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0. Summary 

The human brain is able to infer the probability of future events by combining 

information of past observations with current sensory input. Naturally, we are surrounded 

by more stimuli than we can pay attention to, so selection of relevant input is crucial. The 

present thesis aimed at identifying common and distinct neural correlates engaged in 

predictive processing in spatial attention (selection of attended locations) and motor 

intention (selection of prepared motor responses). Secondly, age-related influences on 

probabilistic inference in spatial-attention, feature-based attention (selection of attended 

color) and motor intention, and the impact of task difficulty were considered. 

Orienting attention during goal-directed behavior can be supported by visual cues, 

whereas reorienting to unexpected events following misguiding information is linked to 

behavioral costs and updating of predictions. These processes can be investigated with a 

cueing paradigm in which differences in reaction time (RT) between valid and invalidly 

cued trials increase with higher cue validity (%CV) (Posner, 1980). Bayesian models can 

describe the experience-dependent learning effects of inferring %CV, following novel 

events (Vossel et al., 2014c; Vossel, Mathys, Stephan & Friston, 2015).  

The principle aim of the first experiment was to identify and compare the neural 

correlates involved in inferring probabilities in the spatial attentional and motor intentional 

domain. Cues indicated either the possible location or prepared the motor response 

associated with the target. Instead of a fixed probability context, participants were 

exposed to a volatile environment, in which the validity of the cue information changed 

unpredictably over time. Combining functional magnetic resonance imaging (fMRI) data 

with behavioral estimates derived from a Bayesian learning model (Mathys, Daunizeau, 

Friston & Stephan, 2011) unveiled domain-specific predictability-dependent responses 

within the right temporoparietal junction (TPJ) for spatial attention and the left angular 

gyrus (ANG) and anterior cingulate (ACC) in the motor intention task. The blood oxygen 

level dependent (BOLD) amplitude particularly increased in accord with violations of cue 

predictability in high cue validity contexts (i.e. when invalid trials were least expected). 

Valid trials however, induced no (TPJ and ANG) or decreased modulation (ACC). A further 

aim was to examine possible commonalities in the neural signatures of predictability-

dependent processing. Connectivity analysis uncovered common coupling of all three 

seed regions involved in predictability-dependent processing with the right anterior 

hippocampus.  
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Since cognitive functions undergo substantial changes in healthy ageing, a second 

behavioral study was conducted to test whether age differentially influences probabilistic 

inference in different attentional subsystems, and how task difficulty impacts on learning 

performance. Thus, following up on the first experiment, similar tasks and the same 

computational model was used to assess updating behavior in healthy aging. Older and 

younger adults performed two separate experiments with different difficulty levels. Each 

experiment included three versions of a cueing task, entailing predictive spatial- (i.e. 

location), feature- (i.e. color of target) and motor intention cues (i.e. prepare response). 

Results of the easier version demonstrated a preserved ability of older adults to generate 

predictions and profit from all cue types. Interestingly, increased task demand uncovered 

a reduced ability to use motor intention cues to update predictions in older compared to 

younger adults. 

In conclusion, the results provide evidence for a segregated functional anatomy of 

probabilistic inference in spatial attention and motor intention. Nonetheless a common 

connectivity profile with the hippocampus also points at commonalities. Finally age seems 

to differentially impact the efficiency of learning behavior in the motor intention system, 

supporting the notion of independence of the attentional- and intentional subsystems.
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1. General introduction 

1.1 Attention in the human brain 

As you are reading these lines, you are using it, that marvelous cognitive ability called 

'attention'. It can be voluntarily directed to what you want to concentrate on, while you are 

surrounded by a potpourri of sensory stimuli and perform other cognitive processes: 

Although cars are passing outside your office, the fan is making a buzzing sound, a distant 

memory of an old friend pops up, you still manage to somehow 'tune out' the irrelevant 

and use it to highlight the task at hand.  

In cognitive psychology, the term selective attention describes the process of 

selecting what is relevant, while irrelevant sensory information or thoughts are canceled 

out (Gazzaniga, Ivry & Mangun, 2009). It enables an organism to prioritize specific stimuli 

either by focusing on e.g. specific objects, stimulus features or regions of space (focused 

attention) or by dividing attentional resources to multiple stimuli (divided attention) 

(Corbetta, Miezin, Dobmeyer, Shulmann, & Petersen, 1991). Accordingly, perception is 

not only made up of physical input reaching our sensory channels, but is also carved by 

internal factors and processes. Two basal operations are necessary to select relevant 

information described as top-down (i.e. endogenous) and bottom-up (i.e. exogenous) 

attention. Whereas top-down processes are goal-driven e.g. attending a stoplight to 

prepare to accelerate the car, bottom-up allocation of attention is driven by sensory input 

e.g. a siren of a passing ambulance suddenly draws our attention (Shomstein, 2012). 

Relevant information is assumed to be continuously favored through interplay of bottom-

up stimulus features and top-down attention modulation. This multi-stage selection 

process combining sensory information and attention is proposed to result in an integrated 

priority map for spatial events (Colby & Goldberg, 1999; Treue, 2003). Originally, a 

partition of the intraparietal sulcus (IPS) in monkeys, known as lateral intraparietal area 

(LIP) has been related to visual attention (Colby & Goldberg, 1999) and intention to 

perform saccades (Anderson & Buneo, 2002). With regard to these results, LIP has been 

considered a candidate area for a priority map. Therefore, LIP contains a map of the 

visual world and neural activity towards objects or locations is interpreted to correlate with 

behavioral relevance. In other words, orienting related activity is higher, with high priority 

of the given area and vice versa (Bisley & Goldberg, 2010). 

Additionally, prior beliefs of relevant upcoming sensory information can improve 

detection and accelerate response. This entails internal processes that are able to build 
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expectancies about future events. Spatial cues have been used to support selective 

attention in predicting probable target locations on a trial-to-trial basis. Moreover, cueing 

tasks can induce updating of the probability that a cue will be valid (Posner, 1980). In turn, 

when the cue carries false information (invalid cue), prior beliefs are violated and RTs 

increase. The difference in RTs between valid and invalid cues (invalid – valid) is termed 

validity effect (further information on the Posner task is provided in 1.1.2). Saliency of a 

stimulus in this case is determined by how much it deviates from previous expectation. 

Therefore, whenever a violation of expectation takes place, the brain integrates the new 

information to correct prior probabilities (Summerfield & de Lange, 2014). Trail-by-trial or 

experience-dependent learning follows Bayesian principles and can be explained by 

computational models, which will be more thoroughly discussed in 2.1.  

Although most studies focus on spatial attention, our surroundings can contain 

stimuli that have a certain feature such as color or contain information, which trigger 

preparation of an adequate response (i.e. motor intention). The following example should 

give an impression of how expectation about an upcoming response is built, based on 

different visual attributes overlapping in real-life situations: Imagine a stoplight, seeing the 

red light one would prepare to push the brakes of the car. This simple example contains 

the red color of the light as the feature cue, the topmost position in the vertically arranged 

stoplight as spatial information, and knowledge about what action needs to be planned, as 

motor intention. Expectancies can be formed, not only for perceptual events, but also for 

motor responses (Rushworth, Ellison & Walsh, 2001a). Interestingly, activity related to 

motor intention was found exclusively in parietal areas of the left hemisphere, even though 

participants responded with their left hand. Spatial- and feature based attention was 

investigated in neuroimaging studies, which hint at a close relationship, but also distinct 

mechanisms (Egner et al., 2008; Greenberg, Esterman, Wilson, Serences & Yantis, 

2010).  

It is indisputable that visual attention contributes to distinguishing task-relevant 

from irrelevant information to support behavioral goals. Prior beliefs about stimulus 

characteristics aid to speed up perception and response. However, questions remain 

regarding the neural correlates of updating expectancies in the different attentional and 

intentional domains. The following sections will provide more detailed information about 

the various domains as well as discuss attentional functioning in relation to aging.    
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1.1.2 Spatial attention 

In order to detect what one is looking for, it is helpful to know where to look. Spatial 

attention has been extensively investigated over the past decades and seems to be 

innately coupled to saccade preparation (Doré-Mazars, Pouget & Beauvillain, 2004). 

Primate studies using single-cell recordings demonstrated that voluntarily directing 

attention changes the firing rate of cells in the visual cortex. This effect is even more 

pronounced when: the receptive fields lie within the focus of attention shift and the 

stimulus characteristics match the cell´s preference (for a review see Treue, 2001). This 

further supports the notion that attention is not purely stimulus driven, but also modulated 

by top-down attentional influence. This section will outline current theories on spatial 

attention, how it can be quantified and which brain regions are involved.  

In the domain of visuospatial processing, two metaphors have been used to 

describe attentional selection. The 'spotlight theory' theory claims that attention resembles 

a flashlight, which illuminates a clear focal point in which the efficiency of stimulus 

detection is enhanced and which can operate covertly independent of eye movements 

(Posner, Snyder & Davidson, 1980). Thus, even if participants are asked to fixate a given 

location, attentional selection can occur independently towards different locations. An 

expansion of this model suggests that orienting attention has the ability to increase and 

decrease the size of the focus, similar to a 'zoom lens' (Eriksen & James, 1986). A larger 

distribution of attentional focus thus results in slower processing, since attention is a 

limited resource. Finally, the 'premotor theory' closely links spatial attention to the 

activation of sensory motor circuits controlling action preparation. Attention shifts are 

viewed as a precondition of saccade preparation and enhance discrimination performance 

at the attended location (Deubel, 2008). This allocation of attentional resources is not 

exclusive for eye movements, but has also been demonstrated for manual responses 

(Jonikaitis & Deubel, 2011). In fact when motor plans are made for manual as well as eye 

movements, attention is allocated in parallel but separate processes. According to the 

theory, RT costs following falsely cued locations are ascribed to readjustment of premotor 

preparation (Bédard, Massioui, Pillon & Nandrino, 1993; Rizzolatti, Riggio, Dascola & 

Umiltá, 1987).  

Taken together, orienting attention optimizes the sensitivity and encoding of 

information in a region of interest. Reorienting attention to a different location is necessary 

when the sensory event unexpectedly occurs outside the current focus of attention. 

Experiments applying cueing paradigms are especially suited to investigate orienting and 
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reorienting processes. Posner (1980), in his seminal work, introduced a simple location-

cueing paradigm (see figure 1). 

	  
(adapted from Posner, 1980) 

Figure 1. Posner task: schematic representation of the trial organization for valid 
and invalid cue-target conditions. The cueing conditions contain an arrow pointing 
towards the position of the upcoming target in 80% of the trials (valid) or towards 
the opposite position of target occurrence in 20% (invalid). 

In the experiment, spatial cues either correctly guide attention to the actual target 

location (i.e. valid) or are misinforming (i.e. invalid), which leads to reorientation. 

Participants were instructed to respond to the targets as fast as possible upon detection 

by pressing a button. More valid cues (80% of trials) than invalid cues (20% of trials) were 

presented and results showed a benefit in reaction time (RT) towards targets appearing at 

the expected location, in relation to invalidly cued targets. This difference in RT is known 

as 'validity effect' (see figure 2). It is a result of additional behavioral operations following 

invalid cues namely, disengaging attention, shifting attention to the uncued space of target 

occurrence and re-engaging attention (Posner, 1980). Also, the magnitude of the validity 

effect varies depending on the validity context. Hence, highly valid contexts (i.e. a high 

proportion of valid as compared to invalid trials) result in larger validity effects (Vossel, 

Thiel & Fink, 2006).  

Covert orienting of attention and the facilitating effect of informative cues in RT 

tasks is not unique to the visual modality. Validity effects have been reported for the 

auditory domain as well and are believed to be universal across sensory modalities 

(Bédard, Massioui, Pillon & Nandrino, 1993).  
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Figure 2. Illustration of the validity effect (fictitious data). Attention needs to be 
reoriented after invalid cues, resulting in increased RTs. The difference between 
RTs following invalidly and validly cued targets is termed 'validity effect'. 

Today, flexible attentional control – orienting to an expected location and 

reorienting when necessary – is believed to be mediated by an interacting frontoparietal 

network, defined by Corbetta and Shulman (2002). Neuroimaging revealed a functional 

anatomical segregation of a 'dorsal' and 'ventral' attention network. The dorsal network 

engages in goal-directed behavior and is bilaterally distributed within the IPS and frontal 

eye fields (FEF). It is suggested to govern spatial priority maintenance for covert allocation 

of attention (e.g. to a cued location). Topographic maps of the visual space have been 

found within the IPS (Silver, Ress & Heeger, 2005) as well as the FEF (Kastner, et al., 

2007). In comparison, the ventral system is more prominent in the right hemisphere and 

reacts upon unexpected but relevant events (e.g. target appearance at falsely cued 

location). Associated neural regions are the ventral frontal cortex (VFC) and the 

temporoparietal junction (TPJ) (see figure 3). It is believed to act as a 'circuit breaker' of 

continuous selection in the dorsal network.  

Although TPJ activity has been reported in both hemispheres following salient 

changes in sensory environment, right TPJ exerts the strongest activation. This activation 

of rTPJ was found across multiple modalities in the detection of salient stimuli (Downar, 

Crawley, Mikulis & Davis, 2000). Extending the results, a neuroimaging study compared 

BOLD signals following endogenous versus exogenous shifts of spatial attention. rTPJ 

was only significantly modulated during task-relevant reorienting (i.e. targets at 

unattended locations), but not after salient (i.e. red color singleton) but irrelevant stimuli 
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(Kincade, Astafiev, Shulman & Corbetta, 2005). Taken together, within the context of a 

task, behavioral relevance seems crucial for TPJ modulation.  

	  

(adapted from Corbetta & Shulman, 2002; Vossel, Geng & Fink, 2014b) 

Figure 3. Illustration of functional anatomy of selective attention as proposed by 
Corbetta and Shulman (2002).  

Valuable information about the neuroanatomy of spatial behavior can also be 

drawn from lesion models. For instance, patients suffering from hemispatial neglect show 

severe deficits in attending and responding to stimuli in the contralesional space. This 

syndrome mostly occurs as a result of a vascular stroke and symptoms are generally 

more persistent and severe after right hemisphere damage (Halligan, Fink, Marshall & 

Vallar, 2003; for a review see Danckert & Ferber, 2007). Patients show a bias towards 

exploring the ipsilesional space, while being unaware of contralesional events. The 

neglected portions can range from personal- to extrapersonal space. In severe cases 

patients bump into objects situated to their left or even "forget" to shave one half of their 

face. Recent evidence correlates neglect with a dysfunction of frontoparietal networks 

including the PPC, lateralprefrontal cortex (LPFC) and TPJ (Doricchi, de Schotten, 

Tomaiuolo & Bartolomeo, 2008; for a review see Bartolomeo, de Schotten & Chica, 2012). 

A traditional explanation for the observed deficits comes from Posner and colleagues 

(1984), who find comparable RTs for validly cued targets towards either side of space 

(contra- and ipsilesional) in patients with right parietal damage. On the contrary, RTs were 

prolonged following invalid cues, when the target was to be found in the contralesional 
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side. The deficit was ascribed to difficulties in disengaging attention from the ipsilesional 

side (i.e. 'disengagement deficit'), as a result of lesions to TPJ (Friedrich, Egly, Rafal & 

Beck, 1998). Even after recovery, the group with lesions to TPJ showed a disproportionate 

difficulty to detect targets following cues to the ipsilesional space, as compared to patients 

with parietal lobe damage (Friedrich et al., 1998). Translated into the attention model (see 

Figure 3), communication between dorsal and ventral pathways seems disrupted.  

Novel means of explaining the neglect syndrome in right brain damaged 

individuals see possible deficits in detecting statistical regularities in probabilistic 

environments (Danckert & Ferber, 2007; Shaqiri & Anderson, 2012). Others accordingly, 

argue for a close communication of rTPJ with top-down signals of the dorsal network in 

monitoring and responding to mismatches between expectation and sensory information 

(Kincade, Astafiev, Shulman & Corbetta, 2005). After all, in the healthy human brain, 

having advance information (e.g. predictive cues) leads to an estimation of reliability of 

top-down information, which in turn modulates the behavioral- as well as neural activity. 

With higher cue validity, increased RTs following incorrect cues as well as higher 

reorienting-related activity in rTPJ and right frontal cortex are found (see 1.1. and Vossel, 

Thiel & Fink, 2006).  

Together, the findings might suggest a more superordinate computational function 

of TPJ. This notion is supported by electrophysiological and other methods with high 

temporal resolution, showing that signals in the TPJ occur later than signals in FEF (for a 

review see Geng & Vossel, 2013). Only recently, Geng and Vossel (2013) challenge 

previous believes and incorporate novel data by introducing a 'contextual updating 

hypothesis'. TPJ is regarded to update an internal model of the external world, with 

integration of new sensory information, in order to construct appropriate expectations and 

reactions (Vossel & Geng, 2013). It remains to be tapped into defining the role of TPJ in 

computational operations in the brain and whether they are specific to the spatial domain. 
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1.1.4 Feature-based attention 

Not only is it helpful to know where one needs to orient attention, but also what to look for. 

Imagine meeting a friend at a restaurant, she tells you on the phone, that she is wearing a 

red jacket. Having advance information about the stimulus feature (i.e. friend in a red 

jacket) will help orient attention to red items and speed-up detection. Nonetheless, goal-

directed behavior can be disturbed by irrelevant distractors that share the same feature, 

such as a red apron on a waitress (Folk, Remington & Johnston, 1992). Where these 

feature-selective processes are represented in the brain will be introduced in the following.  

Brain regions engaged in feature-selective attention have been shown to 

correspond closely with those found for the spatial attention domain. Neuroimaging 

studies provide evidence that expectations about locations, but also features activate the 

dorsal network (see 1.1), biasing top-down attentional control (Hopfinger, Buonocore & 

Mangun, 2000; Egner et al., 2008). Increments in activity following increasing cue 

information were observed in the bilateral dorsal orienting nodes including IPS and FEF, 

with no difference in modulation between spatial and feature cues. Upon closer analysis of 

the representation of cue information in these common neural hubs, no interaction 

between spatial and feature information was found. Authors suggest differential priming of 

neurons in IPS according to the nature of cue information, possibly resulting in a saliency 

map. Thus, expectations following spatial cues would enhance responsiveness of IPS 

neurons whose receptive fields correspond with expected target location. However, 

feature cues would globally enhance neurons responsive to the expected target feature 

(Egner et al., 2008). This is in line with findings of extrastriate neuron populations, 

explicitly coding for features of interest across the entire visual field in both human and 

primates (McAdams & Maunsell, 2000; Saenz, Buracas & Boynton, 2002). In humans 

purely feature-selective experiments demonstrated spatially global modulations in visual 

cortical neurons. In separate experiments, participants had to attend to motion or to color. 

Whenever the distractors displayed the same feature (e.g. same colored dots in ignored 

visual field), fMRI data showed a stronger response across the visual cortex (Saenz et al., 

2002).  

Real-life situations often provide us with more than one attribute of the to-be-

detected target: Consider the initial example with a friend waiting in her red jacket at a 

restaurant und assuming she also told us she is sitting at a table to the right-hand side. 

Having spatial (i.e. right side) and feature (i.e. red jacket) information, doubles the 

response gain in extrastriate visual neurons in macaque monkeys. More precisely, this 

additive effect was only found in neurons that are selective of the stimulus feature and if 
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the locus of attention lies within their receptive field, as compared to neurons only having 

one piece of information (Treue & Martinez-Trujillo, 1999).  

Taken together, supplementary information, whether spatial or carrying the same 

feature information lead to a complimentary gain in modulation within the visual cortex. 

More importantly, feature-based attention leads to global modulation throughout the visual 

field, which is independent from spatial attention as demonstrated by event-related 

potential (ERP) measures (Zhang & Luck, 2009). Further support for distinct mechanisms 

come from a studies using transcranial magnetic stimulation (TMS) (Schenkluhn, Ruff, 

Heinen & Chambers, 2008) or lesion models (Ptak, Valenza & Schnider, 2002; Malhotra, 

Coulthard, Husain, 2009). Even when spatial selective attention was disrupted by TMS 

stimulation, feature processing remained untouched (Schenkluhn, et al., 2008). Unlike 

effects seen in spatial attention, feature-based attention is not completely affected by right 

brain damage such as neglect. Results indicate a preserved ability to identify features 

(color and/or shape) and profit from cues, as demonstrated by significant validity effects 

for contralesional stimuli (Ptak, et al., 2002). Also, vigilance decrements were only 

reported for sustained attention towards stimulus locations, but not towards features 

(patterns or letters) (Malhotra et al., 2009). 

