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1. ABBREVIATIONS 
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alamethicin (Alm) 
antiamoebin I (Aam-I) 
antimicrobial peptides (AMPs) 
α-aminoisobutyric acid (Aib) 
cartesian coordinate PCA (cPCA) 
classical molecular dynamics (cMD) 
dihedral principal component analysis (dPCA)  
D-isovaline (Div)  
diffusion coefficient (DC) 
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)  
1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) 
electrostatic potential (ESP) 
free energy landscape (FEL) 
graphical processing unit (GPU) 
hydroxyproline (Hyp) 
Kullback-Leibler divergence (KLD) 
leucinol (Leuol) 
lipopolysaccharide (LPS) 
Liquid Chromatography-Mass Spectrometry (LC-MS) 
molecular dynamics (MD) 
non-ribosomal peptide synthetases (NRPSs) 
nuclear magnetic resonance (NMR) 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 
phenylalaninol (Pheol) 
phosphatidylethanolamine (PE) 
phosphatidylglycerol (PG) 
potential-of-mean-force (PMF) 
principal component (PC) 
principal component analysis (PCA) 
radius of gyration (RoG) 
Research Collaboratory for Structural Bioinformatics: Protein DataBank (RCSB:PDB) 
RESP ESP charge derive (RED) 
restrained electrostatic potential (RESP) 
root-mean-square-deviation (RMSD) 
root-mean-square-fluctuation (RMSF) 
trikoningin KA-V (TRK-V) 
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2. INTRODUCTION 
With the growing instances of antibiotic resistance all over the world, the scientific 

community is, more than ever, desperate to identify novel, fail-safe ways of treatments for a 

plethora of devastating diseases. This search is not limited to human pathogens but has also 

been extended to the problem of agricultural pathogens. The class of antimicrobial peptides 

(AMPs), defined as host-defense molecules found in all life forms, is a promising solution. 

Many AMPs have already crossed over to clinical trials as novel therapeutics, immunity 

modulators and wound healing promoters (Mahlapuu et al., 2016; Zhang et al., 2019). 

Bioactive peptides like peptaibols, a special class of fungal AMPs containing non-standard 

residues like α-aminoisobutyric acid (Aib) or hydroxyproline (Hyp), have piqued the interests 

of microbiologists owing to their antibacterial, antifungal, antiviral, antihelminth, and 

antitumor properties (Yun et al., 2000; Schiell et al., 2001; Berg et al., 2003; Leitgeb et al., 

2007; Ayers et al., 2012; Mohamed-Benkada et al., 2016) as well as their abilities to elicit 

plant defense responses (Engelberth et al., 2000; Chakraborty et al., 2020). 

In our studies we have focused on peptaibols, produced by a specific group of fungi, the 

genus Trichoderma, which comprises of more than 300 species (Bissett et al., 2015; Zhang 

and Zhuang, 2018) and are known for antagonistic behavior against naturally competing 

fungi (Reino et al., 2008). They deploy a number of mechanisms to wipe out competing 

fungal phytopathogens, which mainly depend on the production of cell wall degrading 

enzymes (Elad et al., 1980; Javeria et al., 2020) and other secondary metabolites like 

peptaibols, meanwhile promoting plant root growth (Olabiyi & Ruocco, 2013; Kushwaha & 

Verma, 2014). Iron competetition was also observed as a mode of action of Trichoderma 

asperellum which produces iron-binding siderophores which controls Fusarium wilt (Segarra 

et al., 2010). The scientific community has recognized this property to develop Trichoderma 

strains into successful biocontrol agents. For example, several plant pathogens like Nectria 

galligena in apples, Sclerotium rolfsii in tobacco, bean and iris, Rhizoctonia solani in radish, 

strawberry, cucumber, potato and tomato, Chondrosterum purpureum in stone-fruit and other 

crops, or Botrytis cinerea in apple have been controlled using commercially available strains 

of Trichoderma (Cutler & Cutler 1999; Reino et al., 2008). Trichoderma koningiopsis has 

been studied as a biocontrol agent against a specific mushroom, Leucoagaricus 

gongylophorus, the main food source of leaf-cutting ants (Castrillo et al., 2016). Trichoderma 

atroviride showed most promising results in terms of disease reduction (Rhizoctonia solani, 

Pythium ultimum and Sclerotinia trifoliorum) and plant growth promotion (Kandula et al., 
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2015). Similarly, Chen et al. (2016) successfully showed the biocontrol efficacy of 

Trichoderma gamsii against the root-rot pathogenic fungi of Panax notoginseng. It has also 

been proven to be effective against Fusarium head blight disease of wheat (Baroncelli et al., 

2016). Rinu et al. (2014) isolated T. gamsii from the roots of lentil (Lens esculenta Moench) 

and tested its efficacy against seven phytopathogens, out of which it was effective against six. 

The economic importance of the genus Trichoderma lies also in being a source of antibiotics, 

plant growth promoters, commercial biofungicides, as well as commercial enzymes used in 

recycling cellulosic waste – achieved mainly by Trichoderma reesei belonging to the clade 

Longibrachiatum (Harman & Kubicek, 1998; Kubicek et al., 2009). Moreover, a product 

marketed as TUSAL made from Trichoderma harzianum and Trichoderma viride was 

developed by the phytopathology research group of the University of Salamanca and 

Newbiotechnic S.A. Corporation against a leaf-falling disease affecting multiple crops (Reino 

et al., 2008). 

On the other hand, Trichoderma species can be harmful against cultivated mushrooms such as 

Agaricus bisporus and Pleurotus ostreatus, commonly known as the white button mushroom 

and oyster mushroom, respectively. The production of both crops can be seriously affected by 

the so-called green mold diseases caused by certain members of the mycoparasitic fungal 

genus Trichoderma such as Trichoderma aggressivum, Trichoderma pleuroticola and 

Trichoderma pleuroti (Hatvani et al., 2008; Kredics et al., 2010). Moreover, Trichoderma 

strains, mostly from clade Longibrachiatum, have also been reported in an increasing number 

of cases as etiologic agents in human infections (Molnár-Gábor et al., 2013; Hatvani et al. 

2013). T. harzianum was detected in the postmortem examination of a renal transplant 

recipient (Guarro et al., 1999). These Trichoderma strains are present in environmental 

habitats including agricultural systems and they can be potential sources of human infections 

in immunocompromised patients. The idea to use Trichoderma longibrachiatum as a 

biocontrol strain appeared in tropical countries, as members of the Longibrachiatum clade are 

able to grow at higher temperature unlike other Trichoderma species (Zhang et al. 2014; 

2015). Although instead of using the whole organism, an alternative option would be to use 

only their metabolites with plant growth promotion or biocontrol activities.  

2.1. Peptaibols 
Peptaibols are linear, non-ribosomally produced amphipathic polypeptides of fungal origin, 

mostly comprising a high ratio of unusual amino acid content. Non-standard amino acid 
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residues like Aib, Hyp, D-isovaline (Div), and C-terminal alcohol residues like 

phenylalaninol (Pheol), valinol (Vol), etc., along with an acetylated N-terminus (Ac) are 

characteristic for these peptides ranging 7-20 amino acid residues in length (Benedetti et al., 

1982; Brückner & Graf, 1983; Degenkolb & Brückner, 2008). They are synthesized by large 

modular enzymes called non-ribosomal peptide synthetases (NRPSs), where a single module 

contains multiple catalytic domains responsible for the incorporation of a single amino acid 

residue into the peptide chain (Zocher & Keller, 1996; Marahiel et al., 1997; Wei et al., 

2005). Due to the relaxed specificity of NRPSs for residues, the peptaibols produced by a 

certain fungal strain may show considerable heterogeneity (Miller & Gulick, 2016). The 

diversity in their sequence length, hydrophobicity, antimicrobial properties and producing 

fungal species contribute to a plethora of peptaibols that are yet to be discovered and studied. 

The increasing gap between known peptaibol sequences and their three-dimensional 

structures can be reduced using computational modeling and molecular dynamics 

simulations. The knowledge of peptide structural dynamics is a key to unraveling the 

mechanisms of their antimicrobial action.  

 Mode of action  
Peptaibols show antibiotic properties by forming pores within biological membranes via 

aggregation, which has been widely studied (Fox & Richards, 1982; Karle et al., 1991; 

Shenkarev et al., 2002). Apart from studies on bioactivity, substantial focus has been given to 

their three-dimensional structures and folding dynamics (Condamine et al., 1998; Snook et 

al., 1998; Balashova et al., 2000; Kronen et al., 2003). Only 17 peptaibols have been studied 

using experimental methods in different solvents which includes alamethicin [Protein 

Databank (PDB) ID: 1AMT] (Fox & Richards, 1982), antiamoebin I (Aam-I) [PDB IDs: 

2M1F, 1GQ0, 1JOH] (Snook et al., 1998; Galbraith et al., 2003; Shenkarev et al., 2013), 

bergofungin A [PDB ID: 5MAS] (Gessmann et al., 2017), cephaibol A, B and C [PDB IDs: 

1OB4, 1OB6, 1OB7, respectively] (Bunkóczi et al., 2003), chryospermin C [PDB ID: 1EE7] 

(Anders et al., 2000), gichigamin [PDB ID: 4Z0W] (Du et al., 2017), harzianin HK-VI [PDB 

IDs: 5M9Y, 5MF3, 5MF8], paracelsin-X [PDB ID: 4BY8], samarosporin I [PDB IDs: 4G13, 

4G14] (Gessmann et al., 2012a), trichotoxin [PDB ID: 1M24] (Chugh et al., 2002), 

trichovirin [PDB ID: 3SBN] (Gessmann et al., 2012b), zervamicin IIB (Zrv-IIb) [PDB IDs: 

1DLZ, 1IH9, 1R9U] (Balashova et al., 2000; Shenkarev et al., 2002; Ovchinnikova et al., 

2003) (Figure 1).  
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Alamethicin (Alm) is the most studied peptaibol so far, closely followed by Aam-I and Zrv-

IIb. The discovery of Alm is credited to Meyer & Reusser (1967), who referred it as 

“antibiotic U-22324” obtained from ‘T. viride’ and classified as a cyclic peptide due to its 

inability to react with ninhydrin. The antibacterial activity against Gram-positive strains was 

highlighted. The correct producer was reidentified later to be Trichoderma arundinaceum 

from the Brevicompactum clade of genus Trichoderma (Degenkolb et al., 2008). The 

experimentally observed (X-ray diffraction) three-dimensional structure of Alm F30/3 is 

available in the RCSB PDB database with accession ID 1AMT (Figure 1).  

 

Figure 1. The experimentally determined three-dimensional structures of various 
peptaibols obtained from the RCSB PDB database. Their respective PDB ID codes 
are labelled. 
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The first possible primary structure of Alm was reported by Payne et al. (1970), who 

described it as a cyclic molecule by linking the γ-carboxylate group of the glutamic acid 

residue to the first proline in the sequence, which was reported as Pro-Mea-Ala-Mea-Ala-

Gln-Mea-Val-Mea-Gly-Leu-Mea-Pro-Val-Mea-Mea-Glu-Gln, where Mea is Aib. They 

hypothesized a stack-like tunnel formation by the cyclic Alm structure with hydrophobic 

interior. Martin & Williams (1976) later corrected it by describing the structure of Alm as a 

linear polypeptide by nuclear magnetic resonance (NMR) spectroscopy. The new sequence 

assignment included an acetylated Aib residue at the N-terminus and a phenylalaninol as a 

side-chain of the 18th Gln residue. They stressed upon the importance of linear Alm structure 

to be long enough to stretch across a lipid bilayer and rejected the idea of stacked-ring pores. 

The presence of proline in the 14th position introduces a slight bend in the structure as shown 

by X-ray crystallography (Fox & Richards, 1982), NMR (Haris & Chapman, 1988) and 

optical spectroscopy (Nagao et al., 2015). The helix is formed in such a manner that the polar 

residues are arranged on one side. Alm is classified as amphipathic due to distinct 

hydrophobic and hydrophilic faces, which renders the ability to either interact with a 

membrane horizontally or form voltage-gated ion channels with a vertical insertion. They 

have been shown to induce lipid flip-flop even in a surface-bound state by disordering lipids 

in the membrane (Taylor et al., 2019). The recent studies to understand Alm conformation 

and pore formation have been reviewed by Leitgeb et al. (2007), Kredics et al. (2013). 

Aam-I and Zrv-IIb acquire very similar structural topologies in membrane-mimicking 

environments, although significantly differ at the N-termini (1-8 residues) but show markedly 

different dynamic properties that makes Aam-I to be highly soluble in water but less bioactive 

than Zrv-IIb (Shenkarev et al., 2013). The crystal structures were determined for Bergofungin 

A produced after replacing the amino-terminal phenylalanine in Samarosporin I to a valine 

which results in an inactive peptide in place of a moderately active Samarosporin I 

(Gessmann et al., 2017). A single residue substitution may, thus, result in increase or decrease 

in bioactivity. Similarly, the crystal structure of 22-mer gichigamin was determined to be an 

unusual right-handed 311 helical structure which confers it the ability to penetrate mammalian 

membranes. This potency could be increased by introducing a semisynthetic modification of 

C-terminus linked coumarin derivative (Du et al., 2017). Cephaibols A, B and C contain all 

isovalines in the D configuration and form helical structures with a sharp bend of 55˚ at the 

central hydroxypoline (Bunkóczi et al., 2003) and shows pronounced anti-helminthic action 

and activity against ectoparasites (Schiell et al., 2001).  
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2.2. Molecular dynamics simulations 
The attempts to computationally model biomolecular systems were carried out to 

complement experimental observations, providing missing details, verification of 

experimental results, and generating new hypotheses and experiments based on these new 

results. It has been 43 years since the first molecular dynamics (MD) simulation of a 

macromolecule of biological interest, bovine pancreatic trypsin inhibitor, was published 

(McCammon et al., 1977). With passing time and requirement, the need to accurately 

represent a biological system and simulate for significantly long timescales has been met with 

technological advancement (Dror et al., 2012; Lane et al., 2013). MD simulations are carried 

out to recreate and visualize various biomolecular processes like protein folding/misfolding 

(Snow et al., 2005; Scheraga et al., 2007), protein-drug interaction and stability (Swegat et 

al., 2003; Tyagi et al., 2015), protein-protein binding (Grünberg et al., 2006), DNA/RNA 

folding (Cheatham et al., 1995; Cheatham et al., 1997), bilayer membranes and their 

interaction with transmembrane proteins/peptides or receptors (Ayton & Voth, 2009; Balali-

Mood et al., 2009) etc., with the help of potentials formulated on the basis of physical laws 

that govern all chemical entities. It is hoped to observe and understand the properties of 

assemblies of molecules in terms of their structure and the microscopic interactions between 

them. The MD simulation technique is distinct in a way that it calculates the time evolution 

of properties of the macro-molecular system which is called as a trajectory (Lindorff-Larsen 

et al., 2012). 

 Principle 
MD simulations are based on Newton’s second law of motion, F = ma, where F is the force 

exerted on the particle, m is the mass and a is its acceleration. It is possible to determine the 

acceleration of each atom in a system if the forces acting on these atoms are known. 

Numerical integration of the equation of motion yields a trajectory that describes the 

positions, velocities and accelerations of particles over time (Haile, 1992; Petrenko & Meller, 

2001; Petrenko & Meller, 2010). To calculate such a trajectory, one only needs the initial 

position of atoms and the initial distribution of velocities (Frenkel & Smit, 2001). This initial 

information can either be obtained from experimental structural data like X-ray 

crystallography and NMR, a computationally modeled protein structure based on template 

homology or a randomly generated string of atoms as can be done using the leap module of 

AmberTools18. 
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MD simulations run on the accuracy of potentials that may be calculated using Born-

Oppenheimer approximation or quantum mechanics (Vanommeslaeghe et al., 2010). The 

Born-Oppenheimer approximation states that the motion of the nuclei and electrons is so 

vastly different owing to the great difference between their masses and the resulting 

acceleration that it is possible to describe the electrons in a molecule while neglecting the 

motion of atomic nuclei. The second approximation treats nuclei as point particles that follow 

Newtonian dynamics. Force fields or potentials are empirical in nature and can be classified 

as bonding potentials (bonded forces) including bond lengths, bond angles and dihedral 

angles and non-bonding interactions comprising of short-range interactions (van der Waal 

potentials) and long-range interactions (Columbic potentials). A potential can be described as 

(Paquet & Viktor, 2015): 

 

(ேݎ)ߤ = ෍݇ௗ(݀ − ݀଴)ଶ
ௗ

+ ෍݇௦(ܵ − ܵ଴)ଶ
௦

 

+෍݇ఏ(ߠ − ଴)ଶߠ
ఏ

 

                                                            +∑ ݇ఞ൫1 + ߯݊) ݏ݋ܿ − ൯ఞ(ߜ  

+෍݇ఝ(߮ − ߮଴)ଶ
ఝ

 

                                                           +∑ ௜௝ߝ ቆ൬
௥೔ೕ
బ

௥೔ೕ
൰
ଵଶ
− ൬

௥೔ೕ
బ

௥೔ೕ
൰
଺

+ ௤೔
ఌ೗

௤ೕ
௥೔ೕ
ቇ௜,௝                        Eq. 1 

 

where ݀ is the bound length, ܵ is the Urey-Bradley bound length, ߠ is the bond angle, ߯ is the 

dihedral angle, ߮ is the improper dihedral angle, ݎ௜௝ is the distance in between atom ݅ and ݆, 

݇ௗ, ݇௦, ݇଴, ݇ఞ, and ݇ఝ are constants, ݀଴, ܵ଴, ߠ଴, ߮଴, and ݎ௜௝  are equilibrium positions, ߝ௜௝ is 

related to the Lennard-Jones well depth, and ߝ௟ is the effective dielectric constant. Finally, ݍ௜ 

is the partial atomic charge associated with atom ݅: the partial charge comes from the 

asymmetrical distribution of the electrons in the chemical bounds. The first term on the last 

line is the van der Waal interaction (or Lennard-Jones potential as described by Smit & 

Frenkel, 1991), and the last term in the last line is the Columbic interaction. This equation 

including the atom and bond specific parameters are known as “force field” in the 

computational modeling world. The calculation of long range/non-bonded interactions like 

Columbic interaction is generally computationally exhaustive therefore, to rectify the cost, 
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multiple numerical approximations such as shifted cutoff radii, reaction field algorithms, 

particle mesh Ewald summation (PME; Essmann et al., 1995), etc. are employed in the force 

fields. The force fields also contain parameters for different types of atoms, bonds, torsions, 

angles, partial charges for individual atoms etc, which are calculated either empirically (Class 

I force fields) or derived by quantum mechanical calculations (Class II force fields). The 

current force fields assign one static value of charge for an atom irrespective of its 

electrostatic environment while the work for accurate polarizable force fields is still 

underway (Halgren & Damm, 2001). 

 The Amber force field ff14SB 
It is crucial to understand the force field used for all calculations in this work. We used 

ff14SB (Maier et al., 2015) which is a continuing evolution of the ff99SB force field. The 

older ff94 and ff99 parameter sets did not provide a good energy balance between helical and 

extended regions of peptide and protein backbones. Another problem is that many of the ff94 

variants had incorrect treatment of glycine backbone parameters. ff99SB improved this 

behavior, presenting a careful reparameterization of the backbone torsion terms in ff99 and 

achieves much better balance of four basic secondary structure elements (PP II, β, αL, and 

αR) (Hornak et al., 2006). In addition, it corrected the glycine sampling and should also 

perform well for β-turn structures, two things which were especially problematic with most 

previous Amber force field variants. The changes mainly involve torsional parameters for the 

backbone and side chains. For backbones, experimental scalar coupling data for small 

solvated peptides became available (Graf et al., 2007) against which ff99SB was compared. 

Ff14SB has been shown to enhance reproduction of experimentally indicated geometries over 

ff99SB due to minimum dependence of ff14SB side chain parameters on particular backbone 

conformations. Therefore, ff14SB provides the latest updates to side-chain dihedral 

corrections for lysine, arginine, glutamate, glutamine, methionine, serine, threonine, valine, 

tryptophan, cysteine, phenylalanine, tyrosine, and histidine. 

 Accelerated Molecular Dynamics  
As learned from previous sections, the MD simulation technique is an unparalleled predictive 

technique in theoretical chemistry, physics and biology amongst others. But for studying 

most biological systems of interest, classical MD simulations fall short of the time scale 

required to obtain slow conformational transitions separated by high energy barriers. In other 

words, the energy landscape of a biological molecule may have multiple minimum energy 

wells separated by high energy barriers as described in Figure 2, that may only be accessed 
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by simulation timescales run over several orders of magnitude. The blue regions denote 

energy minima with the corresponding conformation of a peptide, while the red regions are 

the high energy barriers that must be crossed to reach to different minima. These zones have 

been defined as funnel-shaped or trough-like energy minimum wells, while the barriers 

between them can be described as crest-like. During classical MD simulation, a system can 

get trapped in a local minimum for long period of times which requires powerful computers 

to process. A notable example of such a supercomputer designed for MD simulations is the 

“Anton” by D. E. Shaw and his group, a massively parallelized machine that has been 

succesfully used to simulate biomolecules on micro- to millisecond timescales (Shaw et al., 

2007). 

 

Figure 2. The free energy landscape (FEL) of a peptide with potential energy basins 
or wells in blue that corresponds with the native conformation. Each basin 
corresponds to a distinct or intermediate conformation of the peptide. The system 
may get stuck in one basin for long periods of time during classical MD and requires 
a “boost” to either raise the energy basins or lower the energy barriers. (adapted from 
Quintas, 2013) 

In order to enhance the sampling of conformational landscape of a biological system of 

interest, many methods have been developed that follow the scheme of modifying the 

Hamiltonian by adding a bias potential, for example, umbrella sampling (Torrie & Valleau, 

1977), parallel replica dynamics (Voter, 1998), hyper-dynamics (Voter, 1997) or 

temperature-accelerated dynamics (Sörensen & Voter, 2000). Apart from the strategy to 

develop algorithms, the use of graphical processing units (GPUs) instead of central 
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processing units (CPUs) through implementation of various molecular modeling software has 

greatly reduced the time required to achieve significant sampling (Götz et al., 2012; 

Salomon-Ferrer et al., 2013; Stone et al., 2010). One such method, the aMD has been 

discussed in detail. 

In 2004, building on the work of Voter, 1997, Hamelberg et al. (2004) published a molecular 

dynamics approach based on altering the amount of computational time a system spends in 

potential energy minima to move over potential barriers. It works by adding a bias potential 

ΔV(r) to the true potential and modifying the potential energy surface V(r) in such a way that 

the surfaces near the minima are raised but those near the barriers remain unaffected. The 

technique promotes sampling of infrequent events of biomolecular systems without any prior 

knowledge of the location of energy wells or barriers. 

The bias is then removed from the statistics calculated with the bias potential which is called 

reweighting. The general idea behind aMD can be understood as depicted in Figure 3. To 

quote “A continuous non-negative bias boost potential function ΔV(r) is defined in such a 

way that when the true potential V(r) is below a chosen threshold value E, the boost energy, 

the simulation is performed on a modified potential V*(r) = V(r) + ΔV(r), represented by 

dashed lines. When V(r) is greater than E, the simulation is performed on the true potential 

V*(r) = V(r).” 

(ݎ)ܸ                                   = ൜ (ݎ)ܸ,(ݎ)ܸ ≥ ܧ
(ݎ)ܸ + (ݎ)ܸ,(ݎ)ܸ∆ <  Eq. 2                                              ܧ

Where ΔV(r) is given by, 

(ݎ)ܸ∆                                            = ൫ாି௏(௥)൯మ

ఈା൫ாି௏(௥)൯
                                                               Eq. 3 

Where α is a parameter to determine the depth of modified potential energy basin i.e. if α is 

zero, the modified potential V*(r) = E i.e. follows the true potential. The choice of E and α 

parameters are very crucial to determine how aggressively the simulation will be accelerated. 

The acceleration threshold energy, E, determines which portion of the energy surface is 

affected by aMD and the acceleration factor, α, determines how smooth the modified 

potential surface becomes (Hamelberg et al., 2004). 
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Figure 3. A 2D representation of energy basins and barriers between two minima to 
explain basic principle behind accelerated MD technique. The different values of α 
parameter raise the energy minima to enable faster transition between states till it 
remains lower than the threshold energy E. The thin lines depict modified energy 
potential and smaller barrier between energy basins. (adapted from 
https://www.ks.uiuc.edu/Research/namd/2.9/ug/node63.html)    

The implementation in AmberTools18 to calculate these parameters to set up an aMD is 

simply based on a set of simple equations. As discussed elsewhere, the aMD implementation 

includes three kinds of boost to potential, a) boost to total potential of the system, b) boost to 

dihedral potential of the biological system, and c) dual boost combining the previous two.  

