter this type of circulation is related to the North Pacific pathway, which causes
cold anomalies for the Svalbard region. In autumn, two distinct pathways, leading
to dry conditions at Ny-Ålesund, have been found: from South-East and West. The
latter brought the 5-day "-T -IWV" episode observed from 26 to 30 September 2018
with unexpectedly high (typically the FOC of cloud is low during dry anomalies)
occurrence of clouds.

Anomalies in IWV correlate with FOC of clouds. In general, dry anomalies are
related to cloud occurrence ranging from 26% in spring to 70% in summer, which
is on average more than 30% lower than during normal conditions. It was found,
that dry conditions also show FOC of multi-layer clouds decreased by a factor of 2
to 4. Although, for autumn and spring FOC of clouds was 2 times higher for "-T
-IWV" events than for "-IWV" cases, which is probably due to higher likelihood
of cloud particle formation at lower temperatures for a given amount of water va-
por. During the moist periods, the FOC of clouds increases up to 90–99%. This
increase is mainly caused by more frequent multi-layer clouds while FOC of single-
layer clouds is almost not affected. In contrast to dry anomalies, the occurrence of
clouds between "+IWV" and "+T +IWV" events does not show a large difference
because most of the time moist anomalies were accompanied by the periods with the
positive temperature anomaly. 67% of moist anomalies are accompanied by strong
temperature increase, while only 43% of dry cases correspond to cold anomalies.

"-IWV" events are characterized by 30% relative decrease in FOC of profiles contain-
ing both ice and liquid with respect to normal conditions. These types of profiles
become 30% more frequent under moist conditions relative to normal conditions.
Profiles with only ice or only liquid are affected by water vapor anomalies to a lesser
degree.

Excess and shortage in water vapor has been found to be correlated with mean
LWP and IWP. During winter and spring, "+IWV" events are related to a factor
of 2–3 increase in LWP and IWP relative to normal conditions, while dry anomalies
lead to a reduction of LWP and IWP by an order of magnitude. For example,
during normal conditions the mean IWP in autumn is nearly the same as in winter.
Nevertheless, the relative change in mean IWP during dry and moist events in
spring does not exceed a factor of 2. Thus, the difference between winter/spring and
summer/autumn cannot be explained only by water vapor anomalies and should be
related to other feedback processes (e.g. difference in aerosol load, orographic effect,
dynamics and etc.). During dry anomalies in summer mean LWP decreases by a
factor of 2, while mean IWP does not change much. In autumn mean LWP and
IWP increase by 30% during dry anomalies. Under moist anomalies mean LWP and
IWP increase by a factor of 1.5 and 2.3, respectively. In autumn LWP and IWP
increase by a factor of 2 during moist conditions.
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Dry(moist) anomalies are associated with less(more) cloud related surface SW cool-
ing. In spring and summer during dry anomaly periods the mean SW CRE was
higher. Relative to the normal conditions the changes were 19 and 67 W m−2 in
spring and summer, respectively. The higher values are associated with lower cloudi-
ness and LWP in dry cases. The difference between summer and spring is caused by
the variability of SZA and the surface albedo. During moist periods in spring and
summer the cloud related cooling is enhanced by 25 W m−2 compared to normal
conditions.

The mean LW CRE at the surface is reduced during dry anomalies with respect
to normal cases by 25–35 W m−2 in winter and spring, and by 11–19 W m−2 in
summer and autumn. In contrast, moist periods are related to an increase of the
mean LW CRE in comparison to normal conditions. The increase was observed in
all seasons except summer. For instance, in winter, spring and autumn the mean
LW CRE raises from 35–41 W m−2 under normal conditions to 64-71 W m−2 during
moist events. Thus, in winter the mean LW CRE during moist periods was even
higher than the typical value in summer (51 W m−2). In summer mean LW CRE
did not change during "+IWV" periods and decreased by 6 W m−2 during "+T
+IWV" periods relative to normal conditions. The effect of reduction in LW CRE
during warm and moist conditions in summer is consistent with findings by Cox
et al. (2015) and Ebell et al. (2020).

Moist conditions increase the mean net CRE at the surface in autumn, winter,
and spring by 5–37 W m−2 with respect to normal conditions. This change is
mostly defined by cloud radiative properties in LW, which are related to enhanced
cloudiness, LWP, and IWP. Dry conditions reduce the mean net CRE by 2–37 Wm−2

in autumn, winter, and spring. In summer the net CRE is dominated by the SW
CRE and, therefore, moist conditions show stronger cloud related surface cooling.
During dry conditions in summer there is an increase in the mean net CRE by
49 m−2.

Long-term radiosonde observations show significant trends in the IWV anomaly
occurrence. Moist anomalies are getting more frequent with a slope varying for dif-
ferent seasons from 2.8 to 6.4% decade−1, while occurrence of dry anomalies declines
at rates from −12.9 to −4% decade−1. Similar results were found for Greenland in
study by Mattingly et al. (2016), which shows that most pronounced increasing
moist and decreasing dry IWV patterns were in winter. Since moist and dry anoma-
lies are associated with the North Atlantic and the North Pacific, respectively, our
results are consistent with findings of Mewes and Jacobi (2019). The authors showed
an increase and decrease in occurrence of the North-Atlantic and North-Pacific air
transports in winter, respectively. Dahlke and Maturilli (2017) also showed an in-
crease in occurrence of air masses coming from North Atlantic in winter season.
Matthes et al. (2015) reported that cold spell events are becoming less frequent in
winter and summer for the whole Arctic region.

Since the anomalies are related to a certain patterns in cloud properties and CRE,
the trends in the anomaly occurrence over the past 25 years may have lead to
increased cloud occurrence, LWP, IWP and, therefore, to higher cloud related surface
warming. In addition, if the trends of anomaly occurrences persist in the future,
CRE might be more positive in autumn, winter, and spring and more negative
summer.
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These results show some aspects on how large-scale air transportation may influence
atmospheric conditions and, consequently, CRE at Ny-Ålesund. This information
is essential for better understanding of relations between these three components
of the Arctic climate. As indicated above in this chapter, the significant trends in
the occurrence of anomalous conditions are expected to lead to changes in cloud
properties and their radiative effect. Nevertheless, qualitative estimates of these
changes are challenging since a long-term Cloudnet dataset at Ny-Ålesund is not
currently available. Within the (AC)3 (ArctiC Amplification: Climate Relevant
Atmospheric and SurfaCe Processes, and Feedback Mechanisms) project the cloud
measurements are planned to be continued.

Even though only IWV and temperature are considered in the present study, cloud
formation and development also depends on a number of other factors such as aerosol
load and chemical composition (Baustian et al., 2012; Murray et al., 2012; Wex et al.,
2019), dynamics (Korolev and Field, 2008; Schmidt et al., 2014), influence of surface
layer (Morrison et al., 2012) and local orographic effects (Houze, 2012) and other
processes. Analysis of these factors is out of the scope of the present study and
might be considered in the future studies.



Chapter 5

25 years of longwave cloud radiative
effect at Ny-Ålesund

The previous chapter showed that the occurrence of IWV anomaly periods at Ny-
Ålesund has shown significant trends over the past 25 years. The trends in the
atmospheric state may lead to changes in cloud macrophysical and microphysical
properties. The changes in cloud properties in turn affect the surface radiation
budget and thus may partly contribute to the observed trends in the surface radiation
fluxes reported by Maturilli et al. (2015). As it was mentioned in Sec. 1.3 a minimum
set of a cloud radar, ceilometer, and MWR was not set up at Ny-Ålesund until
June 2016 and, therefore, long-term statistics of cloud microphysical and radiative
properties at Ny-Ålesund is not yet available. Nevertheless, CRE can be estimated
from other long-term datasets available for Ny-Ålesund, such as more than 20 years
of surface LW and SW fluxes observations and cloud base height measurements,
and 8 years of MWR data. For instance, a study of Chen et al. (2006) showed
that it is possible to model the sensitivities of CRE to various cloud properties
(such as cloud fraction, LWP, cloud base height, and cloud base temperature) by
means of neural networks. In a recent study, Nyeki et al. (2019) estimated CRE
without cloud observations with active instruments. The authors showed that CRE
can be inferred from surface radiation and meteorological measurements, estimating
clear-sky longwave fluxes from 2 m temperature and IWV.

The aim of this chapter is to extend the existing 2-year dataset of CRE obtained
by Ebell et al. (2020) to the previous two decades. Following Chen et al. (2006), a
number of neural networks are trained using different combinations of observables
as inputs and the available CRE time series as a target. The present study focuses
only on the surface LW CRE due to the large contribution to the surface warming
in the Arctic region particular during polar nights without solar radiation (Shupe
and Intrieri, 2004; Cox et al., 2016). The extended CRE dataset is analyzed for a
presence of significant trends. Further, CRE is parameterized using the occurrence
of normal, moist, and dry periods as input.

77
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5.1 Design of neural network retrieval

A neural network is a powerful machine learning tool, which has been widely used
for function approximation, classification, and pattern recognition. One of the main
advantages of neural networks is that they do not require prior knowledge on the
relations between modeled and observed parameters used as input. The description
given in this chapter covers the preparation of the dataset, the numerical technique
employed for the training of the neural network and the analysis of the model per-
formances. The first two sections of this chapter are based on the handbook on the
neural network design by Hagan et al. (2014).