Finally, work on discriminating reorienting-related anatomical areas for feature-

based attention is still in its infancy. It seems that a left lateralized network containing 

precuneus, IPS and precentral gyrus is in charge during shifts between features in task-

contexts (Shulman, d’Avossa, Tansy & Corbetta, 2002; Weidner, Krummenacher, 

Reimann, Müller & Fink, 2009). A recent cueing study by our group was able to 

disentangle the neural mechanisms underlying feature- from spatial-specific reorienting. 

The neuroimaging data provided evidence for reorienting related activity (induced by an 

invalid cue) in the left IPS for feature attention (Dombert, Kuhns, Mengotti, Fink & Vossel, 

2016). Current literature certainly points at common, but also distinct neural areas for the 

different attentional systems. Further comparative data with other domains and in different 

age contexts is needed to pinpoint distinct mechanisms underlying feature-selective 

attention.  
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1.1.5 Motor intention 

Split seconds can decide whether the goalkeeper reacts correctly and can prevent a goal. 

Reacting adequately is not only defined by orienting to features and locations, but is 

closely linked to the selection of a motor response. Having an internal plan of an imminent 

motor response has been termed motor intention and seems to be independent of 

whether the intention is executed or not (see, Thoenissen, Zilles & Toni, 2002; Desmurget 

& Sirigu, 2009). Here, intent is defined as higher-order planning and selection of an 

upcoming movement (Connolly, Kentridge & Cavina-Pratesi, 2016; Hesse, Thiel, Stephan, 

& Fink, 2006). Interestingly, similar to the processes mentioned for spatial- and feature-

based attention, expectancies about an upcoming motor response (e.g. by a cue 

indicating the most likely responding hand for an upcoming target) accelerate reaction 

time (Rushworth, et al., 2001a).  

Which brain areas are involved in motor intention and readjustment of prepared 

responses, when necessary? Currently, different conclusions are drawn about the 

underlying neural mechanisms. A map for motor intention in non-human primates has 

been proposed to reside in the left posterior parietal cortex (PPC) (Andersen & Buneo, 

2002). In the human brain some ascribe the selection of relevant intentional cues to the 

PPC and movement preparation to frontal premotor areas (Toni, Thoenissen & Zilles, 

2001), while others report a closer association of PPC with spatial attention as compared 

to motor intention (Connolly et al., 2016) or find common neural preparatory signatures for 

attending, looking and pointing across FEF and IPS (Astafiev et al., 2003). This has led to 

propositions of a supramodal involvement of PPC in attention and priority maintenance 

(Astafiev et al., 2003; Bisley & Goldberg, 2010).  

Then again, an exclusive role has been ascribed to motor preparatory signals in 

the PPC of the left hemisphere. Especially prominent selective activation has been 

reported in left PPC, frontal cortex (Astafiev et al., 2003), supramarginal gyrus (SMG), and 

anterior intraparietal sulcus (AIP) (Rushworth, Ellison & Walsh, 2001a; Rushworth, Krams, 

& Passingham, 2001b), irrespective of which hand is prepared for response. This claim is 

further confirmed by a fMRI study, in which neural involvement following motor, alerting 

and spatial preparatory cues was compared (Hesse et al., 2006). Their findings argue for 

a modality specific role of left SMG in motor intention. It should be noted, that this effect 

was solely cue related and independent of influences from responding hand or target 

presentation, which was kept identical across conditions.  
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Redirecting initially planned covert motor intentions has also been linked to the left 

SMG. Repetitive transcranial magnetic stimulation (rTMS) stimulation of left SMG led to a 

disruption of reorienting-related performance in a motor cueing task (Rushworth et al., 

2001a). More precisely, changing the plan of the initial movement due to invalid pre-cues 

was impaired after TMS of anterior parietal cortex, but not after PPC stimulation (Rounis, 

Yarrow & Rothwell, 2007; Rushworth et al, 2001a). This disruption of motor intention can 

also be the result of lesions to the left parietal cortex (Rushworth, Nixon, Renowden, 

Wade & Passingham, 1997). Stroke patients with left hemisphere lesions had 

disproportionate difficulties redirecting their original motor plan, following invalid pre-cues, 

compared to right stroke patients and healthy controls. Overall it can be concluded that 

left-lateralized parietal areas play a predominant role in motor intention and selection (for 

a review see, Rushworth, Johansen-Berg, Göbel & Devlin, 2003).  

Although many aspects of perceptual attention and motor intention seem to 

converge within the dorsal system, the evaluated literature also suggests distinct 

mechanisms. The comparative cueing studies reveal a lateralization of control in left PPC 

for motor intention and right PPC for perceptual attention. Also, they provide evidence for 

the facilitation of behavioral performance by cues indicating the required response. So far, 

authors focused on defining neural areas responsible for motor intention formation and 

adaption of selected responses. It remains to be specified how trial-wise predictions about 

an imminent motor act are encoded in the human brain. In particular, it is unclear whether 

these computational processes are domain-specific or whether they share common 

mechanisms. 
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1.1.6 Healthy ageing and attention 

As the healthy brain ages, some of its´ cognitive functions decline, while others are 

relatively spared. The purpose of the following section is to give a general overview of 

cognitive and brain ageing processes, as well as their possible explanations. 

Consecutively, it will be discussed how attention and learning may be affected by aging. 

Although it is assumed that age-related cognitive decline begins in early adulthood after 

the brains´ maturation, the magnitude seems to accelerate at older ages (Salthouse, 

2009). First significant changes in cognitive abilities can be detected as early as age 60. 

Most abilities are significantly affected by the time an individual reaches its mid-70s and 

severe decrements are observed at age 80 (Schaie, 2005). Especially, executive control 

processes such as working memory (Cepeda, Kramer & Gonzalez de Sather, 2001), 

attention (Cabeza et al., 2004) and task switching are age-sensitive (for a review see 

Craik & Salthouse, 2011). Longitudinal as well as cross-sectional data also unveil 

substantial changes in episodic memory, demonstrated by significant difficulties in 

learning and retrieving actions and lists of words (Rönnlund, Nyberg, Bäckman & Nilsson, 

2005). In contrast, emotional regulation (Carstensen et al., 2011), accumulated knowledge 

about the world (semantic memory) and vocabulary (Laver, 2009) seem unaffected and 

performance can even increase at least until the age of 60 (Craik & Salthouse, 2011; see 

figure 4).  

Neuroscience today aims at providing answers for cognitive aging by comparing 

functional and structural brain differences between young and older adults or conduct 

longitudinal studies with the same cohort. Interpretation of functional results is somewhat 

delicate since some studies report task-related increases (for a review see: Rajah & 

D´Esposito, 2005), while others find decreases in brain activity in older adults (Grady, 

Springer, Hongwanishkul, McIntosh & Winocur, 2006; Rypma & D´Esposito, 2000). Less 

brain activity is commonly associated with cognitive deficits and lower level of functioning 

(Rypma & D´Esposito, 2000).  

On the other hand, several mechanisms have been proposed to explain the over-

recruitment of brain activity. Therefore, it might reflect a compensatory mechanism, a 

reduction in differentiation of brain response, or inefficiency in the use of neural resources 

(Rajah & D´Esposito, 2005).  
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(adapted from Park & Bischof, 2013) 

Figure 4. Cross-sectional aging data on behavioural performance of tests on: speed 
of processing, working memory, long-term memory, and world knowledge. 
Cognitive functions summarized under fluid intelligence decline with age, while 
world knowledge even shows slight increases with age. (Reprinted from Dialogues 
in clinical neuroscience, 15(1), Park, D.C. & Bischof, G.N., The aging mind: 
neuroplasticity in response to cognitive training, p. 111, Copright 2013, LLS).  

In the light of the compensatory hypothesis, the aging brain exhibits stronger 

activity to possibly counteract loss of function and can even aid performance. This 

phenomenon can be observed when old and young adults display similar task 

performance, whilst older adults show more brain-activity (Cabeza, Anderson, Locantore 

& McIntosh, 2002) or when a positive correlation between brain activity and performance 

is found exclusively in the older group (Davis, Dennis, Daselaar, Fleck & Cabeza, 2007). 

For instance, an increase in bilateral prefrontal cortex (PFC) activity in older adults is 

reported in working- and episodic memory tasks (see, Rajah & D´Esposito, 2005), which is 

believed to account for reduced occipitotemporal activity (Davis, Dennis, Daselaar, Fleck 

& Cabeza, 2007). Further support for a compensatory account comes from an fMRI study 

investigating inhibition of prepotent responses in go/nogo tasks (Vallesi, McIntosh & 

Stuss, 2011). Older adults not only show a stronger recruitment of the dorsal attention 

network (see 1.1.2), but the result is behaviorally correlated with fewer errors in the old 

group compared to younger adults (Vallesi, McIntosh & Stuss, 2011). Conversely to the 

lateralized use of prefrontal cortical regions in young adults, older adults appear to 

additionally recruit contralateral PFC to retain performance abilities, which has been 
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subsumed under the HAROLD (hemispheric asymmetry reduction in older adults) model. 

Reduction in hemispheric asymmetry might delineate functional dedifferentiation 

processes and has been demonstrated for perceptual processing, inhibitory control and 

various memory domains (Cabeza 2002). Yet, enhanced neural recruitment is not always 

beneficial, but can reflect inefficient use of neural resources and alterations in functional 

connectivity in prefrontal regions (Colcombe, Kramer, Erickson & Scalf, 2005; Grady et al., 

2010).   

As mentioned earlier, compensation through over-activation is not always possible 

and that older adults can also show similar to less activation especially when task load 

increases. According to the 'Compensation-Related Utilization of Neural Circuits 

hypothesis' (CRUNCH), study results reporting compensatory activation or a lack thereof 

are not mutually exclusive (Reuter-Lorenz & Cappell, 2008). Thus, the neural strategies to 

overcome processing inefficiencies in older age, are to activate involved brain sites sooner 

or more than younger adults. This is only possible at low task demands and a ceiling 

effect occurs when cognitive load is increased, resulting in a decline in task performance 

(Reuter-Lorenz & Cappell, 2008).  

How do aging processes affect selective attention? To recapture (1.1) selective 

attention describes the process of focusing on the relevant, while cancelling-out irrelevant 

information. In ageing research the 'inhibitory deficit theory' is a longstanding assumption 

that older adults face increasing difficulty inhibiting irrelevant and distracting information 

(Hasher & Zacks, 1988; Hasher, Lustig & Zacks, 2007). Diverse experimental set-ups can 

be utilized to tap into age-related changes in attention. Effects can thus be provoked by 

the choice of different stimulus onset asynchrony (SOA) (Greenwood, Parasuram & 

Haxby, 1993), cue characteristics (e.g. large arrow versus small arrow cue) (Folk & Hoyer, 

1992) or simple versus choice RT tasks. Evidence for changes in selective visual attention 

and sensory processing is provided by measures of e.g. overall slower responses in 

spatial cueing tasks (Hong, Sun, Bengson, Mangun & Tong, 2015; Curran, Hills, Patterson 

& Strauss, 2001), diminished attention allocation and task-related activity over visual 

cortex (Gazzaley et al., 2008), or reduced brain oscillatory activity correlated to 

anticipatory attention (Deiber, Ibanez, Missonier, Rodriguez & Giannakopoulos, 2013). 

Additionally, task complexity is a crucial determinant of performance in age. With 

increasing difficulty, older adults demonstrate a decline in inhibiting unwanted responses, 

are less accurate, and have deficits using cue information (for a review see, Zanto & 

Gazzaley, 2014). In the following sections ageing effects for the domains of spatial 

attention, feature attention and motor intention will be discussed. Also, trial-wise learning 

in age will be highlighted.  
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While there is accumulating evidence for retained top-down control of visuospatial 

attention, early sensory processing (bottom-up) is suggested to decline (Curran et al., 

2001). These claims are supported by EEG signatures following spatial cueing, which 

yielded comparable cue validity effect related ERP amplitudes between young and older 

adults, but delayed early ERP components related to target stimuli (i.e. P1, N1, Nd1) in the 

older age group (Curran et al., 2001). Similarly, fMRI results indicate a stronger 

engagement of the frontoparietal network (top-down) in a cued spatial task, suggesting a 

compensatory mechanism to counteract decline in bottom-up functioning to preserve 

performance (Talsma, Kok & Ridderinkhof, 2006). Additionally, age-related increases in 

behavioral response (RT) towards left as opposed to right targets may be related to the 

assumption that age more strongly affects right-hemispheric cognitive functions and 

processing in the left visual field (Lux, Marshall, Thimm & Fink, 2008; Nagamatsu, 

Carolan, Liu-Ambrose & Handy, 2011). Taken together, spatial attentional control seems 

largely intact, while over-recruitment of frontal areas aid at compensating deteriorating 

bottom-up processing and attention towards left visual field. 

Feature selective attention supports the search for certain characteristics of a 

stimulus such as color or size. The current literature hints at a decline in feature selectivity 

in older adults (Quigley, Andersen, Schulze, Grunwald & Müller, 2010; Zanto, Toy & 

Gazzaley, 2010). An EEG study used a delayed-recognition task to assess working 

memory performance for color and motion features in young and old adults. Even when 

accounting for age-related slowing in perceptual processing and response, elderly were 

still slower to respond. ERP measures of early perceptual processing (bottom-up) 

remained comparable (P1), but in the older group a delay during working memory 

encoding for measures of attention allocation (selection negativity (SN) and alpha band 

activity) for both feature types was reported. Apart from these generalized feature-based 

effects, feature-specific delay in N1 latency for color encoding was apparent (Zanto, Toy & 

Gazzaley, 2010). Further electrophysiological support for decreased feature-attention 

selection in age comes from a study in which two random dot kinematograms (RDKs) of 

different colors were superimposed. Young and old participants were instructed by a color 

cue to attend to the motion of the according RDK. Steady-state visual evoked potential 

(SSVEP) before and after cue onset were compared. While young adults clearly 

responded to attended cues after presentation, as measured by enhancement of SSVEP 

post-cue, older adults showed no distinction between attended and ignored stimuli. These 

results were later replicated in a task in which motion of horizontal and vertical bars 

needed to be attended (Quigley & Müller, 2014). Based on these findings it seems that 

older adults lack modulation of feature selective (top-down) attention and exhibit 
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processing speed delays, which can not be attributed to changes in bottom-up processing 

(Quigley, Andersen, Schulze, Grunwald & Müller, 2010; Quigley & Müller, 2014).  

On the contrary, Madden and colleagues (2004) conducted a visual search task 

supported by color cues in which top-down attentional guidance was age-invariant. More 

specific, in a condition guided by highly informative color singletons, significant decreases 

in RT were found in both age groups (Madden, Whiting, Cabeza & Huettel, 2004). This 

difference in results is possibly due to the informative value of the cue. Since the cue color 

did not facilitate feature detection, but prepared the upcoming location of the target, thus 

incorporating spatial information. Also, differently from the studies using RDKs, this study 

did not contain motion perception, which might be a critical variable in the observed 

decline. 

Processing motor information (i.e. cues indicating the responding hand) and 

preparing an upcoming response, seems to substantially change with age (Sterr & Dean, 

2008), whereas simple motor actions are not affected (Skoura, Papaxanthis, Vinter, & 

Pozzo, 2005). The formation of simple motor intentions, regardless whether executed or 

simulated (motor imagery), remained comparable between age groups. Interestingly, 

when introducing spatiotemporal constraints, internally simulated motor actions were more 

strongly altered by age as opposed to executed movements. The authors ascribe the 

observed behavioral dissimilarities to task complexity and the lacking peripheral sensory 

feedback (Skoura, Papaxanthis, Vinter, & Pozzo, 2005). In a more challenging experiment 

using a motor priming paradigm, Sterr and Dean (2008) investigated performance and 

ERP-data to unveil changes in the anticipation and preparation of motor information 

between young and old adults. Participants could rely on preparatory cue (arrows pointing 

left or right) corresponding with left or right button press 80% of the time. Contrary to 

younger participants, older adults lacked validity effects and showed diminished activation 

of higher-order motor areas during anticipation, as indicated by reduced foreperiod 

amplitudes. Preparation of motor response was also changed, since lateralized activity 

was absent. This suggests that older adults do not profit from motor preparatory signals 

(Sterr & Dean, 2008). A possible explanation to understand motor-related changes might 

be brain atrophy in the dorsolateral prefrontal cortex (Lemaître et al., 2005) associated 

with motor preparation and cognitive control (Simon et al., 2002).  

Finally, this brings us to the question, whether older adults show performance 

decrements in learning? Naturally we are confronted with a dynamically changing 

environment, which makes adapting our expectation a crucial necessity. In this case, 

learning describes the processes of integrating novel observations and adapting or 
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maintaining behavior depending on the respective goal. Reward-based paradigms give 

insights into describing the ability to learn future outcomes (for a review see Eppinger, 

Haemmerer & Li, 2011). A study combining a three-stage Markov decision task with fMRI, 

suggests that older adults have difficulties predicting future reward and functionally exhibit 

decreased PFC activity compared to younger adults (Eppinger, Heekeren & Li, 2015). 

Also, an age comparative study using a predictive inference task revealed a reduction in 

using uncertainty to learn novel outcome contingencies in older participants (Nassar et al., 

2016). A possible source for changes in learning is ascribed to dopaminergic neurons in 

the ventral striatum, which seem less sensitive towards prediction error. Diffusion tensor 

imaging during a probabilistic reward task, revealed that frontostriatal white matter 

integrity was an important determinant of performance in age. In other words, age-related 

connectivity deficits between frontal and striatal regions, lead to changes in prediction 

error signaling (Samanez-Larkin, Levens, Perry, Dougherty & Knutson, 2012). Thus, to 

study developmental alterations in learning under uncertainty, probabilistic choice tasks in 

combination with computational models are particularly useful. This approach can offer 

insights into mechanisms (e.g. learning rate) that stay hidden when relying on descriptive 

statistics alone. More detailed description and application of computational models will be 

provided in 2.1. 

To conclude, mixed evidence is provided regarding how attention and learning 

processes are affected by age and which variables are responsible for the observed 

differences. Despite some support for age-related decline in attention, it does not seem 

absolute. Spatial attention is suggested to have retained top-down control, but needs to 

overcome the deterioration of bottom-up processing through over-recruitment of frontal 

areas (Talsma, Kok & Ridderinkhof, 2006). A mixed picture is provided for feature 

attention. While some report age-invariant bottom-up functioning, but declined top-down 

selection especially for color encoding (Quigley & Müller, 2014), others find retained 

bottom-up functioning (Madden, Whiting, Cabeza & Huettel, 2004). Motor intention seems 

to be altered when older adults face more complex or time restrained tasks. Under these 

conditions, they fail to use motor preparatory information (Sterr & Dean, 2008). The 

variance in effects reported for the different attentional systems suggests the importance 

of distinguishing between these domains, while carefully considering experimental set-up 

and information provided by the cue. No prior work has been done to examine age-related 

differences in generating predictions, while considering the impact of task complexity and 

differentiating between spatial- and feature-based attention and motor intention.
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2. Experimental techniques 

2.1 Mathematical models for learning under uncertainty 

Navigating through an uncertain world and reacting upon events, the human brain 

not only relies on the current sensory information, but also incorporates previous 

observations and internal states. Building expectancies about incoming sensory input is 

believed to reflect the brain’s faculty to resemble a prediction machine. Computational 

neuroscience ascribes the adaptive success of the brain to predictive coding, which 

includes minimization of prediction error as core faculty (Clark, 2013). Prediction error 

describes the difference between an expected and actual signal. Predictions are derived 

from generative models, carrying information about environmental states, calculated from 

prior observations and new events and are proposed to emerge in a Bayes-optimal 

scheme (Friston & Kiebel, 2009). The next sections will focus on the advantages of using 

computational learning models for RT analyses, as well as describe their key elements. 