The parameters Edihed, αdihed, Etotal and αtotal were calculated as required by Equation 4:  

 

                         Edihed = Vavg_dihed + a1 × Nres,       αdihed = a2 × Nres/5; 

                         Etotal = Vavg_total + b1 × Natoms,      αtotal = b2 × Natoms                                            Eq. 4 

 

where Nres is the number of peptide residues, Natoms is the total number of atoms in the 

system. Vavg_dihed and Vavg_total are average dihedral and total potential energies obtained from 

the short classical MD simulations.  
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aMD has been applied to study a variety of systems like agonist-antagonist binding to a G-

protein coupled receptor while placed in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) bilayer membrane (Kappel et al., 2015), the dynamic transition between open and 

closed forms of a crucial Gram-negative bacterial protein, maltose binding protein (Bucher et 

al., 2011), third IgG-binding domain of Protein G (GB3) in combination with NMR 

experimental data (Markwick et al., 2007), the simple alanine dipeptide to show that aMD 

effectively enhances the sampling of the phi/psi conformational phase space and the free 

energy plots revealed that all minima regions are accurately sampled and the canonical 

distribution is recovered (De Oliveira et al., 2007), backbone conformation of serine-proline 

motifs in proteins (Hamelberg et al., 2005) etc. 

 Implicit and explicit solvents 
Along with the biomolecule of interest, the immediate environment of the system including 

water molecules and ions that generally surround them must be modeled accurately but at the 

same time it should not increase the computational burden excessively. MD simulations can 

broadly be carried out in vacuum (no solvent), in implicit solvent where the solvent 

molecules are represented as a continuous potential which reduces the computational burden 

manifolds, however, it is not considered to be the most accurate representation, and in explicit 

solvent where discrete solvent molecules surround the biomolecular system in a solvation 

box. The explicit water solvent is mostly represented as a rigid three-point water model like 

TIP3P (Jorgensen et al., 1983) or SPC (Berendsen et al., 1981). Many times, a solvent other 

than water can be used, for example, chloroform can be used to simulate a hydrophobic 

environment as in a bilayer membrane. With the advent of modern processing machines, it is 

now feasible and expected to employ explicit representation of the solvents. 

 Characterization of secondary structure through Ramachandran plots 
To characterize the secondary structure evolution of a peptide through the course of 

simulation and in different solvents, Ramachandran plots were produced. Ramachandran, 

(1963) published a study describing different protein secondary structural conformations as a 

function of dihedral angles of constituting residues. The scatter plot of these values enabled 

them to define “allowed” and “disallowed” regions on a plot which later became famous as 

the Ramachandran plot. In their definition, they discussed α-helix and β-sheet regions, left-

handed helix regions, π-helices, right and left γ-helices (sterically defined as unlikely to occur 

in polypeptides) and ribbon structure/2.27 helices (first described by Donohue, 1953). 
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Figure 4. The various secondary struuctural regions from Hollingsworth & Karplus 
nomenclature mapped on a classical Ramachandran Plot. 

Fast forward to few decades, Hollingsworth & Karplus (2010) described five main 

conformation clusters on the plot, namely, α-helices, β-strands, polyproline II (PII)-spirals, γ-

turns and γ′-turns along with an additional ε-region (later named PII’ region) generally 

populated by glycine residues and the bridge region between α-helices and β-strands (δ and 

δ′) (Figure 4, Table 1). The mirrored δ′ corresponds to the left-handed α-helix region in this 

work. Finally, an additional region ϕ, ψ = (−130, +80), named as ζ is mentioned mostly for 

residues preceding proline in the sequence. However, when applying these rules to linear 

groups, i.e., series of residues with same repeating conformation, it became clear that only 

three broad types occur including α- and 310-helices, a group that is largely made of β-strands 

and a group that adopt a PII spiral conformation, ϕ, ψ = (−65, +145). They completely 

dismissed the presence of 2.27 helix regions in putative linear groups. Left-handed helices and 

310 helices may exist as short segments. While listing fewer regular structures, they 

mentioned β-turns, PII-spirals, γ- and γ′-turns, ζα and ζPII regions. The bridge region or the δ 
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region constitutes various types of turns like Type I, II’, III etc. which have been classically 

called as β-turns. The term “β-turns” to describe the δ region structure is used throughout this 

text and should not be confused. 

Table 1. Average Φ and Ψ angle values for various conformations on the 
Ramachandran plot (according to Hollingsworth & Karplus, 2010). 

Type  ϕ, ψ angles 

α (alpha helix) −63, −43 

β (beta region)  –157.2, 161.9 

PII -spirals −65, +145 
γ-turns +80, −80 

γ′-turns  −80, +80 

δ regions Extending at 45˚ angle to the left of α-helix region  

δ′ regions Mirror image of δ region 

ζ (pre-proline region) −130, +80 
 

 Addressing convergence 

2.2.6.1. Kullback-Leibler Divergence method 

The quantification of convergence and statistical significance in macromolecular MD 

simulations often presents a challenging task and more so, in case of peptide folding 

calculations. Because they are now known to display varying degrees of conformational 

dynamics instead of adopting a single conformation (McClendon et al., 2012) which arises 

the question whether all possibe conformations have been attained. The principal components 

can give an idea of the conformational states that have been visited during the simulation. A 

quantitative measure of extent of overlap between any probability distribution is the 

Kullback-Leibler divergence (KLD) method taken from information theory which can 

indicate satisfactory sampling (Kullback & Leibler, 1951). By measuring the overlap of PC 

histograms as a function of simulation time, we can assess the convergence of dynamic 

properties of simulations. KLD is defined as: 

(ݐ)ܦܮܭ                                         = ∑ ݈݊ ቀ௛௉஼ଵಿ(௧,௜)
௛௉஼ଶಿ(௧,௜)

ቁℎܲ1ܥே(ݐ, ݅)ெ
௜ୀ଴                             Eq.5 

where ℎܲܺܥே(ݐ, ݅)denotes bin i of the histogram from trajectory X for the projection of PC N 

using data from frames 0 to t, and M is the total number of histogram bins (400 in this case). 

In other words, two independent simulations started from different configurations should 
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eventually begin to sample the same conformations (Galindo-Murillo et al., 2015). The extent 

of overlap between such simulations, quantified as the KLD value as a function of time, will 

indicate whether satisfactory sampling has been attained. 

2.2.6.2. Good-Turing method 
To address the question of convergence, a relatively new technique based on probability 

theory reported by Koukos et al. (2014) was applied to compare convergence of peptaibol 

folding. They argued that any meaningful way to deduce convergence must be based on 

probability theory. They devised Good-Turing formalism for estimation of frequency of 

unobserved species (of conformations) in a trajectory. This formalism draws its conclusion on 

the classical root-mean-square-deviation (RMSD) matrix by answering the following 

question “What is the probability that a molecular configuration with an RMSD (from all 

other already observed configurations) higher than a given threshold has not actually been 

observed?”. In simple terms, this algorithm starts by quantifying structural distance in form 

of RMSD by creating an RMSD matrix (original matrix [N x N]) from the trajectory. This 

maximum RMSD is the highest RMSD observed between successive structures in the 

original matrix, i.e. sampling factor of 1. A sub-matrix formed of size [N/2 x N/2] from the 

original matrix by taking every second row and column and maximum RMSDs determined 

on its superdiagonal means that sampling factor of 2 was applied. For real time application, 

the trajectories should be spaced in a way that the sampling factor stays close to 1. The 

resulting matrix is considered as a distance matrix and a dendrogram is constructed using 

hierarchical clustering methods (Shao et al., 2007). This dendrogram is used to produce 

clusters at different RMSD cutoffs along with their frequencies. Finally, the Good-Turing 

formalism is applied to these frequencies to calculate the probability of unobserved species 

(P_unobs.) that could be observed if the simulations were extended. In simple terms, this 

analysis indicates the probability of observing a molecular configuration not observed before 

(Serafeim et al., 2016).   
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2.3. Biological Membranes 
It is crucial to discuss the composition and properties of biological membranes, especially 

those of bacterial and fungal origin, as they are the main targets of peptaibol activity. Most of 

the bacteria and all fungi are surrounded by a cell wall. Amongst bacteria, the Gram-positive 

bacteria possess a thicker cell wall than Gram-negative bacteria, which compensates for the 

lack of outer membrane in the former. Many Trichoderma species are known to produce cell 

wall lysing enzymes amongst other secondary metabolites (Gajera et al., 2012; Gruber & 

Seidl-Seiboth, 2012). Gram-negative bacteria have two membranes called as cytoplasmic or 

inner membrane and the outer membrane. The top monolayer of the outer membrane consists 

of a lipid layer only found in Gram-negative bacteria and known as lipopolysaccharide (LPS) 

(Beutler, 2002). The bottom monolayer of the outer membrane, the cytoplasmic membrane of 

Gram-negative bacteria and the membrane of Gram-positive bacteria are all composed of 

lipids, phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and cardiolipin (Epand et 

al., 2016). The main role of PE in bacterial membrane is to spread out the negative charge, 

assembling of membrane proteins and help the membrane proteins to fold correctly. Another 

important lipid species, PG is found on average as 25% of the total lipid composition of 

bacteria ranging as high as 80% in S. aureus to 20% in E. coli (Dowhan, 1997). Because of 

the presence of an extra outer layer in Gram-negative bacteria, they are less susceptible to the 

effect of membrane-acting antimicrobial agents. Although, here the outer membrane shows 

higher permeability than the cell membrane due to the presence of porin proteins that are 

permeable for molecules with masses of 500 Da or less. The closest to this size is the shortest 

peptaibol recorded as peptaibolin with 5 amino acid residues (Huelsmann et al., 1998; Crisma 

et al., 2001). Damage to the outer membrane by removal of Mg2+ ions may even result in 

passing of larger molecules (Lam et al., 2014). The understanding of differences between the 

morphology of Gram-positive and Gram-negative bacterial membranes is crucial to develop 

potent antibacterial peptaibol agents. The most common mechanism of targeting cell 

membrane by antimicrobial agents is through altering its bulk properties (Hu et al., 2015; 

Mularski et al., 2015; Voievoda et al., 2015) like membrane curvature (Matsuzaki et al., 1998; 

Bozelli Jr et al., 2012; Koller & Lohner, 2014; Perrin et al., 2015), lipid clustering (Epand et 

al., 2008; Epand et al., 2009; Epand & Epand, 2009; 2011), packing defects (Epand et al., 

2016) or direct target of a bilayer component (Machaidze et al., 2002; Pogliano et al., 2012). 

The different mechanisms are depicted in Figure 5. 
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Figure 5. Various mechanisms by which antimicrobial compounds may target lipid 
membranes (prepared using Biorender) 

While all listed mechanisms are important in their own way, the last mechanism of “direct 

action” against specific lipids of the membrane remains the most important avenue to explore 

for rational antimicrobial discovery. By rational, we mean that an antimicrobial agent must be 

so designed to have highest efficacy against the targeted bacteria while being the least toxic 

to the human host. The agents targeting membranes must target those lipid species found in 

abundance in the bacterial membrane while absent or meagerly present in mammalian 

membranes. For example, targeting the anionic lipids and PE which are mostly found 

exposed on the outer surface of bacterial membranes in abundance while found on the 

cytoplasmic surface of eukaryotic membranes with a low concentration of 5% (Epand et al., 

2016). The first peptides discovered to target PE were members of class I, type B lantibiotics 

(a class of polycyclic peptide antibiotics that contain the characteristic thioether amino acids 

lanthionine or methyllanthionine, as well as the unsaturated amino acids dehydroalanine, and 

2-aminoisobutyric acid) like duramycin, and the resistance to it in Bacillus subtilis could be 

associated with the decrease in amount of PE and cardiolipin in the membrane (Dunkley Jr et 

al., 1988). For exploiting different avenues of membrane disruption caused by antimicrobial 

peptides, we must understand the relation between their structure and activities. Therefore, 

MD simulation techniques are fast, cost-effective and increasingly accurate approaches to 

elucidate mechanisms of peptaibol folding and to uncover their modes of action against 

biological membranes. 
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3. AIMS AND OBJECTIVES 
The understanding of peptaibol structure and dynamic folding is important to subsequently 

understand and correlate with their antimicrobial mechanism of action. Peptaibols are known 

to generally possess a spiral or helical shape and to disrupt biological membranes or form 

voltage-gated ion channels, as it was proven for alamethicin. However, some of them fold 

into strict α-helices while others form loose β-bend ribbons. Although most of them exhibit a 

backbone bend to some degree, a few peptaibols show a highly curved backbone. These 

differences account for the variability in their ability to interact with cell membranes and 

therefore, their antimicrobial activity. Our main aim is to develop a reliable strategy for 

elucidating complete structural ensembles of peptaibol compounds by applying time- and 

cost-effective in silico techniques known as molecular dynamics simulations. The various 

steps taken in lieu of the main goal are as follows:  

1) To develop an accurate representation of various non-standard amino acid residues 

like Aib and Div found in peptaibols, and the C-terminal aminoalcohols like Pheol or 

Leuol in terms of their atomic partial charges, geometry and ability to incorporate to 

peptide sequences for computational modeling.  

2) To test the effect of various solvents and timescales on peptaibol folding using 

classical MD methods. 

3) To optimize accelerated MD simulation parameters required to obtain complete 

conformational landscapes of peptaibols by comparing with a known peptaibol 

structure.  

4) To test accelerated MD simulations for correctly modeling biological membranes 

and to reproduce experimental results. 
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4. MATERIALS AND METHODOLOGY 
4.1. Sequence selection 

For the first part, we carried out classical MD simulations on two sequences: Trikoningin KA 

V (TRK-V) (McMullin et al., 2017) and Tripleurin XIIc (TPN XIIc), an 18-residue long 

sequence with five ambiguous Val/Div and one Leu/Ile position was selected. Their primary 

structure is given in Table 2. Out of 24 reported tripleurin sequences, three compounds 

(Tripleurins VI, VIIIb, and XIIc) were present in the highest area percentage with 7.9%, 

10.0% and 12.0% by liquid chromatography-mass spectrometry (LC-MS) analysis extracted 

at m/z of sodiated molecular ions M+Na+, respectively (Marik et al., 2017). The ambiguous 

residue positions were predicted based on the sequence of NRPS proteins using the 

antiSMASH database server (Blin et al., 2016). For the second part, we focused on the use of 

aMD simulations to obtain complete conformational ensemble and structural dynamics of 

Alm F30/3. The same technique was later applied to TPN XIIc, Par-B & H, and Brev-I & IV 

(Marik et al., 2019) and TRK-V (Table 2).  
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Table 2. The primary sequences of all peptaibols studied in this work. The ambiguous residues have been underlined.

Trikoningin KA V  AcAib1 Gly2 Ala3 Aib4 Ile5 Gln6 Aib7 Aib8 Aib9 Ser10 Leu11 Aib12 Pro13 Val14 Aib15 Ile16 Gln17 Gln18 Leuol19  
Tripleurin XIIc AcAib1 Ser2 Ala3 Aib4 Vxx5 Gln6 Vxx7 Aib8 Vxx9 Ala10 Vxx11 Aib12 Pro13 Lxx14 Aib15 Vxx16 Gln17 Pheol18   
Alamethicin F30/3  AcAib1 Pro2 Aib3 Ala4 Aib5 Ala6 Gln7 Aib8 Val9 Aib10 Gly11 Leu12 Aib13 Pro14 Val15 Aib16 Aib17 Glu18 Gln19 Pheol20 
Brevicelsin I AcAib1 Ala2 Aib3 Ala4 Aib5 Gln6 Aib7 Leu8 Aib9 Gly10 Aib11 Aib12 Pro13 Val14 Aib15 Aib16 Gln17 Gln18 Pheol19  
Brevicelsin IV AcAib1 Ala2 Aib3 Ala4 Aib5 Gln6 Aib7 Leu8 Aib9 Gly10 Aib11 Aib12 Pro13 Val14 Aib15 Val16 Gln17 Gln18 Pheol19  
Paracelsin B AcAib1 Ala2 Aib3 Ala4 Aib5 Ala6 Gln7 Aib8 Leu9 Aib10 Gly11 Aib12 Aib13 Pro14 Val15 Aib16 Aib17 Gln18 Gln19 Pheol20 
Paracelsin H AcAib1 Ala2 Aib3 Ala4 Aib5 Ala6 Gln7 Aib8 Leu9 Aib10 Gly11 Aib12 Aib13 Pro14 Val15 Aib16 Val17 Gln18 Gln19 Pheol20 
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4.2. Force field library generation for non-standard residues 
As famously known, fungal peptaibols are characterized by their unusual amino acid content. 

In the selected sequences, Aib, Div, Pheol, and leucinol (Leuol) are the non-standard residues. 

A graphical representation of their 2D structures is provided in Figure 6. Both Aib and Div 

are derivatives of the parent alanine amino acid residue, in which one methyl group is present 

as the side-chain. An additional methyl group (-CH3) is attached to the Cα carbon atom as the 

side-chain in Aib, while an ethyl group (-CH2CH3) is attached in the Div residue. For 

calculation of their partial charges and creating force field libraries, the R.E.D server was 

used (Vanquelef et al., 2011). R.E.D stands for RESP ESP charge derive (Dupradeau et al., 

2010). RESP (restrained electrostatic potential) was used to calculate the charges with a 

HF/6-311G(d) basis set and Gaussian09 as quantum mechanical program interface (Frisch et 

al., 2009, 2014). The charges for Aib and Div were calculated along with other standard 

amino acids like alanine, glycine, serine, and valine. The charges calculated for standard 

residues were used to confirm with existing libraries in AmberTools 18 based on their 

respective atomic charges. For each residue, two conformations i.e. α-helix (Φ = −63.8, Ψ = 

−38.3) and β-sheet or C5 (Φ = −157.2, Ψ = 161.9) were used. These were modified and 

generated using the Avogadro 3D molecular editor program (Hanwell et al., 2012) based on 

the strategy described by Cieplak et al. (1995). A slightly different strategy was used to 

calculate the charges for Pheol and Leuol, where two molecules, ethyl alcohol with 

phenylalanine and with leucine were used to form the Pheol and Leuol units, respectively. 

The results include the charges calculated in the molecule files and a script to make force 

field libraries for these forces (provided in Appendix). The sequence was built by supplying 

residue units from scratch using “tleap” after sourcing the library files of non-standard amino 

acids.  

 
 



25 
 

 
 
 

Figure 6. Graphical representation of 2D molecular structures of Aib, Div, Pheol and 
Leuol. 

4.3. Classical molecular dynamics simulations 
 In implicit water solvent 

For the first part, all MD calculations were carried out with AmberTools16 (Case et al., 2016) 

with ff14SB force field using generalized born implicit solvent method. Every MD 

simulation starts with preparing the whole system to ensure that it remains stable during the 

entire course of production run. The first step is energy minimization to stabilize the system. 

The maximum number of cycles was set at 10000 (maxcyc) with a convergence criterion of 

0.01. The steepest descent algorithm was used for the first 100 cycles (ncyc) and then 

switched to conjugate-gradient algorithm for the remaining cycles. The energy minimization 

outputs were used for setting up the production run with 50000000 steps which correspond to 

10,000 trajectory (frames) and 100 ns of total simulation time. All systems were maintained 
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at 300 K using Langevin thermostat (ntt = 3, gamma_ln =1.0). The time step was set to 2 fs 

and no cutoff was applied for non-bonding interactions. The resultant trajectories were 

visualized in Visual molecular dynamics software (VMD) (Humphrey et al., 1996). 

Secondary structure analysis was done by the cpptraj module (Roe & Cheatham, 2013). 

 In explicit water and methanol solvents 
The average structure of the last 30000 steps from the previous 100 ns long simulation was 

used as a starting structure for two 30 ns long simulations in explicit water and methanol 

solvent. The system was energy minimized for 20,000 steps and after a 50,000 step heating 

run, the production run was started at temperature 300 K under pressure regulation, ntp=1 

condition. The periodic boundary conditions were applied, long-range effects were treated 

using the PME method (Darden et al., 1993). The methanol solvent simulation was carried 

out the same way with constant pressure and temperature regulation. In case of TPN XIIc, 

2391 TIP3P water molecules were added for the explicit water simulation resulting in 7145 

atoms in the system with the simulation box of size 42.113 × 55.536 × 42.040 Å and the 

volume of 98322.397 Å3. Similarly, addition of 1336 methanol residues in a separate TPN 

XIIc system comprising of 8288 atoms with the size of 48.311 × 58.140 × 66.580 Å and the 

volume of 187008.295 Å3. 

4.4. Accelerated molecular dynamics simulations 
As classical molecular dynamics (cMD) offers limited utility in terms of shorter time scales, a 

relatively new approach named accelerated molecular dynamics (aMD) was adopted for this 

study to enhance sampling. The bias potential function, introduced by Hamelberg et al. (2004, 

2007), was applied to make the simulation “jump over” high energy barriers and to sample 

rare events. A detailed discussion is provided in section 2.2.3. of Introduction. 

All systems were prepared for aMD in six consecutive steps, i.e. (a) minimization (conjugate 

gradient followed by steepest descent method) of solvent for 20,000 cycles while keeping the 

peptide under restraint, (b) water movement at 300K under isothermal and isobaric (NTP) 

conditions while keeping the peptide under restraint, (c) minimization of the whole system 

for 20,000 cycles, (d) heating from 0 K to 300 K under isothermal and isovolumetric (NVT) 

conditions while keeping the peptide under restraints, (e) relax the system at 300 K for 0.5 ns 

while keeping the heavy atoms of the peptide under restraint, and (f) relax system at 300 K 

under NTP conditions for 5 ns with no restraints. The temperature scaling was carried out 

using Langevin thermostat while the pressure was regulated using the default Berendsen 

barostat for all corresponding calculations. SHAKE bond length constraints were applied on 
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all bonds involving hydrogen. A short classical MD run to obtain average dihedral and 

potential energies (kcal mol−1) was also carried out for 100 ns at 300 K temperature and 

periodic boundary condition was used with constant pressure using Berendsen barostat in 

each case. 

All simulations were carried out at 300 K temperature, 2 fs time step, and energies and boost 

information was written at every 1000 steps. The electrostatic interactions were calculated 

using PME (Darden et al., 1993) and long-range interactions were also calculated with cutoff 

of 10.0. The temperature scaling was carried out using Langevin thermostat without pressure 

scaling during aMD. The SHAKE algorithm was applied on all bonds involving hydrogen. 

The GPU machines available through the NIIF High Performance Computing supercomputer 

at the University of Debrecen on the partition prod-gpu-k40-Leo nodes with 3 × Nvidia 

K40X CUDA8 were utilized for all aMD simulations. All simulations were carried out using 

pmemd.cuda implementation of Amber14, also available at the cluster. 

aMD can be carried out using three criteria, i) independently boosting the torsional terms of 

the potential (iamd = 2) or ii) the whole potential at once (iamd = 1), and iii) to boost the 

whole potential with an extra boost to torsions (iamd = 3). The third criterion seemed to be an 

appropriate choice, as dihedral-only aMD boost is known to enhance the convergence of the 

underlying FEL by 5-fold in comparison to classical MD, but the dual boost option provides a 

better reweighting distribution (Wereszczynski & McCammon, 2010). 

The extra parameters Edihed, αdihed, Etotal and αtotal were calculated as required in Equation 4 

(also provided in section 2.2.3. of Introduction): 

 

                         Edihed = Vavg_dihed + a1 × Nres,         αdihed = a2 × Nres/5; 

                         Etotal = Vavg_total + b1 × Natoms,        αtotal = b2 × Natoms                                            

 

where Nres is the number of peptide residues, Natoms is the total number of atoms in the system 

(Provided in Table 3 for each system). Vavg_dihed and Vavg_total are average dihedral and total 

potential energies obtained from the 100 ns long cMD run in each solvent. 
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Table 3. The values of Nres, Natoms and the boost coefficients a1, a2 and b1, b2 for in each 
simulated system. 

Peptaibol compounds Nres Natoms a1, a2 b1, b2 

Tripleurin XIIc 18 8243 in water,  
7462 in chloroform 

See Table 8 and 9 See Table 8 and 9 

Alamethicin F30 20 14391 See Table 12 See Table 12 

Trichoningin KA V 20 19467 4.5 0.20 

Paracelsin B 20 12013 4.0 0.16 

Paracelsin H 20 10957 4.0 0.16 

Brevicelsin I 19 14448 4.0 0.16 

Brevicelsin IV 19 13884 4.0 0.16 
 

All systems were solvated using TIP3P water model for aqueous solvent except in case of 

TPN XIIc solvation in chloroform solvent using tleap module of AmberTools18 (Case et al., 

2018). The number of residues added in each system with corresponding box size and volume 

is provided in Table 4.  

 

Table 4. The solvation information for each system studied in this work. 

Unfolded peptaibols 
No. of 

residues 
added 

Periodic box size (Å) Volume of box 
(Å3) 

Tripleurin XIIc 
Water solvent (TIP3P) 2657 44.34 × 59.11 × 42.85 112332.6 

Chloroform 1021 49.60 × 59.51 × 67.98 200719.8 

Alm F30/3 4701 48.79 × 71.80 × 54.41 190680.5 

Trikoningin KA V 2324 45.96 × 44.35 × 46.88 95587.0 

Paracelsin B 3910 55.05 × 46.82 × 62.33 160676.0 

Paracelsin H 3557 55.05 × 42.11 × 63.40 147021.3 

Brevicelsin I 4725 67.57 × 50.93 × 54.97 189190.3 

Brevicelsin IV 4536 68.52 × 45.96 × 58.30 183623.0 

 
 

4.5. Accelerated molecular dynamics simulations applied on a bilayer 
membrane system: alamethicin F30/3 hexamer pore 

The hexamer pore of Alm F30/3 peptide was obtained through M-ZDOCK server 

(http://zdock.umassmed.edu/m-zdock/) (Pierce et al., 2005). This is a Fast Fourier Transform 
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based protein docking program that predicts the structures of cyclically symmetric multimers. 