In this thesis neural networks are used to solve a problem of a function approxi-
mation. For this task two layer neural networks are typically used. A simplified
structure of such a neural network is shown in Fig. 5.1. Input parameters and nodes
in the hidden and output layers are connected with weighting links. Each node cal-
culates a sum of the weighted parameters and applies a transfer function, which is a
function relating an input of a node with its output. Thus, a two-layer neural net-
work is equivalent to a multidimensional nonlinear regression and can be described
by the following equation:

y = f2(W2f1(W1p + b1) + b2), (5.1)

where y is a vector of output variables, p is a vector of input variables, W1,2 are
weighting matrices, b1,2 are vectors with biases, and f1,2 are transfer functions for
the hidden and output layers.

Training of a neural network is an iterative procedure, which estimates weighting
matrices W1,2 and bias vectors b1,2 using a training dataset with samples of input
variables and corresponding output variables called targets. During each iteration
W1,2 and b1,2 are updated in order to minimize the squared difference between the
neural network outputs and the targets.

5.1.1 Pre-training

A training of a neural network requires several pre-training steps to be applied to
the used dataset: selection of data, data preprocessing, and choice of the network ar-
chitecture. Long-term datasets collected at Ny-Ålesund include more than 20 years
of observations with BSRN and ceilometers, and about 8 year of MWR observa-
tions. Thus the following parameters are available for the analysis: zenith TB at 14
frequencies, cloud occurrence, CBH, LW up flux, LW down flux, 2 m temperature,
2 m relative humidity. These parameters were chosen as inputs for neural networks
because all of them are directly related to LW CRE. As shown in Eq. 1.3, the differ-
ence QLW between LW down and upwelling fluxes is the all sky component of the
LW CRE. Therefore, QLW calculated from F↓LW and F↑LW measured by BSRN are
one of the input variables chosen for the analysis. As it was mentioned in Sec. 2.2,
TBs measured by MWR are used to estimate atmospheric temperature, humidity,
IWV, and LWP. Since, as shown in Sec. 1.4, all these parameters have an impact
on LW CRW, TBs were chosen as one of the input variables for the neural network
training. Section 1.5 showed that some studies use surface measurements of LW
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Figure 5.1: A simplified scheme of a 2 layer neural network. Input and
output variables are scalars and shown as squares. Nodes of the hidden
and output layers are shown as circles. The nodes perform weighting, add
biases, and apply the transfer functions as shown in Eq. 5.1.

downwelling flux, air temperature, and relative humidity to identify the presence of
clouds, when active instrumentation is not available, and to approximate clear sky
LW fluxes.

Equations 2.6 and 2.7 show that the values of LWP estimated from MWR’s TBs are
used to retrieve cloud microphysics. CRE calculated using the retrieved microphysics
can be affected by instrumental biases of MWR. The instrumental biases are likely to
vary within the 8 years of observations. For training only a 2-year period is used, thus
the relations between CRE and the measured TBs during the training period can
differ from previous 6-year period. In order to avoid instrumental effects, simulated
TBs are used for the training. Another reason to utilize simulated TBs for the neural
network training is that their values were derived using the same thermodynamic
and cloud profiles as those used for the modeling of CRE. The TBs are simulated
using thermodynamic profiles from GDAS1 and the ICON model (Sec. 2.6) and
cloud profiles from the dataset described in Sec. 2.7 by applying the same radiative
transfer model as used for the radiometer retrievals (Sec. 2.2). Ebell et al. (2020)
extended the thermodynamic profiles to 30 km with mean monthly climatological
profiles based on radiosonde observations from Ny-Ålesund and linearly interpolated
the profiles to the 30 s Cloudnet grid. The lowest temperature in the model is
replaced by the temperature measured at 10 m.

It is known that observations taken by MWRs are partly correlated at different
frequencies (Tan et al., 2011). Therefore, the principal component analysis is applied
to the simulated TBs in order to reduce the dimension of the data. The dimension
reduction helps to simplify the neural network architecture and drastically speeds
up the training procedure. Using simulated TBs for the time period from June 2016
to October 2018 the covariance matrix CTB was calculated:

Ci,j = 〈(TBi − 〈TBi〉)(TBj − 〈TBj〉)〉 , (5.2)

where Ci,j are elements of the covariance matrix, i and j denote MWR channels (1–
14) and 〈〉 denotes the mean value. The covariance matrix CTB can be decomposed
as follows:
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PCTBPT = D, (5.3)

where D is a diagonal matrix, P is a rotation operator, and T denotes transposition.
The rows of the matrixP are the eigenvectors or principal components while diagonal
elements of D are eigenvalues. The eigenvectors constitute an orthonormal basis for
the space spanned by CTB and the eigenvalues are the variances associated with
the corresponding principal components. In the following discussion only the 3
principal components with the largest eigenvalues are used. For the neural network
training projections of simulated TBs on the 3 principal components are used. These
projections are denoted TBPC hereafter.

Instruments measuring surface LW fluxes have a field of view of 180◦ and, there-
fore, the observed fluxes are influenced by 3D effects associated with horizontal
fluctuations of the atmospheric state. In contrast, RRTMG assumes horizontal ho-
mogeneity of the atmosphere and does not take into account 3D effects (Ebell et al.,
2020). In order to avoid the influence of the 3D effects on the training of the neural
network, the surface LW fluxes simulated by RRTMG were used. For consistency
purposes, simulated fluxes were derived using the same thermodynamic and cloud
profiles as those used for the modeling of CRE.

Chen et al. (2006) showed that estimation of LW CRE using neural networks requires
an input characterizing cloud fraction and/or cloud height. The long-term dataset
at Ny-Ålesund contains ceilometer observations which can be used for this purpose.
In general, as for previously described input variables, it would be beneficial to use
simulated ceilometer data in order to avoid instrument related effects in the LW CRE
retrieval, and to keep consistency in the source of the training dataset. Nevertheless,
as it was shown in Sec. 3.5, NWP models may not properly characterize liquid phase
in clouds. Therefore, proper simulations of ceilometer observations are currently
not available. Cloudnet cloud profiles obtained from ceilometer and cloud radar
observations are used by RRTMG to calculate CRE. As a consequence, CRE is set
to 0 when there is no cloud detected. Thus, a neural network trained with the cloud
detection from Cloudnet as an input would strongly rely on this input in order to
discriminate cloudy and clear sky conditions. Ceilometers are known to miss clouds
with low concentration of particles (Bühl et al., 2013). Therefore, if ceilometer data
alone (without the radar) are utilized to identify the cloud presence and used as
the input to the neural network trained with the Cloudnet cloud detection, the
neural network may erroneously consider some cloudy profiles as cloud free and
consequently assign CRE close to 0. This indicates, that the utilization of the
cloud detection from Cloudnet as an input may lead to uncertainties related to the
cloud detection abilities of the ceilometer alone. Thus, in this study the cloud base
height measurements are used as an input for the neural network training. Cloud
base heights are taken from the ceilometer CL51. This ceilometer is able to detect
multiple cloud bases in a single column. In this study only the lowest cloud base is
used. The first cloud base is the most important for the LW radiation. In addition,
previous two ceilometers only measured the lowest cloud base. Cloud fraction is set
to one if a cloud base is detected and is set to 0 otherwise.

LW CRE calculated using RRTMG by Ebell et al. (2020) is used as the output vari-
able. LW CRE has 30 s time resolution corresponding to the resolution of Cloudnet.
Note that calculations of LW CRE are made only for profiles with valid radiometer,
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Table 5.1: Standard deviations of the noise added to the variables used for
the neural network training.

Variable Value

CRE [W m−2] 20.2
F↓LW [W m−2] 12.5
QLW [W m−2] 14.8
2 m temperature [◦C] 1
2 m relative humidity [%] 10
TB [K] 4

ceilometer, and radar data. In addition to zenith observations, MWR performs peri-
odical scanning cycles. Samples corresponding to these scans are excluded. Profiles
with liquid precipitation are also excluded from the analysis because observations
of MWR can be contaminated by the presence of liquid water on the radome. The
availability of 30 s LW CRE samples for the period from June 2016 to October 2018
is relatively uniform and on average about 50% of the data can be used.

A proper neural network training requires that the training dataset should ade-
quately represent the input space, i.e. the range of the input parameters in the
training dataset and the long-term observations should be similar. Therefore, distri-
butions of the input parameters used for the training were compared with those from
the measurements (see Appendix A). The results show that the training dataset
covers 80–100% of the variability observed over 8 years for TBs and 25 years for
radiation and meteorological observations.

Ebell et al. (2020) estimated random uncertainties of LW CRE averaged over 10 min
intervals to be about 20 W m−2. Since averaging typically reduces the random
variability, LW CRE and all the input variables with the original 30 s time resolution
are averaged over 10 min intervals. In addition, the 10 min averaging minimizes
the influence of field-of-view differences of the used instrumentation and small-scale
cloud inhomogeneities (Shupe et al., 2015). For each of 10 min intervals availability
of all the variables is checked. 10 min intervals where at least one of the variables
has less than 70% of samples are excluded from the analysis. It was found that
about 85% of the averaged values of cloud fraction correspond to either no cloudy
samples (cloud fraction = 0) or all cloudy samples (cloud fraction = 1). Since the
amount of intermediate values of the cloud fraction is low, all the values of the cloud
fraction above 0 are set to 1.