In this work, attentional processes are deducted from RTs. Analyzing RT data in 

general is a delicate endeavor, since the distribution is typically skewed to the right and 

can contain spurious RTs. These are caused by e.g. inattentiveness or guesses, and can 

lead to reduced statistical power and even misinterpretation (Whelan, 2008; Wilcox, 

1998). Vossel at al. (2006) elegantly demonstrates how ex-Gaussian distribution can be 

applied to individual RT data to counteract the issue of outlying variables. Nonetheless, 

the use of central tendency measures can carry valuable information to explain 

differences in task conditions. Posner (1980) for instance, illustrated the accelerating 

effect on RTs on valid trials, compared to unexpectedly cued locations (compare section 

1.1.1 above). 

Using computational learning models expands the possibility over and above what 

traditional RT analyses can offer and aim to uncover underlying mechanisms necessary 

for predicting future outcomes. More precisely, instead of seeing RTs as random 

variables, they can be treated as the product of perceptual inference (den Ouden, 

Daunizeau, Roiser, Friston & Stephan, 2010). Single-trial RTs can be used to track the 

inference process and quantify the subject´s trial-wise beliefs about environmental 

statistics.  
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Two prominent frameworks for trial-by-trial learning are reinforcement learning 

(RL) and Bayesian learning models. The Rescorla-Wagner model is a popular model for 

RL due to its conceptual simplicity and computational efficiency (Rescorla & Wagner, 

1972). The estimated probability after the observation of a particular trial is determined by 

a fixed learning rate and a prediction error. Prediction error is the difference between 

actual- and predicted signals (Gershman & Niv, 2010). Unfortunately, this model follows a 

heuristic approach and performs poorly when applied to real-world situations, since it has 

no knowledge about the environment. Consequently, having to infer the multitude of 

naturally occurring unknown situations (states) and actions from observations, slows down 

learning. Also, it does not follow assumptions of probability theory. Gershman and Niv 

(2010) suggest applying Bayesian theory to overcome the limitations and be able to 

describe the influence of latent variables. Here structure stands for possible causal 

relationships between latent and observed variables. Classical conditioning experiments 

demonstrate how unobserved information can be learned. For example, a dog is exposed 

to food and tones (see Figure 5). Instead of associating one to the other it is proposed, 

that animals try to learn the hidden causes. In this case, the hidden cause is the 

manipulation of the experimenter who changes the relationship between perceived stimuli 

by the animal (e.g., acquisition, extinction). After several trial runs, expectations are built 

about the occurrence of tones and/or food. In spatial cueing tasks the latent cause would 

translate into the manipulated change in probability level of the cue being valid. Thus, 

participants build an internal model of how much they can trust the cue to make 

predictions.  
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(adapted from Gershman & Niv, 2010) 

Figure 5. Depiction of three possible causal relationships (structures) between 
observed and latent variables in a classical conditioning experiment. Latent 
variables are circled, while observed variables are not. Probabilistic dependencies 
are shown by arrows. For example, in Structure II, the latent variable defines the 
value of the model parameter (e.g. acquisition: tone predicts food vs. extinction: 
tone does not predict food).  

Hence, before observing any novel data, prior distribution 𝑃(𝑆) over possible 

structures encodes the agents belief about the hidden structure 𝑆. This mirrors your belief 

about how likely each structure accurately describes the environment a priori. In terms of 

Bayes´ rule belief-updating, after observing new events D is described as follows: 

 

𝑃 𝑆 𝐷) =
𝑃 𝐷 𝑆 𝑃(𝑆)

𝑃(𝐷) 	  
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𝑃 𝑆 𝐷) is the posterior distribution over structures given the observed data and 

represents an estimate of the probability that each structure describes the environment a 

posteriori. Likelihood is denoted by 𝑃 𝐷 𝑆) and explains the likeliness that sensory data 𝐷 

was generated by structure 𝑆 (for example see, Gershman & Niv, 2010). Bayesian 

learning models offer a more naturalistic account of how beliefs are updated, since they 

overcome the issue of a fixed learning rate. In comparison to model-free RL models, the 

Bayesian learner considers environmental volatility and uncertainty to estimate future 

outcomes. Here, learning rate is driven by detected volatility of reward-likelihood that 

leads to uncertainty and drives adaption of the initial estimate. For instance, the initial 

belief is violated if suddenly an invalid trial occurs after observing 50 valid trials. Thus, 

individual adaptive behavior entails the constant update of probabilities (e.g. that the next 

target will be validly cued). These are built from prior beliefs and new observations to 

decrease prediction error (Knill & Pouget, 2004; Friston, 2010). The update period can be 

seen in higher BOLD responses of the ACC whenever the subjects´ estimate of the 

volatility does not match the observed trial outcome (Behrens, Woolrich, Walton & 

Rushworth, 2007).  

A Bayesian learning model, considerate of a generic hierarchical architecture, was 

proposed by Mathys and colleagues (2011). What is striking, is that it allows to quantify 

inter-individual learning under uncertainty, whether perceptual or caused by a volatile 

environment. It encompasses a generative model with hidden states arranged in a 

hierarchical manner which all, but the first level, evolve in time as Gaussian random walks. 

The hierarchical depth of the generative model can be arbitrarily expanded. The step size 

of these walks (i.e. volatility) is determined by the next higher level. Trial-by-trial update 

equations of posterior expectations of the hidden states can be derived by an approximate 

Bayesian approach. These equations combine the best of both worlds, since they are 

inspired by RL models and minimize free energy (for a review on free-energy see, Friston, 

2010). Additionally, parameters are introduced which can have different values for each 

agent and control the coupling across the different levels. This differentiation between 

dynamic hidden states, varying in time, and the fixed parameters, able to characterize 

subject-specific learning patterns, are the pivotal components (Mathys et al., 2011). 

The scope of the model’s application is manifold as has been demonstrated in 

studies of visuospatial attention (Vossel et al., 2014c), under effects of pharmacological 

manipulation (Vossel et al., 2014a), in combination with fMRI and connectivity analysis 

(Vossel, Mathys, Stephan & Friston, 2015). Recently, in the field of computational 

neuropsychology it aids to characterize disease mechanisms in a wide range of 

pathologies including visual neglect (Parr, Rees & Friston, 2018) or Autism Spectrum 
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Disorder (Haker, Schneebeli & Stephan, 2016). To investigate how computational states 

translate into observable behavior in volatile environments, location-cueing paradigms 

with different levels of %CV (cue validity) can be used (see 1.1.1). Model comparison in 

the first study, clearly favored a Bayesian model with three hierarchical states, combined 

with a precision-based response model to explain trial-by-trial estimates of belief 

(subject´s probabilistic representation of sensory input) and individual learning (Vossel et 

al., 2014). The winner model was subsequently used and the stable learning parameters 

lend to reveal within-subject enhancement of updating expectancies in visuospatial 

attention, following a pharmacological modulation using galantamine (Vossel et al., 

2014b). Finally, neural correlates and dynamics of probabilistic inference processes in the 

deployment of spatial attention were studied with fMRI. Results revealed increased neural 

activity in a bilateral frontoparietal network, following invalidly as compared to validly cued 

targets and a modulation of reorienting-related activity in right TPJ, FEF and putamen by 

precision-dependent attention (Vossel et al., 2015). In sum, this Bayesian hierarchical 

model represents a promising tool to elucidate inter-individual belief-updating under 

uncertainty.  
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2.2 Functional magnetic resonance imaging (fMRI) 

Magnetic resonance imaging (MRI) is a non-invasive tool, using the magnetic 

properties of organic tissue to create structural images (Lauterbur, 1973). More 

specifically, the method exploits the fact that atoms contain different amounts of protons 

and neutrons, making them more or less susceptible to changes in the magnetic field.  

In MRI research, mostly hydrogen atoms are relevant, which are found throughout 

the brain. Their nuclei are made from a single positively charged proton, spinning around 

its principal axis ("spin"), thereby creating a magnetic field. By manipulating the external 

magnetic field in the scanner, the previous random orientations of the protons become 

aligned parallel to the force of the magnet. Consecutive, radiofrequency (RF) pulses are 

introduced, perturbing the protons once more in a predictable direction. When the RF-

pulse is turned off, a synchronized rebound into the original orientation along the magnetic 

field occurs, which produces energy signals. These signals are picked-up by a sensitive 

receiving coil, placed around the subject´s head (McRobbie, Moore, Graves & Prince, 

2006). Sharp images of structures such as sulci and gyri can be obtained, as they have 

different relaxation properties, due to variations in proton count. Grey matter for example 

has higher densities than white matter or cerebrospinal fluid (Gazzaniga, Ivry, & Mangun, 

2009).  

2.2.1 Physical and physiological principles of fMRI 

Functional magnetic resonance imaging (fMRI) allows cognitive neuroscientists to 

map functionally induced changes in blood oxygenation and blood flow, coupled to 

neuronal activity (D´Esposito, Zarahn, & Aguirre, 1999). A crucial cornerstone for the 

evolution of this technique was set by Pauling in 1935, who described alterations in 

magnetic properties of hemoglobin in dependence on the amount of oxygen it carries. 

Whereas oxygenated hemoglobin is diamagnetic, deoxyhemoglobin is paramagnetic and 

influences the surrounding hydrogen proton signal, causing a reduction in fMRI signal 

intensity. Physiologically, more oxygen is made available by increased blood flow, when a 

brain area is active and in need of energy. The difference in magnetic susceptibility of 

oxygen-rich versus deoxygenated hemoglobin serves as a natural contrast agent, known 

as blood oxygenation level dependent (BOLD) signal (Ogawa, Lee, Kay, & Tank, 1990). 

Higher signals (high concentration of oxyhemoglobin) result in brighter voxels, as opposed 

to areas with low concentration (Amaro & Barker, 2006).  

The hemodynamic response function (HRF) (see figure 6) is a mathematical 

model for describing the time-course of the BOLD signal. After an initial dip in BOLD 
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signal (use of local oxygen by active neurons), cerebral blood flow (CRF), and –volume 

(CBV) are enhanced. Over time, an oversupply of oxygen and glucose takes place, 

reflected by an augmentation of the BOLD signal (increased hemodynamic response). 

The rise peaks around 4-8 seconds after the actual firing of neurons. Before reaching 

steady baseline levels, an "undershoot" of the decaying signal is observed (D´Esposito, 

Zarahn, & Aguirre, 1999; Vazquez and Noll, 1997). 

	  

(adapted from Kornak, Hall & Haggard, 2011) 

Figure 6. Model of a hemodynamic response function (HRF) following a 
hypothetical stimulus. After stimulus onset, deoxygenated hemoglobin increases 
indicated by the initial dip. This is followed by an increase of oxy/deoxygenated 
ratio, resulting in a higher MR signal. 

In sum, this advancement in imaging methodology is widely applied to track 

hemodynamic changes in participants engaged in cognitive tasks. It allows researchers to 

test hypotheses about functional anatomy and has a high spatial resolution. Combining 

imaging and behavioral measures is a powerful tool to aid our understanding of the 

relationship between mind and brain (Raichle, 1994). It is important to interpret the fMRI 

data in the light of correlation, not causation.  
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2.2.2 fMRI data analysis  

The primary aim of fMRI experiments is to create a brain activation map, based on 

the modulation of the brain’s response (BOLD effect) following a certain cognitive event 

(e.g. orienting to a cued location). Analyzing acquired fMRI data comprises two steps: 

preprocessing and statistical analysis of the effects of interest (Friston, Holmes, Price, 

Büchel & Worsley, 1999).  

Lying inside a tight bore and not moving for a long period of time can be very 

challenging for participants. Therefore, the first preprocessing steps entail spatial 

realignment and coregistration of all functional images, to account for movement. To be 

able to perform group statistics, anatomical intersubject differences need to be resolved, 

by spatially normalizing the scans to a standard brain space provided, for example by the 

Montreal Neurological Institute (MNI template) or the atlas by Talairach and Tournoux 

(1998). Finally, the data is smoothed using a Gaussian kernel to improve the signal to 

noise ratio (SNR) and statistical power (Friston, 1997; McRobbie et al., 2006).  

Next, a general linear model (GLM) is applied for each voxel, to model explanatory 

variables (experimental conditions and regressors of no interest) and residual errors (𝜀) in 

a linear fashion. In the following notation, 𝑌 represents the BOLD signal (dependent 

variable) and 𝑋 contains the design matrix (explanatory regressors). The estimated beta 

values (𝛽) for each column in the design matrix describe the relative contribution of the 

respective regressor to the data.  

 

𝒀     =   𝑿   ∙   𝜷  +   𝜺  
 

In event-related designs, the evoked hemodynamic responses are time-locked to 

the stimuli in the experimental task, separately for different experimental conditions, which 

are presented in a randomized or pseudo-randomized order. The resulting parameter 

estimates are consequently tested for statistical significance by F- or T-contrasts. This 

statistical image (or Statistical Parametric Map) shows the location of significantly 

activated voxels. One can either test the effects relative to baseline activity or compare 

different conditions with one another. fMRI data analysis can be applied on a single-

subject level (1st-level analysis) as well as on a group level (2nd-level analysis), for 

population-based inferences. When conducting inter-subject analyses, one must be aware 

to correct for multiple comparisons. Apart from the overly conservative Bonferroni 

correction, one can apply a false discovery rate correction, a region of interest analysis 

(Genovese, Lazar & Nichols, 2002) or cluster size exclusion (Andrade et al., 2001).  
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Depending on the fMRI study, the experimental design can make use of 

subtractive, factorial or parametric strategies (Friston et al., 1999; Kiebel & Holmes, 2003). 

The first method rests on the principle of pure insertion (i.e. assuming that separate 

conditions can be added and do not interact with one another). Each newly added 

cognitive component results in additional physiological activation, so subtracting one 

condition from the other allows to characterize cognitive neuroanatomy (Amaro & Barker, 

2006; Friston et al., 1996). Factorial designs in turn are valuable to test interaction effects, 

simply said to detect a difference in a difference between conditions (e.g. invalid > valid: 

motor intention > spatial attention). Finally, different levels of cognitive demand in a given 

task can be investigated using parametric modulation. This is particularly useful if a 

parameter of interest is continuous or has multiple dimensions, changing over time. For 

instance in a model-based approach, subjects´ trialwise belief estimates about cue 

predictability can be correlated with changes in BOLD amplitude to describe the neural 

basis of learning behavior (see, e.g. Vossel, Mathys, Stephan & Friston, 2015).  

2.2.3 Psychophysiological interaction (PPI) analysis 

The application of a psychophysiological interaction (PPI) analysis to fMRI data 

adheres the possibility to investigate cortical responses in one area, in terms of an 

interaction between another area (physiological factor) and a psychological context 

(sensory or task-related). Differently put, it detects task-related changes in the statistical 

relationship between brain regions referred to as functional connectivity (Friston et al., 

1997). In what follows, the basis of PPI analysis will be outlined (for SPM), and 

possibilities of interpreting the data.  

A basic idea of a PPI analysis is that if two brain regions demonstrate synchronous 

behavior of increasing and decreasing activity, they must be interacting (O´Reilly, 

Woolrich, Behrens, Smith & Johansen-Berg, 2012). To identify interacting areas, a 'seed' 

region of interest (ROI) is defined. Generally, the chosen mask is based on the voxels 

showing a task-related effect in the 2nd-level fMRI analysis. Then a representative time 

course of activity in the predefined mask is extracted which yields a vector containing 

values for each time point in the data set. This seed ROI time course is then entered as a 

regressor in a GLM. 

In a PPI analysis, task- or context-specific changes in functional connectivity 

between different areas are analyzed by generating an 'interaction regressor'. A well-

chosen PPI regressor ideally illustrates a stronger relationship during one experimental 

condition, as opposed to another condition or rest (see figure 7). Statistically, a PPI is a 

change in slope of a regression, using data collected in different sensory or psychological 
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contexts. If one regresses the activity of one region over the activity of another, the slope 

would describe the influence the latter could have on the first (Friston et al. 1997). PPI is 

not restricted to a single interaction effect, but one can choose to create several PPI 

regressors, to look at multiple seed regions in relation to a task, or vice versa. In order to 

rule out possible false positives and only get the connectivity effects, the task and 

physiological time courses are included as nuisance co-variates in the final PPI model. 

This ensures that variance is solely explained by the interaction term and is additional to 

the main effects. The interactions can be interpreted in the light of context-sensitive 

changes in how the remote area contributes to the known seed, but it could also mean 

that the remote area mediates the context-dependent increases in response in the 

reference area (Friston et al., 1997). 

	  
 (adapted from O´Reilly et al., 2012) 

Figure 7. Generating a PPI regressor. (a) The first row depicts the main effect of the 
psychological variable in a block design (black line) (b) Then a seed region time-
course is selected, representing the physiological main effect (purple line). (c) A PPI 
regressor (green line) is created as an element-by-element product of task (black 
line) and seed ROI (purple line).  
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2.3 Thesis aims 

The purpose of the present thesis is to characterize common and distinct neural 

and behavioral mechanisms for predicting upcoming events, following different perceptual-

attentional and motor intentional cues in the healthy human brain. Two Experiments will 

be elucidated in the subsequent section, to answer the following questions: 

 

1) What are the neural correlates of dynamic experience-dependent updating of 

spatial-attentional and motor-intentional predictions? (Experiment 1) 

2) Does age influence experience-dependent updating of spatial and feature-based 

attentional and motor intentional predictions? (Experiment 2) 

3) Does task difficulty impact the performance of predicting upcoming events in older- 

compared to younger adults? (Experiment 2) 

 

In Experiment 1 computational modeling of response times was combined with 

fMRI to identify neural correlates of dynamic experience-dependent updating of spatial-

attentional and motor-intentional expectancies (Kuhns, Dombert, Mengotti, Fink & Vossel, 

2017). Participants conducted an adapted version of the classical cueing paradigm by 

Posner (1980) (see 1.1.2). In order to disentangle the cortical networks, cues either 

guided spatial attention (arrow pointing towards left or right hemifield) or were preparatory 

for a motor response (prepare response of right index- or middle finger). Different %CV 

levels (~50%, 70%, and 90%) changed unpredictably over time, creating a volatile 

environment. Reaction time data was used to predict trial-wise updating of the probabilistic 

context using the generic hierarchical model based on Bayesian principles (see 2.1, 

Mathys, Daunizeau, Friston & Stephan, 2011). The trial-wise probabilistic beliefs from the 

computational model were then included as parametric regressors in the design matrix for 

analyzing the BOLD time series and compared between the spatial attention and motor 

intention condition. Moreover, PPI analysis (see 2.2.3) lend to explore common 

predictability-dependent coupling patterns of the two domains.  

Although functional anatomy of preparatory spatial attention and motor intention 

seem to share common systems, they also display distinctions (Rushworth et al., 2001a). 

Left posterior parietal cortex seems to be critical for motor intention, whereas spatial 

attentional control is complementary lateralized in the right cortex. Therefore, it was 

hypothesized that domain-specific, as well as common neural correlates of experience-

dependent updating would be identified.  
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Since the healthy human brain undergoes age-related changes (like, e.g., atrophy 

and dedifferentiation; see 1.1.6) it was of primary interest in Experiment 2 whether 

experience-dependent updating would be affected. Given the fMRI evidence for 

overlapping but also differential neural systems (Dombert et al., 2016; Kuhns et al., 2017) 

for spatial attention, feature-based attention and motor intention, older and young adults 

had to complete three distinct cueing versions. It has been shown, that task complexity 

can largely affect performance in older adults (Zanto & Gazzaley, 2014). Therefore, two 

task difficulty levels of the three cueing versions were introduced. It was hypothesized that 

older adults would show reduced updating-speed of trial-by-trial estimates of the 

probabilistic environment compared to the young group. The reduction however could vary 

for the different attentional- and intentional domains. 
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Abstract 

Predictions about upcoming events influence how we perceive and respond to our 

environment. There is increasing evidence that predictions may be generated based upon 

previous observations following Bayesian principles, but little is known about the 

underlying cortical mechanisms and their specificity for different cognitive subsystems. 

The present study aimed at identifying common and distinct neural signatures of predictive 

processing in the spatial attentional and motor intentional systems. Twenty-three female 

and male healthy human volunteers performed two probabilistic cueing tasks with either 

spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of 

cue validity changed unpredictably over time. Trial-wise estimates of cue predictability 

were derived from a Bayesian observer model of behavioral responses. These estimates 

were included as parametric regressors for analyzing the BOLD time series. Parametric 

effects of cue predictability in valid and invalid trials were considered to reflect belief 

updating by precision-weighted prediction errors. The brain areas exhibiting predictability-

dependent effects dissociated between the spatial attention and motor intention task, with 

the right temporoparietal cortex being involved during spatial attention and the left angular 

gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed 

that all three areas showed predictability-dependent coupling with the right hippocampus. 