The hexameric pore was then embedded into a 3:1 mixture of 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

(DOPG) bilayer membranes which mimics a bacterial (Escherichia coli) membrane 

constitution. This system can be easily prepared in an Amber-ready format by using the 

‘packmol-memgen’ (Schott-Verdugo & Gohlke, 2019) workflow available with 

AmberTools18 that uses ‘Memembed’ (Nugent & Jones, 2013) to obtain pre-oriented protein 

conformation with respect to the membrane. This system was solvated in 4410 water 

residues. The Alm F30/3 hexamer channel embedded in DOPE:DOPG bilayer system was 

prepared for aMD simulations starting with minimization followed by two steps of system 

heating and 10 steps of equilibration. This system was energy minimized for 10,000 steps 

which switches to conjugate gradient method after 5000 steps of the steepest descent method. 

The minimization was done at constant volume, no SHAKE algorithm was applied, and the 

non-bonded cutoff was set to 10.0 Å. The minimized system was set for two rounds of 

gradual ‘heating’ to reach the ‘production run’ temperature. In the first step, the system was 

heated to 100 K while the second step reaches a temperature of 303 K. The 10-step 

equilibration was carried out at 303 K temperature for 500 ps each. A short 25 ns long 

production run at 303 K was carried out with constraints on bond distances to calculate the 

aMD boost parameters followed by two consecutive aMD simulations of 300 ns each with 2 

ps time step. Each aMD simulation was carried out with dual boost (iamd = 3) option at 300 

K temperature regulated using a Langevin thermostat. A weak external static electric field 

was also applied along the z direction (across membrane) with efz values (intensity in kcal 

(mol × A × e)−1) of 0.180 and 0.080 for the first and second simulation, respectively 

(Escalona et al., 2016). The values of efz were chosen in a way that the magnitude of 

resulting electric potential is slightly higher than the voltage across plasma membrane. A 

membrane with 35 Å thickness has a potential of ~70 millivolts (mV) which is 0.07 V per 3.5 

× 10−7 cm or 0.02 V nm−1 (Lodish et al., 2000). A 0.180 kcal (mol × A × e)−1 translates to an 

electric potential of 0.07 V × nm−1 while 0.080 kcal (mol × A × e)−1 translates to 0.03 V × 

nm−1. A distance restraint was applied for all glutamine amino acid residues owing to their 

importance in Alm F30/3 pore stability. The average pore radius was calculated using the 

HOLE utility (Smart et al., 1996) and water density available through MDAnalysis (Gowers 

et al., 2019; Michaud-Agrawal et al., 2011). 



30 
 

5. RESULTS AND DISCUSSION 
5.1. Classical molecular dynamics 

 Implicit solvent simulations on the unfolded structure 

5.1.1.1. Secondary structural populations of the 100 ns long run of TRK-V in 
implicit water: vision from Ramachandran plot 

TRK-V was previously identified as a peptaibol produced by Trichoderma koningiopsis along 

with two other 11-residue sequences, trikoningin KB I and KB II (McMullin et al., 2017). 

Another study by our group identified novel peptaibols which were named as 

“koningiopsins” with TRK-V as the closest sequence (Marik et al., 2018). TRK-V, 

positionally isomeric with sequences Pept-Vb, -VIb, and -VII of T. gamsii is a 19-residue 

peptaibol with seven Aib residues in its sequence. Aib is an achiral residue, which has been 

shown to promote helix formation and can exist in both right- and left-handed helix regions 

on the Ramachandran plot. To determine the propensities of each residue for a given 

secondary structure type, their relative free energies were calculated which clearly describe 

an energetically favourable conformation (Figure 7). The spread of dihedral angle scatter 

during the simulation indicates that the system underwent through all the conformations. The 

darkest regions indicate energetically preferable conformations. We also characterized 

individual amino acid conformation and the overall conformation using the new 

nomenclature given by Hollingsworth and Karplus (2010) as discussed in the Introduction, 

Section 2.2.5. 

Unexpectedly, a strong preference was found for the left-handed helix region of Ф-ψ plots 

during this simulation, specifically for residues in the central region flanked by Gln6-Aib7-

Aib8-Aib9 and Aib12-Val14-Aib15-Ile16. Except for Aib1 and Aib4, all other Aib residues 

show free energy minimum in the left-handed helix region. Most standard (proteinogenic) 

amino acid residues, Gly2, Ala3, Ser10, Leu11, Gln17, and Gln18, display an energy 

minimum in the right-handed α-helix region. Ile5, Ser10, Leu11, Pro13, and Ile16 also show 

preference for the poly-proline II region. This behaviour of Leu and Ile to occupy the β-space 

on the Ramachandran plot is expected due to their β-branched side-chains. It is known that 

due to heavier side chains, they show less propensity to exist in a helix and, therefore, prefer 

to form β-strands. The presence of three consecutive Aib residues in positions 7, 8, and 9 

seems to drive its conformation towards a left-handed helix, while the rest shows clear 

preference for right-handedness. This resulted in an overall unwinding of the helix and does 

not seem to form a continuous spiral shape. 
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Figure 7. Free energy distribution of phi-psi torsion angles of each residue of TRK-
V. The deepest violet regions denote energy minima regions. 

The RMSD values based on the coordinates of peptide backbone atoms C, CA, and N for 

each frame with respect to the average structure has been calculated. Similarly, the radius of 

gyration (RoG) values, which is the RMSD of peptide components from their centre of mass, 

was calculated for each frame. The preliminary investigation revealed that the overall 

conformation (obtained from the trajectory with RMSD value between 12 Å to 14 Å, denoted 

by structures 3 and 4) resembles a hairpin structure with turns that never assumes a spiral 
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shape (Figure 8A). Structures 2 and 5 with an almost unfolded structure show lower RMSD 

values than 12 Å, which is not energetically favoured. The FEL as a function of RMSD and 

RoG is shown in Figure 8B, which clearly indicates that structures with RoG value of less 

than 8 Å and RMSD values between 12–14 Å are energetically favoured.  

 

 
 

Figure 8. (A) The RMSD (red colour) and RoG (black) with corresponding three-
dimensional structures of TRK-V. (B) FEL as a function of RMSD and RoG shows 
energetically favoured conformations with RMSD between 12–14 Å and RoG value 
less than 8 Å. 
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When compared with the hydrogen bonding pattern within the backbone, mostly i+3→i H-

bonds were found that denote 310 helices probably in left-handed conformation as indicated 

by Ф-ψ plots (Table 5). Ile5→Gly2, Aib8→Ile5, Aib9→Gln6, Ser10→Aib7, Ile16→Pro13, 

and Gln17→Val14 are examples of left-handed 310 helix bonds while Gln6→Ala3, 

Leuol19→Ile16, Leu11→Aib8 are examples of right-handed 310 helix. Few γ-turn 

populations are also seen by Aib7→Ile5, Aib12→Ser10, and Gln17→Aib15 as energetically 

stable. Moreover, few unusual bonds between Ile16→Gly2, Aib15→Gly6 and Gln17→Gly2 

indicate a backbone hairpin turn that may put these residues in vicinity to each other and form 

a H-bond. This means that the highly bent structure resembling a β-hairpin with the N- and 

C-terminals in close proximity to each other is energetically favoured in comparison with a 

linear backbone. 

 
Table 5. Backbone H-bonds of TRK-V along with their frequency of occurrence 
given by fraction, average distance, and angle. 

Acceptor Donor Fraction Average Distance 
(Å) 

Average angle (˚) 

Gly2 Aib7 0.20 2.89 158.38 
Gln6 Aib9 0.18 2.89 156.70 
Ala3 Gln6 0.17 2.89 151.58 
Pro13 Ile16 0.17 2.89 158.27 
Ile16 Leu19 0.16 2.89 158.30 
Aib8 Leu11 0.14 2.89 154.75 
Aib7 Ser10 0.12 2.89 155.29 
Val14 Gln17 0.09 2.90 159.02 
Ile5 Aib8 0.07 2.91 160.79 

Aib15 Gln17 0.06 2.81 149.04 
Aib15 Gln18 0.05 2.90 156.85 
Ile16 Gly2 0.04 2.87 153.47 
Aib15 Gln6 0.04 2.88 159.95 
Ser10 Aib12 0.03 2.84 148.77 
Ile5 Aib7 0.03 2.81 149.83 
Gly2 Ile5 0.03 2.91 151.88 

Gln18 Val14 0.03 2.85 150.00 
Gln17 Gly2 0.03 2.87 153.97 
Aib8 Aib12 0.03 2.90 156.30 
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5.1.1.2. Secondary structural populations of the 100 ns long run of TPN XIIc in 
implicit water: vision from Ramachandran plot 

Tripleurins are a newly identified group of peptaibols produced by the fungus Trichoderma 

pleuroti, which causes green mold disease in the cultivation of oyster mushroom (Pleurotus 

ostreatus) (Marik et al., 2017). They were also reported as potential growth inhibitors of 

oyster mushroom mycelia. LC-MS could not distinguish between isobaric residues, which are 

therefore marked as Vxx for L-valine or L- and D-isovaline and Lxx for L-leucine or L-

isoleucine. Similarly, their 1,2-amino alcohols are referred as Vxxol and Lxxol. From a 

mixture of various tripleurins, TPN XIIc has been selected based on its high yield and lowest 

number of ambiguous positions. 

Comparison of implicit solvent simulated TPN XIIc plots revealed the presence of β- and 

some γ-turn populations on the plot especially for non-standard residues like Aib and Div 

(Figure 9). All Aib residues, Ala3 and Div5 show high scatter populations in the first 

quadrant of Ramachandran plots which is classically known to be left-handed α-helix 

conformation. However, according to the new classification, this region is marked as δ’ 

region as a mirror image of the δ region. Aib residues also show fluctuation between left- and 

right-handed α regions owing to their achiral nature. Aib1, Ala3, Aib8 and Aib15 lose their 

left-handed character as the simulation proceeds towards a stable structure, while Aib12 

almost entirely maintains its left-handedness (δ’ region). Ala3 and Leu14 also seen in the PII 

scatter even towards the end of simulation almost like Pro13. All other standard residues 

populated in the α and β regions (including PII region) except Ala10, which is mostly 

populated in the α/δ-region with some pre-proline (ζ) character. Ala3, Gln6, Val9 and Leu14 

also show large scatter in the β/PII-regions, while Pro13 fluctuates between the α- and PII 

regions towards the end of simulation. 

The δ-region has been classically recognized as β-turn conformations. β-turns comprise eight 

distinct types (Type I, I’, II, II’, VIa1, VIa2, VIb, and VIII) based on the dihedral angles of 

their central residues, i+1 and i+2, with one more miscellaneous category that contains all 

conformations other than the main eight classes, namely the IV class. The average dihedral 

angle values for various β-turn types were taken from Hutchinson & Thornton (1994). β-turn 

type I ( φi + 1 = −60, ψi + 1 = −30, φi + 2 = −90, and ψi + 2 = 0) was mostly observed amongst 

residues involving i+3→i H-bonds. Especially, Aib4 →Aib1, Gln6 →Ala3, and Ala10 

→Div7 bonds falls in this category in all simulations. Highly constrained residues like Aib 
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can be accommodated at both i+1 and i+2 positions of type I and I’ β turns (Mahalakshmi & 

Balaram, 2006). 

 

 

Figure 9. Free energy distribution of phi-psi torsion angles of each residue of TPN 
XIIc in implicit solvent.  

Not surprisingly, the implicit solvent simulation samples many types of β-turns during its 

folding to attain the native conformation (Figure 9). The γ’-region (reverse γ turn) has been 

defined around (ϕ, ψ) = (−80, +80) for i+1 residue (Némethy & Printz, 1972). This 

conformation shows i+2→i (N→O) backbone hydrogen bond which was seen with high 

frequency at the Div11→Val9 bond during the simulation. The corresponding plots for Val9 

and Ala10 also highly populated the γ’-region geometry, which extends from the α region to 

the β region. This explains why does not TPN XIIc form a linear helix but shows bending or 

backbone reversal around this point. All residues, except Div11 and Aib12 show high 

population in α (peak at ϕ, ψ = (−63, −43)) and δ regions. Div11, interestingly, populates the 
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scarcely populated corners of the plot (thereby not conforming to “allowed” regions), out of 

which, corners of the Ist and IVth quadrants are defined as the ε-regions (mostly populated by 

glycine residues). Div11-Aib12-Pro13 residues seem to break TPN XIIc helix continuity. 

Although the reason behind helix-unfolding is the proline side-chain, its effects can be seen 

in the plots for Div11. These plots indicate preference for β-turn formation for most of the 

sequence except at the C-terminal. This is confirmed by the timeline secondary structure 

calculation plot (Figure S1, see Appendix).  

Effect of Div stereoisomer: TPN XIIc contains three Div residues that may have 

characteristic effects on the screw sense of the resulting helix, on bioactivity and even on the 

probability to be degraded by proteolytic enzymes. Many AMPs fail to pass as therapeutic 

compounds due to their high toxicity profiles against mammalian cells and susceptibility to 

proteases. Amongst several strategies employed to overcome this bottleneck, for example, N- 

or C-terminal modification, cyclization, inclusion of non-peptidic backbones and 

multimerization, the incorporation of D-amino acids has been arguably the most successful 

strategy (Falciani et al., 2012; Kim et al., 2014; Ong et al., 2014; Khara et al., 2016).  

Formaggio et al. (1995) reported that isovaline (Iva)-rich peptides favour β-bends and 310 

helices and their chirality affects the helix screw sense in such a way that D-/R-amino acids 

produce left-handed helices. As our peptide of interest, TPN XIIc has three Div and two Val 

residues. Div11 seems to populate only the extreme corners (β- and ε-regions) on the plot, 

most probably due to steric hindrance from Pro13. The values traverse from one extreme to 

another for both x- and y-axes, which shows that the continuous helix “flattens” out at that 

position and takes left-handedness at Aib12-Pro13. Due to the presence of other strong right-

handed helix promoting residues the peptide returns back to right-handed screw sense at the 

C-terminal. Other important details are the large angle values (ranging from 110˚ to 160˚ for 

all simulations compared to an average of 110˚) between C-Div11-NPro12-C, indicating a 

strong steric repulsion between delta-methylene of Pro and the alkyl side chain of Iva residue. 

A similar observation was made by Kawai et al. (1993) for Div containing dipeptides.  

5.1.1.3. Folding dynamics of TPN XIIc in implicit solvent 
Upon analysing the FEL of the first implicit 100 ns long simulation at 298 K from the 

unfolded state, at least seven energy wells were revealed and numbered in a descending order 

by their population. The darkest violet regions on the FEL map show the lowest energy 

conformation clusters. The peptide undergoes large conformational changes from unfolded 
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conformation 6 to folded ones (Figure 10). The energy barrier between unfolded and folded 

conformations is quite large (~2-3 kcal mol−1) as it is also between intermediate 

conformations 1, 2, 4, 5, and 7 and the final conformation denoted by 3 (difference is ~3.5 

kcal mol−1). A number of intermediate conformations occur but the energy barrier amongst 

them is easily traversible. The path of peptide folding is as follows, 6→ 1→ 4→ 2→ 7→ 2→ 

5→ 3. Cluster 3 is formed from conformers belonging to the last 40 ns of simulation where it 

loses the α-helix at the N-terminal otherwise seen in representative structures of 1st, 2nd, 4th, 

and 7th clusters. Cluster 1 is the most populated group but its occurence in the beginning of 

the simulation indicates that it is a stable intermediate stage. Cluster 2 is the second highly 

populated group which fluctuates with the 7th cluster although the 7th stage does not last long. 

The central segment shows a classic β-turn property of backbone reversal by bringing the two 

terminals close to each other and thus, the peptide appears to be curved for most 

conformations. Only in the 3rd cluster, the peptide is mostly linear with a slight curve and 

almost perpendicular C-terminal alignment. The strict α-helix is replaced by a spiral-like 

conformation. 

 

 
Figure 10. FEL showing various free energy basins and corresponding peptide 
conformations of TPN XIIc in implicit solvent. 
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Ferrera & Caflisch, (2000), have extensively shown implicit solvent models to be 

computationally efficient by accelerating the timescales involved in protein folding due to the 

absence of viscosity of solvent. However, the same authors reported that the folding times of 

these proteins were at lower bounds to the real folding time due to the absence of solute-

solvent friction. Many questions are raised towards the accuracy of implicit solvation as they 

not only inadequately capture the folding kinetics but may also lead to a much faster collapse 

into a non-native conformation and a consecutive starkly different folding landscape. On the 

other hand, an explicit solution delays this collapse and may recover the interatomic contacts 

accurately before proceeding towards folding (Snow et al., 2005). 

 Explicit solvent simulations on the folded structure: comparison between 
water and methanol as solvents 

We became curious to observe the folding behaviour in explicit solvent. TPN XIIc was 

simulated for a short 30 ns in explicit aqueous environment and in methanol. Methanol has 

been shown to promote comparable secondary structure folding in peptaibols as in 

phospholipid bilayers (Franklin et al., 1994; Miura, 2020). Ramachandran plots for each 

residue in explicit water (Figure 11) and methanol simulations (Figure 12) were studied and 

it was found that most residues are populated around the α- and δ-regions. All Aib residues, 

with the exception of Aib12, populate only the α/δ region. Aib12, on the other hand, lies in 

the δ’ region. Div11 shows the same behaviour in all simulations. Pro13 lies almost 

exclusively in PII conformation in both explicit water and methanol solvents. This 

conformation is devoid of regular backbone hydrogen bonding and is separated from the β-

region (classically both were accounted together). Ala10 was also found to scatter in this 

region as sampled from 20-30 ns in aqueous environment, which can be explained by the 

effect of Pro13. 
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Figure 11. Free energy distribution of phi-psi torsion angles of each residue of TPN 
XIIc in explicit water solvent.  

Table 6 and 7 list the high occurrence of backbone H-bonds in TPN XIIc simulation in 

explicit water and methanol solvents, respectively. As it can be seen in these tables, the 

frequency of i+4→i H-bonds at the C-terminal is higher in water compared to methanol. For 

example, the Pol18→Leu14 (α-helix) bond occurs at a frequency of 54% in aqueous 

environment compared to 19% in methanol. By contrast, the Gln17→Leu14 (indicating δ 

region) bond occurs only 0.07% times in aqueous environment but at 37% times in methanol. 

Also, the Gln17→Pro13 bond occurs with 32% frequency in aqueous solvent against only 3% 

in methanol. It indicates that while aqueous solvent promotes α-helix stabilizing H-bonding 

pattern, methanol promotes the stability of δ region/310 helix (i+3 →i hydrogen patterns) at 

the C-terminal. Pol18→Aib15 and Pol18→Leu14 bonds occur with same frequency at 19% 

in methanol solvent indicating an equilibrium between 310 and α-helix conformations. 
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Table 6. Backbone H-bonds of TPN XIIc in explicit water solvent along with their 
frequency of occurrence given by fraction, average distance and angle.  

Acceptor Donor Fraction Average distance 
(Å) 

Average angle 
(˚) 

Aib1 Aib4 0.04 2.91 158.27 

Aib1 Div5 0.03 2.91 163.47 

Ser2 Gln6 0.04 2.90 159.80 

Ala3 Gln6 0.25 2.87 153.69 

Ala3 Div7 0.16 2.89 162.03 

Aib4 Div7 0.09 2.90 159.56 

Aib4 Aib8 0.02 2.91 165.17 

Gln6 Ala10 0.19 2.87 160.21 

Div7 Ala10 0.13 2.90 155.63 

Val9 Div11 0.04 2.88 145.15 

Pro13 Val16 0.28 2.87 148.57 

Pro13 Gln17 0.32 2.88 161.57 

Leu14 Gln17 0.07 2.89 151.99 

Leu14 Pol18 0.54 2.87 158.52 

 

The Div11→Val9 bond was discussed earlier for implicit solvent simulation of TPN XIIc for 

100 ns. This bond occured at a relatively high frequency (14% out of 100,000 frames) and 

seemed to favour γ’-turn conformation, which now reduced to 4% and 1% in explicit aqueous 

and methanol solvent environments, respectively. Ramachandran plots for Ala10 (Figure 11) 

in aqueous solvent show highly populated scatter in γ’ and δ regions before concentrating in 

the PII region towards the end of simulation, while in methanol, Ala10 shows almost 

negligible γ’-turn scatter (Figure 12). This indicates that γ’-turn conformation is not stable in 

explicit solvent environment, especially in methanol. The loss of the Div11→Val9 bond 

seems to reduce the hairpin-like bending of the backbone. Most of the high frequency H-

bonds indicate the formation of δ turns (classically, 310 helix regions). 

The TPN XIIc structure can be discussed as three different segments, namely, N-terminal 

AcAib1-Aib8, central region Val9-Pro13, and the C-terminal Leu14-Pheol18. The N-terminal 

segment mostly shows formation of continuous β-turns. This shapes the peptide into a loose 

helix-like (spiral) conformation. The central region unwinds the helix at the Div11-Aib12-

Pro13 site with Pro13 characteristically populating the PII conformation in both explicit water 

and methanol solvent-based simulations. 
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Figure 12. Free energy distribution of phi-psi torsion angles of each residue of TPN 
XIIc in explicit methanol solvent.  

An interesting observation occurs in the C-terminal segment, where Leu14 remains 

concentrated mostly in the α/δ regions in aqueous environment but shows a high fluctuation 

while traversing the Ramachandran space from α- to PII in methanol environment after 20 ns. 

Contrary to this, Ala10 shows PII scatter in aqueous environment but not in methanol solvent. 

According to Brown & Zondlo, (2012), leucine shows the highest PII propensity after proline 

which is followed by alanine and other linear side-chain residues. The loss of PII 

conformation of alanine from water to alcohol (trifluroethanol) was also noted previously by 

Chen et al. (2004). In case of short alanine peptides (GGAGG) PII conformation is 

predominant in water at 20°C, which disappears when the solvent is changed to 

trifluroethanol and shows preference for γ’-turn (C7 eq) conformations (Liu et al., 2004). An 

explanation can be that PII structure is stabilized by hydrogen bonds between water and 

backbone amide nitrogen and carbonyl oxygen (Han et al., 1998). Another explanation is that 

PII conformation poses least effect on disruption of H-bonds present in liquid water (Pappu & 
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Rose, 2002; Drozdov et al., 2004). Comparing the angle averages of Div5, Div7 and all Aib 

residues except Aib12 by hydrogen bonding patterns, the formation of β-bend ribbon spirals 

at the N-terminal segment (Aib1-Ala10) is clearly evident (Figure S2 and S3, see Appendix). 

The β-bend ribbons are formed when at least two hydrogen bonded β-turns are observed with 

i+3 →i and i+5 →i+2 bonding. Aib4 →Aib1, Gln6 →Ala3, Aib8 →Div5, Ala10 →Div7 H-

bonds occur with high frequency, thereby continuing the β-bend ribbon spiral. In aqueous 

environment, however, Gln6→Ala3 and Aib8→Div5 bonds are not formed with high 

frequency, which indicates that the β-turns are not bonded by sufficient strength to maintain 

the continuity of ribbon spirals (Table 7). But in methanol solvent these bonds occur at high 

frequency providing greater stability to the spiral N-terminal conformation. Kinoshita et al. 

(2000) demonstrated that if the conformational energy of a particular secondary structure is 

lower for a peptide, the alcohol environment will promote its formation compared to water. It 

can be concluded that indeed, alcohol environment promotes the stability of any secondary 

structure that the constituent amino acid residues show natural propensity for. 

Table 7. Backbone H-bonds of TPN XIIc in methanol solvent along with their 
frequency of occurrence given by fraction, average distance and angle. 