In total, there are 73020 10 min samples with all the input and output variables
available from 11 June 2016 to 8 October 2018. In order to take into account the
uncertainties between the simulated variables and measured quantities, Gaussian
noise was added to the input and output variables. The noise standard deviation
values are chosen to match the measurement uncertainties (see Chapter 2) and are
reported in Table 5.1.

According to a standard practice (Hagan et al., 2014), all the variables used for
neural network training are normalized such that they all span between –1 and 1:

pk,nrm =
2(pk − pk,min)

(pk,max − pk,min)
− 1, (5.4)
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Figure 5.2: The 2-layer neural network used in this study. The weight
matrices W1 and W2 have dimensions 30×N and 1× 30, respectively. N
is a number of input parameters. b1 and b2 are 30 × 1 and 1 × 1 vectors,
respectively.

where pk and pk,nrm are values of the k-th input variable before and after the normal-
ization, pk,min and pk,max are the minimum and maximum values of the k-th input
variable.

As it was mentioned above the function approximation or regression tasks are typ-
ically solved using a two layer perceptron neural network. The number of nodes in
the output layer corresponds to the number of output variables, which is 1. For the
hidden layer, 30 nodes was chosen. This number was found to be a compromise be-
tween the training quality and the training speed. The hyperbolic tangent sigmoid
is used as the transfer function in the hidden layer:

fts(x) =
ex − e−x

ex + e−x
, (5.5)

while the linear transfer function is used in the output layer:

fl(x) = x. (5.6)

The resulting architecture of the used neural network is shown in Fig. 5.2.

The parameters chosen as inputs for the neural network training have different
availability ranging from 8 years for TBs from MWR to about 25 years for surface
fluxes from BSRN. Therefore, within this study different sets of input parameters
are used to train a number of neural networks, which are applicable for different
time periods. A list of the neural networks is given in Table 5.2. The sets of
input variables were chosen in a way to check how good can different instruments
or instrument sets approximate LW CRE. For instance, the neural networks 1 and 2
are based only on MWR observations, the neural networks 8 and 9 use only BSRN,
while other neural networks use a combination of the instruments.

5.1.2 Training the networks

As a first step of the training procedure, the weight matrices W1,2 and bias vec-
tors b1,2 are initialized. As a rule of thumb, initial values of the weights and biases
should be set to small random values. For the hidden layer, the initialization method
introduced by Nguyen and Widrow (1990) is used. According to this method, mag-
nitudes of the elements of the weight matrix W1 are set to 0.7 × 301/N , where 30
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Table 5.2: The list of neural networks trained within this study to retrieve
LW CRE.

Index Input variables

1 TBs
2 TBPC
3 TBPC and cloud fraction
4 TBPC, cloud fraction, and QLW

5 TBPC, cloud fraction, QLW , and cloud base height
6 cloud fraction, QLW , and month
7 cloud fraction, QLW , month, 2 m temperature, and 2 m relative humidity
8 QLW , month, and F↓LW
9 QLW , F↓LW , 2 m temperature, and 2 m relative humidity

corresponds to the number of nodes in the hidden layer, N is the number of input
parameters used for the neural network training. Signs of the elements are set ran-
domly. Elements of the bias vector b1 are set to uniform random values between
−0.7 × 301/N and 0.7 × 301/N . Elements of W2 and b2 are set to uniform random
values between –0.5 and 0.5.

For the training, the Levenberg-Marquardt minimization algorithm with the Bayesian
regularization (Hagan et al., 2014) was used. This algorithm consists of the following
steps:

1. The state vector x0 is formed by all the elements of the weight matrices W1,2

and bias vectors b1,2. The size of the state vector is denoted n hereafter. The
sum of squared elements Ew of the state vector is calculated.

2. γ, which is the number of effective parameters, is set to n.

3. For each sample y is calculated using the Eq. 5.1 and normalized input vari-
ables p.

4. The error vector v is derived. Elements of v are differences between y and
corresponding normalized target values. The sum Ed of squared errors is cal-
culated.

5. Two parameters α and β controlling the complexity of the network are calcu-
lated:

α =
γ

2Ew
, (5.7)

β =
N − γ
2Ed

. (5.8)

6. The cost function F is computed:

F = βEd + αEw. (5.9)
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The first and the seconds terms in Eq. 5.9 penalize the deviation of the neu-
ral network output from the target values and the complexity of the neural
network, respectively.

7. The Jacobian matrix J characterizing the sensitivities of the output variables
to the elements of the weight matrices W1,2 and the bias vectors b1,2 is calcu-
lated:

Jq,p =
∂vq
∂xp

, (5.10)

where vq is the q-th element of the error vector and xp is the p-th element in
the state vector.

8. A new state vector xk+1, with k denoting the iteration index, is calculated as
follows:

xk+1 = xk −
[
βJTJ + (µ+ α)U

]−1 (
βJTv + αxk

)
, (5.11)

where U is the n× n identity matrix. During the initial iteration (k = 0) the
coefficient µ = 0.01 is used.

9. Ew, Ed and F are recalculated. If after an iteration F does not decrease, the
steps 7–9 are repeated with µ multiplied by 5. If the iteration yields lower F ,
µ is divided by 5.

10. γ is updated:
γ = n− 2αtr(H)−1, (5.12)

where Hessian matrix is approximated by:

H = 2βJTJ + 2αU. (5.13)

11. New estimates of α and β are derived according to Eqs. 5.7 and 5.8, respec-
tively.

12. The steps 7–11 are repeated 100 times. The number of iterations should be
large enough to allow the iterative minimization scheme to converge. The
neural networks trained for this study typically required much less iterations
to fully converge.

The described training algorithm includes the Bayesian regularization, which avoids
the over-fitting problem (Hagan et al., 2014). In order to illustrate this, the dataset
was split into the training and validation datasets with 80 and 20% of the samples,
respectively. Samples for these datasets were chosen randomly. The training dataset
was used for the neural network training, while the validation dataset was only used
to check for over-fitting. For each set of input parameters listed in Table 5.2 3 to
5 instances of each neural network type were trained. Among these, the neural
networks with the lowest final cost functions were taken for the following analysis.
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Table 5.3: Statistics of differences between the neural networks outputs and
the target values of LW CRE with the added Gaussian noise. The values
were calculated using the training and validation (numbers in brackets)
datasets for different input parameters. Neural network indexes are the
same as provided in Table 5.2. The period from June 2016 to October 2018
was used. Note, that the neural networks cannot predict random noise and,
therefore, the values of RMSD always exceed the standard deviation of the
Gaussian noise of 20.2 W m−2 added to LW CRE during the pre-training.

Index RMSD [W m−2] STD [W m−2] Bias [W m−2] Correlation

1 34.2 (34.0) 34.2 (34.0) -0.3 ( 0.0) 0.53 (0.54)
2 34.2 (34.0) 34.2 (34.1) -0.6 (-0.2) 0.53 (0.53)
3 27.3 (27.0) 27.3 (27.0) 0.0 (-0.1) 0.74 (0.74)
4 22.7 (22.6) 22.7 (22.6) -0.4 (-0.0) 0.83 (0.83)
5 22.0 (22.0) 22.0 (22.0) 0.3 (-0.0) 0.84 (0.84)
6 22.9 (22.9) 22.9 (22.9) -0.0 (-0.1) 0.83 (0.82)
7 22.7 (22.6) 22.7 (22.6) -0.0 ( 0.0) 0.83 (0.84)
8 22.1 (22.1) 22.1 (22.1) -0.4 (-0.0) 0.84 (0.84)
9 21.8 (21.9) 21.8 (21.9) -0.6 (-0.2) 0.84 (0.84)

5.2 Assessment of the neural network model perfor-
mances

5.2.1 Neural network model quality

Before the neural networks are applied to the measurement dataset, the quality of
the obtained networks was analyzed. For this purpose differences between the neural
network outputs and the target values of LW CRE were derived separately for the
training and the validation datasets. The root-mean-squared difference (RMSD),
mean and standard deviation of the difference, as well as the correlation between
the neural network outputs and the target values of LW CRE were calculated. The
results are summarized in Table 5.3. Similar values for the training and the val-
idation dataset indicates that the Bayesian regularization successfully avoided the
over-fitting problem during the trainings.

The results show that all the bias values are close to 0 and the correlation ranges
from 0.52–0.84. This indicates that the neural networks captures general relations
between the input variables and LW CRE. Since neural networks (and also other
regression algorithms) cannot predict random noise, the lowest possible RMSD is
limited by the noise added to LW CRE during the pre-training (see Table 5.1).
Neural networks based only on microwave brightness temperatures (indexes 1 and
2) showed the worst results with about 34 W m−2 RMSD. There are no differences
between neural networks 1 and 2, which indicates that most of the information
on the LW CRE is contained in the first three principal components. Additional
information on cloud occurrence, LW net radiation, and cloud base height (neural
networks 3–5) improves the performance of the neural networks. Apparently, cloud
base height does not improve the performance much if the cloud fraction has been
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Table 5.4: Parameters of linear regressions between neural network outputs
and LW CRE without additional noise. All available 10 min samples were
used for the linear regressions including the training and validation datasets.
An ideal model would have the slope and offset of 1 and 0, respectively.

Index Slope Offset [W m−2]

1 0.38 23.8
2 0.38 23.6
3 0.74 9.9
4 0.91 3.4
5 0.94 2.1
6 0.90 3.8
7 0.91 3.5
8 0.93 2.4
9 0.95 2.0

already used as an input. Neural networks 4–9 show RMSD close to the limit of
20.2 W m−2 defined by the added noise.