These results suggest that precision-weighted prediction errors of stimulus locations and 

motor responses are encoded in distinct brain regions, but that crosstalk with the 

hippocampus may be necessary to integrate new trial-wise outcomes in both cognitive 

systems. 

 

Significance Statement 

The brain is able to infer the environments’ statistical structure and strongly 

responds to expectancy violations. In the spatial attentional domain, it has been shown 

that parts of the attentional networks are sensitive to the predictability of stimuli. It remains 

unknown, however, if these effects are ubiquitous or if they are specific for different 

cognitive systems. The present study compared the influence of model-derived cue 

predictability on brain activity in the spatial attentional and motor intentional system. We 

identified areas with distinct predictability-dependent activation for spatial attention and 

motor intention, but also common connectivity changes of these regions with the 

hippocampus. These findings provide novel insights into the generality and specificity of 

predictive processing signatures in the human brain.  
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3.1 Introduction 
How we perceive and respond to our environment does not depend solely on the 

sensory input we receive, but also on predictions that we make about upcoming events or 

motor acts. Paradigms in which cues predict the location of a stimulus (Posner et al., 

1980) or the motor response to a target (Rushworth et al., 1997) are used to study these 

effects. Response times (RTs) are accelerated if the cue is valid, whereas slower RTs are 

observed in invalid trials when the prediction is violated and reorienting of attention or 

reprogramming of the motor response become necessary. A ventral frontoparietal network 

including the right temporoparietal junction (TPJ) exhibits enhanced neural activity for 

spatially invalid (compared with valid) targets (Corbetta et al., 2008). Repetitive 

transcranial magnetic stimulation applied over the left supramarginal gyrus disrupts the 

performance in invalidly cued motor (but not spatial) trials (Rushworth et al., 2001a) 

regardless of the subjects’ responding hand or verbal strategies (Rushworth et al., 2001b).  

Spatial reorienting is not an all-or-none phenomenon because RTs in valid and 

invalid trials are affected differentially by the predictability of the cue (i.e., the probability 

with which the cue correctly predicts the target location in a given trial determined by the 

proportion of valid and invalid trials in a trial sequence). While RTs in valid trials decrease, 

RTs in invalid trials increase with higher cue predictability, resulting in bigger validity 

effects (Fig. 1A).  

Moreover, there is evidence that subjects infer the trialwise cue predictability on 

the basis of past trials and that this estimation can be described by a hierarchical 

Gaussian filter (a special case of generalized predictive coding or Bayesian filtering) 

(Mathys et al., 2011; Vossel et al., 2014a). This model estimates hidden states (in our 

specific case: beliefs about cue predictability and its stability over time) and this estimation 

can be framed in terms of propagating precision-weighted prediction errors from one 

hierarchical level to the next. Here, beliefs about cue predictability are represented on the 

lower level of the model and are influenced by beliefs about the stability (volatility) of cue 

predict- ability represented on a higher level and also by subject-specific parameters. 

Although the higher-level volatility is of major relevance for the flexibility of the model 

(Behrens et al., 2007; den Ouden et al., 2010), the focus of this study concerned the 

effects of (lower-level) cue predictability on behavior and BOLD responses. Here, as for 

RTs, we expected differential effects in valid and invalid trials; that is, increased BOLD 

responses with higher cue predictability in invalid trials, but decreased BOLD responses 

with higher predictability in valid trials (Fig. 1B).  
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Figure 1. Schematical illustration of the hypothesized effects of cue predictability. A) 
Illustration of the expected differential effects of cue predictability on response times (RTs) 
in valid and invalid trials. B) Computational anatomy that can be inferred from the fMRI 
results. In predictive coding formulations of hierarchical neuronal processing, precision-
weighted prediction errors may be encoded neurally. Belief updating in the hierarchical 
Gaussian filter model rests on prediction errors in the different levels which are weighted by 
(level-specific) precision terms. In the present study, we focused on this process at the 
lower level of the model, i.e., on the observation of valid and invalid trials in relation to the 
expected cue predictability. Here, BOLD amplitudes should be attenuated with higher cue 
predictability in valid trials, but increase with higher cue predictability in invalid trials (when 
the prediction is violated). Such effects were identified by including model-derived cue 
predictability as a parametric modulator for valid and invalid trials in the fMRI analysis and 
by subsequently contrasting the parametric effects between the two trial types with a 
planned invalid>valid contrast.  

Using a spatial cueing paradigm with saccadic responses, activity patterns as 

shown in Figure 1B have been observed in the right frontal eye field, TPJ, and putamen 

(Vossel et al., 2015). However, because saccade preparation is inherently linked to covert 

shifts of spatial attention (Deubel, 2008), this previous work cannot differentiate between 

attentional and motor-intentional effects.  

In this study, we used two novel cueing tasks to compare directly the effects of cue 

predictability in the spatial attentional and motor intentional system. The cues either 

guided spatial attention or signaled the upcoming motor response to the target. The 

proportion of valid and invalid trials changed unpredictably over time and the subjects’ 

trialwise beliefs about cue predictability were derived from a hierarchical Gaussian filter 

and were included as parametric regressors for analyzing the BOLD time series. This 



EMPIRICAL	  SECTION	  
Kuhns,	  Dombert,	  Mengotti,	  Fink	  &	  Vossel	  (2017)	  

	  

	   38	  

allowed us to test whether the neural signatures of predictive coding share common 

mechanisms or if there are different physiological implementations for spatial attention and 

motor intention. We expected a greater predictability-dependent involvement of left 

parietal areas in the motor intention task. For spatial attention, we expected a modulation 

of right TPJ activity (Vossel et al., 2015; Dombert et al., 2016a). In addition, we performed 

explorative connectivity analyses to test for convergent predictability-dependent coupling 

patterns in the two functional domains.  
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3.2 Materials and Methods 

3.2.1 Participants 

Initially, 34 healthy participants gave written informed consent to take part in the 

present study. Eleven subjects had to be excluded due to head movement >3mm (n=4) or 

technical problems during scanning (n=7). Therefore, data from 23 subjects (13 males, 10 

females; age range 18-36; mean age 26 years) were analyzed. All subjects were right-

handed, as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971), had 

normal or corrected-to-normal vision and no history of neurological or psychiatric 

disorders. The study had been approved by the ethics committee of the German 

Psychological Society and was performed in accordance with the Code of Ethics of the 

World Medical Association (Declaration of Helsinki).  

3.2.2 Stimuli and experimental paradigm 

The tasks were presented on a screen (spatial resolution 1024 x 768, 60 Hz 

sampling rate) mounted at the back of the magnet bore. A mirror system attached to the 

head-coil enabled the subjects to see the display at a viewing distance of 240 cm. 

Participants performed two versions of an adapted cueing paradigm (Egner et al., 2008). 

They were asked to detect a target stimulus (the diamond with one corner missing) in a 

visual search display and to indicate by button press whether the upper or lower corner of 

the target was missing. For their motor response, subjects were provided with a button 

box with two neighboring response buttons which they pressed with their right index finger 

or their right middle finger (see Figure 2).  

The search display consisted of four diamonds that were positioned in the corners 

of an imaginary rectangle centered on the fixation diamond (4.8° eccentric in each visual 

field, see Figure 2). The different colors of the stimuli in the search display were irrelevant 

for the present task, but were introduced for reasons of comparability with previous 

research (Dombert et al., 2016a).  

The search display was always preceded by a cue stimulus that was shown for 

400 ms. In the spatial attention task, the cue was an arrowhead appearing at the central 

fixation diamond, indicating the most likely hemifield in which the target would appear (Fig. 

2). In the motor intention task, the cue stimulus contained an illustration of the two 

response buttons for the right index and middle finger (Fig. 2). The white button indicated 

the most likely button press response required by the target. Therefore, in the example 

depicted in Figure 2, the subjects prepared a button press with the index finger (valid 
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condition) or a button press with the middle finger (invalid condition). In other words, the 

target always determined the motor response, but the cue biased the motor preparation 

toward one or the other response. The response mapping (upper/lower corner missing ! 

index/middle finger) was counterbalanced across subjects. Subjects needed to respond to 

the target within a period of 1500 ms from target onset. The tasks with motor or spatial 

cues were presented in two different runs, with counterbalanced order between subjects.  

Throughout the experiment, participants were asked to maintain central fixation 

and to respond as quickly as possible to the target. Moreover, they were instructed to use 

the cues according to how much they “trusted” them to speed up RTs to the target. The 

percentage of cue validity (%CV) changed between levels of ~50%, 70%, and 90% valid 

trials (cf. Fig. 4B). Participants were not aware of the different levels of %CV or when they 

would change; they were only informed that variations in %CV would occur over the 

course of the experiment. In the fMRI experiment, 284 trials were shown in each cueing 

version. In accordance with standard procedures in computational studies of trialwise 

inference, target stimuli and trial sequence were identical between the two cueing 

versions. Each %CV block consisted of 22 or 32 trials. This block length was chosen to 

provide participants with sufficient trials to learn the hidden statistical context. Each block 

contained an equal number of left and right upper and lower targets counterbalanced 

across valid and invalid cues. Furthermore, 84 null events (only displaying the fixation 

diamond) were randomly intermixed to jitter trial onsets. Halfway through each version, a 1 

min break was introduced by displaying the word “Pause”. The total duration of the fMRI 

experiment (both runs) amounted to 34 min. To familiarize the subjects with the task, 

fixation, and manual responses, we included a prior practice session in the experiment. 

This practice took place on the same day or the previous day of the fMRI session and 

consisted of one run with constant %CV of 80% and one run with changes in %CV.  
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Figure 2. Illustration of the different experimental conditions for the two different tasks. The 
behaviorally relevant target stimulus was a diamond with a missing corner, which was 
embedded in a visual search display. The subjects were asked to indicate by button press of 
one of two adjacent response buttons (for the right index or middle finger) if the upper or 
lower corner of the target diamond was missing. The allocation of upper/lower corner to 
index/middle finger was counterbalanced across subjects. This example shows a 
configuration in which the subjects should respond with the index finger for diamonds 
where the upper corner is missing. The target search display was always preceded by a cue 
stimulus. In the spatial attention task, this cue indicated the most likely hemifield in which 
the target would be located (with variable levels of cue predictability). In the motor intention 
task, the cue indicated the most likely button press response required by the target. This 
cue consisted of two squares representing the two response buttons. The white button 
signaled the most likely button press response (with variable levels of cue predictability). 
Note that the spatial attention task and the motor intention task were presented in different 
runs. 
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3.2.3 Statistical analysis of behavioral data 

Classical inference was first performed to investigate whether the different levels of 

experimentally manipulated cue predictability (%CV) significantly affected RTs and 

whether these effects differed for spatial attention and motor intention. Incorrect trials, 

misses, anticipations, and responses deviating >2 SDs from the individual subject’s mean 

RT were excluded from the analysis. Mean RTs from valid and invalid trials for each 

subject, %CV condition, and task entered a 2 (validity: valid/invalid) × 3 (%CV: 50/70/90%) 

× 2 (task: spatial attention/motor intention) within-subject ANOVA. Results of this analysis 

are reported after a Greenhouse-Geisser correction at a significance level of p<.05. Based 

on evidence for a linear relationship between validity effects (RT invalid minus RT valid) 

and %CV (e.g., Dombert et al., 2016a; Dombert et al., 2016b; Egner et al., 2008; Vossel et 

al., 2014a), we report linear contrasts for the effects of %CV. We expected to find a 

significant interaction between validity and %CV, with decreasing RTs in valid and 

increasing RTs in invalid trials (i.e., bigger validity effects) with higher %CV. The same 

within-subjects ANOVA was performed on accuracy (as the percentage of correct 

responses). 

In a second step, a Bayesian observer model (hierarchical Gaussian filter) was 

used to estimate trial-by-trial beliefs about cue predictability (i.e., the probability that the 

cue will be valid) based on the single-trial RTs for each participant (Mathys et al., 2011; 

Vossel et al., 2014a). The parameters that can be derived from this model also allow for a 

quantification of individual differences in the trialwise estimation of cue predictability. The 

model incorporates a perceptual and a response model (Fig. 3). While the perceptual 

model describes updating of beliefs based on the cue–target outcomes (i.e., 

observations), the response model is used to derive responses (i.e., RTs) based on these 

beliefs. Details about the derivation of the equations of the perceptual model are provided 

in Mathys et al. (2011). In what follows, we describe the model parameters as relevant for 

the present study.  

The perceptual model consists of hierarchically coupled Gaussian random walks 

which enable a flexible control of updating of the beliefs about cue predictability in each 

trial, in relation to beliefs about volatility and subject-specific parameters. It comprises 

three states denoted by x (Figure 3). The state 𝑥!
!  represents the environmental state in 

each trial, which, in the present paradigm, consisted of either a validly or invalidly cued 

target (with 𝑥!
! = 1 for valid and 𝑥!

!  = 0 for invalid trials). The probability distribution of the 

trial being valid (i.e., of 𝑥!
!  = 1) is a Bernoulli distribution governed by the next higher 
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state 𝑥!
! . Hence, 𝑥!

!  is a single real number, which determines the probability of 𝑥!
!  

being 1 (valid) or 0 (invalid) through a sigmoid (softmax) transformation. 𝑥!
!  changes from 

trial to trial as a Gaussian random walk. Its value depends on the value from the previous 

trial t-1 and the magnitude of its change (i.e., how fast 𝑥!
!  changes after new 

observations) is determined by two quantities: 𝑥!
!  (the state of the next upper level of the 

hierarchy) and a fixed, subject-specific updating parameter ω. The third state 𝑥!
!  

represents the belief about the stability of cue predictability and also changes as a 

Gaussian random walk, with the step size being determined by a second subject-specific 

parameter 𝜗. The values of the subject-specific parameters ω and 𝜗 are estimated from 

the individual RT data (see below).  

 

Figure 3. Depiction of the hierarchical Bayesian model (Gaussian filter) for belief updating 
about cue predictability. The perceptual model (shown on grey background) illustrates the 
three states (x1, x2, x3). The higher levels are influenced by constant parameters ω  and 𝛝, 
which affect trial-wise changes on the respective level. Circles represent constants, while 
diamonds represent quantities that change over time (trials). Hexagons, like diamonds, 
represent quantities that change in time but that additionally depend on their previous state 
in time in a Markovian fashion. The response model parameters 𝛇𝟏 and 𝛇𝟐 quantify the 
intercept and the slope of the linear function of RT and cue predictability 𝛍𝟏

(𝐭).  

This allowed us to estimate subject-specific beliefs about trial-by-trial variations in 

probabilistic contingencies. To infer these subject-specific beliefs from the reaction times, 

the perceptual model needs to be inverted; this yields the posterior densities over the 

three hidden states 𝑥(!). In the following, the mean of the subject’s posterior belief will be 
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denoted by 𝜇(!). We use the hat symbol (^) to denote predictions before the observation of 

𝑥!
!  on a given trial t. Thus, the relevant trial-wise quantity for the present study was 𝜇!

(!), 

i.e., the posterior belief that the cue will be valid before observation of the outcome of trial 

t (or, in other words, the estimated probability that the target will appear at the cued 

location or will require the cued motor response in the upcoming trial). 𝜇!
(!) is derived from 

a sigmoid transformation of  𝜇!
(!!!) as follows: 

𝜇!
(!) = 𝑠 𝜇!

!!!  

As described in detail in Mathys et al. (2011), variational model inversion under a 

mean field approximation yields simple analytical update equations – where belief 

updating rests on precision-weighted prediction errors. These update equations provide 

approximately Bayes-optimal rules for the trial-by-trial updating of the beliefs about 

𝜇!
(!)  and 𝜇!

(!). Note that this is an individualized approximate Bayes-optimality, in reference 

to the subject-specific values for the updating parameters ω and 𝜗. 

A response model was used to map the derived posterior beliefs to the observed 

RTs. In previous work using a saccadic response task with spatial cueing, RTs could most 

plausibly be explained by the trial-wise precision of the prediction at the first level of the 

perceptual model (Vossel et al., 2014a; Vossel et al., 2014b). However, since we 

employed a novel paradigm with manual responses in this study, we again compared the 

three alternative response models considered in this previous work. Variational Bayesian 

estimation was used to derive the model parameters based on RTs, as implemented in the 

HGF toolbox (http://www.translationalneuromodeling.org/tapas/) running on MATLAB® 

(2012b, The MathWorks, Inc., Natick, Massachusetts, United States). The relative 

plausibility of the previous response models was compared using a random effects 

Bayesian model selection (Stephan et al., 2009). This analysis revealed that the model in 

which RTs were directly governed by the estimated cue predictability 𝜇!
(!) described the 

data most plausibly	  𝛼
(!) = 𝜇!

(!). More specifically, this response model describes trial-wise 

RTs as a linear function of the estimated cue predictability 𝜇!
(!). The two response model 

parameters ζ1 and ζ2 parameterize the intercept and the slope of the linear function: 

𝑅𝑇(!) =
ζ1v − ζ2v𝜇!

(!)                for 𝑥!
! =1 (i.e., valid trial)

  ζ1i+  ζ2i𝜇!
(!)    for 𝑥!

(!)=0 (i.e., invalid trial)
 

Again, like the subject-specific parameters ω and 𝜗 of the perceptual model, these 

response model parameters were estimated for each subject from the individual RT data. 
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3.2.4 Eye movement recording and analysis 

Eye movement data were acquired using an EyeLink® 1000 MR-compatible eye-

tracker system (SR Research Ltd.) at a sampling rate of 500 Hz. Prior to the task, a 9-or 5 

point calibration was performed, followed by a validation to ensure that errors were  <1°. 

Data were processed using the ILAB  toolbox (Gitelman, 2002) in MATLAB (The 

MathWorks, Inc., Natick, Massachusetts, United States). The amount of time spent within 

a fixation zone of 1.5° from the central fixation point was analyzed for the time between 

cue and target appearance as well as for the time period between target and response. 

Percentage of fixation time within the central ROI in the cue-target period was compared 

between spatial and motor cues with a paired t-test. Fixation between target appearance 

and response was analyzed with a 2 (task: spatial attention/motor intention) x 2 (validity: 

valid/invalid) within-subject ANOVA. 

3.2.5 MRI data acquisition 

Using a 3T MRI System (Trio; Siemens), T2* weighted EPI images with BOLD 

contrast were acquired with a repetition time of 2.2 sec and an echo time of 30 ms. Two 

functional runs were acquired consisting of 462 EPI volumes for each run (i.e., for each 

task). Each volume consisted of 36 axial slices with interleaved slice acquisition. The field 

of view was 200 mm, using a 64 × 64 image matrix, which resulted in a voxel size of 3.1 × 

3.1 × 3.0 mm3. The first five volumes were discarded from the analysis to allow for T1 

equilibration effects. The remaining 2 × 457 volumes were analyzed using the Statistical 

Parametric Mapping software SPM12 (Wellcome Department of Imaging Neuroscience, 

London;	  Friston et al., 1995; http://www.fil.ion.ucl.ac.uk/spm). Images were bias-corrected. 

Slice acquisition time differences were corrected using sinc interpolation to the middle 

slice. During spatial realignment, a mean EPI image was computed for each subject and 

spatially normalized to the MNI template using the segmentation function. Subsequently, 

the resulting transformation was applied to the individual EPI volumes to translate the 

images into standard MNI space and resample them into 2 x 2 x 2mm3 voxels. Finally, the 

normalized images were spatially smoothed using an 8 mm full-width half-maximum 

Gaussian kernel. 

3.2.6 Statistical analysis of imaging data 

At the single-subject level, the spatial attention and motor intention tasks were 

included as separate sessions in a general linear model (GLM) of the BOLD responses. 

For each session, regressors of interest for left and right valid and invalid trials were 

defined. The resulting stimulus functions were convolved with a canonical hemodynamic 
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response function (HRF) and its first (temporal) derivative. For each task regressor, cue 

predictability 𝜇!
(!) as derived from the single-subject computational modeling was included 

as a parametric modulator. Note that parametric modulations in SPM are used to test 

whether the trial-wise amplitude of the BOLD response in an experimental condition varies 

with a continuous variable of interest. RTs were added as a second (orthogonalized) 

parametric regressor to capture residual variability that was not explained by cue 

predictability 𝜇!
(!). Error trials (anticipations, misses and incorrect responses) and outliers 

(RTs above or below 2 standard deviations from the subject’s mean) were discarded from 

the effects of interest and modelled separately. In addition, the rest period and 12 

movement parameters of the (rigid body) realignment (six motion parameters and their 

power of two; Friston et al., 1996) were included in the design matrices as nuisance 

regressors. Data were high-pass filtered at 1/128 Hz.  