 
Acceptor Donor Fraction Average distance 

(Å) 
Average angle 
(˚) 

Aib1 Div5 0.05 2.91 163.13 

Aib1 Aib4 0.03 2.90 159.49 

Ala3 Gln6 0.30 2.88 157.41 

Ser2 Gln6 0.07 2.89 160.92 

Aib4 Div7 0.17 2.90 159.23 

Ala3 Div7 0.11 2.89 161.30 

Div5 Aib8 0.03 2.91 160.61 

Gln6 Val9 0.23 2.89 160.78 

Gln6 Ala10 0.03 2.87 156.03 

Div7 Ala10 0.32 2.89 159.39 

Val9 Div11 0.01 2.87 145.05 

Pro13 Val16 0.19 2.87 152.13 

Pro13 Aib15 0.03 2.86 148.41 

Pro13 Gln17 0.03 2.90 158.58 

Leu14 Gln17 0.37 2.88 156.24 

Leu14 Pol18 0.19 2.87 157.90 

Aib15 Pol18 0.19 2.90 154.40 

https://www.powerthesaurus.org/sufficient_strength/synonyms
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5.1.2.1. Folding dynamics of TPN XIIc in explict water and methanol solvents 
The FEL landscape of TPN XIIc simulations in explicit solvents of water and methanol 

revealed interesting differences in peptide dynamics (Figure 13). Both simulations were 

carried out for 30 ns using folded peptide structure from previous simulation. In the aqueous 

environment, the peptide exists in two distinct conformations with an energy barrier of ~2-4 

kcal mol−1 between them. Cluster 1 is more populated and includes 70% of all lowest energy 

conformations and can be accepted as the native form. The folding dynamics follow the 2→1 

path along the simulation time. Conformation 2 representative is highly curved, almost like a 

backbone reversal while conformation 1 is relatively linear. Similarly, upon comparison in the 

methanol environment, three low energy basins are formed with Cluster 1 being highly 

populated (84% of the total) with lowest energy conformations. The representative structure 

of Cluster 1 is reported as the native form in methanol solvent. It fluctuates with Cluster 2 

where the energy barrier between them is only ~0.5-1.5 kcal mol−1 and can be surpassed 

relatively easily. The folding dynamics follow the path, 3→1→2→1. The 3rd cluster is 

populated by conformations up to 5 ns (only 8% of total conformations) in the simulation 

time. The representative conformation for cluster 1 shows helix formation at the C-terminal 

and only a slight curve in the backbone. The coil-like helix can be visualized as β-bend 

ribbon spirals. It can be deduced that methanol environment promotes the formation of helix-

like structures and reduces backbone curving in comparison to water solvent. These results 

are in accordance with many previous studies which report α-helical forming properties of 

alcohol solvents (Nelson et al., 1986; Hamada et al., 1995; Kinoshita et al., 2000; Yu et al., 

2016).  

 

 

Figure 13. FEL showing various energy minima basins and corresponding peptide 
conformations of TPN XIIc in explicit water (A) and methanol (B) solvents. 
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5.2. Accelerated molecular dynamics simulations 
The progressively diverse results obtained with increasing simulation time made it obvious 

that such short time scales were insufficient to carry out folding simulations. The ability of 

proteins or peptides to adopt multiple conformational states is essential to their function and 

elucidating the details of such conformational diversity under physiological conditions has 

been a major challenge (ElGamacy et al., 2019). The complete conformational landscape of a 

peptide is called a phase space and it must be elucidated to identify multiple intermediate or 

functional conformations. However, peptides (or proteins) may get stuck in a single energy 

minimum. To overcome the problem of obtaining insufficient conformational landscape of a 

peptide folding, we turned to accelerated molecular dynamics. One important factor in 

choosing aMD over other enhanced sampling methods was that it does not require a prior 

knowledge of the reaction coordinate to guide the simulation in a particular direction. The 

aMD simulations required GPU machines which were available through the NIIF clusters of 

Hungary and those available at University of Szeged and University of Debrecen were 

utilized. All simulations were carried out using pmemd.cuda implementation of Amber14, 

also available at the cluster. A run can be setup for a maximum of 7 days, therefore, 

checkpoints must be created from which a simulation may be started again in case it does not 

get completed. 

 TPN XIIc: peptide folding dynamics in aqueous and hydrophobic 
environment mimic 

In this section, we show application of accelerated MD on a novel peptaibol, TPN XIIc, that 

has also been studied using classical MD techniques in the previous sections (refer section 

5.1.1.2., 5.1.1.3. and 5.1.2.). We carried out four independent simulations of unfolded TPN 

XIIc in water and chloroform solvents each. The first three simulations were carried out for 

500 ns while the fourth was carried out for 1 μs (1000 ns) using different boost parameters 

(Table 8 and 9). The dynamics of TPN XIIc was studied in detail using principal component 

analysis (PCA) on internal/dihedral angle coordinates and effective sampling was assessed 

using Cartesian coordinate-based PCA. The KLD method is used to measure the extent of 

overlap between a probability distribution (Kullback & Leibler, 1951), and has recently been 

adapted to discuss adequate sampling and convergence for protein MD simulations.  

 

 

 

 



45 
 

Table 8. Summary of coefficient a1, a2 and b1, b2 applied to consecutive simulations of TPN 
XIIc and the resulting average boost energy. 

 Water Simulation Chloroform Simulation 
 a1, 

a2 
b1, 
b2 

Avg. boost (kcal 
mol−1) 

a1, 
a2 

b1, 
b2 

Avg. boost (kcal 
mol−1) 

 4.0 0.16 5 4.0 ------ 6.5 
 3.5 0.30 45 4.5 ------ 10 
 3.5 0.20 15 6.0 ------ 30 

Last 1 µs 
simulation 4.5 0.16 13 6.0  27 

 

Table 9. Summary of various accelerated molecular dynamics parameters of TPN XIIc 
simulation. 

Simulations Time (ns) Boost 
Option 

Vavg_dihed 
(kcal mol−1) 

Vavg_total 
(kcal mol−1) 

In water 2500 (500 × 3 + 1000 ns) iamd = 3 210 −25429 
In chloroform 2500 (500 × 3 + 1000 ns) iamd = 2 206 −7535 

 

5.2.1.1. Secondary structural populations of TPN XIIc in aqueous and chloroform 
solvents obtained from combined trajectory 

In explicit water: The reweighted phi-psi plots have been constructed for each individual 

residue of TPN XIIc. The colour scale denotes potential-of-mean-force or PMF (kcal mol−1) 

to characterize energetically favoured conformations that were observed during simulations. 

The darkest violet regions denote the lowest energy minimum (Figure 14). In water solvent, 

the energy minima for non-standard residues, Aib1, Aib4, Div5, Aib8, Div11, and Aib12 lie in 

both right- and left-handed α-regions. This fluctuation is attributed to the achiral nature of 

Aib residue and the propensity of D-residues towards left-handed conformations. It can be 

noted that chirality of isovaline does not highly impact the screw sense of whole helical 

structure, possibly because of the limited difference in the length of the two side chains (De 

Zotti et al., 2012). The Div residues are found in right-handed helical peptides, where the 

screw sense is governed by the L-isomeric amino acids present in their sequences. Another 

study reported that Iva-rich peptides favor β-bends and 310 helices (Formaggio et al., 1995).  

A study by Shenkarev et al., (2013) compared structural and functional characteristics of 

Aam-I with Zrv-IIb. Both molecules acquire very similar structural topologies in membrane-

mimicking environments, although significantly differ at the N-termini (1-8 residues) due to 
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high population of Aib, Div and Gly achiral residues in Aam-I. On the other hand, Aam-I and 

Zrv-IIb show markedly different dynamic properties owing to the high ‘motional’ propensity 

of the former which may be caused by conformational exchange (characterized by positive 

and negative φ/ψ torsion angles) of Aib, Div and Gly residues. They hypothesized that such 

conformational exchange may be responsible for its high solubility in water which may 

prevent Aam-I to effectively perturb lipid bilayers. It is experimentally proven that Aam-I 

shows lower binding affinity to lipid vesicles than Zrv-IIb and therefore, also shows weaker 

bioactivity. This implies that although the presence of achiral residues like Aib is necessary 

for helix formation, the high fluctuation induced by them may render this peptide less 

bioactive. In the case of TPN XIIc, it is clear that the right-handed helical sense is 

energetically more favourable than the left-handed, although both right- and left-handed 

helical states are visited by Aib and Div residues. Due to such observations it is difficult to 

believe that highly diverse peptaibol sequences are driven by evolution. The high 

heterogeneity within a single group of peptaibols indicates the lack of selectivity in NRPS 

proteins. On the other hand, the knowledge of correlation between the presence of certain 

residues and their functional relevance may help in the design and synthesis of relevant 

biomolecules that could be exploited as therapeutics and biocontrol agents. 

A comparison with the phi-psi plots obtained through all-atom classical MD simulations of 

TPN XIIc discussed under Section 5.1.2., it is clear that a higher number of possible low 

energy conformations are obtained when using aMD with a more accurate representation of 

free energy landscaape. The major differences can be observed for Ala10 and Div11 where 

the former showed energy minimum in the PII conformation and the latter in the ε region 

during classical MD. But for aMD, both residues show the largest energy minimum in the α-

regions, thereby, bringing a continuous helical sense to the bakbone. It is evident that aMD 

simulations have brought forward all metastable and low energy states that remained hidden 

during classical MD simulations.  

The energy minima for almost all standard residues like Ser2, Ala3, Gln6, Leu14, Val16, and 

Gln17 lie in the right-handed α-region, while the other secondary structural states could only 

be reached at a difference of 2 kcal mol−1. One such state is the bridge between α- and β-

regions, known as the δ-region which represents β-turn formation in the peptide chain and 

continuous formation of β-turns gives rise to β-bend ribbon spirals. Most standard residues of 
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TPN XIIc show considerable population in this region even if at a higher energy scale (~4 

kcal mol−1). 

 

Figure 14. Reweighted PMF phi-psi dihedral angle plots for each TPN XIIc residue 
during explicit water aMD simulation. The x and y axes range from -180 to +180. 
The darkest violet regions indicate toward minimum energy secondary structural 
regions favored by each residue during the simulation. 

On the other hand, Pro13 traverses poly-proline II region which is expected according to 

Brown & Zondlo (2012) as proline shows the highest PII propensity. In the water 

environment, TPN XIIc peptide shows fluctuating propensity for i+3→i and i+4→i type H-

bonds (Table 10). Gln6→Ala3 (19%), Val9→Gln6 (15%), Ala10→Div7 (11%), Aib12→Val9 

(4%), and Val16→Pro13 (19%) are examples of i+3→i type H-bonds, while Div7→Ala3 

(14%), Aib12→Aib8 (12%), Ala10→Gln6 (14%), Div11→Div7 (14%), Gln17→Pro13 

(21%) and Pheol18→Leu14 (44%) are examples of i+4→i type H-bonds. On the 

Ramachandran plot, α- and 310-regions are present almost in the same subspace and are easily 

inter-convertible in terms of energy difference. Based on this analysis it can be deduced that a 
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loose spiral-like conformation is favoured instead of a strict helical conformation except at 

the C-terminal.  

Table 10. Backbone H-bonds of TPN XIIc in explicit water solvent along with their 
frequency of occurrence given by fraction, average distance and angle.  

Acceptor Donor Fraction Average distance (Å) Average angle (˚) 
Aib1 Div5 0.05 2.89 162.38 

Ser2 Gln6 0.08 2.88 160.03 

Ala3 Gln6 0.19 2.87 154.95 

Ala3 Div7 0.14 2.88 161.59 

Aib4 Div7 0.02 2.90 155.38 

Aib4 Aib8 0.09 2.89 161.68 

Div5 Aib8 0.02 2.88 154.44 

Div5 Val9 0.02 2.89 161.79 

Gln6 Val9 0.15 2.87 154.92 

Gln6 Aib8 0.05 2.78 149.02 

Aib8 Aib12 0.12 2.89 159.16 

Gln6 Ala10 0.14 2.87 160.11 

Div7 Val9 0.06 2.79 147.89 

Div7 Ala10 0.11 2.88 152.30 

Div7 Div11 0.14 2.89 161.04 

Val9 Aib12 0.04 2.88 159.08 

Ala10 Aib12 0.04 2.80 148.52 

Ala10 Leu14 0.03 2.88 159.89 

Div11 Leu14 0.12 2.86 151.96 

Div11 Aib15 0.18 2.88 162.72 

Pro13 Val16 0.19 2.87 151.15 

Pro13 Gln17 0.21 2.87 159.68 

Leu14 Gln17 0.10 2.88 152.47 

Leu14 Pol18 0.44 2.86 160.43 

In explicit chloroform (hydrophobic environment): On the contrary, reweighted phi-psi plots 

obtained from chloroform simulation indicate towards a considerably different folding pattern 

(Figure 15). The energy minima for Aib1, Aib4, Div5, Div7, Aib8, and Aib15 lie only in the 

right-handed α-region unlike in the water solvent, where both right- and left-handed states are 

visited. A rather unusual behaviour is exhibited by Ala10 which favours the classic γ-turn 

formation, while the consecutive Div11 residue favours inverse γ-region. This would 

probably bend the backbone in a slight ‘S’-shape or an outward kink. 
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Figure 15. Reweighted PMF phi-psi dihedral angle plots for each TPN XIIc residue 
during explicit chloroform aMD simulation. The x and y axes range from -180 to 
+180. The darkest violet regions indicate toward minimum energy secondary 
structural regions favoured by each residue during the simulation. 

The corresponding H-bond Aib12→Ala10, which occurs in 44% of the simulation time, also 

indicates towards a strong backbone reversal at this position due to formation of a γ-turn. The 

average H-bonds formed during this simulation have been summarized in Table 11. This 

observation can be attributed to the non-polar nature of chloroform environment that would 

cause the polar glutamine and serine residues to adopt a conformation that avoids the solvent. 

A recent study on the behaviour of alanine dipeptide in explicit chloroform and water 

solvents by Rubio-Martinez et al. (2017) described that C7
eq conformation appears as a low 

energy minimum only in chloroform. Standard residues like Ser2, Ala3, Gln6, Val9, Leu14, 

Val16, and Gln17 show energy minima strictly in the right-handed α-region.  
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Table 11. Backbone H-bonds of TPN XIIc in explicit chloroform solvent along with 
their frequency of occurrence given by fraction, average distance and angle. 

Acceptor Donor Fraction Average distance 
(Å) 

Average angle 
(˚) 

Aib1 Div5 0.15 2.90 162.68 
Ser2 Aib4 0.09 2.82 148.54 
Ser2 Gln6 0.24 2.88 160.23 
Ala3 Div5 0.10 2.80 149.61 
Ala3 Div7 0.23 2.90 162.90 
Ala3 Gln6 0.07 2.88 152.31 
Aib4 Aib8 0.09 2.90 163.41 
Gln6 Val9 0.10 2.89 154.32 
Gln6 Div11 0.07 2.90 152.28 
Gln6 Ala10 0.13 2.87 156.93 
Div7 Val9 0.04 2.91 162.20 
Div7 Ala10 0.24 2.88 152.99 
Aib8 Ala10 0.02 2.88 146.67 
Val9 Div11 0.18 2.83 147.37 
Val9 Aib12 0.01 2.88 161.66 

Ala10 Aib12 0.44 2.79 149.19 
Div11 Leu14 0.13 2.87 155.91 
Div11 Aib15 0.08 2.88 163.24 
Aib12 Leu14 0.20 2.85 151.67 
Aib12 Aib15 0.08 2.89 160.15 
Pro13 Aib15 0.13 2.84 148.97 
Pro13 Val16 0.19 2.88 158.57 
Aib15 Pol18 0.20 2.88 158.80 
Leu14 Val16 0.17 2.81 147.09 
Leu14 Gln17 0.20 2.88 159.58 
Leu14 Pol18 0.14 2.87 161.57 
Val16 Pol18 0.08 2.84 147.39 

 

In conclusion, the TPN XIIc peptide shows higher propensity for spiral-like helix at the N-

terminal and α/310-helix at the C-terminal with a slight backbone bend in water solvent, and 

for γ-turn in the central region that may induce backbone reversal in chloroform solvent. The 

C-terminal mostly folds into a 310-helix in both solvents but is disrupted by few γ-turn-

inducing bonds like Val16→ Leu14 (17% occurrence) in the chloroform solvent.  

5.2.1.2. Clustering based on FEL: vision through PCA 
In addition to the native structure, we were also interested in the folding properties of TPN 

XIIc under the effect of different solvents. Peptide folding is a dynamic process of evolution 

of intermediate ensemble states in a back-and-forth fashion, which should eventually result in 

a folded state. The results of the simulations were analysed by PCA to reduce the 

dimensionality of data and to visualize the free-energy landscapes, revealing the intermediate 

states and their path to achieve the final folded state (Maisuradze et al., 2009). A Cartesian 
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coordinate PCA (cPCA) based on the overall motions of a peptide can distort this idea and 

present ambiguity in the spread of free-energy basins (Sittel et al., 2014), therefore dihedral-

angle based PCA (dPCA) (Altis et al., 2007) was employed to only include internal motions 

(defined by ϕ, ψ dihedral angles) for the peptide folding process. The FEL based on internal 

motions (projected along first two principal components PC1 and PC2 using μ(q1, q2) = −kBT 

lnP(q1, q2) provides accurate results of the minimum energy wells and barriers between them 

(as described through scree plots in Figure S4 for simulation of TPN XIIc in water and 

Figure S5 in chloroform, see Appendix), especially for systems undergoing large changes 

(Mu et al., 2005). All dihedral PCA-based FEL plots have been reweighted for calculation of 

PMF and accurate description of the energy minimum. 

The simulations were carried out for 500 ns × 3 using different starting structures along with 

another 1000 ns long simulation. All simulations have been combined (2.5 μs) for the 

clustering procedure. The clustering procedure involves identification of isolated peaks in a 

three- or five-dimensional density map obtained from the trajectory’s principal component 

distribution. Each point on this plot signifies all structures that have PC values closest to that 

point. All peaks with density higher than a given threshold are selected which correspond to a 

distinct cluster. The darkest violet regions on the FEL map (Figure 16) show the lowest 

energy conformation clusters which denote the low energy states of this peptide. As it can be 

observed on the reweighted maps, at least two different regions of energy minima can be 

identified in the case of water solvent, while only one prominent energy minimum is revealed 

in chloroform. 

In explicit water: The full trajectory was clustered into 10 major representative groups 

(Figure 16A). The two prominent clusters, (1 and 2 based on 12% and 5% occurrence during 

the simulation, respectively) on the FEL map are separated by an energy barrier of at least 5 

kcal mol−1. The representative structures show major differences in the C-terminal folding, 

which is a loose spiral in the Clusters 1 and 5, but a highly folded helix in Cluster 2. 

Structures 7, 8, and 10 are closer to Cluster 2 and represent a slightly bent helical folded 

structure unlike Clusters 3, 4, 6, and 9, which are highly curved folded structures. Figure 16B 

shows a diagrammatic distribution of the inter-conversion between these clusters. The two 

main clusters denoting two deepest energy minima are revisited several times during the 

course of simulation but show an almost mutually exclusive occurrence with respect to each 

other. Cluster 5 occurs intermittently with cluster 1 while the rest of them show inter-

conversion with Cluster 2.  
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Figure 16. (A) Reweighted FEL of the first two PCs calculated from dihedral angles, 
phi-psi, for better clustering based on internal motions for TPN XIIc simulation in 
explicit water. (B) Diagrammatic representation of cluster distribution along the 
simulation trajectory in water. 

This result suggests that the formation of an α-helical C-terminal fold is an uncommon energy 

barrier-crossing event and would not have been effectively sampled using short-timescale 

classical MD approaches. The PMF (in kcal mol−1) was calculated for end-to-end distance of 

the peptide over whole trajectory where the distance from ~18 to 21 Å denotes a large energy 

minimum basin which means that a slightly bent peptide backbone is energetically favoured 

(Figure 17).  
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Figure 17. PMF values calculated in kcal mol−1 as a function of end-to-end distance 
of TPN XIIc calculated for each step in the trajectory. The PMF values were 
calculated using Maclaurin series expansion method for reweighting end-to-end 
distance values. All throughout the study it should be noted that backbone curvature 
is a rather important structural characteristic of TPN XIIc. For water, the energy 
minima are obtained for structures that are slightly bent, i.e. end-to-end values are 
from ~18 to 21 Å as shown by two salmon-tinted peptides. For chloroform, the 
deepest energy minima are obtained for structures showing complete backbone 
reversal represented by the two olive-tinted structures, i.e. end-to-end value of 8 Å 
which denotes unfolded conformation and 14 Å which denotes folded conformation. 
The third structure with 27 Å is the straight backbone conformation that is obtained 
after crossing an energy barrier of ~ 5 kcal mol−1 and lies at 4 kcal mol−1. Such a rare 
event was not sampled in previous 500 ns long simulations and occurs only during 
long 1 μs simulation using aggressive boost parameters. 

In explicit chloroform (hydrophobic environment): In the case of chloroform solvent (Figure 

18A), eigth different clusters were obtained. Interestingly, the major conformations obtained 

through the first three independent 500 ns long simulations showed a backbone curvature in 

the folded peptide which is observed as the region of deepest minimum denoted by Cluster 4 

(13% occurrence throughout the combined trajectory). This is expected due to the presence of 

γ-turns that cause backbone reversal. It was determined that the Aib12→Ala10 bond results 

in an energetically stable backbone reversal by i+1th residue Div11 which populates the γ’-

region (inverse γ-turn or C7
eq conformation) on the phi-psi distribution plot.  
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Figure 18. (A) Reweighted FEL of the first two PCs calculated from dihedral angles, 
phi-psi, for better clustering based on internal motions for TPN XIIc simulation in 
explicit chloroform. (B) Diagrammatic representation of cluster distribution along the 
simulation trajectory in chloroform. 

An end-to-end distance of 14 Å (indicating backbone reversal) lies in an energy minimum 

while the unfolded conformation lies in another minimum (Figure 17). The last 1 μs long 

simulation mainly resulted in a distinct linear backbone conformation represented by Cluster 

1 (11% occurrence throughout the combined trajectory) that was observed for an insignificant 

period during previous simulations. The energy barrier between the two states (Cluster 4 → 

Cluster 1) is ~4 kcal mol−1, i.e. the conversion from a highly bent to a linear conformation is a 

rare event and requires a longer continuous simulation to be achieved with aggressive 

dihedral boost parameters. It is also supported by the end-to-end distance value of 27 Å 
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(linear backbone) which is achieved after crossing a barrier of 5 kcal mol−1 (Figure 17). 

There is a 6 kcal mol−1 energy barrier between the unfolded conformation represented by 

cluster 2 and folded conformation of cluster 4 which was achieved immediately after 200 ns. 

Clusters 4, 7 and 8, on the other hand, show interconversion quite a few times between 700 to 

900 ns with respect to each other (Figure 18B). 

5.2.1.3. Addressing the convergence 
A recurrent issue faced during folding simulations is the question of convergence, which in 

simple terms, asks how long a simulation must be run to reach the convergence of any 

observable quantity. The quantification of convergence and statistical significance in 

macromolecular MD simulations often presents a challenging task and more so, in case of 

peptide folding calculations. The early computational biologists tried to answer this by 

showing a convergence of RMSD calculated between a reference structure of the protein in 

question with its changing conformation during the course of simulation. Eventually, at some 

point the graph of RMSD would stabilize and the simulation was shown to be converged. 

This could hold true for a folded structure formed of strict secondary structural elements. But 

the same method is not relevant for a microsecond scale folding simulation of a highly 

dynamic peptide. A relatively new method was designed to compare, instead, whether two 

simulations for the same protein cover the same phase space eventually. 

(a) KLD method 
A quantitative measure of extent of overlap between any probability distribution is the KLD 

method which can indicate satisfactory sampling (Kullback & Leibler, 1951). By measuring 

the overlap of PC histograms as a function of simulation time, we can assess the convergence 

of dynamic properties of simulations. The principal components give an idea of the 

conformational states that have been visited during the simulation. Two independent 

simulations started from different initial geeometries should eventually begin to sample the 

same conformations (Galindo-Murillo et al., 2015). A rapidly decreasing slope of KLD as a 

function of time indicates convergence between two independent simulations. As per 

previous studies, we have selected the KLD value of 0.025 as the cutoff for convergence. 

When the KLD slope hits below 0.025, the two simulations are regarded as converged. 

In this section, we shall uncover the overall motions of the peptide to attain various 

metastable states. The combined trajectory (2.5 μs) was divided into 5 parts of equal time 

length, i.e. ~ 500 ns. This means that each individual trajectory and the last 1 μs long 
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simulation divided in two equal parts were considered. Figure 19A shows the histograms for 

projection of coordinates along the first three eigenvectors (i.e. the first three modes with 

highest eigenvalues). The trajectories are named as “Sim1” to “Sim5” and the extent of PC 

overlap signifies convergence between independent runs. The degree of overlap suggests that 

the independent simulations sampled similar conformational space. 

In explicit water: The essential PCs 1, 2 and 3 obtained from 5 separate trajectories 

accounting for 24%, 15% and 11% of overall motions, respectively, show considerable 

overlap. A considerable overlap between first PC histograms (Mode 1) shows very similar 

motions of the peptide during the first and last simulations while the second PC histograms 

(Mode 2) show major similarity between the second and last simulations. The third PC 

histogram (Mode 3) is similar for all 5 independent trajectories. 

 

 

Figure 19. (A) Histograms of projection of principal components 1, 2 and 3 for all 
four simulations of TPN XIIc in water, where the last 1 µs long simulation is treated 
in 2 parts. Histograms were calculated using a Gaussian kernel density estimator. (B) 
A measure of overlap between histograms from independent simulations calculated 
using the KLD method. The slope values lying below 0.025 indicate convergence 
between two independent runs. 