In order to check how well a neural network explains the variability of the LW
CRE, linear regressions between the network outputs and LW CRE without the
added noise were obtained. Slopes and offsets of the linear regressions are shown in
Table 5.4. The results indicate that the neural networks 1 and 2, which are based
on microwave TBs only, have relatively large offsets and slopes of 0.38. During clear
sky conditions, these neural networks overestimate LW CRE and show values about
10 W m−2, while for optically thick clouds they underestimate LW CRE and the
maximum output values of LW CRE are about 70 W m−2. Therefore, these neural
networks cannot properly model the 10 min variability of LW CRE. The neural
network 3, which uses TBPC and cloud fraction, performs better with smaller offset
and the slope closer to unity. Much better results were shown by neural networks
4–9 with offsets of 2.0–3.8 W m−2 and slopes close to 1.

5.2.2 Validation of the neural network model

As the next step, the neural networks were applied to the observations for the
period from June 2016 to October 2018 in order to see their performance on a real
measurements taken as inputs instead of simulations. Differences between the neural
network outputs and the target values of LW CRE with the added Gaussian noise
were analyzed in terms of RMSD, mean and standard deviation of the difference, as
well as the correlation. Table 5.5 shows the difference statistics when observations
from the MWR and BSRN are used instead of simulated TBs, TBPC, QLW , and
F↓LW .

A comparison of Tables 5.3 and 5.5 shows that the difference statistics for the simu-
lated and measured input variables are similar. Better results of neural networks 1–3
with measurements are likely to be caused by lower instrumental noise of the MWR
than was assumed for the simulated TBs. Nevertheless, for the years 2011–2016 the
noise statistics of the MWR can be different from 2016–2018. Mean differences are in
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Table 5.5: Statistics of differences between the neural networks outputs and
the target values of LW CRE with the added Gaussian noise. Measured
variables were used as input parameters for neural networks instead of sim-
ulations. Neural network indexes are the same as provided in Table 5.2. The
period from June 2016 to October 2018 was used. Note, that the neural
networks cannot predict random noise and, therefore, the values of RMSD
always exceed the standard deviation of the Gaussian noise of 20.2 W m−2

added to LW CRE during the pre-training.

Index RMSE [W m−2] STD [W m−2] Bias [W m−2] Correlation

1 30.3 30.2 2.2 0.66
2 30.2 30.2 0.8 0.66
3 25.8 25.7 1.9 0.76
4 22.8 22.8 -0.2 0.82
5 22.6 22.6 0.3 0.82
6 22.9 22.9 -0.3 0.82
7 22.9 22.9 0.0 0.82
8 23.4 23.4 -0.6 0.81
9 22.7 22.7 -0.6 0.83

general larger in the case of measurements taken as inputs, although the magnitude
of the mean differences does not exceed 2.2 W m−2.

5.2.3 Uncertainty analysis of the LW CRE retrievals based
on neural networks

As it is shown in Table 5.5, RMSE of the estimated 10 min LW CRE is relatively
large taking into account that the typical range of LW CRE is from 0 to 85 W m−2.
Therefore, a longer averaging is required for an analysis of these estimates. In this
chapter the main focus is to relate seasonal changes of LW CRE to trends in the
occurrence of wet and dry anomalies and, therefore, LW CRE is averaged seasonally.
Ebell et al. (2020) estimated the random uncertainty of the LW CRE from RRTMG
averaged over a month to be in the order of 0.4–0.5 W m−2. Averaging over a season
would further reduce this estimate by a factor of

√
3 assuming that the random

error in monthly averaged LW CRE is not correlated. In contrast to the random
uncertainty, the systematic uncertainty in LW CRE is not reduced by averaging.
Using the time period from June 2016 to October 2018 Ebell et al. (2020) found
differences between simulated and measured surface LW net fluxes for all sky and
clear sky conditions to be −0.2 and −4.9 W m−2, respectively. The authors note
that the bias in the case of clear sky conditions results from 3D effects, which are not
taken into account by RRTMG, a misclassification of the scene (cloudy/cloud-free,
cloud type), and uncertainties in the cloud microphysical properties. It is not clear
whether these biases would be the same for previous periods, and therefore, as a
proxy of the uncertainty related to the modeling of the surface clear-sky LW flux of
±4.7 W m−2 is further used.

Training of neural networks was based on LW CRE calculated using RRTMG (Ebell
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Figure 5.3: Yearly seasonal frequency of occurrence of sampled MWR ra-
diometer data for the period of cloud observations.

et al., 2020). As the period with calculated LW CRE is relatively short, the uncer-
tainties of the neural network LW CRE retrievals applied to a longer datasets may
be related to several aspects. First, during the training of the neural networks the
cost function was calculated for all available samples in the training dataset. These
samples are fairly uniformly distributed over the period from June 2016 to Octo-
ber 2018. Nevertheless, neural networks may perform better for some particular
seasons and/or years. The second aspect is that LW CRE is only calculated when
data from all the instruments required for Cloudnet were available. MWR data were
often excluded from the analysis due to the wet radome during liquid precipitation
or problems with the hardware. Therefore, the availability of data used for the train-
ing might be not homogeneous in time, which can be one of the reasons why neural
networks perform differently for different seasons. Moreover, this aspect can affect
the performance of neural networks on a longer dataset. Third, neural networks 1–5
require zenith observations with MWR, while this instrument routinely performs
scanning patterns, thus reducing number of samples available for the application of
the neural networks. Availability of proper MWR samples is mostly around 40–50%
(Fig. 5.3). Figure 5.4 shows how different input variables are affected by the sub-
sampling due to MWR radiometer availability. For this, the seasonal averages of
variables were calculated for all available samples and only those with valid MWR
data. In general, the results show similar behavior in all the variables with relatively
small changes. Beside the averages, it is important to check how the sampling affects
the distributions of the input parameters within each period. The analysis of the
parameter distributions estimated from all available sample and only when MWR
data are available (shown in Appendix B) does not show strong deviations. Typical
absolute differences between the distributions at the percentile levels of 25, 50, and
75 are less than 250 m, 10 W m−2, 6 W m−2, 3%, and 1◦C in cloud base height,
F↓SW , QLW , relative humidity at 2 m, and temperature at 2 m, respectively.
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Figure 5.4: Input parameters used for the neural networks based on avail-
ability of MWR radiometer data (blue lines) and all samples (red lines). The
values in the right lower angle in each panel indicate mean and ± standard
deviation of the difference (all minus MWR).

As it is shown in Table 5.2 the neural networks use different sets of input parameters
and, thus, are subject to different sampling effects described above. Therefore, in
order to evaluate uncertainties in estimated LW CRE related to the three sampling
aspects, all the trained neural networks were applied to the period from 1 Decem-
ber 2011 to 30 Nov 2018. During this period data for all 9 neural networks are
available (see Table 5.6). Neural networks 1–5 require MWR data and thus are not
applied to samples with liquid precipitation or scans. In contrast, neural networks
6–9 use only ceilometer and BSRN data and are applied to samples including liquid
precipitation. Note, that within this work, no algorithm was applied to ceilometer
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Figure 5.5: LW CRE estimated by all 9 neural networks for different seasons
for the period from December 2011 to December 2018. The red lines show
LW CRE averaged over the seasonal LW CRE obtained with the neural
networks. The blue shaded areas correspond to ± one standard deviation.
Only seasons with valid inputs for all the neural networks are shown.

data to identify precipitating samples in order to improve the performance of neural
networks. The range of LW CRE outputs from the 9 neural networks is used as
a proxy for the sampling uncertainty. Figure 5.5 shows the ensemble-averaged LW
CRE estimated from all the neural networks for different seasons. A standard devi-
ation calculated using all seasons and years was found to be 2 ± 0.9 W m−2. This
value is further used as the uncertainty σsmp related to the sampling effects.

Assuming that the uncertainties due to modeling of the surface LW net flux σm by the
RRTMG and the sampling aspects σsmp are uncorrelated, the resulting uncertainty
σΣ of the LW CRE retrieved with neural networks and averaged over one season is
estimated as follows:

σΣ =
√
σ2
m + σ2

smp. (5.14)

Taking into account that σm ≈ 5 W m−2 and σsmp ≈ 2 W m−2, σΣ is equal to
5.4 W m−2.
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Table 5.6: Availability of variables for LW CRE estimation with neural
networks.

Variable Instrument Availability Neural networks

TBs and TBPC MWR 8 Nov 2011
to 31 Dec 2018 1–5

Cloud fraction
cloud base height

Ceilometers
LD-40 and CL51

14 Jul 1998
to 31 Dec 2018 3–7

QLW and F↓LW BSRN 2 Aug 1992
to 31 Dec 2018 4–9

2 m temperature
relative humidity BSRN 1 Aug 1993

to 31 Dec 2018 7 and 9

5.3 Trends in CRE and their relation to occurrence
of anomalous conditions

According to Table 5.6, for the estimation of LW CRE over the last 25 years, obser-
vations from BSRN and ceilometers have to be used. Therefore, in order to check
the long-term LW CRE for trends only neural networks 6–9 are applied. Figure 5.6
shows LW CRE averaged over 3 month periods (further denoted as season-averaged
LW CRE). All 4 neural networks show similar patterns in the time series of the
season-averaged LW CRE. For the periods when all 4 neural networks have valid
input variables, the spread among the outputs of the neural networks was checked.
For each period the standard deviation of the season-averaged LW CRE from the 4
neural networks was calculated. The spread was characterized as an average of these
standard deviations over the whole analyzed period. The spread was calculated sep-
arately for winter, spring, summer, and autumn and was found to be 5.5, 4.9, 3.0,
and 5.1 W m−2, respectively. This spread is about a factor of two higher than the
uncertainty σsmp associated with sampling found for the period from 2011 to 2018
in the previous section. Nevertheless, according to Eq. 5.14, the higher deviation
causes 1.4 W m−2 increase in the resulting uncertainty σΣ and does not strongly
affects the results shown further.