As shown in Figure 1, the aim of the current study was to identify and compare brain 

areas in which BOLD responses are differentially modulated by cue predictability in valid 

and invalid trials, with potentially negative parametric effects for valid trials (i.e., smaller 

BOLD responses with higher predictability) and positive parametric effects for invalid trials 

(i.e., higher BOLD responses with higher cue predictability). For this reason, we focused 

on planned comparisons of the parametric regressors of invalid and valid trials (t-contrasts 

of invalid>valid) in each task and compared these between the two different tasks using 

interaction contrasts. These interaction contrasts between validity (valid/invalid) and task 

(spatial attention/motor intention) thus isolate domain-specific correlates of predictive 

processing in one or the other task. 

Because no significant interaction with hemifield was observed in the analysis of 

probability-independent effects (contrast of invalid>valid trials for the HRF regressors) 

(data not shown) - and to increase the trial numbers for the parametric modulation effects 

- the analysis of cue predictability was based on a first-level design matrix with only two 

regressors for all valid and all invalid trials in each task, respectively. At the group-level, 

the first-level contrast images for variations of BOLD amplitudes with cue predictability 𝜇!
(!) 

were analysed with a 2 (task: spatial attention/motor intention) × 2 (validity: valid/invalid) 

within-subject random-effects ANOVA. As explained above, differential predictability-

dependent effects for spatial attention and motor intention were investigated with 

interaction contrasts (spatial attention invalid>valid > motor intention invalid>valid; motor 

intention invalid>valid > spatial attention invalid>valid). To ensure that the interaction 

effects were indeed due to significantly higher effects in invalid as in valid trials in the 

respective task version (and not only due to a reversed effect in the other task), the 
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interaction contrasts were inclusively masked by the invalid>valid contrast of one task with 

a mask threshold of p<.01 (uncorrected). We also tested for a common predictability-

dependent effects in the two cueing tasks using a conjunction analysis of the two 

invalid>valid contrasts for the two tasks (SPM conjunction null hypothesis: spatial attention 

invalid>valid ∩ motor intention invalid>valid). All reported activations were significant at 

p<.05 family-wise error (FWE), corrected at the cluster-level with a voxel-level cutoff of 

p<.001. Since we had a strong a-priori hypothesis that the right TPJ would exhibit 

predictability-dependent (Dombert et al., 2016a; Vossel et al., 2015), we employed small 

volume correction in the spatial attention invalid>valid > motor intention invalid>valid 

contrast using a 12mm sphere centered upon the coordinates from Vossel et al. (2015) 

(MNI-coordinates [46 -46 6]). Results from this ROI analysis are reported at a significance 

level of p<.05 FWE, corrected for the search volume. Brain regions were defined 

anatomically using the SPM Anatomy Toolbox (Eickhoff et al., 2005) for those regions that 

have been cytoarchitectonically mapped, and the Automated Anatomical Labeling (AAL) 

atlas (Tzourio-Mazoyer et al., 2002) for the remaining regions. 

3.2.7 Psychophysiological interaction (PPI) analyses 

Because no common activation patterns were revealed by the conjunction analysis 

of probability- dependent effects in the two domains (i.e., spatial attention and motor 

intention), we used PPI analyses (Friston et al., 1997) to test for potentially converging 

cue-predictability-dependent connectivity patterns of the different seed regions derived 

from the former analysis [right TPJ for spatial attention; left angular gyrus (ANG) and 

anterior cingulate cortex (ACC) for motor intention]. PPIs explain the responses in cortical 

areas in terms of an interaction between the influence of another area and an 

experimental manipulation. This allows for a whole-brain analysis of context-dependent 

coupling with one predefined seed region.  

For each seed region, time series were extracted from the nearest local maximum 

within a radius of 8 mm from the group maxima. The first eigenvariate was then computed 

across all suprathreshold voxels within 4 mm of the subject-specific maxima. The resulting 

BOLD time series were adjusted for effects of no interest (e.g., rest periods, error trials, 

and movement parameters) and deconvolved to generate time series of the neuronal 

signal. These time series were used to construct the first-level design matrices for the 

PPIs. 

Our PPI analysis was, necessarily, more complicated than a standard PPI 

analysis. This is because a standard PPI analysis tests for a single interaction between a 
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physiological variable and a psychological variable. However, in our case, the 

psychological variable of interest is itself an interaction: an interaction between validity and 

predictability. This means that we were effectively testing for a three-way interaction be- 

tween a physiological and two psychological variables. In turn, this required us to model, 

not only the main effects of the psychological and physiological variables, but also two-

way interactions between the physiological variable and the psychological variables 

validity (valid/invalid) and model-derived cue predictability. The resulting explanatory 

variables therefore contain multiple PPI terms, rendering it a generalized PPI. Analyses 

were performed with the Generalized PPI (gPPI) Toolbox (McLaren et al., 2012).  

In detail, the design matrices for the three separate PPI analyses at the single-

subject level contained nine experimental regressors: four regressors for valid and invalid 

trials and their parametric modulation by predictability; four PPI regressors for the 

interactions between the physiological variable (i.e., the time series of the seed region) 

and valid trials, invalid trials, and their parametric modulation by predictability; and one 

regressor for the physiological variable. Model estimation was performed and first-level 

contrast images were created for the PPI regressor of the parametric modulator (cue 

predictability 𝜇!
(!)) in valid and invalid trials.  

At the second (i.e., group) level, the first-level contrast images entered a 

conjunction analysis of the invalid>valid contrast of each of the three seed regions (right 

TPJ for spatial attention, left ANG and ACC for motor intention). The “intermediate null 

hypothesis” in SPM was chosen to test for a common effect in two or more contrasts. 

Again, reported activations were significant p<.05 family-wise error (FWE), corrected at 

the cluster-level with a voxel-level cutoff of p<.001. This analysis identified areas where 

the connectivity with two or more regions decreased with higher estimated cue 

predictability in valid trials and in which connectivity increased with higher estimated cue 

predictability in invalid trials.	    
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3.3 Results 

3.3.1 Behavioral data 

Table 1 provides an overview of mean RTs and accuracy in the different 

experimental conditions. Figure 4A depicts mean validity effects (RT invalid minus RT 

valid) for both tasks in the three experimentally manipulated %CV levels.  

Table 1. Behavioral data. Upper section: Mean RTs (±  SEM), for spatial attention and motor 
intention, separately for valid and invalid trials in the three different %CV levels. Lower 
section: Mean accuracy (% correct responses) (±  SEM) in the different experimental tasks 
and conditions. 
 

 

The 2 (task: spatial attention/motor intention) × 2 (validity: valid/invalid) × 3 (%CV: 

50/70/90) within-subject ANOVA on individual mean RTs yielded a significant main effect 

of validity (F1,22=27.56, p<.001), reflecting generally slower responses in invalid as 

compared to valid trials. As expected, the validity × %CV interaction effect was significant 

(linear trend: F1,22=13.77, p=.001), indicating higher differences between invalid and valid 

trials with higher %CV (see Figure 4A).  There were no general differences in RTs 

between both task versions (non-significant main effect of task: F1,22=1.45, p=.24). The 

same results were observed when task order was included as a between-subject factor in 

the above ANOVA and task order did not interact with any of the effects. The same 

ANOVA was performed on % accuracy, revealing only a main effect of validity 

(F1,22=14.36, p=.001). Subjects were more accurate in valid than in invalid trials. Again, 

this effect was not influenced by the order of task administration, nor did it interact with 

any of the other factors. 

Task Validity 

%CV 

50% 70% 90% 

Spatial 
attention  

Valid 628.1 (±22.6) 629.6 (±21.8) 626.1 (±21.9) 

Invalid 651.3 (±20.7) 657.8 (±24.5) 672.6 (±24.7) 

Motor  
intention 

Valid 618.2 (±19.1) 622.7 (±18.8) 611.7 (±18.5) 

Invalid 646.2 (±19.1) 653.6 (±21.7) 662.4 (±20.4) 

Spatial 
attention  

Valid 91.2 (±1.2) 87.6 (±1.7) 88.7 (±0.9) 

Invalid 85.0 (±2.0) 85.5 (±2.0) 84.0 (±2.0) 

Motor  
intention 

Valid 

Invalid 

89.6 (±1.4) 

85.5 (±1.3) 

87.6 (±1.7) 

83.6 (±1.7) 

89.5 (±1.2) 

83.4 (±1.8) 
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Figure 4. Behavioral data. A) Validity effects (RT invalid minus RT valid) for each %CV block 
in each task. Error bars represent standard errors of the mean (SEM). B) Trial-by-trial 
changes in cue predictability 𝝁𝟏

(𝒕) (i.e., the subject’s belief that the cue will be valid) in 
relation to the experimentally manipulated %CV over the 284 trials, for the spatial attention 
and motor intention task, respectively. For this graph 𝝁𝟏

(𝒕) was calculated on the basis of 
group average values of the model parameters which did not differ between the two tasks. 
Note, however, that the profiles look different for each individual subject in each task and 
that individual cue predictability values entered the fMRI analyses. C) Observed and 
predicted response times in valid and invalid trials as a function of the trial-by-trial estimate 
of cue predictability  𝝁𝟏

(𝒕), for both task versions (calculated on the basis of group average 
values of the model parameters). Error bars depict the standard errors of the mean (SEM). 
Note that there was an insufficient number of trials for the invalid condition in the lowest 
probability bin, so that this data point is missing. 



EMPIRICAL	  SECTION	  
Kuhns,	  Dombert,	  Mengotti,	  Fink	  &	  Vossel	  (2017)	  

	  

	   51	  

In a next step, trial-wise estimates of cue predictability 𝜇!
(!) were derived from the 

hierarchical Gaussian filter. These estimates are governed by the constant subject-

specific parameters determining the step size of the random walks at the second (ω) and 

third level (𝜗). Comparing these parameters between both task versions revealed no 

significant differences in any of the parameters. Also, the response model parameters 

𝜁!!,ζ!",  𝜁!! and 𝜁!!, quantifying the absolute level of RTs, and the strength of the 

dependency on 𝜇!
(!) did not significantly differ between the two task versions. There were 

no significant correlations between the model parameters from the spatial attention and 

motor intention tasks, over subjects.  

Figure 4B depicts 𝜇!
(!) calculated on the basis of the mean model parameters of the 

whole group. Figure 4C shows observed valid and invalid RTs in relation to predicted RTs 

for different values of model-derived cue predictability 𝜇!
(!), (binned in 0.1 steps). A 2 × 4 × 

2 within-subject ANOVA with the factors validity (valid/invalid), cue predictability 𝜇!
(!) 

(>.55/>.65/>.75/>.85) and task (spatial attention/motor intention) revealed a main effect of 

validity (F1,22=33.03, p<.001) and, as expected, a significant validity × cue predictability 

𝜇!
(!)  interaction (linear contrast: F1,22=17.63, p<.001), showing that the differences 

between RTs in invalid and valid trials increased with higher values of 𝜇!
(!). This was due 

to decreasing RTs in valid and increasing RTs in invalid trials. 

 In sum, these analyses showed that RTs in the two cueing paradigms followed the 

hypotheses from the predictive coding framework. Moreover, analyses revealed that the 

dynamics of the estimation of cue predictability were comparable between the two tasks, 

since there were no significant differences in the subject-specific parameters of the 

hierarchical Gaussian filter. 

3.3.2 Eye movement data 

Data of five subjects had to be discarded due to poor tracking inside the MR 

scanner. Nonetheless, eye-movements were monitored visually in these subjects on the 

camera screen. The remaining subjects fixated in (mean +/- SEM) 97.7 ± 0.45% of the 

motor and 97.5 ± 0.59% of the spatial cueing task, during the cue-target period. Fixation 

performance did not differ between the two tasks (t17=0.73, p=.47). The 2 task (spatial 

attention/motor intention) x 2 validity (valid/invalid) within-subject ANOVA on the 

percentage fixation between target and response showed no significant effect of task 

(F1,17=0.3, p=.59) or validity (F1,17=0.02, p=.89), nor an interaction of the two factors 

(F1,17=0.002, p=.96). 
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3.3.3 fMRI data 

The purpose of this study was to compare the differential parametric modulation by 

cue predictability in invalid and valid trials between the two tasks (in analogy to the 

differential behavioral effects of cue predictability in valid and invalid trials). Common 

activity patterns should be revealed by a conjunction analysis (spatial attention 

invalid>valid ∩ motor intention invalid>valid). However, this analysis did not yield any 

significant results - suggesting that there was no detectable overlap in the brain areas 

mediating predictability-dependent processing in the spatial attention and motor intention 

task.  

Differential (i.e., domain-specific) activity patterns should be reflected in the two 

interaction contrasts (spatial attention invalid>valid > motor intention invalid>valid; motor 

intention invalid>valid > spatial attention invalid>valid; each masked with the simple 

contrast of invalid>valid in the respective task). The first interaction contrast revealed that 

there were no whole-brain results reaching cluster-level significance for the spatial 

attention>motor intention effect. However, a significant effect was obtained in a ROI 

analysis of the right TPJ with a sphere centered on the coordinates from Vossel et al. 

(2015) (pFWE-corrected for the search volume) (x=52, y=-56, z=8; 10 voxel; t=3.7). In this 

region, there was a positive parametric modulation effect for invalid trials, with beta 

estimates around zero for valid trials (see Figure 5A). For the reverse interaction contrast, 

we found differential parametric modulation effects for invalid versus valid trials in the left 

ANG (x=-38, y=-58, y=42; 411 voxel; t=5.22) and the left ACC (x=-8,y=36,z=24; 156 voxel; 

t=4.92), which were stronger in the motor intention than in the spatial attention task. The 

beta parameters for the parametric regressor cue predictability 𝜇!
(!) were positive for 

invalid trials, reflecting an increased response with higher estimated probability that the 

cue would be valid (see Figure 5B). In contrast, parameter estimates were zero or 

negative in valid trials, reflecting no or a decreasing modulation with higher estimated cue 

predictability.  
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Figure 5. fMRI data: differential cue predictability-dependent effects for spatial 
attention and motor intention. A) Results of the first planned interaction contrast 
(spatial attention invalid>valid > motor intention invalid>valid): increasing BOLD 
responses in invalid trials and unmodulated BOLD responses in valid trials with 
higher values of model-derived cue predictability 𝝁𝟏

(𝒕)in the right temporoparietal 
junction (TPJ) in the spatial attention task (blue, in comparison with the motor 
intention task, green). B) Results of the second planned interaction contrast (motor 
intention invalid>valid > spatial attention invalid>valid): increasing BOLD 
responses in invalid trials and decreased or unmodulated BOLD responses with 
higher values of model-derived cue predictability 𝝁𝟏

(𝒕)  in valid trials in the left ANG 
and left ACC in the motor intention task (green, in comparison with the spatial 
attention task, blue). L= left hemisphere; R=right hemisphere. 
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3.3.4 PPI	  results	  

We used PPI analyses to investigate if there was a common brain region exhibiting 

predictability-dependent coupling changes with right TPJ during spatial attention and left 

ANG or ACC during motor intention, respectively. Figure 6 shows the results of the 

conjunction analysis testing for significant PPI effects in at least two of the three contrasts 

capturing the effects of validity- and predictability-dependent coupling with the three 

seeds. The only region in which a significant effect at the cluster-level could be observed 

was located in the anterior part of the right hippocampus (x=30, y=-24, z=-4; 131 voxels; 

t=2.85). Post-hoc analyses of the beta estimates of the parametric PPI regressors 

revealed that a significant difference between cue predictability-dependent coupling in 

valid and invalid trials was present for all three seed regions (two-sided paired t-tests: TPJ 

seed: t22=-3.4, p=.003; ANG seed: t22=-3.8, p=.001; ACC seed: t22=-3.5, p=.002; see bar 

charts in Figure 6).   

 
  
Figure 6. Results of the conjunction analysis of cue-predictability-dependent 
coupling changes with the right TPJ during spatial attention and the left ANG and 
ACC during motor intention (yellow). The hippocampus (violet) is shown according 
to the Automated Anatomical Labeling atlas provided in MRIcroN. Analysis of the 
parameter estimates for the parametric PPI regressors in valid and invalid trials 
revealed that a significant predictability-dependent coupling effect with the 
hippocampus was present for all three seed regions. Blue bars indicate the spatial 
attention task; green bars, the motor intention task. L, Left hemisphere; R, right 
hemisphere.  



EMPIRICAL	  SECTION	  
Kuhns,	  Dombert,	  Mengotti,	  Fink	  &	  Vossel	  (2017)	  

	  

	   55	  

3.4 Discussion 

The present study combined computational modeling of behavior with fMRI to 

characterize common and distinct cortical mechanisms for predictive processing in spatial 

attentional and motor intentional systems. Manual RTs in two probabilistic cueing tasks 

were similarly affected by unsignaled changes in the predictability of a cue that indicated 

either the location of or the required response to a target stimulus. Differential parametric 

effects of BOLD responses by model-derived cue predictability in valid and invalid trials 

were regarded as signatures of the belief updating by precision-weighted prediction errors. 

Brain areas exhibiting such activity patterns were distinct for spatial attention and motor 

intention, with an involvement of the left ANG and ACC for motor intention and the right 

TPJ for spatial attention. In these areas, BOLD amplitudes were increased in invalid trials 

with higher estimated cue predictability (i.e., when an invalidly cued target was more 

unexpected) and decreased (ACC) or unmodulated (TPJ and ANG) in valid trials. There 

were no common areas in which cue predictability modulated neural activity in both 

domains. However, connectivity analyses revealed that the right hippocampus contributed 

to predictive processing in all three areas (TPJ during spatial attention; ANG and ACC 

during motor intention). Our results therefore suggest that, although the flexible control by 

inferred cue predictability recruited differential cortical structures in the two cognitive 

domains (i.e., spatial attention, motor intention), these structures all showed predictability- 

dependent coupling with the hippocampus.  

3.4.1 Behavior 

In both the spatial attention and the motor intention task, RTs were equally affected 

by invalid cue information, as well as by experimentally manipulated changes in the 

probability that the cue would be valid. Moreover, there were no differences in the overall 

level of RTs or accuracy. Similarly, there were no significant differences in the parameters 

of the hierarchical Gaussian filter governing the trialwise estimation of cue predictability 

be- tween the two tasks. This is consistent with previous studies showing the sensitivity of 

behavioral responses to probabilistic context during spatial attention (Vossel et al., 2014a) 

and motor intention (Bestmann et al., 2008). However, the model parameters were not 

correlated between the spatial attention and motor intention task. This contrasts with 

findings from the comparison of a spatial and a feature-based attention task, where the 

updating parameter of the second level of the model (ω) was significantly correlated 

between the two task versions (Dombert et al., 2016a). Consistent with these behavioral 

results, Dombert et al. (2016a) found a common modulation of reorienting-related activity 

in the left intraparietal sulcus, whereas the conjunction analysis in the present study did 
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not reveal any significant common effect.  

3.4.2 Distinct and common mechanisms of cue-predictability-dependent 

processing 

Differential effects mediated (in our predictive processing model) by precision-

weighted prediction errors were found in the left ANG and ACC for motor intention and in 

the right TPJ for spatial attention. Here, BOLD amplitudes increased with higher model-

derived cue predictability in invalid trials. In TPJ and ANG, there was no substantial 

modulatory effect in valid trials. Although a negative parametric modulation effect would 

have been predicted from theoretical grounds, this finding is consistent with data from 

Lasaponara et al. (2011), who showed that effects of higher percentage of cue validity on 

RTs and ERPs can be stronger for cueing costs (invalid trials compared with neutral trials) 

than for benefits (valid trials compared with neutral trials).  

The effect in the right TPJ replicates findings from previous studies using the same 

modeling approach with either saccadic responses (Vossel et al., 2015) or manual 

responses (Dombert et al., 2016a). It also extends these previous findings by showing that 

this effect was specific for the spatial attention condition because it was not observed for 

the motor intention task (cf. Fig. 5A). Because we were able to differentiate between 

attentional and motor intentional aspects in the present paradigm, we can ascribe the 

effect in TPJ to purely spatial attentional mechanisms. In other words, the preparation of 

eye movements or the allocation of covert spatial attention seem to involve different 

mechanisms than the preparation of limb movements.  