Figure 19B shows KLD as a function of time between subsequent histograms from five 

different simulations for PCs 1, 2, and 3 (accounting for 50% of total motion). “KLD:1” 

denotes divergence between Sim1 & Sim2, “KLD:2” between Sim2 & Sim3, “KLD:3” 

between Sim3 & Sim4 and “KLD:4” between Sim4 & Sim5. It is evident that the slope of 
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KLD:1, KLD:2, and KLD:3 values for PC 1 does not change significantly after 200 ns, 

therefore, signifying convergence. KLD:4, on the other hand, shows a drop to 0.025 at around 

300 ns before rising again at 350 ns which means that a wider conformational space was 

sampled during 1 μs long simulation. The KLD values for PC 2 are highly divergent and 

show that convergence was not obtained for this mode of motion while KLD for PC 3 shows 

high convergence. This analysis also indicates that the minimum sampling time required for 

TPN XIIc peptide in water is 500 ns using accelerated MD. It can be safely stated that all 

major metastable states of TPN XIIc in aqueous medium have been sampled during 

independent simulations. 

In explicit chloroform: A similar analysis for chloroform solvent divulged some interesting 

results. Figure 20A shows the histograms for projection of coordinates along the first three 

eigenvectors (i.e. the first three modes with highest eigenvalues). The overlap of first PC 

histograms (mode 1 accounting for 53% of overall motions) shows similarity between the 

first three independent simulations while the fourth 1 μs long simulation shows a drastically 

different mode of motion. However, such a stark difference is not observed for second PC 

(mode 2). The occurrence of a linear backbone structure in the last 1 μs simulation in contrast 

to a highly bent structure in previous simulations can be believed to be the reason of this 

difference. As the peptide undergoes significant motion around the Div11-Aib12-Pro13 hinge 

region to attain a straight backbone, a new state is achieved which is comparable to structures 

obtained from water simulation. Figure 20B shows KLD as a function of time between 

subsequent histograms from five different simulations for PCs 1, 2, and 3 (accounting for 

68% of total motion). It can be noted that the slope of KLD:1 and KLD:4 values for PC 1 

does not change significantly after 300 ns, therefore, signifying convergence between Sim1 & 

Sim2 and Sim4 & Sim5, respectively. KLD:2 values for PC1 reach a value of 0.05 at around 

150 ns before increasing again. This means that Sim2 & Sim3 initially sampled similar 

structures before diverging on separate conformational paths. KLD:3 values between Sim3 & 

Sim4 remain divergent, which is expected due to very different conformational spaces 

covered during the previous 500 ns long simulations and the latest 1 μs long simulation. As 

mentioned before, when KLD slope rises beyond 0.025, it indicates that two independent 

simulations diverged in the conformational space. The occurrence of a linear backbone 

structure in the last 1 μs simulation in contrast to a highly bent structure in previous 

simulations can be believed to be the reason of this difference. As the peptide undergoes 

significant motion around the Div11-Aib12-Pro13 hinge region to attain a straight backbone, 
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a new state is achieved, which is comparable to structures obtained from water simulation. 

Therefore, a combination of all simulations has resulted in a nearly complete conformational 

landscape for the peptide of interest in chloroform solvent. KLD values for PC2 show high 

convergence while for PC3, the high KLD:4 values for two parts of the 1 μs long simulation 

shows that highly divergent internal motions have occurred in the peptide. In some instances, 

the KLD value rises again after hitting the cut off once, which indicates that the two 

simulations diverged and sampled different conformational spaces as the simulation 

progressed. In the case of chloroform simulation, the last 1 µs long simulation resulted in a 

state not observed in previous simulations. This is a high energy metastable state that could 

only be observed due to the use of aggressive boost parameters during accelerated MD. That 

means that the first three simulations did not sample the entire conformational space (shown 

by increasing slope of corresponding KLD:3) and hence, could not be considered converged. 

An important point to note is the application of only dihedral boost to the system which 

specifically targets the backbone torsional angles and can explain the structural divergence 

observed in TPN XIIc backbone linearity. 

 

Figure 20. (A) Histograms of projection of principal component 1, 2 and 3 from all 
four simulations of TPN XIIc in chloroform where the last 1 µs long simulation is 
treated in 2 parts. Histograms were calculated using a Gaussian kernel density 
estimator. (B) A measure of overlap between histograms from independent 
simulations calculated using KLD method. The slope values lying below 0.025 
indicate convergence between two independent runs.  
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(b) Good-Turing formalism for assessment of convergence 

Along with the discussion on convergence of PC space that conveys the dynamics of 

peptide folding, it was interesting to consider structural convergence as well (Roe et al., 

2014). Based on Good-Turing formalism (Shao et al., 2007; Koukos et al., 2014; 

Serafeim et al., 2016) applied on the RMSD values it could be deduced, that slightly 

higher structural convergence is achieved in chloroform than in water (Figure 21). In the 

case of water simulation, the most distinct structure we can expect to observe if we 

double the simulation time will differ by no more than approximately 3.9 Å (RMSD) 

from those already observed. To look at it another way, one out of every five (probability 

of unobserved species, P_unobs = 0.20) new structures encountered will differ by an 

RMSD of at least 3 Å. 

  

Figure 21. Estimation of extent of sampling of TPN XIIc using aMD based on Good-
Turing formalism in water and chloroform. The probability of unobserved species 
reaches 0 at the maximum RMSD value that could be observed if the simulation is 
extended. Evidently, this value seems to be higher in water than in chloroform. 

On the other hand, simulation in chloroform indicated towards slightly higher convergence as 

the maximum RMSD value of an unobserved species was calculated to be only 3.07 Å, i.e. 

one in eleven structures (P_unobs = 0.11) shall differ only by 2.8 Å from the conformations 

already observed. Keep in mind that this calculation includes all possible unfolded 

conformations and the high RMSD probably indicates towards different unfolded structures 

that have not been encountered. But such unfolded states are not required when we are 

studying the folding dynamics of a peptide. This method is an assessment of structural 

convergence of peptide dynamics based on the statistics obtained from previously sampled 
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conformations. It is a straightforward method using RMSD as the base value which is an easy 

but not always accurate measure of structural similarity. Nevertheless, such an analysis along 

with convergence of the principal component space indicates that all major low energy and 

metastable states of the TPN XIIc peptide in water and chloroform have been sampled using 

accelerated MD. This indicates that the folding of the TPN XIIc peptide is very dynamic in 

aqueous environment and probably can result in many unfolded or intermediate states, even 

though, all energetically stable states have already been achieved. To reiterate, higher 

convergence shown in chloroform can be attributed to restricted dynamics of TPN XIIc 

unable to escape an energy barrier. A biological membrane mimicking environment, like 

chloroform, has a stabilizing effect on peptide dynamics and requires longer time scales to be 

able to sample higher energy states.  

 Alamethicin F30/3: a model peptaibol 

5.2.2.1. Comparison of four consecutive aMD simulations with Alm F30/3 
The unfolded conformation of Alm F30/3 was used as a starting point for three consecutive, 

~900 ns long simulations (refer to Table 12 for exact timescales) with different “boost” 

parameters. 

Table 12. Summary of various accelerated molecular dynamics parameters 
applied for Alm F30/3 simulation. 

Simulations Starting conformation 
Time 
(ns) 

a1,a2 
total (kcal mol−1) 

b1,b2 
dihedral 

(kcal mol−1) 

Avg boost (kcal 
mol−1) 

Sim 1 Unfolded 936 0.16 4 11.21 
Sim 2 Folded N-terminal 950 0.20 4.5 11.10 
Sim 3 Folded with bent backbone 897 0.20 4.5 29.85 
Sim 4 unfolded 1000 0.20 4.5 24.09 

 

The first simulation (Sim 1) was carried out with a1 = a2 = 0.16 and b1 = b2 = 4 which 

revealed successful folding of the N-terminal segment (Aib1-Leu12) but an incomplete 

folding of the C-terminus after dPCA-based clustering as shown through superimposition of 

the representative structure of the energy minimum and experimentally known structure 

(PDB ID: 1AMT) with backbone RMSD value of 5.02 Å in Figure 22A. The next simulation 

(Sim 2) was started from this point with slightly higher boost parameters of a1= a2 = 0.20 

and b1= b2 = 4.5 to observe the time length of achieving complete peptide folding. This 950 

ns long aMD simulation was clustered into three groups, out of which cluster 2 was closest to 

the experimental structure (Figure 22B) with RMSD of 1.87 Å. At this point, it was deemed 

a better choice not to increase the boost further as it may interfere with correct reweighting of 
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energy distribution. These boost parameters were deemed appropriate for fast folding. A third 

~900 ns long simulation (Sim 3) was carried out at this point which achieved complete C-

terminal folding. The clustering resulted in the most populated cluster whose representative 

structure is the closest to PDB conformation with a RMSD value of 1.51 Å (Figure 22C). 

After carrying out three consecutive aMD simulations with increasing boost parameters, we 

were also curious to observe the extent of folding observed using these boost parameters with 

a completely unfolded Alm configuration as the starting structure. A separate 1 μs long 

simulation (Sim 4) was carried out that resulted in highly folded structures with both bent and 

linear configurations. This simulation shows that ~1 μs long aMD carried out using GPUs 

using slightly aggressive boost parameters are sufficient for folding simulations of such short 

peptaibols. The representative structure of cluster 5 is closer to the experimental structure 

with an RMSD value of 1.8 Å between them (Figure 22D).  

 

 

Figure 22. The representative structures of different clusters obtained for individual 
simulation chosen based on lowest RMSD with X-ray crystallographic Alm F30/3 
structure available from PDB: 1AMT. 

In conclusion, the combined trajectory of the first three simulations is comparable to the 

fourth ~1 μs long simulation carried out with aggressive boost parameters. The three 

trajectories were later combined for most of the analysis. The reweighted torsional (phi-psi) 

angle distribution (Ramachandran plot) for each residue calculated for all these three 

simulations have been provided and discussed in Figure 23. Complete Alm F30/3 folding 

was achieved within 1 μs, which indicates that this procedure is apt to elucidate short 
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peptaibol structure in a short period of time. Bucci et al. (2019) also reasoned that 1 μs long 

aMD simulations are sufficient for folding simulations of their modified tripeptide.  

 
 

Figure 23. The reweighted phi-psi torsional distribution for each residue of Alm 
F30/3 averaged over the three 900 ns simulations. As can be observed, most residues 
show an energy minimum in the α-helical region. All Aib residues shift between 
right-handed and left-handed helical regions owing to their achiral nature. The Gly11 
residue covers a huge area on the plot owing to the absence of a side-chain. The 
distribution was reweighted using the Maclaurin expansion method. 

5.2.2.2. Clustering and reweighted FEL 
The dCPA based FEL between PC1 and PC2 has been provided for the combined trajectory 

of the first three simulations clustered in 10 major representative groups (Figure 24A). As it 

can be observed on the reweighted maps, at least three distinct clusters can be identified in 

local energy minimum regions, i.e., the linear helical form (clusters 1, 5 and 9), the bent form 

(clusters 2, 4 and 6) and the incompletely folded (clusters 3, 7, 8 and 10) conformations. The 

inter-conversion between the bent and linear forms seems to be energetically allowed within 

2 kcal mol−1 and the jump between these two is achieved multiple times throughout the 
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trajectory. The C-terminus requires longer time than the N-terminus to completely sample the 

folded helical configuration.  

 

 

Figure 24. Reweighted PMF landscapes of the first two PCs calculated from dihedral 
angles, phi-psi, for better clustering based on internal motions. The deepest blue 
regions indicate energy minimum. The representative structures of each cluster 
obtained for Alm F30/3 are provided for (A) combined 3 simulations, (B) the 4th 
simulation. The cluster numbers are given in cyan. 

Similarly, the fourth trajectory has been separately projected on to dihedral-based PCs in 

Figure 24B to avoid missing low energy conformations obtained during previous 

simulations. The bent conformations of clusters 1 and 2 appear interchangeably for about 

~10% and ~8% of 1 μs long simulation trajectory, respectively, roughly from 300 to 800 ns 

and form the most populated conformational group. The conformation of cluster 5 is closest 

to the experimental structure. The dihedral angle based FEL plots of the combined trajectory 

from the first three simulations in comparison with the fourth 1 µs long trajectory shows that 

a similar conformational space could be covered in less time if slightly aggressive boost 

parameters are used.  

5.2.2.3. Addressing the convergence 
In order to observe structural convergence amongst the three independent simulations, KLD 

was calculated to measure the extent of overlap between probability distribution (Kullback & 
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Leibler, 1951). This probability distribution here is based on PCA of the Cartesian 

coordinates instead of dihedral angles. The trajectories are named as “Sim 1” to “Sim 4” and 

the extent of PC overlap signifies convergence between independent runs. The degree of PC 

overlap suggests that the independent simulations sampled similar conformational space, 

hence, convergence. It is based on the idea that any two simulations will eventually sample 

the same phase space even when started from different starting structures as a measure of true 

convergence. Figure 25A shows the histograms of projection of coordinates along the first 

three eigenvectors or modes (accounting for 53% overall motion). The first three PCs 

obtained from the combined trajectory account for 29%, 16% and 8% (in same order) of 

overall motions. In case of all PC histograms, the best overlap can be observed between Sim 

1, Sim 3 and Sim 4 in comparison to Sim 2 projection which signifies that Sim 2 undergoes a 

slightly different folding pathway. A better overlap can be observed for all trajectories in case 

of modes 2 and 3. This divergence can be quantified by calculating KLD vs time (ns). 

Figure 25B shows KLD between subsequent histograms as a function of time from four 

simulations for PCs 1, 2 and 3. KLD:1 is divergence between Sim 1 and Sim 2, KLD:2 

between Sim 2 and Sim 3 and KLD:3 between Sim 3 and Sim 4. The rapidly decreasing slope 

of KLD vs time of any two trajectories indicates the reduction in divergence between 

sampled conformations. The KLD value of 0.025 was chosen as cutoff for convergence. As 

evident from Figure 25B, convergence for Mode 1 for all four trajectories, except Sim 2, is 

obtained only after 700 ns. KLD:2 (divergence between first PC of Sim 2 and Sim 3) shows 

the highest divergence for Mode 1 even though both simulations were started with the same 

boost parameters but different starting structures. This also indicates that Sim 2 undergoes a 

different path of Alm F30/3 folding.  

KLD:3 (divergence between first PC of Sim 3 and Sim 4) reaches the threshold at ~400 ns. 

The two trajectories, the former with a semi-folded starting structure and the latter with 

completely unfolded structure, evolve quickly and sample similar configurations to achieve 

close to experimental Alm F30/3 structure. In the case of Mode 2 and Mode 3, the 

convergence between all three trajectories is reached at ~400 ns time scale. Using boost 

parameters a1 = a2 = 0.20 and b1 = b2 = 4.5 for ~1 μs proved to be appropriate to achieve the 

near-native Alm F30/3 conformation starting with the unfolded Alm F30/3 structure. A 

similar approach can be adopted to model other peptaibols of unknown structure. The 

convergence of all simulations was proven based on the KLD method which showed that Sim 
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2 follows the most divergent path of conformational folding and takes longer timescales to 

converge, while the other three show structural convergence within 400 ns. 

 

 
Figure 25. (A) Histograms of projection of principal components 1, 2 and 3 for all 
four simulations of Alm F30/3 in water. Histograms were calculated using a 
Gaussian kernel density estimator. (B) A measure of overlap between histograms 
from independent simulations calculated using KLD method. The slope values lying 
below 0.025 indicate convergence between two independent runs. 

In the previous section we observed at least two very distinct Alm F30/3 conformations: 

linear and bent helices. We were curious to observe the phenomenon of helical bending 

obtained through aMD. Here we discuss whether there is a functional importance of such 

dynamic structural shift. This knowledge may direct us to understand how these peptides 

show membrane-perturbing properties. The end-to-end distance (in Å) between the first 

residue Aib1 (N-terminus) and Pol20 (C-terminus) was calculated for each frame of the 

combined trajectory. This data was used to calculate the PMF (in kcal mol−1), which is 

simply the change in free energy as a function of any reaction coordinate. The PMF describes 

the energy minimum as the most stable state along that function. The end-to-end distance 

values of 9 and 10 Å designated by highly bent helical conformations (Figure 26) indicate 

their stability. The distance values of ~25 Å indicated by linear Alm backbone conformations 

are easily accessible with under ~1 kcal mol−1 of energy boost.  

Using paramagnetic enhancements of nuclear relaxation, North et al. (1994) demonstrated 

that the Alm backbone undergoes large structural fluctuations that result in shorter distances 
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between the C-terminus and various positions along the backbone. They linked this 

observation with the voltage-gating mechanism of the Alm channel. A previous study by 

Franklin et al. (1994) showed that simulated annealing with NMR restraints of Alm peptide 

bound to micelles yielded both bent and linear conformations, which prompted them to 

confirm their analysis by appending a spin label to one of the bent conformations and energy 

minimization using the steepest descent method. The same bent conformation was obtained 

as the energy minimum each time. 

 
Figure 26. The reweighted PMF values in kcal mol−1 as a function of end-to-end 
distance of Alm F30/3 calculated for each step in the combined trajectory. The 
energy minimum lies for a distance value of 10 Å which denotes a highly bent 
backbone. 

Comparing these observations with previous studies, North et al. (1995) reasoned that Alm 

must be in a dynamic equilibrium of linear and bent conformations and that it may provide 

the “conformational switch” of voltage gating in the Alm channel. In other words, the 

bent/closed form of Alm bound to membrane may indicate the absence of transmembrane 

voltage, which – when applied – would allow conversion to the linear and amphipathic Alm 

conformation. Gibbs et al. 1997 reported on the phenomenon of helical bending around 
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residues Aib10-Aib13 of Alm observed during 1 ns long simulation in methanol. The 

structural states obtained had either Aib10 or Gly11 carbonyl group oriented away from the 

backbone and did not seem to greatly affect the adjacent helix structure. The functional role 

of the helical bend in channel formation was hypothesized. The results clearly show that the 

bent helix lies in the true energy minimum while the linear is easily accessible. Our analysis 

confirms the idea of a dynamic equilibrium between the two conformations and indicates 

functional relevance.  

Moreover, Balashova et al. (2000) reported the crystal structure of a 16-mer peptide Zrv-IIb 

isolated from Emericellopsis salmosynnemata, that has been known to be active against 

bacteria while being non-toxic to eukaryotic cells (Argoudelis et al., 1974). It folds into a 

bent (40˚ angle) amphiphilic helix in both polar (methanol) and non-polar (chloroform) 

solvents. Chugh et al. (2002) described the crystal structure of an 18-residue long 

trichotoxin_A50E as a completely helical structure with a central bend arising at residues 10-

13 where Gln residues at positions 6 and 17 align at the polar face of the transmembrane 

channel lumen. They proposed an octameric channel with 4-5 Å internal radius sufficient to 

transport ions, and a constricted ring formed by Gln residues. However, posterior a study by 

Duclohier et al. (2004) of the same group reported a hexameric channel that displayed a 

single conductance level in contrast to alamethicin that displays multiple conductance states 

in the experiments. Similarly, another transmembrane channel-forming 19-residue peptaibol, 

chrysospermin C was studied using NMR, which revealed well defined helices at the N- and 

C-termini with a ~38˚ angle bend at residues 10-12. Gessmann et al. (2012b) also reported a 

significantly bent 310 right-handed helical conformation of the 14-mer trichovirin I-4A and 

proposed a possible transition into α-helical conformation during membrane integration. 

From these few experiments it is clear, that peptaibols generally fold into bent helical 

conformations and support the findings of this study.  

An important observation comes from the fact that most peptaibols fold in such a way that 

one side, usually the concave one, has the hydrophobic residues lined up, while all 

hydrophilic residues are lined up on the convex face. The hydrophobicity of the concave side 

causes the extreme bending of backbone to avoid the aqueous environment in which it is 

placed. It is understandable as to why the highly bent, hairpin-like backbone falls in the true 

energy minima for most of the peptaibols instead of the linear backbone. The same 

phenomenon is observed universally in proteins where the hydrophobic residues make the 
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core of the globular structure and the hydrophilic residues are surfaced facing the solvent. 

The importance of Gln residues that line the hydrophilic lumen of transmembrane pore in 

channel stability and ion permeation has been highlighted by Asami et al, 2002. The Gln 

residues at 7th and 18th positions of Alm f30 and Alm f50 were replaced with Glu that 

resulted in reduced stability of channel structure upon ionization of Glu7 and established their 

importance in peptaibol structure. Highly bent backbones were also obtained during studies 

with other fungal peptaibols, for example, TRK-V, TPN XIIc, Par-B and H, and the newly 

discovered Brev-I and IV molecules. 

The hairpin-like helical conformation, which is representative for Clusters 2, 4 and 6 (Figure 

24A) can be explained due to the presence of the glycine residue at the R11 position. The N-

terminal helical continuity in Alm F30/3 always breaks at the Gly11 position. Högel et al. 

(2018) systematically described the local helix bending observed at the glycine position that 

effectively perturbs the conformational flexibility in transmembrane helices. Glycine does not 

have a side-chain and can easily conform into many energetically stable Φ-Ψ torsional states 

as can be seen on the reweighted energy landscape of Gly11 in Figure 23. The importance of 

presence of proline was highlighted by Nagaoka et al., 1996 by substituting Pro14 → Aib14 

which resulted in loss of the central bend and shorter life times and fewer substates during 

single-channel measurements. Moreover, Dathe et al, 1998, showed that the presence of Pro 

exactly at position 14 in alamethicin was crucial for its hemolytic activity, stimulation of 

catecholamine secretion and induction of metabolic activity in endothelial cells owing to 

changes in membrane affinity instead of conformational change. This highlights the 

importance of the presence of helix-breaking residues like glycine and proline in peptaibol 

sequences which provides an energetically feasible way to cause the backbone motion to opt 

stable conformations when placed in solvents of different hydrophobicity factors. The 

movement along the backbone from bent to linear conformation is the largest scale of motion 

which indicates that peptaibols like Alm are capable of adjusting their backbone bend in 

response to bilayer thickness or under the effect of transmembrane potential. 
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 Re-evaluating TRK-V conformation using aMD 
 

 

Figure 27. (A) Reweighted FEL of the first two principal components calculated 
from dihedral angles, phi-psi, for better clustering based on internal motions. The 
representative structures of TRK-V corresponding to various energy minima have 
also been provided, (B) Diagrammatic representation of cluster distribution along the 
simulation trajectory. 

Using the newly optimized aMD parameters, the previously reported TRK-V molecule was 

elucidated again to obtain the complete canonical ensemble and compare with short classical 

MD conducted earlier (in Section 5.1.1.1.). Figure 27A describes the reweighted free-energy 

landscape of TRK-V as obtained from the two major components of dihedral PCA of 1 μs 

long aMD simulation. It is clear that the largest cluster lies at the energy minimum and the 

corresponding representative structure presumes a helical shape with the C-terminus showing 

hinge-like bend. The loss of helical fold before the C-terminus is responsible for this hinge-

like motion and is a characteristic of the Aib-Pro bond found in all peptaibols. The next two 

largest clusters 2 and 3 correspond to highly bent and C-terminus loss-of-helix 

conformations, respectively, which probably indicates intermediate states. The 4th cluster with 

the smallest population lies at a separate region on the free-energy landscape and corresponds 

to the highly helical, slightly bent conformation. This structure is most likely to be obtained 

using experimental methods like X-ray crystallography. The 1st cluster appears to populate a 

separate region on the FEL map which can be accessed under 2 kcal mol−1. Its representative 
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structure can be explained by the presence of a helix-destabilizing residue Ile16 at the C-

terminus (Lyu et al., 1991). Their occurrence along the course of simulation can be visualized 

in Figure 27B.  

 

 
 

Figure 28. The reweighted phi-psi torsional distribution for each residue of TRK-V. 
As can be observed, most residues show an energy minimum in the α-helical region. 

Similarly, upon comparing the reweighted phi-psi populations in Figure 28 with the same 

plots from Figure 7 (classical MD), it becomes clear, that although, most residues like Aib1-

Ile5, Ser10, Leu11, Pro13, and Gln17-Gln18 lie in the same free energy minima, many others 

flanking the central region like Gln6-Aib9, Aib12, and Val14-Ile16 show shifts from the 

predominant left-handed helical regions to the right-handed helical region. It is 

understandable for all Aib residues as the probability of its lying in both left-handed and 

right-handed helical quadrants is the same due to its achiral nature. A significant shift was 
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observed in the free energy minima of Gln6 and Val14 residues from the left-handed to the 

right-handed helical region. 

 Paracelsins B and H and brevicelsins I and IV: comparative analysis 
The first paracelsins A-D, isolated from T. reesei, were reported by Brückner & Graf (1983). 

The same group characterized their structure and activity (Brückner et al., 1984). Paracelsin 

was named after Paracelsus or Theophrastus von Hohenheim, a Swiss physician, alchemist 

and astrologer of the German Renaissance. Circular dichroism spectra obtained for 

paracelsins A-D were reported to be almost identical to that of alamethicin and suzukacillin. 