As it was shown in Sec. 2.1 ceilometer observations at Ny-Ålesund started in 1992.
Nevertheless, the ceilometer LD-WHX05 operated at Ny-Ålesund had different spec-
ifications and showed cloud observations inconsistent with respect to ceilometers LD-
40 and CL51 (Maturilli and Ebell, 2018). Therefore, the neural networks 6 and 7
are only applicable from the summer 1998, when the ceilometer LD-40 was set up at
Ny-Ålesund. Thus, the largest time coverage in the LW CRE estimation is provided
by the neural networks 8 and 9. Since outputs of the neural networks 8 and 9 differ,
their average is taken as a best estimate of the LW CRE. Using this average, a linear
fit was found for different seasons (shown by solid black lines in Fig. 5.6). According
to the two-sided t-test, LW CRE has trends in winter and autumn with a confidence
exceeding 95%. The found trends are 3.4 and 2.2 W m−2 decade−1 in winter and
autumn, respectively. In summer, there is a negative trend of –1.8 W m−2 decade−1

with a confidence level of 0.94. For the spring season, no significant trends was
found. Thus, the LW surface warming by clouds at Ny-Ålesund has been increasing
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Figure 5.6: Time series of season-averaged LW CRE estimated with neural
networks 6–9 for the period 1993–2018. The black dashed lines show linear
fits of the average output from the neural networks 8 and 9. The black
dotted lines show the 95th confident intervals for the fits derived by the
bootstrapping resampling method. The numbers in the upper right cor-
ners in each panel indicate slopes of the fit. The p-value of the two-sided
significance t-test is shown in brackets.

for the winter and autumn seasons over the last 25 years. At the same time, it
is likely that the LW cloud-induced surface warming has been decreasing for the
summer season.

The found trends in LW CRE could be caused by a change in a number of cloud
properties listed in Sec. 1.4. Since, as it is shown in Sec. 1.2, the cloud properties
at Ny-Ålesund might be influenced by the thermodynamic state of the atmosphere
and long-distance air transport, the changes in LW CRE may be associated with
the trends in the occurrence of the atmospheric anomalies discussed in Sec. 4.5. In
order to relate the retrieved LW CRE to normal and anomalous conditions, for each
radiosonde from 1993 to 2018, the IWV was calculated and the profile was classified
using the thresholds specified in Sec. 4.1. An average of 10-min LW CRE samples
from the neural networks 8 and 9 was calculated (CRE8+9). For samples with a
single output either from the neural network 8 or 9 this output is taken as a sample
of CRE8+9 in order to increase the availability of the LW CRE estimate. For each
radiosonde CRE8+9 was averaged over ±1 hour from the radiosonde launch time.

In order to check how the sampling around radiosonde launches influences CRE8+9,
season-averaged CRE8+9 using all samples and samples ±1 hour from the radiosonde
launch time were calculated. The results depicted in Fig. 5.7 show that the difference
due to the sampling is 1.8 ± 2.8 W m−2. The largest difference of 13 W m−2 was
found for winter 1996, when in addition to regular radiosondes launched at around
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Figure 5.7: Time series of season-averaged CRE8+9 calculated using all valid
samples (blue line), all valid samples within ±1 hour from all radiosonde
launches (red line), and all valid samples within ±1 hour from 11 UTC
radiosonde launches (yellow line).

11 and 23 UTC, 1 to 3 radiosondes on some days were launched. In the case only
11 UTC radiosondes are taken for the sampling, the difference in winter 1996 is
less than 5 W m−2. This indicates that the additional radiosondes were probably
launched within a measurement campaign focused on clear-sky conditions. Since
the large difference was only found for a few cases, all the radiosondes were used for
the following analysis (red line in Fig. 5.7).

As it was shown in Sec. 4.2, moist (dry) anomalies are related to higher (lower) cloud
occurrence, LWP, and IWP and, as a result, higher (lower) LW CRE with respect to
normal conditions. In order to understand the contribution of different conditions to
LW CRE, the season-averaged CRE8+9 found for normal and anomalous conditions
was weighted by the occurrence of the corresponding conditions (Fig. 4.8). The
results are shown in Fig. 5.8. As expected, a major part of LW CRE is defined by
normal conditions since their occurrence is the highest. Even though the occurrence
of moist anomalies is 7–11 times smaller than the occurrence of normal conditions,
the contribution of moist anomalies to LW CRE is about 20–30% of the contribution
of the normal conditions. The contribution of the dry anomalies to the absolute value
of the LW CRE is mostly below 10 W m−2. Nevertheless, this does not mean that
dry conditions are not important for LW CRE. The higher the occurrence of the dry
anomalies, the lower the occurrence of normal and/or moist conditions, and, in turn,
the lower the resulting LW CRE. Before the early 2000s, the contributions of moist
and dry conditions were about the same, which is possible when the occurrence of
the moist anomalies is much lower than the occurrence of dry anomalies. After 2005
the contribution of moist anomalies is higher for all seasons because the occurrence
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Figure 5.8: Time series of the seasonal CRE8+9 averaged for normal (green
solid line), moist (red solid line), and dry (blue solid line) cases multiplied
by the occurrence of the corresponding type of conditions. The shaded areas
correspond to the uncertainty estimated as ±σΣ weighted by the occurrence
of the corresponding type of conditions. The information on the condition
types is derived from radiosondes.

of moist anomalies tends to increase in time.

Trends in occurrences of different conditions at Ny-Ålesund may be related to trends
in LW CRE. For instance, the positive trends in the occurrence of moist anomalies
and the negative trends in the occurrence of dry anomalies in winter and autumn
found in Sec. 4.5 could explain the LW CRE trends in these seasons. Neverthe-
less, cloud properties typical for normal and anomalous conditions could have also
changed over 25 years. Therefore, season-averaged CRE8+9 for normal and anoma-
lous conditions need to be checked for trends. Figure 5.9 shows that in winter
and autumn there are no significant trends in season-averaged CRE8+9 for different
conditions. In spring, there is a significant trend of –5.3 W m−2 decade−1 for dry
conditions. In summer, the season-averaged CRE8+9 is likely (90% confidence level)
to have a trend of –2.7 W m−2 decade−1 under normal conditions. These results
show, that LW radiative properties of clouds for different conditions have not sig-
nificantly changed over the last 25 years except for dry conditions in spring and
normal condition in summer. Therefore, the largest trends in LW CRE observed in
winter and autumn are mostly defined by the changes in occurrence of the normal
and anomalous conditions. In spring, the negative trend in the LW CRE during
the dry conditions is counteracted by the increased occurrence of normal conditions,
having higher typical LW CRE and, thus, the resulting LW CRE in spring shows
no significant trend (Fig. 5.6). In summer the negative trend in LW CRE during
normal conditions agrees with the trend in LW CRE shown in Fig. 5.6, taking into
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Figure 5.9: Time series of seasonal CRE8+9 calculated for normal (green
solid line), moist (red solid line), and dry (blue solid line) conditions. The
dashed lines show linear fits. The colored numbers show trends with p-values
of the two-sided t-test given in brackets. The color of the text indicates the
type of conditions. The dotted lines correspond to the 95% confidence
intervals for the linear fits derived using the bootstrapping approach. The
information on the condition types is derived from radiosondes.

account that the occurrence of the normal conditions is relatively constant and is
about 75% (Fig. 4.8).

Since trends in LW CRE are mostly defined by the occurrence of normal and anoma-
lous conditions in winter and autumn, the season-averaged LW CRE can be param-
eterized as follows:

CRELW,w = (Fw)n(CRELW,w)n + (Fw)m(CRELW,w)m + (Fw)d(CRELW,w)d, (5.15)

CRELW,a = (Fa)n(CRELW,a)n + (Fa)m(CRELW,a)m + (Fa)d(CRELW,a)d, (5.16)

where w and a denote winter and autumn, respectively; (F )n, (F )m, and (F )d
are frequency of occurrence of normal, moist, and dry conditions, respectively;
(CRELW )n, (CRELW )m, and (CRELW )d are typical values of LW CRE for normal,
moist, and dry conditions. A comparison of the parametrization given in Eqs. 5.15-
5.16 with the season-averaged LW CRE using all available samples show a difference
of 1.1±4.4 W m−2 and the correlation of 0.69. A similar parameterization for sum-
mer gives 0 correlation because, as it was previously mentioned, the trend in LW
CRE in summer is defined by the trend of LW CRE for normal conditions.
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Table 5.7: Typical values of LW CRE for normal, moist, and dry conditions
for the parameterizations in Eqs. 5.15 and 5.16. The values are given in
[ W m−2].