Conversely, reorienting after invalid motor (but not spatial) cues was affected by 

model-derived cue predictability in the left ANG and the ACC extending into the left medial 

superior frontal gyrus. The finding that cue-predictability-dependent effects in a feature-

based cueing task without a motor intentional component were observed in yet another 

brain region in the study by Dombert et al. (2016a) supports the interpretation that the 

effects in the present study were driven by the motor intentional component rather than by 

the expectation of a specific target feature. The area in the ACC has also been described 

as the rostral cingulate zone (RCZ). Our findings are consistent with a study on reward 

learning of actions, which reported that the RCZ responded stronger to negative events in 

a probabilistic reversal learning task when the reward rate was high (Jocham et al., 2009). 

Similarly, in our study, the BOLD response in this region to invalidly cued motor responses 

was increased with higher estimated cue predictability even though there was no reward 

associated with the action. The ACC has also been shown to be especially triggered 
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during cognitively demanding actions after context-specific behavioral surprise (Tobia et 

al., 2016), as well as during action selection when different response alternatives are 

competing (Botvinick et al., 1999), which would correspond to invalid trials in the present 

task. Similarly, predictability-dependent modulation of ACC activity during the motor 

intention task could also reflect the suppression of the previously prepared motor 

response. van Gaal and colleagues (2010) characterized a neural network comprising the 

ACC responsible for the inhibition of responses during a go/no-go task. Our results 

support the previous associations of ACC with response conflict and selection, but add 

that this area is modulated by the inferred cue predictability regardless of external reward.  

According to probabilistic fiber tracking, the ACC is interconnected structurally with 

a subregion of the ANG (Caspers et al., 2011), which also showed predictability-

dependent effects in the motor intention task. It has to be noted that this parietal activation 

was located more posteriorly than the activation reported by previous studies on motor 

intention in the supramarginal gyrus, which did not consider predictability-dependent 

effects (Rushworth et al., 2001b). Ranganath and Ritchey (2012) suggest that the ANG 

might be a candidate area for integrating contextual information due to its connection to 

the hippocampus and a wide- spread posterior medial system. Another view is that the 

ANG is a core region for providing an interface between the converging bottom-up 

multisensory inputs and the top-down predictions in the perception-to-action loop and that 

this can explain its involvement in a variety of functions (Seghier, 2013). Our data extend 

these previous findings by showing that activity in the ANG is modulated by probabilistic 

context on a short trial-by- trial time scale and that this effect is specific for situations with 

a motor intentional component.  

The conjunction analysis of predictability-dependent processing did not detect any 

common brain regions for spatial attention and motor intention. This finding, together with 

the significant differential effects reflected in the interactions of task and validity discussed 

above, argue against a mere “frequency detector” module in the brain, which simply 

responds to rare events. Interestingly, however, the additional PPI analysis revealed a 

converging coupling pattern between all three seed regions (TPJ, ACC, and ANG) and the 

anterior hippocampus for predictability-dependent processing. The hippocampus has been 

shown to encode the predictability or expected uncertainty (entropy) in choice and 

sequential RT tasks (Strange et al., 2005; Harrison et al., 2006). Moreover, a recent study 

has shown that update signals in different brain structures lead to activity changes in the 

hippocampus and other medial temporal lobe structures, which may suggest that these 

latter regions provide an online store or neural representation of a current internal model 
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(Boorman et al., 2016). Our data, together with these previous results, provide evidence 

that the trialwise inference of predictability (involving the temporal integration and 

processing of relationships between events) recruits the hippocampal system regardless 

of the content of the encoded information (motoric or spatial). Therefore, the hippocampal 

system can process different types of (spatial and nonspatial) stimulus information flexibly 

(Viard et al., 2011) and support the formation of internal models to control perception and 

action in an uncertain world.  

In conclusion, our findings provide novel insights into the generality and specificity 

of the computational anatomy underlying the flexible control of attention and intention in 

the human brain. Our data, together with previous findings in the attentional domain, 

argue for the notion that precision-weighted prediction errors induce belief updating in 

each cognitive domain separately, but that the necessity to relate new information to 

previous events and integrating it into memory involves crosstalk with the hippocampus in 

both systems regardless of the informational content. Therefore, our results confirm the 

previously reported dissociation and complementary lateralization of spatial attention and 

motor intention in the parietal cortex. At the same time, they highlight similarities of both 

systems in terms of computational principles and connectivity profiles.  
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Abstract 

Predicting upcoming events using past observations is a crucial component of an 

efficient allocation of attentional resources. The deployment of attention is sensitive to 

different types of cues predicting upcoming events. Here we investigated probabilistic 

inference abilities in spatial and feature-based attentional, as well as in motor intentional 

subsystems, focusing specifically on the age-related changes in these abilities. In two 

behavioral experiments, younger and older adults (20 younger and 20 older adults for 

each experiment) performed three versions of a cueing paradigm, where spatial, feature 

or motor cues predicted the location, color or motor response of a target stimulus. The 

percentage of cue validity (i.e. the probability of the cue being valid) changed over time, 

thereby creating a volatile environment. A Bayesian hierarchical model was used to 

estimate trial-wise beliefs concerning the cue validity on the basis of reaction times and to 

derive a subject-specific belief updating parameter ω in each version of the task. We also 

manipulated task difficulty: in Experiment 1 participants performed an easier version of the 

task, whereas in Experiment 2 a more difficult version was employed. Results from 

Experiment 1 suggested a preserved ability to use the three different cues to generate 

predictions in the group of older adults. However, the increased task demands of 

Experiment 2 uncovered a difference in belief updating (i.e. the model parameter ω) 

between the two age groups, indicating a reduction of the ability to update predictions with 

motor intention cues in older compared with younger adults.  

These results point towards a distinction of attentional and motor intentional 

subsystems, with more severe age-related differences in the motor intentional subsystem.   
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4.1 Introduction 
Predictions concerning upcoming events play an important role in modulating our 

responses. Especially when facing an uncertain environment, our decisions and 

responses will depend on one side on the prior beliefs that we created during our past 

experiences in the same or in a similar situation, and on the other side on our ability to 

flexibly adapt to the ever-changing environment (Behrens, Woolrich, Walton, & 

Rushworth, 2007).  

Previous research has shown that the deployment of attention is modulated by 

similar mechanisms (Vossel, Mathys, Daunizeau, Bauer, Driver, Friston & Stephan, 2014; 

Vossel, Mathys, Stephan, & Friston, 2015). Cueing paradigms, in which a cue predicts the 

location, a particular feature of a target, or the required motor response with a specific 

probability, are particularly useful to investigate the role of predictions for the attentional 

deployment (Posner, 1980; Rushworth, Ellison, & Walsh, 2001; Vossel et al., 2014; 

Dombert, Kuhns, Mengotti, Fink, & Vossel, 2016; Kuhns, Dombert, Mengotti, Fink, & 

Vossel, 2017). In these paradigms, validly cued targets induce faster responses, whereas 

slower responses are observed when predictions are violated, i.e. with invalidly cued 

targets. Moreover, reaction time (RT) differences between valid and invalid trials increase 

with increasing percentage of cue validity (%CV). Previous studies have shown that 

people are sensitive to changes in %CV, even when these changes are not explicitly 

signalled (Vossel et al., 2014; Dombert et al., 2016; Kuhns et al., 2017). In volatile 

environments, when the %CV is changing unpredicably over time, people tend to infer the 

validity of the cue on the basis of observations in past trials and this probabilistic inference 

process can be described using a hierarchical Bayesian learning model (Mathys, 

Daunizeau, Friston, & Stephan, 2011). This model formally quantifies the participants’ 

estimates concerning the probability of the cue being valid, as well as the trial-wise 

updating of these beliefs. The hierarchical structure of the model allows a flexible estimate 

of the updating of the belief concerning the %CV. Such beliefs are influenced by the 

higher level of the model describing the estimate of the volatility of the environment and by 

a parameter describing the subject-specific speed of updating of these beliefs about 

volatility.  

Recent evidence points towards a reduced ability in older adults to use uncertainty 

to guide learning in a predictive inference task (Nassar et al., 2016), and to flexibly adapt 

to changes in reward-based learning, particularly when reward information is uncertain 

(Eppinger, Haemmerer, & Li, 2011). The aim of the present study was to investigate age-

related differences in flexibly adapting to changes in a volatile environment (i.e. belief 
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updating) in different cognitive subsystems. We used three distinct cueing versions to 

isolate the processes involved in spatial attention, feature-based attention and motor 

intention, and two different levels of difficulty of the tasks. Unsignaled changes in the %CV 

occurred during the course of the experiments, creating a volatile environment. A 

Bayesian hierarchical model was applied to estimate trial-wise predictions about cue 

validity based on individual RTs and to deduct and compare subject-specific updating 

parameters (Mathys et al., 2011). Recent research with healthy young participants 

combining this modelling approach with functional MRI (Dombert et al., 2016; Kuhns et al., 

2017) identified common and distinct anatomical correlates of probabilistic inference in 

these three subsystems. Results showed that a common node located in the left anterior 

intraparietal sulcus (IPS) was involved in inferring trial-wise cue validity during spatial and 

feature-based attention (Dombert et al., 2016). However, distinct correlates were found for 

spatial attention and motor intention (Kuhns et al., 2017). Whereas for spatial attention the 

activity of the right temporo-parietal junction (TPJ) was modulated by trial-wise estimates 

of the cue being valid (see also Vossel et al., 2015 and Dombert et al., 2016), the same 

process for motor cues was supported by the left angular gyrus (ANG) and anterior 

cingulate cortex (ACC).  

Based on these previous results, we hypothesized similar age-related changes for 

the spatial and feature-based attentional subsystems, but a possibly distinct pattern for 

belief updating in the motor intention system. 
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4.2 Experiment 1: Materials and Methods 

4.2.1 Participants 

Initially, twenty-one older and twenty-one younger volunteers participated in the 

current study. Inclusion criteria were an age between 18-30 years for the younger group 

and between 50-75 years for the older group. All participants were right-handed, as 

assessed by the Edinburgh Handedness Inventory (Oldfield, 1971), had normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorders. The 

group of older participants underwent the Mini-Mental-State Examination (MMSE) to rule 

out general cognitive deficits (inclusion criterion: score ≥29; Folstein, Folstein, & McHugh, 

1975). One participant in each group had to be excluded from further analyses since the 

error rate in the experimental tasks deviated more than two standard deviations from the 

group mean. Hence, the final sample consisted of 20 older (9 females; age: 59 ± 6.8 

(±SD) years; age range 50-71 years) and 20 younger participants (10 females; age: 23 ± 

3.3 (±SD) years; age range 18-30 years). All participants gave written informed consent 

prior to participation. The study had been approved by the local ethics committee and was 

performed in accordance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki).  

4.2.2 Stimuli and experimental paradigm 

Three different cueing tasks (adapted from Dombert et al., 2016 and Kuhns et al., 

2017) were presented consecutively on a laptop (resolution 1024 x 768, 60 Hz sampling 

rate) at a viewing distance of 52 cm.  

At the beginning of each trial the cue stimulus was shown for 800 ms. The cues in 

the three task versions contained either spatial or feature information about the upcoming 

target, or were preparatory for a motor response. In the spatial attention version, an 

arrowhead presented at the central fixation diamond pointed to the left or right side of the 

display, thereby indicating the most likely target location (Figure 1A). In the feature-based 

attention task, feature cues provided information about the most likely colour of the target. 

These cues consisted of two-letter abbreviation of the colour word in the centre of the 

fixation diamond (‘BL’ or ‘RO’; [i.e. ‘BL’, ‘RE’, in German, respectively) (Figure 1A). This 

cue has been shown to elicit most effective cueing effects when compared to the 

presentation of the physical colour or the whole colour word (Dombert, Fink, & Vossel, 

2016). Finally, in the motor intention task, the cue illustrated the two response buttons 

within the fixation diamond, with one being white and the other one being grey. 

Participants were asked to prepare the motor response corresponding to the white button, 
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cueing either the right index or middle finger in preparation towards the upcoming target 

(Figure 1A).  

After a 1000 ms stimulus onset asynchrony, the target display appeared for 1000 

ms, consisting of one target stimulus, an upward or downward triangle located either on 

the left or right side of the fixation diamond (4.1° eccentric in each visual field, see Figure 

1B), and a distractor stimulus (a diamond, located on the opposite side). When the 

distractor was red, the target was blue and vice versa. Participants were asked to respond 

to upward or downward triangles by button presses with two different response buttons for 

their right index and middle finger. The response mapping (upward/downward triangle - 

index/middle finger) was counterbalanced between participants. Participants were 

instructed to maintain central fixation and to respond as fast as possible to the target.  

 
 

 
Figure 1. Experimental paradigm in Experiment 1 and 2. A. Three different cue 
stimuli were used for guiding spatial attention, feature-based attention, and motor 
intention. The spatial cue guided the attention towards one hemifield of the search 
display, whereas the feature cue was informative about the target colour (RO for 
´red` and BL for ´blue`). Motor responses were indicated by the salient white button 
cueing for index or middle finger response. B. Timeline of a valid trial for the spatial 
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attention task in Experiment 1. C. Timeline of a valid trial for the spatial attention 
task in Experiment 2.  
 

The order in which the three different cueing tasks testing spatial attention, feature-

based attention, or motor intention were administered was counterbalanced across 

participants. In each cueing task, the proportion of valid and invalid trials determining the 

validity of the cue information (%CV; i.e. the probability that the cue will be valid) changed 

over the course of the experiment between levels of 50% and 80% (Figure 2B). 

Participants were informed about possible changes in %CV, but not about when they 

would occur or how high the %CV would be. A total of 200 trials per cueing version were 

shown, with alternating %CV blocks, each block consisting of 40 trials (Figure 2B). The 

position of the target, as well as its colour, was counterbalanced across the cueing 

conditions and the %CV blocks. Following standard procedures in computational studies 

of trial-wise inference, target stimuli and trial sequence were identical between cueing 

versions. Halfway through each version, a one-minute break was introduced by displaying 

the word “Pause”. A practice session preceded each task of the experiment, so that 

participants could get used to the fixation, manual response and cueing conditions. The 

practice consisted of two short separate runs; one run with a constant 80 %CV followed by 

a second run with changes in %CV. The total duration of the experiment (three runs with 

practice in between) amounted to approximately 70 minutes.  

4.2.3 Statistical analysis of general task performance and cueing effects in 
relation to task domain and age 

In a first step, we investigated the differences in general performance between the 

two age groups in the three different cueing tasks. Each subject’s mean RT for correct 

trials was calculated across all cueing and %CV conditions. Responses deviating more 

than two standard deviations from the overall individual mean were discarded. Mean RT 

for each subject in each task version entered a 3 × 2 ANOVA with the within-subject factor 

Task (spatial attention/feature-based attention/motor intention) and Age (younger/older) as 

between-subject factor. A similar ANOVA was performed on accuracy (% correct 

responses).  

Moreover, we tested whether the participants showed general differences in cueing 

effects in the different versions of the task and between the two age groups. To account 

for the generally slower responses in older participants revealed by the first ANOVA, we 

calculated normalized cueing effects by dividing the difference between valid and invalid 

RT by mean overall RT. These normalized cueing effects were analyzed with a 3 (Task: 
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spatial attention/feature attention/motor intention) × 2 (Age: younger/older) ANOVA. In 

addition, the normalized cueing effects were tested against zero with one-sample t-tests to 

ensure that the subjects paid attention to the cues. Results of the ANOVAs are reported 

after Greenhouse-Geisser correction at a significance level of p < 0.05. Post-hoc t-tests 

(with Bonferroni correction) were computed to interpret the significant effects when 

appropriate. 

4.2.4 Bayesian modeling and statistical analysis of age and domain-specific 

inference on cue predictability 

To investigate age-related differences in belief updating under uncertainty during 

spatial attention, feature-based attention, and motor intention, a Bayesian hierarchical 

learning model was applied, estimating the individual trial-wise beliefs about cue validity 

(Mathys et al., 2011; Vossel et al., 2014). Single-trial RTs of each participant were used to 

derive learning parameters for each task. Since the general speed of responding differed 

between the two age groups, these analyses were based on normalized RTs (RT divided 

by overall mean RT). 

The model, applied separately in the three tasks, incorporates a perceptual and a 

response model (Figure 2A). While the perceptual model describes updating of beliefs 

based on the cue-target outcomes (observations), the response model is used to derive 

responses (i.e. RTs) based on these beliefs. For a more into depth description of the 

model, please refer to Mathys et al. (2011). In what follows, we will describe the model 

parameters as relevant for the present study. 

The perceptual model consists of hierarchically coupled Gaussian random walks 

enabling a flexible control of updating of the beliefs about cue validity in each trial, in 

relation to beliefs about volatility and subject-specific parameters. It comprises three 

states denoted by x. The state 𝑥!
!  represents the environmental state of each trial t, 

which, in the present paradigm, consisted of either a validly or invalidly cued target (with 

𝑥!
! = 1 for valid and 𝑥!

!  = 0 for invalid trials). The distribution of the probability of a trial 

being valid (i.e. 𝑥!
!  = 1) is a Bernoulli distribution governed by the next higher state 𝑥!

! , 

which in turn changes over time as a Gaussian random walk. The volatility of 𝑥!
!  (i.e. how 

fast 𝑥!
!  changes after new observations) is determined by two quantities: 𝑥!

!  (the state of 

the next upper level of the hierarchy) and a subject-specific updating parameter ω. The 

third state 𝑥!
!  also changes as a Gaussian random walk, with the dispersion of the 

random walk being determined by a second fixed subject-specific parameter 𝜗. ω 

determines the step size of the random walk at the second level of the model, or in other 
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words, the speed of the belief update about cue validity from trial-to-trial. 𝜗 determines the 

speed of the update about the stability of cue validity (i.e. volatility, third level of the 

model). 

 

 
Figure 2. Illustration of the Bayesian hierarchical model for belief updating and 
example of behavioural output. A. The perceptual model (shown on the dark grey 
background) incorporates the three states (x1,x2 ,x3). Higher levels are influenced by 
constant parameters ω and ϑ, which affect trial-wise changes on the respective 
level. Whereas the variables shown in diamonds and hexagons are quantities 
evolving with time (trials), circled variables are constants. Additional, the quantities 
in the hexagons rely upon their previous states in a Markovian fashion. B. 

𝑝 𝑥2
(𝑡) ~𝑁 𝑥2

(𝑡−1), e𝑥3+𝜔  

𝑝 𝑥3
(𝑡) ~𝑁 𝑥3

(𝑡−1), 𝜗  

𝑝 𝑥1 = 1 = 𝑠 𝑥2  𝑣𝑎𝑙𝑖𝑑 𝑡𝑟𝑖𝑎𝑙  

x3 

x2 

x1 

ϑ 

Z 

RT ζ1v, ζ1i, ζ2v, ζ2i 

Perceptual Model 

Response Model 

Level 1: Observations (valid/invalid trials) 
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Level 3: Volatility of cue predictability 

𝑝 𝑥1 = 0 = 1 − 𝑠 𝑥2  𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑡𝑟𝑖𝑎𝑙  

A 
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Percentage of cue validity (%CV) was manipulated over the course of the 
experiments, alternating between 80 and 50% (grey line). Here, trial-by-trial changes 
in probability-dependent processing 𝝁𝟏

(𝒕) (i.e. the subject’s belief that the cue will be 
valid) in relation to the volatile environment over the course of 200 trials is shown. 
For this graph 𝝁𝟏

(𝒕) was calculated for one subject to exemplify the model.  
 

To infer the subject-specific beliefs about trial-by-trial variations in probabilistic 

contingencies from the RTs, the perceptual model needs to be inverted; this yields the 

posterior densities of the three hidden states 𝑥(!). In the following, the sufficient statistics 

of the subject’s posterior belief will be denoted by 𝜇(!) (mean), 𝜎(!) (variance), and 

𝜋(!) = !
!(!)