Unlike alamethicin, paracelsin and suzukacillin contain only one proline residue. Later, 

Pócsfalvi et al. (1997) reported sequences of the four new paracelsins F-I and discussed 

microheterogeneity. In this study, we also report plausible three-dimensional structures of 

paracelsins B (Par-B) and H (Par-H) for comparison with their 19-residue counterparts, the 

newly identified brevicelsins I (Brev-I) and IV (Brev-IV) (Marik et al. 2019). We reached an 

average of 150 ns/day of simulation efficiency with paracelsins and brevicelsins upon 1 μs 

long aMD simulation.  

Our aim was to observe structural differences resulting from the loss of Ala at the R6 

position, thereby, a comparison of the 19- and 20-residue long peptides. The length of the 

folded peptide can have direct effect on its activity against biological membranes in such a 

way that longer peptaibols are known to adopt transmembrane orientation while the shorter 

ones do not. For example, while alamethicin was shown to adopt a transmembrane 

configuration in POPC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

membranes, the shorter ampullosporin A, a 16-mer peptide, could only orient parallel to 

membrane surface of the same thickness mimicking natural membranes. It is in accordance 

with the fact that ampullosporin A shows much weaker antimicrobial effect (Ritzau et al., 

1997) than alamethicin which may be explained by a more detergent-like effect of smaller 

peptaibols in membranes instead of transmembrane channel forming abilities (Salnikov et al., 

2009). All peptides show a strong tendency to form right-handed helical structures with a 

slight bend at the Aib-Pro position (Figure 29). Cluster analysis of the simulation trajectories 

of all four peptaibols revealed different energetically stable conformations that occur during 

the folding, and the representative structures of the most populated cluster are provided for 

each peptaibol (except for Par-H where the structure closest to paracelsin-X has been 

reported). All peptides fold into an energetically favoured, highly bent helical conformation 

and a linear helical conformation. 
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Figure 29. Representative structures of the most populated clusters for peptaibols, 
Brev-I and IV and Par-B and H (the second most populated for paracelsin H). The 
simulations were carried out for 1,000 ns in each case. 

Based on the reweighted PMF values calculated for end-to-end distance (distance in Å from 

the N-terminus to the C-terminus), it can be speculated that a highly curved conformation for 

all peptaibols, except for Par-H, lies in the energy minimum and requires an energy “jump” 

of <1 kcal mol−1 to attain the linear backbone conformation (Figure 30A).  

 
 

Figure 30. (A) The reweighted PMF (kcal mol−1) values calculated for end-to-end 
distance (Å). The 20-residue paracelsins have been plotted in black, whereas 19-
residue brevicelsins are shown in red. The zoomed version of the plot is provided in 
the inset. The end-to-end values where PMF is zero or close to zero are the 
energetically stable values and define the most favourable linear conformation. (B) 
The RMSD (Å) calculated for each residue for all sequences gives an idea of the 
average fluctuation undergone by the system. The 19-residue brevicelsins show 
higher fluctuation than their 20-residue paracelsin counterparts. Par, paracelsin; Brev, 
brevicelsin. 
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Overall, the end-to-end distance values from 5 to 27 Å, that lie close to the energy minima, 

show that all conformations starting from a hairpin-like helix structure to a straight backbone 

with just a slight bend are easily accessible. The PMF values increase rapidly beyond these 

two points for all four peptaibols, as shown in the inset image focusing only on PMF values 

up to 2 kcal mol−1. However, the sequences Par-B and Brev-I, with an Aib residue in position 

R17, have higher PMF values for higher end-to-end distance values; the energy cost for 

attaining linearity of the helical backbone is slightly higher than in Par-H and Brev-IV, where 

a Val residue replaces Aib in the R17 position. The presence of Aib residue in position R17 

(in Par-B and Brev-I) results in a highly dynamic folding process, which means that many 

conformations were visited during the trajectory, whereas Val in the same position (in Par-H 

and Brev-IV) led to fewer energetically stable conformers.  

The root-mean-square-atomic fluctuation (RMSF) graph (Figure 30B) shows higher 

fluctuation of N- and C-terminal regions of all peptides in comparison to their central regions. 

There are no significant differences observed between the RMSF values of the 19-residue 

peptaibols, Brev-I and IV, in comparison to 20-residue peptaibols, Par-B and H, except that 

the sequences containing more Aib residues show a slight elevation in atomic fluctuation at 

the corresponding sequence position. For example, at R16 for Brev-I and R17 for Par-B, also, 

the R6 Aib in Par-B and H shows higher average atomic fluctuation than the R6 Gln of Brev-

I and IV. This observation establishes the fluctuating and dynamic nature of the Aib residue 

in peptaibol sequences which can be explained by its tendency to oscillate between right- and 

left-handed helical forms.  

The reweighted dihedral based PCA clusters and their representative structures were also 

obtained as discussed below. Amongst paracelsins, Par-B shows more dynamic behaviour 

than Par-H in terms of proximity of different clusters on the FEL. Most highly populated 

clusters, apart from 1, 2 and 3, obtained for Par-B lie on the same energy plane and are easily 

energetically accessible. The peptide shows dynamic interconversion between different states. 

The highest populated energy minimum state indicated by the representative structure 1 is 

closest to the native paracelsin-X structure from T. reesei known to us through X-ray 

diffraction methods (PDB ID: 4BY8). The structure is completely helical and linear. 

However, Clusters 2 and 3 with helical structure bent in a hairpin shape are close in 

population density. The 2nd cluster appears only at the last 200 ns of simulation trajectory 

before reverting back to Cluster 1 in the end (Figure 31).  
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Figure 31. The representative structures of Par-B. (A) Reweighted FEL of the first 
two PCs calculated from dihedral angles, phi-psi, for better clustering based on 
internal motions. (B) Diagrammatic representation of cluster distribution along the 
simulation trajectory. 

Par-H, on the other hand, can be observed to spread to physically separate regions on the FEL 

(Figure 32). All three main Clusters 1, 2 and 3 show a highly folded α-helix at the N-

terminus, break at the Aib13-Pro14 bond and again α-helix at the C-terminus. The break 

introduces a bend in the backbone which forms the most populated energy minima cluster. 

The most populated Cluster 1 shows unstable helix formation at the C-terminus due to the 
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substitution of a Val17 instead of Aib17. Valine has a slight helix destabilizing nature owing 

to its branched side-chain when compared to Aib. The same effect was observed for TRK V 

as discussed in Section 5.2.3. due to the presence of isoleucine residue. The linear, fully 

helical structure represented by Cluster 3 and 8 is obtained later between 700-800 ns followed 

by Clusters 4, 5 and 7. Here, the structure corresponding to Clusters 3 and 8 is closest to the 

native paracelsin-X. 

 

 

Figure 32. The representative structures of Par-H. (A) Reweighted FEL of the first 
two principal components calculated from dihedral angles, phi-psi, for better 
clustering based on internal motions. (B) Diagrammatic representation of cluster 
distribution along the simulation trajectory. 
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In comparison, their corresponding 19-residue peptaibols Brev-I and -IV are less dynamic in 

nature as observed from their FEL. Brevicelsins form clearly separate energy clusters and do 

not show multiple interconversions between states in comparison to behaviour of paracelsins. 

A highly folded, α-helical, linear structure is obtained as Cluster 1 for Brev-I (Figure 33). On 

the other hand, a similarly folded, α-helical but slightly bent structure is obtained as cluster 1 

for Brev-IV (Figure 34). The loss of one Aib residue at R6 seems to reduce the spread of 

conformational phase space of brevicelsins. The same observation holds true in the case of 

the two paracelsins, where a valine replaces Aib at R17 in Par-H and introduces a clear 

segregation of clusters and reduced distribution of phase space. The energy minimum for Par-

H lies at an end-to-end distance of 22 Å which is a bent conformation as can be seen in 

Figure 30A, whereas Brev-IV exhibits a slight fall at this point, even though its energy 

minimum also lies at 10 Å. Moreover, out of all clusters obtained in dPCA, the representative 

structure of the most populated cluster (Cluster 1) obtained during dihedral PCA of Brev-IV 

is a bent helical conformation with an end-to-end distance of 22 Å and the other one is a 

hairpin-like bent helical conformation represented by cluster 3 with an end-to-end distance of 

10 Å. This favour for bent backbones shown by Par-H and Brev-IV can easily be attributed to 

the presence of a more hydrophobic valine at R17. 
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Figure 33. The representative structures of Brev-I. (A) Reweighted FEL of the first 
two principal components calculated from dihedral angles, phi-psi, for better 
clustering based on internal motions. (B) Diagrammatic representation of cluster 
distribution along the simulation trajectory. 
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Figure 34. The representative structures of Brev-IV. (A) Reweighted FEL of the first 
two principal components calculated from dihedral angles, phi-psi, for better 
clustering based on internal motions. (B) Diagrammatic representation of cluster 
distribution along the simulation trajectory. 

 

5.3. aMD simulations in basic lipid bilayer membranes: Alamethicin 
hexamer pore in a bacterial mimicking bilayer membrane 

There have been attempts in the past to simulate the nature of ion channels, for example, 

Thogersen et al. (2008), carried out coarse-grained simulations of water penetration into 

alamethicin channel. Coarse-grained force fields are used to reduce the computational burden 

especially in the case of a system mimicking bilayer membrane but it comes at the cost of 
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losing the full atomic details by representing four atoms as a single entity (bead). In this 

manner, a single water bead diameter of 5.0 Å compared to 2.8 Å of an all-atom water 

molecule representation made it difficult to penetrate in the channel. To overcome this 

shortcoming, they resorted to use a short 50 ns simulation of all-atom representation of the 

system. This simulation resulted in the formation of a leaky bilayer where at least 95 % of 

water molecules within the bilayer are in direct contact with at least one alamethicin peptide. 

This experiment clearly outlines the importance and accuracy of all-atom simulations but the 

computational burden of carrying such a simulation must be solved. aMD has been tested to 

accurately depict ion channels formed by alamethicin hexamer. 

It is a well-known fact that Alm shows multiple conductance states, which directly correlates 

with the number of peptide monomer units. A previous study performed to highlight the 

difference in channel conductance with quadromer, pentamer, hexamer, octamer and even 

nonamer Alm F30/3 pores highlighted the occluded state of 3-mer and 4-mer pores, while 

pores beyond 5-mer were comparable (Rahaman & Lazaridis, 2014). The hexamer Alm pore 

is the most widely accepted model of its channel formation. For this reason, we chose to 

simulate a hexamer Alm model in (DOPE:DOPG) 3:1 bilayer membrane (Lombardi et al., 

2017). DOPE is a cationic or neutral lipid, whereas, DOPG is negatively charged. The 

electron density profiles for DOPE: DOPG lipids and water calculated across the bilayer 

normal (Z-direction) has been provided in Figure 35A. These were calculated by assuming 

an electron charge equal to the atomic number minus the atomic partial charge, located at the 

centre of each atom. A slight increase in water density from 0 to 10 Å in the bilayer signifies 

water displacement through the Alm pore. These results are in accordance with electron 

density profiles calculated for the same DOPE:DOPG system upon insertion of KcsA 

potassium channel (Schott-Verdugo & Gohlke, 2019). The lipid order parameters of the acyl 

chains were also determined, which can be directly compared with experimental SCD values. 

SCD is a measure of the relative orientation of the C-D bonds with respect to bilayer normal 

and can be calculated as |SCD| = 0.5 <3cos2θ – 1>, where θ is the angle between bilayer 

normal and the vector joining Ci to its deuterium atom, where <> means average of all lipid 

molecules. All contributions from conformational disorder, local tilting known as lipid 

wobble and collective motions constitute the SCD parameter and thus, can be a measure of 

membrane fluidity (Pastor et al., 1988; Pastor et al., 1991). 



80 
 

Figure 35B shows the average lipid acyl chain order parameters for mixed DOPE and 

DOPG. It could be compared to the plateau values of the two chains sn1 and sn2 taken from 

carbon number 4 to 6 for DOPE as 0.211 and 0.215, respectively (Venable et al., 2015). The 

plateau values for sn1 and sn2 in this case (for a DOPE:DOPG mixture) membrane is slightly 

lower, averaging at ~0.16 for both chains. This could be a result of DOPG mixing or the 

presence of membrane-perturbing peptide channel. It is evident that the membrane is more 

disordered than the pure DOPE membrane system. Moreover, another study conducted on 

Pseudomonas aeruginosa mimic membrane system, comprising DOPE and DOPG with a 

synthetic lipid, observed an average SCD value for pure DOPE inner membrane as 0.180 and 

for DOPG as 0.112 (Li et al., 2018). On the other hand, the average value for the membrane 

system used in this study is 0.10. This clearly shows that the membrane is highly disordered 

during the course of simulation due to the presence of the Alm F30/3 channel. The primary 

results of membrane-peptide simulations indicated that the Alm F30/3 hexamer channel 

increases membrane disorder, which eventually leads to leaking of water molecules and may 

lead to the disintegration of the bacterial cell. The lipid order parameters are in accordance 

with the results reported on the same system simulated using 5 replicas of 500 ns long 

classical MD by Schott-Verdugo & Gohlke, 2019.  

The diffusion coefficient (DC) of water inside the Alm F30/3 pore was calculated using mean 

square displacement (MSD Å2 ps–1). It is the average distance that all water molecules travel 

from their starting position in XYZ direction. The MSD was reported along the z-direction. 

The speed of water movement can be estimated based on the rise in slope of MSD vs time 

plot. The diffusion constant is calculated by fitting a slope to the MSD vs time plot and 

multiplying it by 10.0/2 × N (where N is the number of dimensions). The diffusion constant 

was calculated to be 0.0311 × 10−5 cm2 s–1 and 0.0245 × 10−5 cm2 s–1 for the first and second 

simulation, respectively. This in comparison to the value of diffusion of water as a liquid at 

0.23 × 10−4 cm2 s–1, is much lower which is expected as the behavior of water molecules in 

ion channel changes drastically in comparison to bulk water. Another important fact to note 

while calculating DC values from simulations is that most force fields, like the TIP3P water 

model used in this study, overestimate the diffusion coefficient even in bulk solution 

(Shinoda, 2016).  
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Figure 35. (A) The electron density profile for each constituent of membrane system 
and water calculated across the bilayer normal (Z-direction). A slight rise in the 
profile of water around 10 Å indicates presence of water in Alm F30/3 pore. Total 
electron density (in blue), the water density (brick red), the acyl tails of DOPE lipids 
(orange), the phosphoethanolamine lipid heads of DOPE (yellow) and 
phosphoglycerol heads of DOPG (green). (B) Lipid order parameters of the acyl 
chains, |SCD| can be compared with previous experimental values. The acyl chains 
show high disorder that may be a result of the presence of Alm F30/3 pore. 

Sansom et al. (1997) showed that the dielectric constant of water in an α-helical bundle pore 

is significantly less than that of bulk water under an externally applied electric field which 

significantly affects the electrostatics of ion permeation through this channel. However, the 

applied electric field does not seem to be sufficient to induce the passage of K+ from within 

the pore as observed from 300 ns of trajectory. It is apparent from DC values for the two 

trajectories that a higher external electric field value (0.07 V nm–1) causes slightly higher 

MSD of water molecules across z direction (Figure 36A). The density of water molecules in 

the z direction is also shown in Figure 36B by histogramming all water O atoms on a grid 

with a spacing of 1 Å. The resultant file can be visualized in VMD software. The MSD 

analysis clearly indicated bulk movement of water molecules through the Alm F30/3 hexamer 

channel. Figure 36C is a graphical representation of number of water molecules present in a 

hypothetical shell. This shell was created around the peptide pore residues at a distance of 3.4 

Å. Therefore, the number of water molecules present inside the pore are counted as a function 

of simulation time. It is clear, that from 200 to 230 water molecules are always present at any 

given time. A 14 μs long all-atom classical MD simulation of the Alm hexamer pore in 

DOPC membrane studied by Perrin Jr. & Pastor (2016) reported about 40 to 50 water 

molecules at any given time. The difference in this number can be attributed to multiple 

factors like the application of an external electric field in our case and the use of accelerated 

dynamics. They calculated the number of water molecules at a distance of 10 Å from the 
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bilayer centre forming a 20 Å region in total (to be in the pore), while our calculation 

includes the complete length of the Alm F30/3 pore (30 Å) and thus, the surface-bound 

regions and water molecules are also considered.  

 

Figure 36. (A) The mean square displacement (Å2 ps−1) values of water calculated as 
a function of simulation time. Using the slope of MSD curve, the average diffusion 
coefficient was calculated to be 0.0311 × 10−5 cm2 s−1 and 0.0245 × 10−5 cm2 s−1 for 
Mem-sim1 and Mem-sim2, respectively. Mem-sim1 clearly shows higher 
displacement of water under the influence of a comparatively stronger external 
electric field (0.07 V nm−1) defined by the efz value of 0.180 (B) A diagrammatic 
representation of water density around the pore. (C) The number of water molecules 
present in the Alm F30/3 pore at a given time. (D) A cartoon representation of water 
molecules passing through the Alm F30/3 pore. The front two monomers have been 
hidden for visual clarity. 

There is not a clear difference between the number of water molecules present in the pore at a 

given time when compared under two different external electric fields, which means that a 

higher electric field does not affect the pore size so as to accommodate more water 

molecules, but may affect the speed of water to move through the pore as shown by varying 

DC values. A diagrammatic representation of the presence of water molecules in the channel 
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is shown in Figure 36D. The peptides present in the front view have been hidden for clear 

visualization. The size of hexamer pore must change dynamically to accommodate the influx 

of bulk water and thus, pore radius was calculated as function of simulation time.  

The average pore radius (Å) as a function of z coordinate was calculated over each frame of 

the combined 600 ns trajectory (Figure 37A). It is clear, that the C-terminus (top of Alm 

F30/3 pore) undergoes stronger deviation than the N-terminus. The funnel-shaped top of the 

pore undergoes thickening and thinning of pore size continuously. The pore is thinnest at the 

center of the bilayer. Abbasi et al. (2018) visualized the formation of Alm pores in floating 

phospholipid membrane on gold electrodes, which confirmed the hexamer ion channel 

formation with the diameter of a pore calculated to be 2.3 ± 0.3 nm or 23 ± 3 Å. This value 

corresponds with the calculated radius from ˗15 to 10 Å of the z coordinate (transmembrane 

region). Figure 37B shows the top view of the pore surface surrounded by lipid heads. We 

were also curious to observe the changes in secondary structure of Alm F30/3 peptides in the 

hexamer as a function of simulation time. In lipid bilayers, the degree of helicity is dependent 

on the physical state of the lipid (Vogel, 1987), the lipid-peptide ratio (Cascio & Wallace, 

1988) or the presence of transmembrane potentials (Brumfeld & Miller, 1990). Based on 

percent α-helicity calculated for each peptide monomer as shown in Figure 37C, it is 

apparent that helices 1 and 3 undergo major changes. Helices 1, 4 and 6 show an average 

50% helicity while helix 2 shows the highest at 65% and helix 3 shows the lowest at 30%. It 

must be noted that all six peptides started with the same conformation and yet undergo vastly 

varied conformational changes. Perrin Jr. & Pastor (2016) also noted that the average % α-

helicity drops to ~47%, which is in line with circular dichroism experiments of Alm channel 

within DOPC membranes. It could be a direct result of application of an external electric 

field. To correlate this change in percent α-helicity for each monomer, we calculated the 

angle (in degrees) between a vector passing through the center of mass of N-terminal residues 

and a vector passing through C-terminal residues (Figure 37D). This angle is mentioned as 

bend angle from here on. As expected, helix 3 that was observed to have the least percent α-

helicity also has the least value of bend angle, followed by helix 5. It means that these 

monomers undergo extensive backbone bending during simulation, which is not feasible with 

a strict α-helix conformation. Therefore, these monomers unwind to achieve a more relaxed 

spiral conformation to accommodate pore transformation. Conversely, helices 1 and 4 show 

an average α-helicity around 50% and yet their bend angle values are amongst the highest. It 

is evident that helices 1 and 4 do not undergo drastic backbone bending but lose their helicity 
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indicating towards other factors affecting pore dynamics. One reason could be to 

accommodate the passage of bulk water molecules. Finally, the last observation regarding 

helix 2 showing highest α-helicity (65%) but a smaller bend angle of 80˚ indicates that a 

certain degree of backbone bend is possible without completely losing α-helicity. A highly 

bent conformation is sterically difficult to achieve with the presence of strict α-helix for the 

whole sequence. Therefore, few monomers show interconversion between α-helix and turns. 

On the other hand, few other monomers show that a certain degree of backbone bend is 

possible with strict α-helical conformation.  

 

Figure 37. (A) The average radius of the Alm F30/3 pore (Å) calculated along 
transmembrane coordinate. The major fluctuation in the radius is shown by the C-
terminus probably to accommodate incoming water flux. (B) Cartoon representation 
of the top view of the Alm F30/3 pore surface in blue. (C) Percent α-helicity 
calculated for each Alm F30/3 monomer from the pore with respect to simulation 
time (in ns). (D) The bend angle (calculated as dot product of two vectors passing 
through the N- and C-terminals of each monomer) as a function of simulation time. 
Figures 37C and D can be correlated assuming that the higher the bend angle, the 
lower will be its α-helicity. The helices are color-coded for visual interpretation. 
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6. SUMMARY 
Present work was started with a simple goal to explore the three-dimensional structures of 

novel peptaibols using their sequences obtained from the genus Trichoderma. The 

understanding of their folding patterns and dynamics is the first step to describe their modes 

of action against host membranes. Earlier studies by our group employed 100 ns long 

simulations in implicit solvent for the lack of technical infrastructure. For statistical accuracy, 

100 replica of each simulations were carried out by using a random starting conformation for 

each replica, a strategy based on the principle of Markov state models in which independent 

short simulations, with each trajectory describing a small portion of the protein’s phase space, 

are aggregated in a statistical fashion. The results in the form of secondary structural 

populations and hydrogen bonds were reported as averages of 100 simulations for each 

peptaibol.  

In this work, the initial studies carried out on TRK V and TPN XIIc involved a single 100 ns 

long simulation. The results obtained from TRK V were slightly surprising, as many residues 

like Gln6, Aib7, Aib8, Aib9, Aib12, Val14, Aib15, and Ile16 had a strong preference to form 

left-handed helix. It’s not unexpected for the Aib residues, as their chirality allows them to 

adopt helical conformations in the left-handed and right-handed quadrants, but Gln and Val 

are associated with right-handed α-helix conformations. The remaining amino acid residues 

showed preference for the right-handed helix region and a few towards the β-space on the 

Ramachandran plot. This clash between opposing helical turns rendered the resulting three-

dimensional structure as an unfolded spiral. The free energy distribution of RMSD and RoG 

values showed that a highly bent structure with the N- and C-termini in close proximity to 

each other obtained through most of the trajectory between 60-90 ns was the most 

energetically stable structure. 

TPN XIIc, on the other hand, contains three Div residues that may have characteristic effects 

on the screw sense of the resulting helix, on bioactivity and even on the probability to be 

degraded by proteolytic enzymes. Therefore, an obvious additional interest arose to observe 

the folding behaviour of D-isovalines. The presence of Div residues brought in a preference 

for left-handed helical regions while affecting the neighboring Aib residues. The Div11-

Aib12-Pro13 region resulted in unwinding of the spiral due to proline while the Val9-Ala10 

region showed the backbone reversing γ’-region geometry. The result indicated the presence 

of β-turns for most of the sequences with a highly bent backbone. The comparative results in 
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water and methanol solvents showed that most residues are populated around the α- and δ-

regions. Aib12, on the other hand, lies in the δ’ region. Div11 showed the same behaviour in 

all simulations. Pro13 lies almost exclusively in PII conformation in both explicit solvents, 

water and methanol. The γ’-turn conformation is not stable in explicit solvent environment, 

especially in methanol. The loss of the Div11→Val9 γ’-turn bond seems to reduce the overall 

bending of the chain and bring linearity. Overall, we observed the formation of β-bend ribbon 

spirals at the N-terminal segment with higher stability in methanol. For the C-terminus, water 

solvent promotes the formation of α-helix while methanol promotes the formation of 310-

helix. The ever changing dynamic landscape of these peptaibols prompted to undertake 

enhanced sampling simulation techniques. 