Condition type Winter Autumn

Normal 40 48
Moist 74 71
Dry 18 21

5.4 Summary and conclusions

In this chapter a novel set of retrievals for the estimation of LW CRE at Ny-Ålesund
was developed. The retrievals are based on the neural network approach and use
ground-based observations in order to approximate LW CRE. A comparison of the
retrievals revealed that neural networks using only MWR and ceilometer observa-
tions as the input could not fully reproduce the variability of the LW CRE simulated
with RRTMG. The neural networks using surface radiation measurements in addi-
tion performed much better and yield near 0 W m−2 bias and a correlation of about
0.8 with respect to the LW CRE from RRTMG. The evaluation of the neural net-
works showed that the seasonal LW CRE calculated as an ensemble average has the
uncertainty in the order of 6 W m−2.

Two neural networks only require measurements from BSRN which are available
for about 25 years. Analysis of the LW CRE estimated with these neural networks
showed positive trends of 3.4 and 2.2 W m−2 decade−1 in winter and autumn, re-
spectively, with more than 95% confidence. In summer LW CRE exhibit a negative
trend of –1.8 W m−2 decade−1 with the confidence level of 94%. There were no
significant trends found in spring.

As expected, normal conditions are the major contributor to the LW CRE, since
their occurrence is the highest with respect to dry and moist anomalies. Even though
the occurrence of moist anomalies is typically a factor of 7–11 lower that the one of
normal conditions, the contribution of moist anomalies to LW CRE reaches 20-30%
of the contribution from normal conditions. In some seasons, e.g. winter 2010, spring
2004, and autumn 2016, the contribution of normal and moist conditions is almost
the same. Since dry conditions are mostly associated with clear-conditions their
contribution to the season-average LW CRE is defined by limiting the occurrence
of normal and moist conditions. For instance, a high occurrence of dry anomalies
leads to relatively low occurrence of normal and/or moist conditions, and, thus, the
LW CRE would be relatively low in this case.

The analysis of season-averaged LW CRE during different atmospheric conditions
over the last 25 years shows that there are no significant trends except for dry condi-
tions in spring and normal conditions in summer with –5.3 and –2.7 W m−2 decade−1

trends, respectively. The absence of trends indicates that radiative properties of
clouds during normal, moist, and dry anomalies have been the same, while the sig-
nificant trends found in summer and spring show that cloud properties have changed.

The largest trends in LW CRE found in winter and autumn are likely to be caused
by changes in occurrence of moist and dry conditions. The found negative trend
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in occurrence of dry anomalies in spring (see Fig. 4.8) is associated with increasing
occurrence of normal and moist conditions. This redistribution of the thermody-
namic conditions should in general increase the LW CRE, because cloud properties
are enhanced during moist and normal conditions at Ny-Ålesund. Nevertheless, it
was found that the estimated LW CRE shows no significant trend in spring. The
analysis of the dry anomalies in spring shows that LW CRE exhibits a significant
negative trend which compensates the expected increase in LW CRE.

The trend in summer is mostly caused by changes in LW CRE under normal con-
ditions. The analysis performed within this study cannot explain the nature of the
changes in cloud properties under normal conditions in summer and dry conditions
in spring and, therefore, this topic should be further investigated.

For winter and autumn, which are the seasons with the fastest surface temperature
growth rate at Ny-Ålesund (Maturilli et al., 2015), the seasonal LW CRE over the
last 25 years can be parameterized as a linear combination of the occurrences of
normal, moist, and dry conditions weighted by LW CRE typical for these conditions.
Taking into account, that in winter and autumn the contribution of SW CRE to the
net CRE is small, these parameterizations can be also used for the net CRE.

A potential application of the results obtained in this chapter is an evaluation of
the surface CRE estimated from models. Zygmuntowska et al. (2012) showed issues
in the evaluation of the ERA-Interim reanalysis model associated with uncertainties
in active and passive satellite observations in the Arctic area. Major difficulties are
related to low-level cloud observations from space. A number of studies, therefore,
evaluate CRE from the reanalysis models in the Arctic area based on observations
gathered at Barrow (Walsh et al., 2009) and during the SHEBA campaign (Engström
et al., 2014). The long-term estimate of LW CRE at Ny-Ålesund can be used for a
similar analysis.





Chapter 6

Summary and outlook

Clouds are one of the least understood atmospheric components affecting the cli-
mate and the water cycle in the Arctic region experiencing rapid warming during the
last decades. The exact role of clouds in the complex interactions between different
components of the Arctic environment is not clearly understood and a large effort is
put towards a better representation of cloud related effects in climate and numerical
weather prediction models. It is known that the Arctic climate is susceptible to
long-distance air transportation from the mid-latitudes. There is an evidence that
the periodical intrusions of relatively warm and moist air from the North Atlantic or
cold and dry air from the North pole area modulate the atmospheric state including
the amount of water vapor and cloud properties. A quantitative characterization of
the relations between the air transport patterns and cloud properties at the Arctic
stations has become a topic of recent studies (e.g. Gallagher et al., 2018). Improve-
ments and evaluations of modeled cloud-related processes require accurate long-term
observations of cloud microphysical and radiative properties.

Since more than few decades ago, ground-based remote instruments have shown
their value for investigations of Arctic clouds. A set of instruments including but
not limited to a cloud radar, a lidar, and a microwave radiometer can be used for
detection and profiling of clouds. Even though, ground-based remote sensors do
not provide a global or regional view on clouds, they deliver a unique continuous
dataset with high temporal and spatial resolution, which can be obtained by no
other means. A combined analysis of observations for these instruments allows for
a classification and a quantitative characterization of cloud properties. Profiles of
cloud properties obtained with state-of-the-art retrievals can be used as an input for
modern radiative transfer models in order to estimate the contribution of clouds in
the Arctic warming, which is currently one of the hot topics in atmospheric research.

Until recently only few Arctic sites mostly located in the western hemisphere were
equipped with sets of cloud radars, lidars, and microwave radiometers and provided
a continuous multi-year characterization of macrophysical, microphyscal, and radia-
tive properties of clouds. In June 2016 the French-German Arctic research station
AWIPEV situated in Ny-Ålesund, Norway, was complemented with a W-band cloud
radar by the University of Cologne within the (AC)3 project and, thus, the AWIPEW
station became one of the sites capable of state-of-the-art cloud observations in the
Arctic. Ny-Ålesund is located in the Arctic area with the fastest surface warming
rate, which attracts the focus of many climate research groups. The climate at Ny-

99



100 6. Summary and outlook

Ålesund, and in the Svalbard area in general is complex and affected by multiple
factors, among which are ocean-atmosphere-land heat interaction, advection from
mid-latitudes, and orographic effects.

This study analyzes statistics of clouds from two and a half year of observations
at Ny-Ålesund. In the first part of this thesis, a detailed range resolved informa-
tion about cloud particles was obtained based on a categorization of atmospheric
scatterers from the widely used Cloudnet processing algorithm and state-of-the-art
microphysical retrievals. Addressing Question 1 from Sec. 1.7 (What characteristics
do clouds have at Ny-Ålesund? ), based on cloud observations from June 2016 to
July 2017 the total occurrence of clouds was found to be ∼81%. Most of the liquid
and ice hydrometeors occur in the lowest 2 km. Single layer clouds occur 36% of the
time with 21, 9, and 6% of mixed-phase, ice, and liquid clouds, respectively. About
45% of profiles contained several cloud layers, but due to limitations in multi layer
cloud observations a reliable classification and characterization of these profiles is
mostly not possible. Single layer mixed-phase and liquid clouds have median LWP
values of 17 and 37 g m−2, respectively. The low LWP values are consistent with
observations at other Arctic sites. Liquid phase was detected at temperatures down
to –40◦C with the highest occurrence at cloud top temperatures from –15 to 0◦C.
Median values of IWP in ice-containing clouds are about 15–20 g m−2.

The derived cloud properties were related to in-cloud thermodynamic properties and
compared to those estimated by the numerical weather prediction model ICON for
Ny-Ålesund. Answering Question 2 (How good can a numerical weather prediction
model represent cloud properties at Ny-Ålesund? ), the comparison shows large dif-
ferences in phase partitioning at different ambient temperatures between the NWP
ICON model and observations, especially for mixed-phase clouds. In the observa-
tions, most of the liquid occurs at temperatures between –25 to 10◦C, while in the
NWP ICON model liquid phase is concentrated in the range from –10 to 5◦C. This
difference results in a large difference between observed and modeled single-layer ice
and mixed-phase clouds. Due to the lower occurrence of liquid phase at tempera-
tures below –5◦C modeled clouds are often erroneously classified as pure ice. Thus,
the model overestimates the occurrence of single layer ice clouds and underestimates
the occurrence of mixed-phase clouds. An improvement in modeling of mixed-phase
clouds requires better understanding of their life cycle, which is defined by a large
number of processes including heterogeneous ice formation, air dynamics, and phase
transitions. In order to characterize these processes more accurately, precise profiles
of aerosols and in-cloud properties such as relative humidity, up- and downdrafts are
needed. Profiling of the parameters may be based on the advanced instrumentation
such as multiwavelength and Doppler lidars, and differential absorption radars.