  (precision). As described in detail in Mathys et al. (2011), variational model 

inversion under a mean field approximation yields simple analytical update equations – 

where belief updating rests on precision-weighted prediction errors. These update 

equations provide approximately Bayes-optimal rules for the trial-by-trial updating of the 

beliefs. In this experiment, they provide us with the subject’s estimate of the probability 

that the target appears at the cued location, the target color matches the cue, or that the 

target will require the cued motor response in a particular trial (note that this is an 

individualized approximate Bayes-optimality, in reference to the subject-specific values for 

the updating parameters ω and 𝜗). 

A response model was used to map the derived posterior beliefs to the observed 

RTs. In previous work (Dombert et al., 2016; Kuhns et al., 2017) a response model in 

which RTs were directly governed by the estimated cue validity before the observation of 

the trial outcome 𝜇!
(!) described the data most plausibly. Variational Bayesian estimation 

was used to derive the model parameters based on RTs, as implemented in the HGF 

toolbox (http://www.translationalneuromodeling.org/tapas/) running on MATLAB® (2012b, 

The MathWorks, Inc., Natick, Massachusetts, United States). The two response model 

parameters ζ1 and ζ2 parameterize the intercept and the slope of the linear function: 

𝑅𝑇(!) =
ζ1v − ζ2v𝜇!

(!)                for 𝑥!
! =1 (i.e. valid trial)

 ζ1i+ ζ2i𝜇!
(!)    for 𝑥!

(!)=0 (i.e. invalid trial)
 

Again, like the subject-specific parameters ω and ϑ of the perceptual model, these 

response model parameters were estimated for each subject from the individual RT data 

(normalized RTs).  
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4.3 Results 
An overview over mean RTs and accuracy in the three versions of the cueing 

tasks for each age group is given in Table 1. 

Table 1. Behavioural data for Experiment 1. Mean RTs (±  SEM) and mean accuracy 
(±  SEM), for spatial attention, feature-based attention and motor intention, 
separately for younger and older adults.  

 

The ANOVA on accuracy with the within-subject factor Task (feature-based 

attention/spatial attention/motor intention) and the between-subject factor Age 

(younger/older) yielded to a main effect of Task (F(1.8,68.1) = 5.91, p = 0.006). Post-hoc 

paired samples t-tests (Bonferroni corrected threshold: p = 0.017) comparing the tasks 

revealed better performance in the spatial attention task (97.9 ± 0.2%; mean ± SEM) 

compared to the motor intention task (97 ± 0.36%; t(39) = -2.92, p = 0.006) and compared 

to the feature-based attention task (97.3 ± 0.34%; t(39) = -2.89, p = 0.006). The main effect 

of the between-subject factor Age was significant (F(1,38) = 7.96, p = 0.008), indicating 

higher accuracy for older than younger participants (98 ± 0.35% vs. 97 ± 0.35%). The 

interaction Age × Task was not significant (F(1.8,68.1) = 2.4, p = 0.1). 

The ANOVA on individual mean RT (across all conditions) revealed a significant 

main effect of Task (F(1.9,72.9) = 9.74, p = 0.0002). Post-hoc paired samples t-tests 

(Bonferroni corrected threshold: p = 0.017) comparing the tasks revealed significantly 

faster RTs in the motor intention task (546 ± 15 ms; mean ± SEM) as compared to the 

spatial attention (581 ± 17 ms; t(39) = -4.4, p = 0.00007) and the feature-based attention 

task (575 ± 16 ms; t(39) = 3.18, p = 0.003). Additionally, the between-subject factor Age 

Task 

Mean RT (ms) Accuracy (%) 

Younger Older Younger Older 

Spatial attention 
507  

(±16) 

655 

(±19) 

97.6  

(±0.3) 

98.3  

(±0.3) 

Feature-based attention  
502  

(±17) 

648 

(±16) 

96.5  

(±0.5) 

98.0  

(±0.3) 

Motor intention 
486  

(±18) 

607 

(±16) 

96.0  

(±0.5) 

98.0  

(±0.4) 
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was significant (F(1,38) = 39.67, p = 0.0000002), indicating generally slower RTs for the 

older participants (636 ± 15 ms vs. 498 ± 15 ms). The interaction Age × Task was not 

significant (F(1.9,72.9) = 1.58, p = 0.21). 

The ANOVA on normalized cueing effects yielded to no significant main effect of 

Task (F(2,75.3) = 1.35, p = 0.27) or Age (F(1,38) = 0.21, p = 0.65), nor an interaction between 

Task × Age (F(2,75.3) = 0.34, p = 0.71). We additionally performed one-sample t-test against 

zero to investigate whether younger and older adults show significant cueing effects in all 

task versions. Indeed, all t-tests were significant (all ps < 0.005), showing that both age 

groups were using the cues during the three tasks versions. 

The main focus of our study was the assessment of trial-wise inference on cue 

validity using Bayesian modeling. For this reason, we analyzed the task- and subject-

specific parameters ω and 𝜗 which determine the speed of the trial-wise updating of belief 

that the cue will be valid (ω) and beliefs about volatility of cue validity (𝜗). The ANOVA with 

the within-subject factor Task (feature-based attention/spatial attention/motor intention) 

and the between-subject factor Age (younger/older) on the updating parameter ω  did not 

reveal any significant main effect (Task: F(2,75.1) = 0.25, p = 0.78; Age: F(1,38) = 3.3, p = 

0.08) or interaction (Task × Age: F(2,75.1) = 0.06, p = 0.94). The ANOVA on the parameter 𝜗 

quantifying updating about volatility did also not reveal any significant main effect (Task: 

F(1,38.3) = 1.28, p = 0.27; Age: F(1,38) = 0.73, p = 0.4) or interaction (Task × Age: F(1,38.3) = 

0.87, p = 0.36).  

Figure 3 shows observed RT costs in relation to predicted RTs costs for different 

values of estimated cue validity 𝜇!
(!) (binned in higher or lower/equal to 0.7).   
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Figure 3. Observed and predicted pattern of RT costs from the Bayesian 
hierarchical model in Experiment 1. RT costs were calculated by subtracting 
normalized RTs of invalid trials from valid trials and they are shown in relation to 
the participants’ trial-by-trial estimate of the cue predictability 𝝁𝟏

(𝒕)for all three tasks 
versions and the two age groups, binned in cue validity higher or lower/equal to 0.7. 
Error bars indicate SEM.  
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4.4 Discussion 
The first experiment was designed to explore putative age-related differences in 

the ability to use trial-by-trial observations to estimate the cue validity, i.e. to update 

predictions concerning upcoming stimuli. In addition, we tested whether the attentional 

deployment and the updating behaviour differed between three different versions of the 

cueing paradigm, namely the spatial attention, the feature-based attention, and the motor 

intention tasks.  

  We found no evidence of age-related differences in belief updating abilities. None 

of the learning parameters from the Bayesian learning model analyzed showed group 

differences between older and younger participants. There was also no evidence of 

differences in updating between the three different tasks. As for the attentional 

deployment, measured from the normalized cueing effects, we again did not find any age-

related differences, nor differences in the different tasks. However, we did find age-related 

differences in the general performance, with older participants being more accurate but 

slower in reacting than the younger participants, indicating a speed-accuracy trade-off. In 

addition, we found a higher accuracy for the spatial task, compared with the feature-based 

and the motor intention tasks, and faster RTs for the motor intention task, compared with 

the spatial and the feature-based tasks. Although the reaction to the target involves motor 

preparation across conditions, the motor intentional cue allows building a representation of 

the movement at an earlier stage and this might explain these RT differences. 

  Given the results from Experiment 1, we could not conclude that older participants 

differ from younger participants in their probabilistic inference abilities. Therefore, in 

Experiment 2 we used a more difficult version of the cueing paradigm, more similar to the 

ones used in previous neuroimaging studies with younger participants (Dombert et al., 

2016; Kuhns et al., 2017).  
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4.5 Experiment 2: Materials and Methods 

The results of Experiment 1 revealed comparable abilities of inferring cue validity in 

older and younger adults across different cueing conditions in a simple task setting. 

Therefore, Experiment 2 employed more difficult versions of the cueing tasks to 

investigate whether increased task difficulty may uncover age-related decline in belief 

updating in any of the three attentional-intentional domains. We exacerbated the task by 

shortening the cue and target appearance time, as well as the time window to respond to 

the target. In addition, the target stimuli and search display were made more complex, the 

latter by adding two distractor stimuli.  

4.5.1 Participants 

Twenty-one older and twenty-two younger participants who did not participate in 

Experiment 1 participated in Experiment 2. Two participants from the young age group 

and one subject in the older group had to be excluded due to a high error rate (>2 SD). 

Therefore, the final sample comprised twenty older participants (10 females; age: 61 ± 8.2 

(SD) years; age range 50-77 years) and twenty younger participants (10 females; age: 26 

± 3.3 (SD) years; age range 19-30 years). The group of younger adults in Experiment 2 

differed from the one of Experiment 1 by age (t(38) = -2.13, p = 0.04), with  participants of 

the younger group being slightly younger in Experiment 1 than in Experiment 2 (23.4 ± 

0.75 vs. 25.7 ± 0.75 years; mean ± SEM). No differences in age were found between older 

participants in Experiment 1 and Experiment 2 (59 ± 1.5 vs. 61.4 ± 1.8 years; t(38) = -

1.02, p = 0.31). The inclusion criteria matched those of Experiment 1.  

4.5.2 Stimuli and experimental paradigm 

Experiment 2 used the same cue stimuli for the three task versions and manual 

responses towards target stimuli as Experiment 1. However, the cue and target 

presentation were shortened to 400 ms and 500 ms, respectively, and the intertrial interval 

was reduced (1200 ms vs. 2000 ms in Experiment 1) (see Figure 1C). The complexity of 

the search display was increased, containing three distractor diamonds and one target 

diamond peripherally arranged in the corners of an imaginary rectangle centered on the 

fixation diamond (4.1° eccentric in each visual field). The target diamond had a missing 

corner in its upper or lower half and participants were asked to indicate which corner was 

missing. The response mapping was counterbalanced across participants. Each hemifield 

always contained one red and one blue diamond with counterbalanced positions across 

%CV blocks and valid and invalid trials, resulting in an equal number of diagonally and 
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horizontally arranged trials. All other aspects of the task including the trial sequence and 

%CV manipulation were kept constant with regard to Experiment 1. 

4.5.3 Statistical analyses 

The same analyses as in Experiment 1 were performed.  

4.5.4 Eye movement recording and analysis 

Previous evidence showed that age correlates with an increased difficulty in 

voluntary saccade control (Peltsch, Hemraj, Garcia, & Munoz, 2011). Since we introduced 

additional distractor stimuli to make the task more complex, eye movements were 

recorded to control for fixation ability. An EyeLink® 1000 MR-compatible eye-tracker 

system (SR Research Ltd.) was employed at a sampling rate of 500 Hz. A 9-or 5 point 

calibration was performed, followed by a validation to ensure that errors were <1°. Data 

were processed using the ILAB toolbox (Gitelman, 2002) in MATLAB (The MathWorks, 

Inc., Natick, Massachusetts, United States). The time between cue and target onset was 

analyzed for the amount of time spent in a predetermined fixation zone of 1.5° around the 

central fixation diamond. Consequently, the percentage of fixation time within the central 

ROI was compared using independent samples t-tests for each task, between the age 

groups.  
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4.6 Results 

4.6.1 Behavioral data 

Table 2 provides the mean RTs and accuracy in the three experimental conditions 

for each age group. 

Table 2. Behavioural data for Experiment 2. Mean RTs (± SEM) and mean 
accuracy (± SEM), for spatial attention, feature-based attention and motor 
intention, separately for younger and older adults.  

 

The 3 (Task: feature-based attention/spatial attention/motor intention) × 2 (Age: 

younger/older) ANOVA on accuracy revealed a significant main effect of Age (F(1,38) =12.1, 

p = 0.001). In contrast with the results of Experiment 1, the younger participants were 

more accurate than the older participants in Experiment 2 (93 ± 1.7 % vs. 84 ± 1.7 %). No 

main effect of Task (F(1.9,71.6) = 0.52, p = 0.59) nor a significant Task × Age interaction were 

found (F(1.9,71.6) = 0.18, p = 0.82).  

The same ANOVA on mean RTs revealed a significant main effect of Task (F(1.77,67.4) 

= 8.75, p = 0.0007). Post-hoc paired samples t-tests (Bonferroni corrected threshold: p = 

0.017) comparing the tasks revealed that RTs in the motor intention task (703 ± 22 ms) 

were significantly faster than in the spatial attention task (736 ± 20 ms; t(39) = -3.8, p = 

0.001) and in the feature-based attention task (738 ± 20 ms; t(39) = 3.6, p = 0.001). A main 

effect of Age (F(1,38) = 32.5, p = 0.000001) was found, with slower RTs for older compared 

with younger participants (812 ± 21 ms vs. 639 ± 21 ms). In addition, the Task × Age 

interaction (F(1.77,67.4) = 3.97, p = 0.028) was significant. Post-hoc independent samples t-

tests (Bonferroni corrected threshold: p = 0.017) comparing tasks between the age groups 

indicated that younger participants were significantly faster in all tasks (feature-based 

Task 

Mean RT (ms) Accuracy (%) 

Younger Older Younger Older 

Spatial attention 
662 
(±21) 

809 
(±26) 

93.4 
(±0.5) 

84.8 
(±2.7) 

Feature-based 
attention 

653 
(±22) 

824 
(±22) 

93.0 
(±1.1) 

84.4 
(±2.3) 

Motor intention 
603 
(±22) 

803 
(±23) 

92.2 
(±1.0) 

84.4 
(±2.2) 
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attention: t(38) = -5.55, p = 0.000002; motor intention: t(38) = -6.3, p = 0.0000002; spatial 

attention: t(38) = -4.3, p = 0.0001). In order to test for differences between task versions 

within the two age groups, we calculated post-hoc paired samples t-tests (three tests per 

age group; Bonferroni corrected threshold: p = 0.017). Results revealed faster RTs in 

younger participants for the motor intention task (603 ± 21 ms) compared with the spatial 

attention task (662 ± 21 ms; t(19) = -4.78, p = 0.0001) and with the feature-based attention 

(639 ± 24 ms; t(19) = 3.34, p = 0.003). No differences were found between task versions 

within the group of the older participants.  

The ANOVA on normalized cueing effects yielded no significant main effect of Task 

(F(1.9,73.1) = 0.05, p = 0.95), nor a Task × Age interaction (F(1.9,73.1) = 0.06, p = 0.93). 

However, there was a significant main effect for Age (F(1,38) = 5.7, p = 0.02), with higher 

normalized cueing effects for younger than older adults (0.11 ± 0.01 ms vs. 0.07 ± 0.01 

ms). We additionally performed one-sample t-test against zero to investigate whether 

younger and older adults show significant cueing effects in all task versions. Indeed, all t-

tests were significant (all ps < 0.005), showing that both age groups were using the cues 

during the three tasks versions. 

 As in Experiment 1, the subject-specific updating parameter ω was compared in an 

ANOVA with the within-subject factor Task (spatial attention/feature-based attention/motor 

intention) and the between-subject factor Age (younger/older). The main effects of Task 

(F(2,75) = 0.21, p = 0.81) and Age (F(1,38) = 2.4, p = 0.13) were not significant. However, a 

significant Task × Age interaction (F(2,75) = 4.33, p = 0.017) was observed. Post-hoc 

independent samples t-tests (Bonferroni corrected threshold: p = 0.017) showed that the 

learning parameter ω in the motor intention task tended to be reduced in older compared 

with younger adults (t(38) = 2.49, p = 0.019; see Figure 4). Thus, younger participants 

tended to be faster than the older participants in updating their beliefs about cue validity in 

the motor intention task. No differences were found between task versions for each of the 

two groups.  
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Figure 4. Results from the Bayesian hierarchical Model in Experiment 2. Between-
group comparison of the individual updating parameter ω for spatial attention, 
feature-based attention, and motor intention. Bigger values of ω indicate faster 
updating. In the motor intention task, younger participants are significantly more 
flexible in their tendency to adapt their predictions, as opposed to older adults.  

 
The ANOVA on 𝜗 parameter (updating of volatility) did not reveal any significant 

main effect (Task: F(1.1,43) = 0.77, p = 0.4; Age: F(1,38) = 0.26, p = 0.61) nor a Task × Age 

interaction (F(1.1,43) = 1.34, p = 0.26).  

Figure 5 shows observed RTs cost in relation to predicted RTs costs for different 

values of 𝜇!
(!), (binned in higher or lower/equal to 0.7).    
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Figure 5. Observed and predicted pattern of RT costs from the Bayesian 
hierarchical model in Experiment 2. RT costs were calculated by subtracting 
normalized RTs of invalid trials from valid trials and they are shown in relation to 
the participants’ trial-by-trial estimate of the cue predictability 𝝁𝟏

(𝒕)for all three tasks 
versions and the two age groups, binned in cue validity higher or lower/equal to 0.7. 
Error bars indicate SEM.  

4.6.2 Eye movement data 

A total of 19 of the 120 datasets (one for each of the three task versions for the 

younger and older adults) had to be discarded from further analysis due to poor tracking 

quality and technical difficulties. Independent samples t-tests on percentage of fixation 

time in the cue-target period were conducted for each task version, between age groups. 

In the feature-based attention task, five datasets of older participants could not be 

included. Analysis showed significantly higher fixation time in younger adults (99 ± 0.3%; 

mean ± SEM) compared to older adults (98 ± 0.2%; (t(33) = 2.6, p = 0.01). In the motor 

intention task, datasets of five younger and four older adults did not enter the analysis. 

Again, younger participants had a significantly better fixation performance (99 ± 0.2%) 

than the older group (98 ± 0.3%; t(29) = 3, p= 0.005). As for the spatial attention task, five 

datasets from older adults had to be discarded. The remaining participants showed no 
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significant differences (t(33) = 0.7, p = 0.49) in fixation time (younger: 99 ± 0.4%; older: 98 ± 

0.2%). Despite of the differences between age groups in some of the task versions, mean 

fixation values showed that also older adults were able to keep good fixation during the 

task. 

4.7 Discussion 

In Experiment 2, we employed a more difficult version of the cueing paradigm used 

in Experiment 1, with the aim of challenging the participants’ ability of inferring the cue 

validity and updating their beliefs in a volatile environment. Age-related differences were 

found in both behavioral performance and in the model parameters. Younger participants 

were faster and more accurate in their responses than older participants, suggesting that 

the latter group was more challenged by the difficult version of the paradigm. This was 

also reflected in the results of the cueing effects, where younger participants showed 

higher cueing effects than older participants, suggesting that the former group was more 

sensitive to the cue information and showed stronger orienting towards the cues. In 

addition, age-related and task differences where found when analyzing the subject-

specific updating parameter ω. More specifically, younger participants showed faster belief 

updating in the volatile environment in the motor intention task than older participants. 

Whereas probabilistic inference abilities did not differ with age in Experiment 1, increased 

task demands in Experiment 2 unraveled a slowing of belief updating with motor intention 

cues for older participants.  

Concerning task differences, similarly to Experiment 1, the motor intention task 

induced faster RTs than the spatial and the feature-based attention tasks. The same 

pattern was found for RTs in the group of the younger participants, whereas no difference 

in RTs between tasks was found for the group of the older participants.  

 

4.8 General discussion 

Using three different versions of a cueing paradigm and two task difficulty levels, 

we investigated age-related changes in the ability to use recent observations and 

environmental cues to infer the probability of upcoming events for an efficient attentional 

deployment. Formal computational modeling with a generic Bayesian learning scheme 

allowed us to characterize individual updating of beliefs concerning the occurrence of 

upcoming events in a volatile environment, when different stimulus properties were 

predicted by spatial, feature, or motor cues.  
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The results point towards a reduced ability to update predictions in older 

participants in the difficult motor intention task, i.e. when the finger required for the 

response was cued. Previous neuroimaging studies (Dombert et al., 2016; Kuhns et al., 

2017) used the same three versions of the task and showed that probabilistic inference for 

spatial attention, feature-based attention, and motor intention engages different brain 

regions. Specifically, the right TPJ is pivotal for probabilistic inference for spatial attention, 

whereas the left ANG and the ACC support the same cognitive process for motor 

intention. The difference in the neural substrates of probabilistic inference processing can 

explain the selective age-related differences in belief updating abilities in the motor 

intention task. Indeed, there is evidence that the functionality of the prefrontal cortex is 

reduced with aging (for a review see Hedden and Gabrieli, 2004), and previous studies 

also point to a decline of ACC function and volume with age (Pardo et al., 2007; Mann et 

al., 2011). 