The newly identified TPN XIIc produced in the highest amount by the green mold T. pleuroti 

was our first target to test the enhanced simulation tehnique, viz. aMD. The first three 

simulations were set up to run for 500 ns consecutively, with varying boost parameters in 

explicit water solvent. The reweighted free energy plots of distribution of torsion angles for 

each residue were compared from each simulation and no change could be observed between 

individual simulations. In other words, each residue showed energy minimum in the exact 

same region of the Ramachandran plot for all three simulations and would result in a slightly 

bent but folded, spiral-like conformation. This observation led to running simulations in 

explicit chloroform solvent so as to mimic a hydrophobic environment provided by bilayer 

membranes. At this point, it was realized that accelerated MD algorithms have not been tested 

for non-aqueous solvents, thus the application of boost to the whole potential, i.e. the whole 

system including chloroform molecules, increases the energy of the system to unprecedented 

levels and thus, abruptly ends the simulation run. Three consecutive simulations for 500 ns 

each were set up but only with boost to dihedral energy. To compensate for lack of boost to 

total potential, a 1 µs long simulation was carried out in chloroform solvent with a higher 

dihedral boost. The dihedral PCA-based FEL plot revealed a new, highly linear conformation 

of TPN XIIc which had not been observed in the previous three runs in chloroform. Naturally, 

this led to a simulation run for 1 µs in water solvent which also resulted in a linear, spiral-

shaped conformation represented as Cluster 2 and 8 which are accessible under ~2.5 kcal 

mol−1 from each other. Similarly, the new highly linear conformation of TPN XIIc 

represented as cluster 1 in chloroform was not the energy minimum. The energy barrier 

between the two states (Cluster 4 → Cluster 1) is ~4 kcal mol−1, i.e. the conversion from a 

highly bent to a linear conformation is a rare event and requires a longer continuous 
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simulation to be achieved with aggressive dihedral boost parameters. The earlier application 

of small boost energy and smaller simulation time (500 ns) must have resulted in the peptide 

being stuck in a single energy minimum dwell. The FEL plots have been obtained after 

combining all consecutive simulations of 2.5 µs. The integration of multiple aMD simulations 

with varying boost parameters to calculate the final free-energy distribution has been proven 

to be a good strategy to remove the large statistical noise while reweighting. The structure of 

TPN XIIc was found to be a continuous β-bend ribbon spiral with α/310-helix at the C-

terminal. The spiral shape instead of a regular α/310-helix can be correlated with the presence 

of three Div residues. 

Understanding the convergence through KLD method: In this theory, any two simulations, 

starting from different conformations, if run long enough must eventually traverse the same 

path so that their probability distributions overlap and the divergence between them must be 

the smallest. The divergence cutoff is chosen to be less than 0.025. In case of TPN XIIc, the 4 

simulations were combined so as to obtain the same eigenvectors for each simulation (2.5 µs 

long trajectory) and then divided in 5 parts to calculate KLD values. The slopes for first four 

parts reduce below 0.025 within 300 ns which means that most part of the phase space is 

covered by all these four simulations. However, the convergence between the 4th and 5th part 

is not achieved, which can be attributed to the fact that Cluster 1 does not appear after 2 µs 

and the last 500 ns only present conformations in Cluster 2, 7 and 8. The KLD between parts 

2 and 5 must be low as the same conformations appear during these trajectories. The KLD 

analysis in chloroform solvent simulation showed convergence amongst the first three 

simulations except the last simulation, where for the first time, a straight backbone had been 

observed and resulted in high values of KLD for parts 4 and 5. It became clear that a 1 µs 

long aMD simulation was required and found to be sufficient to map the phase space of a 

given peptaibol. This puts a question on the use of KLD as a method of assessing 

convergence, as if the fourth simulation had not been carried out, the previous three 

simulations would indicate perfect convergence which is clearly not true. Our rationale lies in 

the fact, that chloroform is a very restrictive solvent for peptide folding as it is clear from our 

results. The conformational landscape covered in the fourth simulation covers those 

metastable states which are separated by a high energy barrier and could not have been 

achieved during shorter aMD simulations. The peptide seems to be stuck in a single energy 

state in chloroform while it is highly dynamic in water and jumps through various metastable 

states with relative ease. 
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Irrespective of the starting configuration, all simulations must, at some point, begin to sample 

the same space which could not be observed in the case of chloroform. But the combined 

trajectory of 2.5 µs surely indicates adequate sampling. This is a drawback of using such a 

statistical method for addressing convergence, especially, when enhanced sampling methods 

have been used in solvents other than water. Nevertheless, it is more reliable than the 

previous methods of showing convergence, e.g. RMSD. 

These observations prompted a systematic optimization of aMD simulations to be used for 

peptaibol structure elucidation, and Alm F30/3 was chosen for this purpose. The structure of 

alamethicin F30/3 has been experimentally studied and it is the most studied peptaibol. In 

order to optimize the process of peptaibol structure elucidation using aMD, we chose the 

unfolded Alm F30/3 conformation and set up three consecutive 1 µs long simulations. Due to 

technical disruptions, the data was obtained for ~900 ns for each simulation in explicit water 

solvent using small boost parameters. The idea to use any non-aqueous solvent has been 

dropped due to technical errors that may arise with it. The representative structures obtained 

from dPCA FEL plots of each simulation was superimposed with the PDB structure of 

alamethicin (PDB accession ID: 1amt) based on lowest RMSD values. By the third 

simulation, a linear, highly folded structure is obtained. It is necessary to keep in mind, that 

during these simulations the close-to-native conformation does appear, but not enough times 

to form a separate and significant energy cluster on the FEL map. It could be attributed to 

multiple other, more populated clusters being formed throughout the course of simulation. 

The reweighted phi-psi plots were observed for each residue and no significant change could 

be observed amongst individual simulations. The fourth simulation was carried out on Alm 

F30/3 for 1 µs using slighlty aggressive boost parameters and started from the original 

unfolded conformation which resulted in a close-to-native conformation of AlmF30/3. All 

evidence suggests that 1 µs long aMD simulations using GPUs are required and sufficient for 

folding simulations of such short peptaibols. The effect of boost applied on dihedral energy 

affects the folding speed of peptaibol simulations more than boost applied to total potential 

energy. A comparison between the reweighted dPCA FEL plots between the first 3 combined 

simulations and the last simulation suggests that similar conformational space could be 

covered with slightly aggressive boost parameters.  

Consequently, the same method was used to elucidate the structures of four peptaibols, Par-B 

and H and Brev-I and IV, to ascertain the effect of the loss of Aib residue at the R6 position 
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on their folding dynamics and structure along with substitution of a valine in place of Aib at 

R17 position. Based on the reweighted PMF values calculated for end-to-end distance 

(distance in Å from the N-terminus to the C-terminus), it seems that the replacement of Aib 

to Val at the 17th position in Par-H and Brev-IV lowers the energy barrier to attain linearity 

from a bent conformation. It’s best to keep in mind at this point, that for all four peptides, the 

barrier between bent and linear conformations is very low in water solvent. The RMSF plots, 

on the other hand, did not highlight a significant difference between the atomic fluctuations 

of the two peptaibol groups except slightly higher fluctuation for Aib residue at its 

corresponding position R6 in paracesins and R16, R17 for Brev-I and Par-B, respectively. 

TRK-V: The main goal of carrying out aMD simulations was to increase the sampling of the 

conformational space corresponding to the peptaibol folding dynamics which led to the re-

evaluation of folding dynamics of TRK-V. We reported the structural characteristics of the 

TRK-V in Section 5.1.1.1. from a 100 ns long classical MD run in implicit solvent. While the 

phi-psi distribution of many residues in the central peptide region obtained in the classical 

MD run showed a high preference for left-handed helix region, and gradual unwinding of the 

spiral shape was observed. The same distribution from the aMD run shows that these 

residues, flanking the central region, show shifts from the predominant left-handed helical 

regions to the right-handed helical region. The comparison between the results obtained from 

a short classical MD in implicit solvent with 1 µs long accelerated MD in explicit water has 

reinforced the idea that longer time scales in explicit solution are definitely required as the 

results can be highly misleading in its absence. 

The success of aMD in accurately predicting conformational ensemble of peptaibols without 

introducing unprecedented errors prompted us to carry out all-atom alamethicin channel 

simulations within bilayer membrane system. The presence of the peptide channel clearly 

introduced disorder to the membrane as shown by the lipid SCD parameter. All contributions 

from conformational disorder, local tilting known as lipid wobble and collective motions 

constitute the SCD parameter and hence, it is a good measure of membrane fluidity. The 

diffusion coefficient, which is the average distance that all water molecules travel while 

passing through the channel, was also calculated under two different values of applied 

external electric fields. Expectedly, the DC value is higher under a stronger electric field 

(0.0311 × 10−5 cm2 s–1 and 0.0245 × 10−5 cm2 s–1 for the first and second simulation, 

respectively) but is much lower than DC of water in bulk. It is keeping in line with previous 
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findings, which suggest that water inside the pore differs in its dynamic properties from bulk 

water, the latter exhibiting decreased translational and rotational mobility (Breed et al., 1996). 

The calculation of average pore radius highlighted that the N- and C-termini of the pore 

undergo high fluctutaion and correlates with the hinge-like movement of peptaibol chains 

around central region. Few Alm F30/3 monomers in the hexamer channel also seemed to lose 

their α-helicity during the simulation and is supported by previous experiments (Perrin Jr. & 

Pastor, 2016). 

7. ÖSSZEFOGLALÁS 
Ez a PhD munka azzal a célkitűzéssel indult, hogy újonnan felfedezett peptaibolok 

háromdimenziós szerkezetét jellemezzük. A szerkezet-kialakulás módjának és dinamikájának 

a felderítése az első lépés a sejtmembránnal való kölcsönhatás módjának megértése felé. A 

peptaibolok szekvenciáját a Trichoderma genomjának ismeretében határoztuk meg, 

tekintettel a benne lévő, kódolt aminosavakkal azonos elemi összetételű nemkódolt 

aminosavak tömegspektrometriás azonosításának nehézségeire. Csoportunkban előzetesen 

100 ns hosszú implicit vizes szimulációt alkalmaztunk a háromdimenziós szerkezet 

felderítésére. A statisztikai pontosság érdekében ezt 100 különböző, véletlen konformációval 

indulva ismételtük meg. Ez lényegében egy Markov-féle statisztikai modell volt, amiben a 

peptidek fázisterét rövid, egymástól független szimulációk egyesítésével jellemeztük. Ekkor a 

szerkezet háromdimenziós jellemzése lényegében a trajektóriumokból kapott másodlagos 

szerkezeti elemek és hidrogénhíd-kötések előfordulásának statisztikai gyakorisága volt. 

PhD munkám során az előzetes vizsgálatok a TRK-V és TPN XIIc 100 ns-os 

szimulációival kezdődtek. Ezek alapján némileg meglepő volt, hogy a TRK-V-ben számos 

aminosav (Gln6, Aib7, Aib8, Aib9, Aib12, Val14, Aib15 és Ile16) erős hajlamot mutatott 

balmenetű hélix kialakítására. Ez nem meglepő az Aib esetében, mivel itt a kiralitás hiánya 

mindkét menetű hélix kialakulását segíti, azonban általánosságban a Gln és Val részvétele a 

jobbmentű α-hélixben jellemző. A többi felsorolt aminosav jelenléte szintén jobbmentű α-

hélixekben, illetve a Ramachandran-térkép úgynevezett β-régiójában jellemző. Valószínűleg 

ez az ellentétes másodlagos szerkezetképző hajlam eredményezte a nem szabályos 

másodlagos szerkezeti elemként megjelenő spirális szerkezetet. A szabadenergia eloszlása az 

RMSD és forgási sugár függvényében azt mutatta, hogy az energetikailag legstabilabb 

szerkezet erősen hajlított, amiben az N- és C-terminális igen közel van egymáshoz. Ez a 

trajektórium 60-90 ns részén volt megfigyelhető.  



91 
 

A TPN XIIc esetében a benne lévő három Div aminosav jelenléte jelentős hatást 

gyakorolhat a csavarmenet irányára, bioaktivitására, sőt akár a proteolitikus enzimek lebontó 

hatására is. Sok antimikrobiális peptid nem alkalmazható terápiás céllal az emlőssejtekkel 

szembeni toxicitásuk, illetve a proteázokkal szembeni érzékenységük miatt. Utóbbi 

kiküszöbölésére a legsikeresebbnek tekinthető szerkezeti módosítások között felsorolhatók a 

C- és N-terminális módosítások, a ciklizáció, a D-aminosavak és nem-peptid jellegű 

gerincelemek beépítése és a multimerizáció (Falciani és mtsai., 2012; Kim és mtsai., 2014; 

Ong és mtsai., 2014; Khara és mtsai., 2014). Ezek alapján nyilvánvalónak tűnt a Div 

aminosav háromdimenziós szerkezet kialakulására gyakorolt hatásának vizsgálata. Több Div 

jelenléte megnöveli a balmenetes hélix kialakulására való hajlamot, egyúttal hatással van a 

szomszédos Aib részekre is. A Div11-Aib12-Pro13 régió a spirális szerkezet kitekeredését 

okozta, míg a Val9-Ala10 régió a γ’ geometria megfordítását. Az eredmények β-kanyarok 

jelenlétét mutatták a szekvencia jelentős részében, erősen hajlott peptidgerinccel. A két 

oldószerben végzett szimulációkat összehasonlítva azt láthattuk, hogy a legtöbb aminosavrész 

a Ramachandran-térkép α- és δ-régiójában mutatkozott, míg az Aib12 a δ’ régióban. A Div11 

ugyanazt a viselkedést mutatta minden szimulációban. Pro13 szinte kizárólag a PII 

konformációban mutatkozott mindkét explicit oldószerben, vízben és metanolban. A γ’ 

konformáció nem volt stabil explicit oldószerekben, különösképpen metanolban nem. A 

Div11→Val9 γ’-kanyar eltűnése csökkentette a peptidgerinc hajlását és egyenes gerincet 

eredményezett. Összességében béta-kanyarokból felépülő spirális szerkezetet észleltünk az 

N-terminális részben, mely metanolban stabilabbnak tűnt. A C-terminális régióban a víz α-

helix képződését segítette, míg a metanol a 310-helixét. 

A hatékonyabb szimulációs módszerrekkel (accelerated MD, aMD) történő 

részletesebb vizsgálataink első célpontja az újonnan azonosított TPN XIIc volt, amit a T. 

pleuroti a legnagyobb mennyiségben termel. Három, egymást követő, explicit vízben 

folytatott 500 ns-os szimulációban eltérő boost paramétereket alkalmaztunk. A torziós szögek 

újrasúlyozott szabadenergia-eloszlását minden egyes alkotó aminosavra összehasonlítottuk a 

szimulációk között, ez alapján a szimulációk között nem volt észlelhető különbség, minden 

aminosavrész a Ramachandran-térkép ugyanazon régiójában mutatott energiaminimumot. A 

peptid szerkezete egy enyhén hajlott spirálként írható le. Következő lépésként a 

lipidmembrán hidrofób jellegét utánzó explicit kloroformban hajtottunk végre szimulációkat 

a vizes közeg hatásával történő összehasonlításhoz. Ekkor szembesültünk azzal, hogy az 

aMD-módszert nem vizsgálták nemvizes oldószerekre, ami váratlan nehézségeket okozott. A 
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boost teljes potenciálra való alkalmazása – beleértve a kloroform molekulákat is – olyan 

mértékben növelte meg a rendszer energiáját, ami lehetetlenné tette a szimulációt. Ezek 

alapján a következő szimulációkban a boost paramétereket csak a diéderes energiákra 

alkalmaztuk, azonban a teljes potenciális energia boost elmaradása miatt megnövelt értékkel. 

A diéderes PCA-n számolt FEL egy új, lineáris TPN XIIc konformációt is mutatott 

kloformban, ami az előző három futás során nem volt észlelhető. Összességében ez egy 1 µs 

hosszúságú szimulációt eredményezett vízben, aminek során a 2. és 8. klaszterben lineáris 

megjelenésű konformáció a jellemző, spirálszerű peptidgerinccel. A két klaszter között 2,5 

kcal mol−1 energikülönbség észlelhető. Hasonlóképpen, a TPN XIIc kloroformban észlelt, 

lineáris 1-es klasztere sem volt energiaminimumban. A két állapot közötti (4 → 1) energiagát 

~ 4 kcal mol-1 volt, vagyis a hajlított konformációból a lineárisba történő átmenet ritka 

eseménynek számít és hosszabb szimulációt igényel agresszív boost-paraméterekkel. A 

korábbi, kisebb boost-energiával végrehajtott rövidebb szimulációk során a peptid 

feltételezhetően egy kisebb energiájú szinten rekedt. Az egymás utáni szimulációk 

egyesítésével összesen 2,5 µs hosszúságú szimuláció eredményét láthatjuk a FEL ábrákon. A 

különböző boost-paraméterekkel végrehajtott aMD-szimulációk egyesítése újrasúlyozással jó 

stratégiának bizonyult a végső, realisztikus szabadenergia-eloszlás meghatározására és a 

nagymértékű statisztikus zaj kiszűrésére. A TPN XIIc szerkezete ezek alapján egy folytonos, 

spirálisan csavarodó β-redőként írható le, α- és 310-hélix-szel a C-terminálisnál. A spirális 

alakzat megjelenése a hélixek helyett a három Div jelenlétével hozható összefüggésbe. 

A szerkezeti konvergencia magyarázata a KLD-módszer alapján: A KLD elmélete 

szerint bármely két, különböző kezdeti feltétellel indított szimuláció – elegendően hosszú 

szimulációt alkalmazva – ugyanazt a konformációs teret járja be, így a valószínűség-

eloszlásuk ugyanaz lesz, vagyis a kettő közötti eltérés (divergencia) a legkisebb. A 

divergencia értékét 0,025-ben állapították meg. A TPN XIIc esetében 4 szimulációt 

egyesítettünk, hogy azonos sajátvektorokat kapjunk minden egyes szimulációra (2,5 µs 

hosszúságú trajektórium), amelyek 5 részre bontásával számoltuk a KLD-értékeket. Az első 

négy részben az iránytangensek 300 ns-on belül csökkentek 0,025 alá, ami azt jelenti, hogy a 

fázistér legnagyobb részét lefedték. A 4. és 5. rész között azonban a konvergenciát nem 

sikerült elérni, ami annak tulajdonítható, hogy 2 µs elteltével az 1-es számú klaszter nem 

jelent meg, és az utolsó 500 ns csak a 2., 7. és 8. klasztereket tartalmazta. A 2. és 5. részek 

között a KLD szükségszerűen alacsony, mivel ezeken a trajektóriumokon belül ugyanazok a 

konformációk jelentek meg. A kloroformos szimulációk KLD-analízise az első három rész 
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konvergenciáját mutatta, ellentétben a negyedikkel, ahol először jelent meg egy egyenes 

gerincű konformáció, és magas KLD-értékeket mutatott a negyedik és ötödik részhez képest. 

Ezzel bebizonyosodott, hogy 1 µs hosszúságú szimulációra volt szükség az adott peptaibol 

fázisterének feltérképezéséhez.  

Ezzel fölvetődik a kérdés, hogy a KLD-módszer vajon elégséges-e a konvergencia 

bizonyítására, mivel a negyedik szimuláció nélkül az első három teljes konvergenciát 

mutatott, ami egyértelműen nem igaz. A magyarázatunk erre az a tény, hogy a kloroform 

erősen gátolja a peptid-konformációk egymásba alakulását, ami az eredményeink alapján 

egyértelmű. A negyedik szimuláció konformációs tere nagyobb energiájú állapothoz tartozik, 

ami rövidebb szimulációk során nem tud létrejönni. Ez az 500 ns-os szimuláció 

elégtelenségére utal a magasabb energiájú állapotok eléréséhez kloroformban, ami a 

korlátozott boost következménye lehetett. Kloroformban a peptid látszólag egyetlen 

energiavölgyben ragadt, míg vízben nagymértékben dinamikus és viszonylag könnyen jutott 

túl különféle metastabil állapotokon. A kiinduló konformációktól függetlenül a rendszer egy 

bizonyos ponttól ugyanazt a konformációs teret kell bejárnia, amit kloroformban nem 

észleltünk. A 2,5 µs hosszúságú egyesített szimuláció azonban megfelelő mintavételt 

eredményezett. Ez egyúttal az alkalmazott statisztikai módszer hiányosságára is utal a 

konvergencia vizsgálatában, amennyiben a növelt hatékonyságú mintavételezést víztől 

különböző oldószerre alkalmazzák. Mindazonáltal a módszer megbízhatóbb a konvergencia 

vizsgálatára a korábbi módszerekhez (pl. RMSD) képest. 

Ezen megfigyelések a gyorsított MD-szimulációk szisztematikus vizsgálatát kívánták 

a peptaibolok szerkezetének vizsgálatában, amihez az Alm F30/3 választottuk. Az 

alamethicin F30/3 volt a kísérletileg legkimerítőbb szerkezetvizsgálatoknak alávetett 

peptaibol. A peptaibolok aMD-módszerrel történő szerkezetvizsgálatának optimalizálásához 

az Alm F30/3 nyílt konformációjával három egymást követő 1 µs hosszúságú szimulációt 

indítottunk vízben. Technikai okok miatt mindhárom szimulációban 900 ns-os trajektóriumot 

tudtunk feldolgozni. Nemvizes oldószerben az előbbiekben részletezett okok miatt nem 

végeztünk szimulációt. A dPCA FEL-diagramok alapján választott reprezentatív 

szerkezeteket az alamethicin PDB-adatbázisban található szerkezetével (1amt) vetettük össze 

a legalacsonyabb RMSD-értékek figyelembevételével. A harmadik szimulációban egy 

lineáris gerincű, erősen hajlított konformációt találtunk. Meg kell azonban jegyezni, hogy 

ezen szimulációkkal a kísérletileg találthoz közeli (természetes) konformáció is megjelent, de 
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nem elegendő gyakorisággal ahhoz, hogy a FEL-diagramon szignifikánsan elkülönült 

energiaklaszterként jelenjen meg, ellentétben más, a szimuláció során megjelenő, nagyobb 

gyakoriságú klaszterekkel. A különböző szimulációkat összehasonlítva az újra súlyozott phi-

psi diagramokon az egyes aminosavrészek között nem találtunk lényeges különbséget. A 

negyedik, 1 µs szimuláció során (az eredetileg alkalmazott nyújtott konformációból indulva) 

az Alm F30/3-nak a természeteshez közeli konformációja jelent meg. Ezek alapján 

kijelenthető, hogy a GPU-n végzett, 1 µs hosszúságú szimuláció elegendőnek tekinthető a 

hasonló rövid peptaibolok feltekeredésének vizsgálatára. Az első három és a negyedik 

szimulációt összehasonlítva az látható, hogy a konformációs tér enyhén agresszív boost-

paraméterekkel bejárható. 

Ezen eredmények birtokában ugyanezzel a módszerrel két peptaibolpár (paracelsin B 

és H, valamint brevicelsin I és IV,) összehasonlításával vizsgáltuk a tekeredés dinamikájának 

változását, egyrészt az Aib hiányával az R6 pozícióban, illetve valinnal helyettesítésével az 

R17 pozícióban. Az összehasonlítást az újrasúlyozott PMF-értékeknek a C- és N-terminális 

távolságának függésével követtük. Azt láthattuk, hogy az Aib17 Val-ra történő cseréje a Par-

H és Brev-IV esetében csökkentette a hajlított szerkezetből a lineárisba történő átmenet 

energiagátját. Azt is figyelembe kell venni, hogy vízben mind a négy peptid esetében igen 

alacsony a hajlított és lineáris konformációk közötti átmenet energiagátja. Az RMSF görbék 

viszont nem mutattak ki szignifikáns különbséget a két peptaibol csoport atomi ingadozása 

között, kivéve a paracelsinek esetében az R6 pozícióban elhelyezkedő Aib aminosavat, 

valamint a Brev-I, ill. Par-B esetében az R16, ill. R17 pozíciókban elhelyezkedő szintén Aib 

aminosavakat, melyek kissé megnövekedett atomi fluktuációt mutattak.  

TRK-V: az aMD-szimulációkkal itt a konformációs tér hatékonyabb feltérképezését 

tűztük ki, aminek célja a feltekeredés dinamikájának részletesebb vizsgálata volt. A TRK-V 

szerkezeti sajátosságait először a Section 5.1.1.1-ben leírt módon, 100 ns, implicit vizes 

klasszikus MD alkalmazásával vizsgáltuk. Ebben a peptid középső részében található 

aminosavak erős hajlamot mutattak balmenetes hélix formálására, ami fokozatosan alakult át 

egy spirális alakzattá. Az aMD-szimulációkban a terminálisok felé eső aminosavak 

jobbmenetes hélix formálódását mutatták a kezdetben domináns balmenetes hélix 

átalakulásával. A két módszer összehasnlításával egyértelműen kijelenthető, hogy az implicit 

vizes, 100 ns klasszikus MD helyett hosszabb, 1 µs explicit vizes szimulációt kell alkalmazni, 

mert az implicit vizes szimulációk helytelen eredményre vezethetnek. 
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Alamethicin hexamer csatorna aMD-vizsgálata: az aMD-módszer eredményessége a 

peptaibolok konformációs tulajdonságainak vizsgálatában lehetővé tette, hogy az Alamethicin 

castornaképző tulajdonságait hasonló módon vizsgáljuk explicit vizes közegben. A csatorna 

megjelenése egyértelműen vezet a membrán szerkezetének és tulajdonságainak 

megváltozásához, ami a lipid SCD paraméterrel kimutatható. Az SCD paraméter megváltozása 

egy jó mérőszám a membrán fluiditásának követésére, aminek okozó tényezői között 

konformációs változások, lokális ferdeség (lipid wobble), kollektív mozgások találhatók. A 

víz membránon keresztül jutásának diffúziós együtthatóját (DC), ami a vízmolekulák által 

megtett átlagos út számításával kapható meg, két különböző külső elektromos tér hatására 

vizsgáltuk. Amint az várható volt, a membránban számolt DC nagyobb volt erősebb külső 

elektromos tér alkalmazásával (0.0311 × 10−5 cm2 s–1 és 0.0245 × 10−5 cm2 s–1, az első és 

második szimulációval), és mindkét esetben lényegesen kisebb, mint a szabad víz esetében. 