It is well known, that the climate in the Svalbard region where Ny-Ålesund is located
is strongly influenced by long-range air transport. Relatively warm and moist air
typically comes from the North Atlantic area, while dry and cold air circulates in the
Arctic region. These air masses are often associated with anomalous atmospheric
conditions at Ny-Ålesund and are related to distinct macro and microphysical prop-
erties of clouds and their radiative effect. The classification of atmospheric condi-
tions was based on the 8-year reference dataset of IWV from MWR. Periods when
IWV exceeded the 90th percentile for a certain season were considered as moist,
while cases with IWV below the 10th percentile were classified as dry. A large part
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of moist(dry) anomalies were accompanied by an increase(decrease) in the atmo-
spheric temperature. The analysis of the 6-day backward FLEXTRA trajectories
agrees well with the previous studies and shows that most of the moist anomalies are
related to air masses coming from the North Atlantic. Dry anomalies were mostly
associated with the air from the North. In order to quantitatively estimate an impact
of the anomalous conditions on clouds at Ny-Ålesund, a number of cloud properties
were related to normal, moist, and dry conditions. Addressing Question 3 (How do
moist and dry conditions influence cloud properties including occurrence, cloud types,
IWP, and LWP at Ny-Ålesund? ), for the period from June 2016 to October 2018
anomalous water vapor conditions were found to strongly affect macrophysical and
microphysical properties of clouds. Dry anomalies are related to about 30% less
cloud occurrence with respect to normal conditions. In contrast, during moist con-
ditions the cloud occurrence typically reaches 90–99%. Excess and shortage in water
vapor drastically affects LWP and IWP. In winter and spring, moist conditions are
associated with a factor of 2–3 higher values in LWP and IWP relative to normal
conditions, while dry cases lead to a reduction of these parameters by an order of
magnitude. In summer, IWP and LWP shows similar relations to the anomalies but
the magnitude of the changes is smaller than in winter and spring. In autumn, both
moist and dry anomalies lead to an increase in LWP and IWP. In general, directions
of the changes in macro- and microphysical cloud properties are as expected. Clouds
are likely to form in profiles with relatively high IWV. Nevertheless, the magnitude
of the changes is hard to explain from IWV alone. In order to better understand
the cloud response to the water vapor anomalies, the cloud properties should be
further related to vertical profiles of humidity. The humidity profile estimates can
be improved by an analysis of passive observations at 183, 225, and 340 GHz from
the Low HUMidity PROfiler (LHUMPRO), which was operated at the AWIPEV
station for a limited time period at Ny-Ålesund within the (AC)3 project.

Within the (AC)3 project, microphysical properties of clouds retrieved within this
study were used by Ebell et al. (2020) in order to run a radiative transfer model and
to estimate radiative properties of clouds. Within this thesis CRE, which is one of
the outputs of the model, was related to different conditions at Ny-Ålesund. Answer-
ing Question 4 (How do changes in cloud properties due to moist and dry conditions
influence CRE at Ny-Ålesund? ), the distinct cloud properties during dry and moist
conditions at Ny-Ålesund lead to noticeable differences in CRE. Dry anomalies are
associated with lower cloud related surface SW cooling relative to normal condi-
tions. In spring and summer the changes are 19 and 67 W m−2, respectively. These
changes result from lower cloud occurrence and LWP typical for dry conditions. In
contrast, enhanced cloud properties during moist conditions are related to the SW
cloud related cooling of the surface increased by 25 W m−2 relative to normal cases.
On average, LW CRE was found to be lower by 11–35 W m−2 during dry anomalies,
while the moist conditions enhanced LW CRE by about 30 W m−2 with respect to
normal conditions. In seasons when the sun is low the net CRE is dominated by
LW CRE. During these periods moist anomalies are associated with enhanced cloud
properties and, therefore, cause more cloud related surface warming at Ny-Ålesund.
In contrast, dry anomalies are typically related to much lower cloud fraction, and,
thus reduce the surface warming due to clouds with respect to normal conditions.
In summer, SW CRE becomes dominant and moist conditions cause stronger sur-
face cooling relative to normal cases, while dry conditions tend to reduce the cloud
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related surface cooling.

Radiosondes routinely launched at Ny-Ålesund since 1993 allow for answering Ques-
tion 5 (Do long-term observations of the atmospheric state at Ny-Ålesund show sig-
nificant trends in the occurrence of moist and dry conditions over the last decades? ).
Moist anomalies show significant positive trends varying for different seasons from
2.8 to 6.4% decade−1. In contrast, the occurrence of dry anomalies has been de-
clining at rates from −12.9 to −4% decade−1. Since the anomalies are related to
certain patterns in cloud properties and CRE, the long-term trends in the anomaly
occurrences may have lead to stronger cloud related surface cooling in summer and
warming in other seasons.

The analyzed period from June 2016 to October 2018 is relatively short with re-
spect to the vast observations having been performed at Ny-Ålesund for more than
two decades. The surface radiation measurements having been run since August
1992 provide a long-term dataset which reveals trends in longwave and shortwave
radiation. Nevertheless, this dataset does not provide an information on the cloud
contribution to these trends. A number of recent studies have shown that the neural
networks can be used in order to estimate LW CRE. In this thesis this approach is
used to extend the LW CRE estimated by the radiative transfer model for the ana-
lyzed period to 25 years of surface radiation observations at Ny-Ålesund. The cloud
observations taken within the (AC)3 project play a key role for this extension. LW
CRE estimated by the radiative transfer model is used for its approximation from a
number of variables having been measured for long time, such as LW down-welling
and net radiation, 2 m temperature and relative humidity etc. This approximation
is made by means of neural networks. In total 9 neural networks estimating LW
CRE and using different sets of input parameters were trained. Two neural net-
works use data from MWR only as a input, another two require surface LW fluxes,
temperature, and relative humidity, while the remaining neural networks use obser-
vations from MWR, ceilometer, and BSRN as the input. All the neural networks
were applied to the 8-year period when observations from all instruments were avail-
able. The resulting ensemble of LW CRE was used to estimate the uncertainty of the
neural network approach. The uncertainty of the season averaged LW CRE from the
neural networks is estimated to be in the order of 6 W m−2. The two neural networks
that use BSRN measurements as the input were applied to the 25-year-long dataset
for the estimation of the long-term LW CRE at Ny-Ålesund. Answering Question 6
(If there are trends in the occurrence of moist and dry conditions at Ny-Ålesund,
what is their impact on LW CRE? ), the analysis of LW CRE estimated with neural
networks shows significant positive trends of 3.4 and 2.2 W m−2 decade−1 in winter
and autumn, respectively. In summer, a negative trend of −1.8 W m−2 decade−1

was found, while no significant trends were found for the spring season. The analysis
of LW CRE during different atmospheric conditions over the last 25 years revealed
no significant trends except for dry conditions in spring and normal conditions in
summer. Therefore, it is concluded that the trends in winter and autumn mainly
result from changes in occurrence of normal and anomalous conditions, while the
LW CRE trend in summer is mostly caused by changes in cloud properties during
normal conditions. For winter and autumn seasons, which exhibit the fastest sur-
face temperature changes at Ny-Ålesund, a parameterization of season-averaged LW
CRE is proposed. This parameterization requires occurrences of normal, moist, and
dry conditions, which can be obtained from radiosondes, MWR, or models. Since
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the net CRE in winter and autumn are mostly defined by LW CRE, the parame-
terization can be used to characterize the cloud induced surface warming in these
seasons at Ny-Ålesund.

The characterization of macro- and microphysical properties of clouds given in this
study covers the time period from June 2016 to October 2018. In order to get more
robust statistics and to analyze year-to-year cloud variability, long-term observa-
tions at Ny-Ålesund are required. Currently, the continuous atmospheric profiling is
ongoing within the (AC)3 project. Taking into account that Arctic clouds are char-
acterized by low values of LWP, which are often within the accuracy of the MWR
used in this study, future focus could be on improvement of LWP retrievals. These
improvements can be based on considering passive observations at higher frequen-
cies for the retrieval. For instance, the used cloud radar has an embedded passive
channel operating at 89 GHz. This channel is more sensitive to liquid water in a
column an can potentially improve the retrieval performance (Löhnert and Crewell,
2003). Marke et al. (2016) showed that additional passive infrared measurements
also improve LWP estimate in comparison to the HATPRO retrieval, especially for
clouds with low values of LWP. Such observations are available since summer 2019
at AWIPEV.

In order to provide more information on ice and mixed-phase clouds, which is valu-
able for improving the parameterization of these types of clouds in the existing
numerical weather prediction models, a classification of ice particles is beneficial.
Advanced ice classification methods require polarimetric (Myagkov et al., 2016) and
multi-frequency (Kneifel et al., 2015) cloud radar observations. Therefore, the obser-
vations at the AWIPEV station are planned to be complemented with a polarimetric
scanning Ka-band radar. In addition, an analysis of cloud radar Doppler information
from cloud radars may potentially improve the phase partitioning in mixed-phase
clouds (Luke et al., 2010) and retrievals of ice particle’s size (Matrosov, 2011).