A recent paper (Nassar et al., 2016) has highlighted the difficulty of older adults in 

using uncertainty estimates to guide behavior in a predictive inference task involving 

reward. Previous evidence similarly suggested that older adults might be impaired in 

probabilistic reinforcement learning when reward information is uncertain, however they 

do not show the same level of impairment when the reward contingencies are fully 

predictable (for a review see Eppinger, Haemmerer, & Li, 2011).  

Nevertheless, the present results suggest a reduced probabilistic belief updating in 

older adults only when motor cues are used to predict the appearance of the target, 

whereas no differences were found for the spatial attention and feature-based attention 

tasks. In line with our results, previous studies reported preserved cueing effects in older 

adults for endogenous attention (Curran, Hills, Patterson, & Strauss, 2001; Tales, Muir, 

Bayer, & Snowden, 2002), despite of slower latencies for early visual ERP components, 

i.e. N1 and P1, as well as later components such as the P3, in older compared with 

younger adults (Curran et al., 2001). 

Using a cueing task with spatial cues predicting the hand needed for the response, 

Sterr and Dean (2008) found absence of validity effects (difference in RTs between validly 

and invalidly cued responses) in a group of older adults compared with younger 

participants. In addition, they found differences in ERP components, such as the 

foreperiod contingent negative variation and the lateralized readiness potential, between 

the two age groups indicating reduced lateralized motor preparation in the group of older 

participants. These results suggested differences in processing of motor cues with healthy 

aging, in line with the present results. However, in the abovementioned study, no 
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manipulation of the cue predictability during the task was performed. It is indeed by 

manipulating the cue predictability over time that allowed us to unveil differences in the 

updating of predictions with aging. Hence, by combining the analysis of behavior with a 

formal computational model, the present work provides new insights into the efficiency of 

attentional and motor intentional mechanisms in healthy aging.  
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5. Summary and Conclusion 

In what follows, results drawn from the experiments will be embedded into the 

current opinions of the scientific community. In particular, conclusions on the distinct 

neural correlates of learned trial-wise expectancies for spatial attention and motor 

intention (3.), as well as possible age-differences (4.) will be drawn.   

5.1 Distinct neural correlates for learning under uncertainty 

Whenever the statistical environment needs to be inferred, the brain computes 

predictions about events and adapts when expectancy violations occur. These processes 

may be associated with activity changes in right FEF, TPJ, and putamen for spatial 

attention and saccadic eye movements, and have been found to adapt as a measure of 

precision of belief about the validity of spatial cues. In other words, when the confidence in 

the cue validity is high, and reorienting due to violations thereof becomes necessary (i.e. 

invalid cues), activity is enhanced in these regions (Vossel et al., 2015). The first 

experiment (3.) extends current findings by separating the neural implementation of 

probability-independent and probability-dependent effects for spatial attention and motor 

intention.  

First, to address the commonalities of functional orienting and reorienting 

processes following spatial attention and motor intention cues, predictability-independent 

analyses were conducted. A conjunction analysis investigating mere orienting-related 

activity (valid trials) activated a common widespread frontoparietal network for spatial 

attention and motor intention (see figure 8 A). This is in line with the well-described dorsal 

network (Corbetta & Shulman, 2002). Contrasting valid trials between motor and spatial 

(motor>spatial), revealed no distinction for motor intention orienting, although prior studies 

show a more pronounced left parietal involvement for motor cues (Hesse et al., 2006; 

Astafiev et al., 2003). This discrepancy might be due to our more abstract set-up and 

subtle cue, compared to cueing of an entire hand (Hesse et al., 2006) or preparing the 

pointing finger (Astafiev et al., 2003).  

Reorienting-related activity (invalid>valid) for both tasks commonly involved dorsal 

frontoparietal regions such as bilateral FEF and right IPS, as well as right-lateralized 

activity in inferior frontal gyrus and angular gyrus (see figure 8 B). Co-activation of ventral 

and dorsal regions is commonly observed and may reflect the bi-directional interaction of 

the two attention networks to establish flexible attentional control (see, e.g. Corbetta & 
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Shulman, 2011). Thus, we extend these results by suggesting a shared network for 

reorienting in spatial attention and motor intention. In other words, we provide evidence 

that these areas also respond to invalid information about an imminent motor response, 

when the planned action needs to be revised accordingly.  

 

	  
Figure 8. A Conjunction analysis of orienting-related neural activity following valid 
spatial attention and motor intention cues. B Conjunction analysis of reorienting-
related activity contrasting invalid>valid in spatial attention and motor intention 
task.  

Second, the question was addressed regarding the generality of the neural 

implementation of predictability-dependent processing for the two domains of interest. The 

results suggested domain-specific results for predictability-dependent effects contrasting 

reorienting in spatial attention and motor intention, respectively. Enhancements in 

activation following invalid trials modulated by estimated cue predictability were found in 

rTPJ for spatial attention and ANG and ACC in the left-hemisphere for motor intention. 

Differently put, BOLD responses in these areas and RT costs were increased, the more 

unexpected an invalid trial was estimated to occur. Behaviorally no differences between 

task versions in accuracy, RT, or model parameters 𝜔 and 𝜗 were observed, hinting at 

similar learning rates for the two task versions. Notably, no correlations between the 

learning parameter of both versions, nor significant conjunction of predictability-dependent 

reorienting were found supporting the domain-specificity of functional neuroanatomy in 

these domains. Differently, Dombert et al. (2016) reported a correlation of the subject-

specific learning parameter 𝜔, for spatial and feature-based attention. These attention 
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domains seem to be closer associated than spatial attention with motor intention, in which 

individual learning differences in one domain cannot be applied to predict learning in the 

other. In addition, an explorative connectivity analysis with the seed areas (ANG, ACC and 

TPJ) was conducted, since we also expected a supramodal neural correlate for 

predictability-dependent processing. This analysis revealed common coupling and 

predictability-dependent effect (i.e. stronger coupling after invalid cues) with right anterior 

hippocampus.  

Taken together, the abovementioned results challenge the assumption of a global 

role of rTPJ and ascribe its engagement primarily to spatial attention (see 3.; Dombert et 

al. 2016). Moreover, instead of redirecting attention towards any novel event and acting as 

a 'circuit breaker', rTPJ is more specifically engaged in reacting upon unexpected but 

behaviorally relevant stimuli (e.g. when predictions about upcoming events need to be 

inferred) and is context-sensitive. This observation also fits well with recent views of rTPJ 

involvement in carrying stimulus-driven representations of task-relevant information (Geng 

& Mangun, 2011; Geng & Vossel, 2013) and with the observation that behavioral deficits 

in right brain damaged individuals might arise due to a deficit in learning the statistical 

structure of target locations (Shaqiri & Anderson, 2012; Shaqiri, Anderson & Danckert, 

2013). Dynamic Causal Modeling (DCM) of neuroimaging data sheds light into effective 

connectivity by estimating coupling among brain regions, in response to experimental 

factors (Daunizeau, David & Stephan, 2011; Friston, Harrison & Penny, 2003). TMS and 

DCM studies further support the prominent role of rTPJ in belief updating in spatial 

attention. As such, interference with TMS disrupts updating of prior beliefs post-target 

(Mengotti, Dombert, Fink & Vossel, 2017) and analyses of connectivity-strength between 

FEF and TPJ revealed a decrease of FEF control over TPJ, following reorienting towards 

task-relevant but unattended information (DiQuattro, Sawaki & Geng, 2013). Thus, instead 

of sending an interrupt signal to the dorsal system (e.g. FEF) preceding an attention shift, 

rTPJ is interpreted to update internal models. Additionally, the specific predictability-

dependent activity in left ANG and ACC for motor intention might offer a novel account for 

understanding deficits in redirecting motor attention in left brain damaged patients. 

Especially, apraxic patients have difficulties selecting movements and display lesion 

clusters around left IPS and parts of the frontal lobe (Rushworth et al., 2003). A possible 

link between disturbances of predicting upcoming motor intention with conceptual apraxia 

seems feasible. In this certain type of apraxia, symptoms entail an inability to select and 

carry out an appropriate motor program and difficulties to voluntarily perform learned tasks 

have been reported (Gross & Grossman, 2008).  
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Perception has been described as a cascade of continuous matching of incoming 

sensory input (i.e. unpredicted activity) with predictions. Our null-finding or slight decrease 

in predictability-dependent modulation in valid trials could be explained under the 

assumption of a bi-directional hierarchical learning architecture of the brain. As long as 

higher levels correctly predict lower level activity no adjustments need to take place. In 

turn, increased predictability-dependent coupling-changes of the seed-regions with right 

anterior hippocampus after invalid trials could be associated with the propagation of 

prediction error to higher-level structures. This cascade of events initiates adaption of 

probabilistic representations, ultimately leading to learning (Clark, 2013). Therefore, using 

a Bayesian computational approach, resembling the brain’s updating ability, offers a more 

naturalistic approximation of attentional performances. 

Concluding, probabilistic inference is performed within each cognitive subsystem, 

but shared connectivity profiles with anterior hippocampus are suggested. The results 

pave the way for a deeper understanding of the specificity of computational mechanisms 

of flexible attentional control in the human brain and aim at offering a more unified account 

of perception and action. 
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5.2 The modulation of probabilistic cueing on different attentional 
systems in ageing 

It is well known that a decline in attention allocation and response speed is a 

natural phenomenon in age (Madden, 1992). Until now, there is no common consent on 

whether older adults have a preserved ability to update predictions (Curran et al., 2001) or 

indeed have difficulties in encoding the structure of uncertain environments (Nassar et al., 

2016). For that reason, the second study (4.) tested if older adults retained the ability to 

learn the predictability of different cues in a volatile cueing-paradigm, compared to young 

adults. We chose to introduce three cues guiding spatial- and feature attention and motor 

intention, since our results from the first study (3.) and work by our group (Dombert et al. 

2016) point at distinct neural correlates for updating probabilities.  

In the first experiment of the second study, inference of cue predictability did not 

significantly differ between age groups. All three cue types guided attention equally well 

between and within the age groups and learning parameters extracted from the Bayesian 

model did not yield significant learning differences. These findings fit well with previous 

literature, describing a preserved ability to identify statistical regularities in contextual 

spatial attention tasks (Jiang, Koutstaal, & Twedell, 2016). Here younger and older 

participants learned the location-probability of a target in a spatial layout and the effect 

was ascribed to habitual learning. Further, when spatial cueing effects were tested within 

the visual and auditory modality, age remained an insignificant determinant of 

performance (Guerreiro, Adam, & Van Gerven, 2012). However, none of the present 

studies have described adaptive behavior in a volatile environment and disentangled 

different cueing modalities.  

Since task complexity is an important determinant of age differences in 

performance (Madden, 1992; Zanto & Gazzaley, 2014), we included a second experiment. 

This difficult set-up was more similar to the original one used in the first study (3.; Dombert 

et al., 2016) and comprised two additional possible target positions and the target itself 

was not as intuitive as in the first experiment. Estimates of the computational model 

allowed to unravel a reduced updating parameter 𝜔 for the motor intention condition in 

older, as compared to younger adults. This result reflects slowing of individual trial-by-trial 

updating speed with age.  

The finding of differential updating behavior in older adults following motor intention 

cues indicates the necessity of separately investigating different attentional domains. We 

also demonstrated the scope of computational modeling, which was essential to unveiling 
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the age-differences. Most importantly, our results establish an account of trial-by-trial 

belief updating in different cognitive system in healthy ageing. We provide evidence for 

retained attentional and intentional updating mechanisms and a slight decline in updating 

motor cues in complex tasks. Additionally combined with the identified distinct neural 

correlates of belief updating (3.), it can be particularly helpful for interpreting results from 

lesion studies reporting deficits in statistical learning (Shaqiri & Anderson, 2012; Shaqiri, 

Anderson & Danckert, 2013).  

What could be the reason for the detected learning difference for motor cues? 

Aging leads to decreased functional connectivity and modularity (i.e. less differentiation) of 

frontoparietal networks (Geerligs, Renken, Saliasi, Maurits & Lorist, 2015). A recent 

neuroimaging study on short-term memory, focused on describing interactions between 

the dorsal and ventral attention network in aging. In comparison, older adults overly 

engaged the dorsal attention network while showing significantly less activation of the 

ventral network following distracting stimuli, especially when short-term memory load was 

high. This increase of top-down control was proposed to counteract decreased reactivity 

of the ventral system (Kurth et al., 2016). More specifically, lower engagement of occipital 

areas leads to a deterioration of bottom-up sensory input, which in turn needs to be 

compensated by increased activation of the frontoparietal network (Madden et al., 2007). 

Compensation seemed to work for the spatial and feature-based attention domains, but 

motor intention might have had a disadvantage in reacting towards unexpected 

information, due to the specific involvement of the ANG in predictability-dependent 

reorienting (Kuhns, Dombert, Mengotti, Fink & Vossel, 2016). This area was proposed to 

be a core region for converging bottom-up information and top-down predictions (Seghier, 

2013). In other words, when bottom-up signals decrease in quality due to age and 

cognitive task load increases (as it did in our difficult task by introducing two additional 

distractors, see 4.) learning might be slowed due to the strong compensatory influence of 

the dorsal attention system and the prominent role of the ANG in motor intention. Another 

explanation might be found at an earlier stage, namely during the integration of motor 

preparatory information (i.e. cueing of motor response). Preparatory electrophysiological 

activity is attenuated in older adults and explains prolonged RTs during valid trials. The 

alteration in motor intention becomes apparent in complex and time restrained tasks (Sterr 

& Dean, 2008).  

From the aging experiment, we could not conclude whether the increased number 

of possible targets, the change in SOA, or a combination of both was pivotal for the 

observed differences in learning the statistical structure following motor intention cues in 

older adults. Nonetheless, we have provided an informative base for retained perceptual 
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inference for all domains, with learning decrements only for motor intention in complex 

environments in healthy age. Thus, we extend the current literature, by proposing that 

ability of learning environmental statistics per se is retained in perceptual- and intentional 

domains, but that updating predictions following motor intention cues is slightly affected in 

difficult task environments. Future studies should consider learning deficits on a 

continuous age scale rather than in dichotomous groups and it is important to keep in 

mind that behavioral-invariant results do not provide the entire picture and additional 

measures from e.g. trial-by-trial learning or functional measures are needed to detect 

aging-effects.   
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5.3 Future prospects 
The present studies have provided the following insights: (i) Modulation of neural 

mechanisms induced by updating in volatile environments seems to be domain-specific for 

spatial attention and motor intention. (ii) Anterior hippocampus shows common 

connectivity patterns with seed regions involved in inference processes for the attentional 

and intentional subsystems. (iii) Updating expectancies following motor intention, but not 

spatial- or feature-based attention in demanding task-environments seems depleted as a 

function of age.  

First, no correlation between updating parameters (𝜔,𝜗) of spatial attention and 

motor intention in individual subjects have been found, dissimilar to results obtained by 

Dombert et al. (2016). There the correlation between the individual updating parameter of 

feature- and spatial attention, hints at similar rates of learning. Hence, one can use an 

individuals updating parameter of one version to predict learning in the other. Future 

connectivity analyses are necessary to unveil the underlying dynamics within the motor 

intention and spatial attention system. Recent takes on deficits seen in neglect, point 

towards an inability to learn statistical regularities from spatial information (see e.g. Shaqiri 

et al., 2013). Our studies add that probabilistic inference for spatial attention is retained in 

healthy age and propose rTPJ as the neural correlate for specifically updating spatial 

predictions. It would be intriguing to characterize how brain lesions affect trial-by-trial 

updating in feature attention and motor intention. Based on our findings, one could 

assume retained updating in neglect patients for feature-based and motor intention cues 

in easy task set-ups. Apraxic patients, however, with lesions to the left hemisphere are 

also of interest since their motor intention updating mechanism could be disrupted. Next to 

these behavioral studies, valuable information could be drawn from lesion-symptom 

analysis techniques. A promising methodology is offered by multivariate pattern analysis 

(MVPA), since it assumes joint instead of independent contribution (i.e. mass-univariate 

approach) of brain areas to perception and behavior (see, e.g., Karnath & Smith, 2014; 

Mah, Husain, Rees & Nachev, 2014). It has been successfully applied to investigate 

damage patterns predicting spatial neglect (Smith, Clithero, Rorden & Karnath, 2013). 

Thus, future studies could link Bayesian model parameters determining individual 

updating (ω and ϑ) and RT cost modulation by %CV to different lesion patterns. In the 

long run, this could pave the way for new rehabilitation approaches more customized to 

the retained learning abilities. For instance, neglect patients having difficulty with spatial 

information will be guided by feature-based or motor intention cues during rehabilitation 

interventions.  
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Common coupling of the distinct neural updating hubs with anterior hippocampus 

has been found. Latest study results propose the hippocampus to be responsible for 

mapping choices to potential outcomes, thereby creating an internal model (Boorman, 

Rajendran, O´Reilly & Behrens, 2016). DCM of our seed regions (left ANG, ACC and 

rTPJ) with the anterior hippocampus during predictability-dependent reorienting could 

illuminate the causal architecture of neural dynamics. 

Moreover, since our work focused on healthy participants, the question arises how 

computational modeling can help to define learning behavior in psychiatric disease. For 

instance, patients with attention deficit hyperactivity disorder (ADHD) (Cortese et al., 

2012) and schizophrenia (Stephan, Baldeweg & Friston, 2006) show aberrant learning 

behavior and alterations in brain connectivity in several networks. ADHD-related deficits in 

adults have been suggested to result from a hypo-engagement of the ventral attention 

network (Helenius, Laasonen, Hokkanen, Paetau & Niemivirta, 2011). This is in line with a 

theoretical framework stating that a cardinal symptom of ADHD, manifested as difficulties 

in modulating behavior, arises as a result of deficits in learning statistical regularities (Nigg 

& Casey, 2005).  

In schizophrenia, synaptic plasticity is compromised, demonstrated by 

abnormalities in intra-areal connectivity. Further, electrophysiological markers for 

processing of prediction error are indexed by the mismatch negativity (MMN) in the ERP 

(Stephan et al., 2006). MMN amplitude is significantly reduced in schizophrenia, which 

has led to a recent theory of explaining psychotic symptoms and sensory learning deficits 

as abnormal encoding of prediction error (Schmidt et al., 2012). What is more, in an fMRI 

study, prediction error processing has been linked to the right PFC as shown by disrupted 

processing under ketamine. So far oddball paradigms and auditory cues have been 

primarily used. Since very similar psychotic symptoms can be induced in healthy 

volunteers with N-methyl-D-aspartate receptors (NMDAR) antagonists like ketamine and 

they are more easily accessible, this cohort should be considered for a first study. Since 

learning novel information distinctly affects spatial attention and motor intention, it would 

be of interest to separately investigate predictability-dependent updating in a psychosis 

model. Thus, the pharmacological effects in a double-blind within-subjects design could be 

used to unveil the alleged behavioral effects on updating predictions utilizing the 

methodology of the first study (3.). Participants would not be informed under which 

condition (ketamine or placebo) they were. Subsequently, individual updating parameters 

of the Bayesian model between the two conditions would be compared. If prediction error 

were truly disrupted, this would be apparent in significantly slower adaption towards the 

manipulated volatile environment in participants under pharmacological influence 
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compared to placebo. If this is the case time-consuming and costly EEG or fMRI data 

acquisition could be replaced in the future and individual learning parameters might suffice 

as a faster complementary diagnostic tool, next to biographical anamnesis and medical 

record. If aberrant learning parameters are indeed significant determinants of psychosis, 

the next step could be to illuminate which antipsychotic drug might have the best effect on 

alleviating impairments in trial-by-trial inference. This could be a valuable addition to the 

measure of effectiveness, since it is currently quantified by e.g. continuation of the drug, 

weight gain or lipid metabolism (Lieberman et al., 2005). Finally, this novel approach of 

characterizing false inference in neuropsychological deficits has been subsumed under 

the term 'computational phenotyping' (Parr, Rees & Friston, 2018). 

Our results combined with recent findings inaugurate promising avenues for future 

studies in understanding computational mechanisms in psychopathology and to elucidate 

the causal dynamics in the different attentional- and intentional domains. Future results 

could for example lead to improved diagnostics in schizophrenia and tailored rehabilitation 

programs in patients suffering from neglect.
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