In this thesis, only integrated values of the water vapor in a column were analyzed.
As a next step vertical distributions of the humidity and their relations to cloud
properties should be analyzed, because the amount of water vapor is one of the
key factors defining formation and development of cloud particles. In addition, the
amount of water vapor and properties of clouds could be also related to a presence
and strength of up and down-drafts in the atmosphere.
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Figure A.1: Distributions of input parameters calculated from all available
measurements (red boxplots) and those used for the trainings (blue box-
plots). The input parameters for the trainings are simulated (see Sec. 5.1.1),
except CBH (a), temperature (d) and relative humidity (e) at 2 m. The
training period is from June 2016 to October 2018. Panels (f)-(s) show the
distributions for TBs in [K]. The red horizontal bars inside the boxplots
denote median values, the bottom and top of the edges of the boxes corre-
spond to the 25th and 75th percentiles, respectively. The upper and lower
whiskers indicate the 95th and 5th percentiles, respectively.
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Figure B.1: Distributions of cloud base height (a), longwave net flux (b),
longwave downwelling flux (c), temperature (d), and relative humidity (e)
at 2 m averaged over winter seasons for all samples (red boxplots) and
according to the MWR data availability (blue boxes). The red horizontal
bars inside the boxplots denote median values. The bottom and top edges of
the boxes correspond to 25th and 75th percentiles, respectively. The upper
and lower whiskers indicate the 95th and 5th percentiles, respectively.
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Figure B.2: The same as Fig. B.1 but for spring periods.
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110

0

2

4

6

-150
-100

-50
0

100

200

300

400

-20
-10

0
10

50

100

(e) Relative humidity 2 m, [%]

(d) Temperature 2 m, [Co]

(c) LW downwelling flux, [W m-2]

(b) LW net flux, [W m-2]

(a) Cloud base height, [km]

2011

Year

2012 2013 2014 2015 2016 2017 2018

sampled according to MWR availability all samples

Figure B.4: The same as Fig. B.1 but for autumn periods.



List of acronyms

ACLOUD Arctic CLoud Observations Using airborne measure-
ments during polar Day

ASCOS Arctic Summer Cloud Ocean Study
AWIPEV Alfred Wegener Institute Helmholtz Centre for Polar

and Marine Research and the French Polar Institute
Paul Emile Victor

(AC)3 Arctic Amplification: Climate Relevant Atmospheric
and Surface Processes, and Feedback Mechanisms

BSRN Baseline Surface Radiation Network
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations
CBH Cloud Base Height
CCN Cloud Condensation Nuclei
CERES Clouds and Earth’s Radiant Energy System
CMIP5 Coupled Model Intercomparison Project Phase 5
CRE Cloud radiative effect
CWP Cloud water path
DARDAR liDAR-raDAR algorithm
DISORT Discrete Ordinate Radiative Transfer
FMCW Frequency Modulated Continuous Wave
FOC Frequency of OCcurrence
EMCWF European Centre for Medium Range Weather Forcast
EPOS Earth Parameter and Orbit System Software (Ge et al.,

2006)
GDAS Global Data Assimilation System
GPS Global Positioning System
GRUAN Global Climate Observing System (GCOS) Reference

Upper-Air Network
HATPRO Humidity and Temperature profiler
JOYRAD-94 94 GHz cloud radar previously installed in JOYCE

(Jülich ObservatorY for Cloud Evolution)
ICON ICOsahedral Non-hydrostatic model (Zängl et al., 2015)
IN Ice Nuclei
IWC Ice Water Content
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IWP Ice Water Path
IWV Integrated Water Vapor
LHUMPRO Low HUMidity PROfiler
LMDZ5B Atmospheric general circulation model of Laboratoire

de Météorologie Dynamique (LMD), model with Zoom
capacity

LW Longwave
LWC Liquid Water Content
LWF Liquid Water Fraction
LWP Liquid Water Path
MC Multi-layer Clouds
MIRAC-A Microwave Radar of Arctic Clouds Active remote sens-

ing component
MODIS MODerate-resolution Imaging Spectroradiometer
M-PACE Mixed-Phase Arctic Cloud Experiment
MWR Microwave Radiometer
NCEP National Centers for Environmental Prediction
NWP Numerical Weather Prediction model
PASCAL Physical feedback of Arctic PBL, Sea ice, Cloud And

AerosoL
PIR Precision Infrared Radiometers
PSD Particle Size Distribution
RMSE Root-Mean-Squared Error
RPG Radiometer Physics GmbH
RTM Radiative Transfer Model
RRTMG Rapid Radiative Transfer Model
SBDART Santa Barbara Discrete Ordinate Radiative Transfer At-

mospheric Radiative Transfer
SC Single-layer Clouds
SHEBA Surface Heat Budget of the Arctic Ocean
SIC Single-layer Ice Clouds
SLC Single-layer Liquid Clouds
SMC Single-layer Mixed-phase Clouds
SW Shortwave
SZA Solar Zenith Angle
TB Brightness Temperature
TBPC Brightness Temperature on 3 Principle Components
TOA Top Of Atmosphere



List of symbols

A Surface area of an ice particle
b1, b2 Vectors with biases of for the hidden and output layers

of the neural network
C effective temperature/humidity lapse rate coefficient
Ca radar constant related to radar specification
CTB covariance matrix
Ci,j elements of the covariance matrix with i and j indexes

denote the different MWR channels
CO2 carbon dioxide
CRE surface net cloud radiative effect
CRE8+9 surface longwave cloud radiative effect of averaged out-

puts of neural networks 8 and 9
CRELW surface longwave cloud radiative effect
CRELW,a, CRELW,w season-averaged surface longwave cloud radiative effect

for autumn and winter
(CRELW )d,
(CRELW )m,
(CRELW )n

typical values of surface longwave cloud radiative effect
for dry, moist and normal conditions

CRESW surface shortwave cloud radiative effect
D particle’s size
ew water vapor pressure
Ed sum of squared errors
Ew sum of squared elements of the state vector
F cost function
(F )d, (F )m, (F )n frequency of occurrence of dry, moist and normal condi-

tions
F↓SW ,F↑SW surface downwelling / upwelling shortwave radiative

fluxes
F↓LW ,F↑LW surface downwelling / upwelling longwave radiative

fluxes
F↓clr,LW, F↑clr,LW clear sky downwelling / upwelling longwave radiative

flux
F↓clr,SW, F↑clr,SW clear sky downwelling / upwelling shortwave radiative

flux
f1, f2 transfer functions for the hidden and output layers of

the neural network
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114 List of symbols

fl(x) transfer function for the output layer of the neural net-
work

fts(x) transfer function for the hidden layer of the neural net-
work

J Jacobian matrix
H Hessian matrix
h altitude
hl1,hl2 altitudes of lower / upper boundaries of liquid contain-

ing cloud
hi1,hil2 altitudes of lower / upper boundaries of ice containing

cloud
D diagonal matrix
+IWV, -IWV periods with increased / decreased integrated water va-

por
κabs combined liquid and ice phase longwave cloud absorp-

tion coefficient
κl,κi liquid water / ice absorption coefficients
|Kw| dielectric factor of liquid water
LWF liquid water fraction
n size of the state vector
N number of input parameters used for the neural network

training
Ni(D), Nl(D) particle size distribution of ice / liquid water particles
nCRESW normalized shortwave cloud radiative effect at the sur-

face
p Vector of input variables of neural network
pk,nrm k-th input variable of the neural network after the nor-

malization
pk k-th input variable of the neural network before the nor-

malization
pk,max maximum value of the k-th input variable of the neural

network
pk,min minimum value of the k-th input variable of the neural

network
P rotation operator
p normalized input variables for neural network training
PT transpose of matrix P
Pr returned power measured by the radars
ρi,ρl density of ice / liquid water
ρw water density
Q surface net radiation budget
QLW all-sky surface net longwave radiation budget
QSW all-sky surface net shortwave radiation budget
QLWclr clear sky surface net longwave radiation budget
QSWclr clear sky surface net shortwave radiation budget
Qi absorption efficiency of an ice particle
r range of the radar to the scatters
reff effective radius
reff,ice,reff,liq effective radius of ice / liquid water particles
RHi, RHw relative humidity with respect to ice / water
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S0 Solar irradiance
σ Stefan–Boltzmann constant
σi Volume absorption coefficient
σm modeling uncertainty of the surface longwave net flux
σsmp uncertainty of the surface longwave net flux due to sam-

pling aspect
σΣ resulting uncertainty of the longwave cloud radiative ef-

fect retrieved from neural network
σx logarithmic spread of the cloud droplet distribution
T air temperature
Ta, Tc effective temperatures of the above cloud atmosphere /

the cloud
Tamb ambient air temperature
tbs, tcs broadband shortwave atmospheric / cloud transmit-

tances
tbl broadband longwave transmittance of the below cloud

atmosphere
tcl cloud longwave transmittance
+T, -T periods with increased / decreased temperature at

1450 m
+T +IWV, -T -IWV periods with both increased / decreased integrated water

vapor and temperature
U identity matrix
V volume of water in a particle
vq q-th element in the error vector
W1, W2 weighting matrices for the hidden and output layers of

the neural network
x0 state vector formed by all elements of the weight matri-

ces and bias vectors of neural network
xp p-th element in the state vector
x1 new state vector
y vector of output variables of the neural network
Z radar reflectivity
z solar zenith angle
αext visible extinction coefficient
αs broadband surface albedo
α and β parameters controlling the complexity of the neural net-

work used 5.9 for the Levenberg-Marquardt minimiza-
tion algorithm

βdiff diffusivity factor
∆z range resolution
∆CRESW,∆nCRESW relative changes of CRE / normalized CRE in anomalous

conditions with respect to normal conditions
∆αs relative changes of surface albedo in anomalous condi-

tions with respect to normal conditions
γ number of effective parameters
εcl and εs broadband emissivities of cloud / surface
µ coefficient used in Eq.5.11 for the Levenberg-Marquardt

minimization algorithm to adjust the number of itera-
tions
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