Ez megfelel a korábbi tapasztalatoknak, miszerint a pórusban található víz dinamikai 

tulajdonságai különböznek a szabad vízétől, utóbbi nagyobb transzlációs és forgási 

szabadságot mutat (Breed és mtsai., 1996). A pórus átlagos átmérőjének vizsgálata azt 

mutatta, hogy a pórust kialakító peptaibol N- és C-terminálisa nagymértékben fluktuál, 

összhangban egy, a középső régió, mint csukló körüli mozgással. A szimuláció során a 

csatornát képző Alm F30/3 hexamer némely monomerében az α-helicitás eltűnt, összhangban 

korábbi kísérleti eredménnyekkel (Perrin Jr. & Pastor, 2016). 

8. Conclusions 
1. We showed that the use of enhanced sampling methods like aMD is crucial to 

accurately model the folding dynamics of peptaibols in comparison to classical MD 

techniques.  

2. We show that 1 µs long aMD simulation on a GPU with slightly aggressive boost 

parameters results in the complete conformational ensemble of peptaibols.  

3. The study of folding dynamics also highlighted the differences that can occur with a 

single residue substitution.  

4. The presence of helix-breaking residues like glycine and proline was highlighted to 

allow the hinge-like backbone bending motion of peptaibols that may have functional 

relevance. 

5. aMD can be successfully applied to model all-atom representations of bilayer 

membranes and their interaction with peptaibols without introducing grave errors. 
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11. APPENDIX 
Detailed description for residue parameterization 

The non-standard residues, aminoisobutyric acid (Aib) and D-isovaline (Div) were 

parameterized as part of one calculation along with 4 standard residues, alanine, serine, 

glycine and valine. The parameter file, .frcmod, is calculated collectively for all these 

residues and is provided below. To create their amber libraries in .off format, the respective 

structures of these residues were loaded using a leap script provided by R.E.D server. The 

reason for collective parameterization was to be able to compare the charges for standard 

residues with preexisting libraries of AmberTools16.  

Note: The mol2 files contain information of Aib and Div as residue units with free ends that 

can be readily used in building a peptide sequence. They were parameterized as ACE-

AIB/DIV-NME units.  

 
 
Using leap, 
 
loadAmberParams frcmod.known     #parameter file for all 6 residues 
AIB = loadmol3 m3-c1_f2.mol2        #from R.E.D charge calculation results 
DIV = loadmol3 m6-c1_f2.mol2 
 
 
saveoff AIB AIB.off       #saving amber libraries 
saveoff DIV DIV.off 
 
 
The .mol2 files, for AIB 
 
@<TRIPOS>MOLECULE 
F08 
    13    12     1     0     1 
SMALL 
USER_CHARGES 
@<TRIPOS>ATOM 
   1 N1     1.179404   0.787225  -0.289608 N    1   F08 -0.4552  0.0000 
**** 
   2 H7     1.401639   1.218298  -1.161329 H    1   F08  0.2870  0.0000 
**** 
   3 C1    -0.246026   0.712307  -0.009072 CT   1   F08  0.1590  0.0000 
**** 
   4 C2    -0.513722   0.943419   1.490893 CT   1   F08 -0.1445  0.0000 
**** 
   5 C3    -0.874452   1.859278  -0.822371 CT   1   F08 -0.1445  0.0000 
**** 
   6 H8    -0.683793   1.725172  -1.881967 HC   1   F08  0.0464  0.0000 
**** 
   7 H9    -1.944751   1.917349  -0.681560 HC   1   F08  0.0464  0.0000 
**** 
   8 H10   -0.438130   2.800958  -0.509348 HC   1   F08  0.0464  0.0000 
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**** 
   9 C6    -0.815324  -0.626254  -0.549026 C    1   F08  0.5633  0.0000 
**** 
  10 O     -0.117607  -1.349894  -1.206062 O    1   F08 -0.5435  0.0000 
**** 
  11 H1    -1.529198   1.266287   1.670775 HC   1   F08  0.0464  0.0000 
**** 
  12 H2     0.148540   1.726800   1.836879 HC   1   F08  0.0464  0.0000 
**** 
  13 H     -0.336510   0.060129   2.090571 HC   1   F08  0.0464  0.0000 
**** 
@<TRIPOS>BOND 
    1     1     2 1 
    2     1     3 1 
    3     3     4 1 
    4     3     5 1 
    5     3     9 1 
    6     4    11 1 
    7     4    12 1 
    8     4    13 1 
    9     5     6 1 
   10     5     7 1 
   11     5     8 1 
   12     9    10 1 
@<TRIPOS>SUBSTRUCTURE 
      1 F08               1 ****               0 ****  **** 
@<TRIPOS>HEADTAIL 
N1 1 
C6 1 
@<TRIPOS>RESIDUECONNECT 
1 N1 C6 0 0 0 0 
 
 
D-isovaline (DIV) 
 
 
@<TRIPOS>MOLECULE 
F17 
    16    15     1     0     1 
SMALL 
USER_CHARGES 
@<TRIPOS>ATOM 
   1 N1     1.069412   0.434947   0.415318 N    1   F17 -0.3647  0.0000 
**** 
   2 H8     0.918993   1.367037   0.740563 H    1   F17  0.2358  0.0000 
**** 
   3 C1    -0.156337  -0.267531   0.058905 CT   1   F17  0.0552  0.0000 
**** 
   4 C2    -0.255076  -1.597290   0.828207 CT   1   F17 -0.2071  0.0000 
**** 
   5 C3    -0.280048  -0.476971  -1.472639 CT   1   F17 -0.0427  0.0000 
**** 
   6 C4    -0.175361   0.801565  -2.304979 CT   1   F17 -0.0917  0.0000 
**** 
   7 H9    -0.971825   1.500344  -2.073312 HC   1   F17  0.0282  0.0000 
**** 
   8 H10   -0.246482   0.559673  -3.360441 HC   1   F17  0.0282  0.0000 
**** 
   9 H11    0.768238   1.306343  -2.139664 HC   1   F17  0.0282  0.0000 
**** 
  10 C7    -1.286111   0.698418   0.513586 C    1   F17  0.6153  0.0000 
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**** 
  11 O     -1.017880   1.799366   0.916720 O    1   F17 -0.5641  0.0000 
**** 
  12 H1     0.491864  -1.170168  -1.784452 HC   1   F17  0.0407  0.0000 
**** 
  13 H2    -1.219741  -0.969252  -1.691480 HC   1   F17  0.0407  0.0000 
**** 
  14 H3    -1.133983  -2.164910   0.562186 HC   1   F17  0.0660  0.0000 
**** 
  15 H4    -0.269747  -1.411989   1.896661 HC   1   F17  0.0660  0.0000 
**** 
  16 H      0.598634  -2.222187   0.612382 HC   1   F17  0.0660  0.0000 
**** 
@<TRIPOS>BOND 
    1     1     2 1 
    2     1     3 1 
    3     3     4 1 
    4     3     5 1 
    5     3    10 1 
    6     4    14 1 
    7     4    15 1 
    8     4    16 1 
    9     5     6 1 
   10     5    12 1 
   11     5    13 1 
   12     6     7 1 
   13     6     8 1 
   14     6     9 1 
   15    10    11 1 
@<TRIPOS>SUBSTRUCTURE 
      1 F17               1 ****               0 ****  **** 
@<TRIPOS>HEADTAIL 
N1 1 
C7 1 
@<TRIPOS>RESIDUECONNECT 
1 N1 C7 0 0 0 0 
 

The parameter file used for both residues 
FRCMOD file generated by PyRED version SEP-2015 - q4md-forcefieldtools.org 
MASS      mass              pol            Source 
C         12.010            0.616          taken from parm10.dat 
CT        12.010            0.878          taken from parm10.dat 
CX        12.010            0.360          taken from parm10.dat 
H          1.008            0.161          taken from parm10.dat 
H1         1.008            0.135          taken from parm10.dat 
HC         1.008            0.135          taken from parm10.dat 
HO         1.008            0.135          taken from parm10.dat 
N         14.010            0.530          taken from parm10.dat 
O         16.000            0.434          taken from parm10.dat 
OH        16.000            0.465          taken from parm10.dat 
 
BOND   K(kcal.mol-1.ang-2)  Dist0(ang)     Source 
C -CT     315.0             1.522          adapted from parm10.dat 317.0 
C -CX     315.0             1.522          adapted from parm10.dat 317.0 
C -N      490.0             1.335          taken from parm10.dat 
C -O      570.0             1.229          taken from parm10.dat 
CT-CT     310.0             1.526          taken from parm10.dat 
CT-CX     310.0             1.526          taken from parm10.dat 
CT-H1     340.0             1.090          taken from parm10.dat 
CT-HC     340.0             1.090          taken from parm10.dat 
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CT-N      335.0             1.449          adapted from parm10.dat 337.0 
CT-OH     320.0             1.410          taken from parm10.dat 
CX-H1     340.0             1.090          taken from parm10.dat 
CX-N      335.0             1.449          adapted from parm10.dat 337.0 
H -N      435.0             1.010          adapted from parm10.dat 434.0 
HO-OH     555.0             0.960          adapted from parm10.dat 553.0 
 
ANGLE  K(kcal.mol-1.rad-2)  Theta0(deg)    Source 
CT-C -N        70.0         116.60         taken from parm10.dat 
CT-C -O        80.0         120.40         taken from parm10.dat 
CX-C -N        70.0         116.60         taken from parm10.dat 
CX-C -O        80.0         120.40         taken from parm10.dat 
N -C -O        80.0         122.90         taken from parm10.dat 
C -CT-CT       65.0         111.10         adapted from parm10.dat 63.0 
C -CT-HC       50.0         109.50         taken from parm10.dat 
C -CT-N        65.0         110.10         adapted from parm10.dat 63.0 
CT-CT-CT       40.0         109.50         taken from parm10.dat 
CT-CT-CX       40.0         109.50         taken from parm10.dat 
CT-CT-HC       50.0         109.50         taken from parm10.dat 
CT-CT-N        80.0         109.70         taken from parm10.dat 
CX-CT-H1       50.0         109.50         taken from parm10.dat 
CX-CT-HC       50.0         109.50         taken from parm10.dat 
CX-CT-OH       50.0         109.50         taken from parm10.dat 
H1-CT-H1       35.0         109.50         taken from parm10.dat 
H1-CT-N        50.0         109.50         taken from parm10.dat 
H1-CT-OH       50.0         109.50         taken from parm10.dat 
HC-CT-HC       35.0         109.50         taken from parm10.dat 
C -CX-CT       65.0         111.10         adapted from parm10.dat 63.0 
C -CX-H1       50.0         109.50         taken from parm10.dat 
C -CX-N        65.0         110.10         adapted from parm10.dat 63.0 
CT-CX-H1       50.0         109.50         taken from parm10.dat 
CT-CX-N        80.0         109.70         taken from parm10.dat 
H1-CX-H1       35.0         109.50         taken from parm10.dat 
H1-CX-N        50.0         109.50         taken from parm10.dat 
C -N -CT       50.0         121.90         taken from parm10.dat 
C -N -CX       50.0         121.90         taken from parm10.dat 
C -N -H        50.0         120.00         taken from parm10.dat 
CT-N -H        50.0         118.04         taken from parm10.dat 
CX-N -H        50.0         118.04         taken from parm10.dat 
CT-OH-HO       55.0         108.50         taken from parm10.dat 
 
DIHEDRAL    Path V(kcal.mol-1.rad-1) Phase(deg.) Period Source 
N -C -CT-CT   1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
N -C -CT-CT   1    4.00000000e-01        0.0      -3.   taken from 
parm10.dat 
N -C -CT-CT   1    2.00000000e-01        0.0      -2.   taken from 
parm10.dat 
N -C -CT-CT   1    2.00000000e-01        0.0       1.   taken from 
parm10.dat 
N -C -CT-HC   1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CT-X   0.0/6 
N -C -CT-N    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CT-X   0.0/6 
O -C -CT-CT   1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CT-X   0.0/6 
O -C -CT-HC   1    8.00000000e-01        0.0      -1.   taken from 
parm10.dat 
O -C -CT-HC   1    0.00000000e+00        0.0      -2.   taken from 
parm10.dat 
O -C -CT-HC   1    8.00000000e-02      180.0       3.   taken from 
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parm10.dat 
O -C -CT-N    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CT-X   0.0/6 
N -C -CX-CT   1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
N -C -CX-CT   1    4.00000000e-01        0.0      -3.   taken from 
parm10.dat 
N -C -CX-CT   1    2.00000000e-01        0.0      -2.   taken from 
parm10.dat 
N -C -CX-CT   1    2.00000000e-01        0.0       1.   taken from 
parm10.dat 
N -C -CX-H1   1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CX-X   0.0/6 
N -C -CX-N    1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
N -C -CX-N    1    5.50000000e-01      180.0      -3.   taken from 
parm10.dat 
N -C -CX-N    1    1.58000000e+00      180.0      -2.   taken from 
parm10.dat 
N -C -CX-N    1    4.50000000e-01      180.0       1.   taken from 
parm10.dat 
O -C -CX-CT   1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CX-X   0.0/6 
O -C -CX-H1   1    8.00000000e-01        0.0      -1.   taken from 
parm10.dat 
O -C -CX-H1   1    0.00000000e+00        0.0      -2.   taken from 
parm10.dat 
O -C -CX-H1   1    8.00000000e-02      180.0       3.   taken from 
parm10.dat 
O -C -CX-N    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-C-CX-X   0.0/6 
CT-C -N -CT   1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
CT-C -N -CX   1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
CT-C -N -H    1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
CX-C -N -CT   1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
CX-C -N -H    1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
O -C -N -CT   1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
O -C -N -CX   1    2.50000000e+00      180.0       2.   adapted from 
parm10.dat i.e X-C-N-X   10.0/4 
O -C -N -H    1    2.50000000e+00      180.0      -2.   taken from 
parm10.dat 
O -C -N -H    1    2.00000000e+00        0.0       1.   taken from 
parm10.dat 
C -CT-CT-CT   1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CT-X   1.4/9 
C -CT-CT-HC   1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CT-X   1.4/9 
CT-CT-CT-CT   1    1.80000000e-01        0.0      -3.   taken from 
parm10.dat 
CT-CT-CT-CT   1    2.50000000e-01      180.0      -2.   taken from 
parm10.dat 
CT-CT-CT-CT   1    2.00000000e-01      180.0       1.   taken from 
parm10.dat 
CT-CT-CT-HC   1    1.60000000e-01        0.0       3.   taken from 
parm10.dat 
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CT-CT-CT-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CT-X   1.4/9 
CX-CT-CT-HC   1    1.60000000e-01        0.0       3.   taken from 
parm10.dat 
HC-CT-CT-HC   1    1.50000000e-01        0.0       3.   taken from 
parm10.dat 
HC-CT-CT-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CT-X   1.4/9 
CT-CT-CX-C    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
CT-CT-CX-H1   1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
CT-CT-CX-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
H1-CT-CX-C    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
H1-CT-CX-H1   1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
H1-CT-CX-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
HC-CT-CX-C    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
HC-CT-CX-H1   1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
HC-CT-CX-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
OH-CT-CX-C    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
OH-CT-CX-H1   1    0.00000000e+00        0.0      -3.   taken from 
parm10.dat 
OH-CT-CX-H1   1    2.50000000e-01        0.0       1.   taken from 
parm10.dat 
OH-CT-CX-N    1    1.55555556e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-CX-X   1.4/9 
C -CT-N -C    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CT-N-X   0.0/6 
C -CT-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CT-N-X   0.0/6 
CT-CT-N -C    1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
CT-CT-N -C    1    4.00000000e-01        0.0      -3.   taken from 
parm10.dat 
CT-CT-N -C    1    2.00000000e+00        0.0      -2.   taken from 
parm10.dat 
CT-CT-N -C    1    2.00000000e+00        0.0       1.   taken from 
parm10.dat 
CT-CT-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CT-N-X   0.0/6 
H1-CT-N -C    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CT-N-X   0.0/6 
H1-CT-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CT-N-X   0.0/6 
CX-CT-OH-HO   1    1.60000000e-01        0.0      -3.   taken from 
parm10.dat 
CX-CT-OH-HO   1    2.50000000e-01        0.0       1.   taken from 
parm10.dat 
H1-CT-OH-HO   1    1.66666667e-01        0.0       3.   adapted from 
parm10.dat i.e X-CT-OH-X   0.5/3 
C -CX-N -C    1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
C -CX-N -C    1    4.20000000e-01        0.0      -3.   taken from 
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parm10.dat 
C -CX-N -C    1    2.70000000e-01        0.0      -2.   taken from 
parm10.dat 
C -CX-N -C    1    0.00000000e+00        0.0       1.   taken from 
parm10.dat 
C -CX-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CX-N-X   0.0/6 
CT-CX-N -C    1    0.00000000e+00        0.0      -4.   taken from 
parm10.dat 
CT-CX-N -C    1    4.00000000e-01        0.0      -3.   taken from 
parm10.dat 
CT-CX-N -C    1    2.00000000e+00        0.0      -2.   taken from 
parm10.dat 
CT-CX-N -C    1    2.00000000e+00        0.0       1.   taken from 
parm10.dat 
CT-CX-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CX-N-X   0.0/6 
H1-CX-N -C    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CX-N-X   0.0/6 
H1-CX-N -H    1    0.00000000e+00        0.0       2.   adapted from 
parm10.dat i.e X-CX-N-X   0.0/6 
 
IMPROPER         V(kcal.mol-1.rad-1) Phase(deg.) Period Source 
CT-N -C -O         1.05000000e+01      180.0       2.   adapted from 
parm10.dat i.e X-X-C-O 
CX-N -C -O         1.05000000e+01      180.0       2.   adapted from 
parm10.dat i.e X-X-C-O 
C -CT-N -H         1.10000000e+00      180.0       2.   taken from 
parm10.dat 
C -CX-N -H         1.10000000e+00      180.0       2.   taken from 
parm10.dat 
 
NONBON     R*(ang)   Eps(kcal.mol-1)       Source 
C          1.9080    0.08600000            taken from parm10.dat 
CT         1.9080    0.10940000            taken from parm10.dat 
CX         1.9080    0.10940000            taken from parm10.dat 
H          0.6000    0.01570000            taken from parm10.dat 
H1         1.3870    0.01570000            taken from parm10.dat 
HC         1.4870    0.01570000            taken from parm10.dat 
HO         0.0000    0.00000000            taken from parm10.dat 
N          1.8240    0.17000000            taken from parm10.dat 
O          1.6612    0.21000000            taken from parm10.dat 
OH         1.7210    0.21040000            taken from parm10.dat 
 
 

Pol/Pheol (Phenylalaninol) parameter file 
MASS 
N  14.010        0.530               same as n   
H  1.008         0.161               same as hn  
CT 12.010        0.878               same as c3  
H1 1.008         0.135               same as hc  
HC 1.008         0.135               same as hc  
CA 12.010        0.360               same as c2  
HA 1.008         0.135               same as hc  
OH 16.000        0.465               same as oh  
HO 1.008         0.135               same as ho  
 
BOND 
N -H   410.20   1.009       same as hn-n  
N -CT  330.60   1.460       same as c3-n  
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CT-H1  337.30   1.092       same as c3-hc 
CT-CT  303.10   1.535       same as c3-c3 
CT-HC  337.30   1.092       same as c3-hc 
CT-CA  328.30   1.508       same as c2-c3 
CA-CA  478.40   1.387       same as ca-ca 
CA-HA  344.30   1.087       same as c2-hc 
CT-OH  314.10   1.426       same as c3-oh 
OH-HO  369.60   0.974       same as ho-oh 
 
ANGLE 
N -CT-H1   49.800     109.500   same as hc-c3-n  
N -CT-CT   65.900     112.130   same as c3-c3-n  
H -N -CT   46.000     116.780   same as c3-n -hn 
CT-CT-HC   46.400     110.050   same as c3-c3-hc 
CT-CT-CA   63.700     110.960   same as c2-c3-c3 
CT-CT-H1   46.400     110.050   same as c3-c3-hc 
CT-CT-OH   67.700     109.430   same as c3-c3-oh 
CT-CT-CT   63.200     110.630   same as c3-c3-c3 
CT-CA-CA   64.300     123.420   same as c2-c2-c3 
HC-CT-HC   39.400     108.350   same as hc-c3-hc 
HC-CT-CA   47.000     110.490   same as c2-c3-hc 
CA-CA-HA   50.300     119.700   same as c2-c2-hc 
CA-CA-CA   67.200     119.970   same as ca-ca-ca 
CT-OH-HO   47.100     108.160   same as c3-oh-ho 
H1-CT-H1   39.400     108.350   same as hc-c3-hc 
H1-CT-OH   51.100     109.500   same as hc-c3-oh 
 
DIHEDRAL 
N -CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-CA   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-H1   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H -N -CT-H1   1    0.000         0.000           2.000      same as X -c3-n 
-X  
H -N -CT-CT   1    0.000         0.000           2.000      same as X -c3-n 
-X  
CT-CT-CA-CA   1    0.000         0.000           2.000      same as X -c2-
c3-X  
CT-CT-OH-HO   1    0.167         0.000           3.000      same as X -c3-
oh-X  
H1-CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-CA   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-H1   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CT-CT-H1   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CA-CA-HA   1    6.650       180.000           2.000      same as X -c2-
c2-X  
CT-CA-CA-CA   1    6.650       180.000           2.000      same as X -c2-
c2-X  
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HC-CT-CT-CT   1    0.156         0.000           3.000      same as X -c3-
c3-X  
HC-CT-CA-CA   1    0.000         0.000           2.000      same as X -c2-
c3-X  
CA-CT-CT-CT   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CA-CA-CA-HA   1    6.650       180.000           2.000      same as X -c2-
c2-X  
CA-CA-CA-CA   1    3.625       180.000           2.000      same as X -ca-
ca-X  
HA-CA-CA-HA   1    6.650       180.000           2.000      same as X -c2-
c2-X  
H1-CT-OH-HO   1    0.167         0.000           3.000      same as X -c3-
oh-X  
 
IMPROPER 
CA-CA-CA-CT         1.1          180.0         2.0           
CA-CA-CA-HA         1.1          180.0         2.0           
 
NONBON 
  N           1.8240  0.1700               
  H           0.6000  0.0157               
  CT          1.9080  0.1094              
  H1          1.4870  0.0157              
  HC          1.4870  0.0157              
  CA          1.9080  0.0860              
  HA          1.4870  0.0157              
  OH          1.7210  0.2104              
  HO          0.0000  0.0000 
 
 
Leuol (Leucinol) parameter file 
 
remark goes here 
MASS 
N  14.010        0.530               same as n   
H  1.008         0.161               same as hn  
CT 12.010        0.878               same as c3  
H1 1.008         0.135               same as hc  
HC 1.008         0.135               same as hc  
OH 16.000        0.465               same as oh  
HO 1.008         0.135               same as ho  
 
BOND 
N -H   410.20   1.009       same as hn-n  
N -CT  330.60   1.460       same as c3-n  
CT-H1  337.30   1.092       same as c3-hc 
CT-CT  303.10   1.535       same as c3-c3 
CT-HC  337.30   1.092       same as c3-hc 
CT-OH  314.10   1.426       same as c3-oh 
OH-HO  369.60   0.974       same as ho-oh 
 
ANGLE 
N -CT-H1   49.800     109.500   same as hc-c3-n  
N -CT-CT   65.900     112.130   same as c3-c3-n  
H -N -CT   46.000     116.780   same as c3-n -hn 
CT-CT-HC   46.400     110.050   same as c3-c3-hc 
CT-CT-CT   63.200     110.630   same as c3-c3-c3 
CT-CT-H1   46.400     110.050   same as c3-c3-hc 
CT-CT-OH   67.700     109.430   same as c3-c3-oh 
HC-CT-HC   39.400     108.350   same as hc-c3-hc 
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CT-OH-HO   47.100     108.160   same as c3-oh-ho 
H1-CT-H1   39.400     108.350   same as hc-c3-hc 
H1-CT-OH   51.100     109.500   same as hc-c3-oh 
 
DIHE 
N -CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-CT   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-H1   1    0.156         0.000           3.000      same as X -c3-
c3-X  
N -CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H -N -CT-H1   1    0.000         0.000           2.000      same as X -c3-n 
-X  
H -N -CT-CT   1    0.000         0.000           2.000      same as X -c3-n 
-X  
CT-CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CT-CT-CT   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CT-OH-HO   1    0.167         0.000           3.000      same as X -c3-
oh-X  
H1-CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-CT   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-H1   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
CT-CT-CT-OH   1    0.156         0.000           3.000      same as X -c3-
c3-X  
HC-CT-CT-HC   1    0.156         0.000           3.000      same as X -c3-
c3-X  
H1-CT-OH-HO   1    0.167         0.000           3.000      same as X -c3-
oh-X  
 
IMPROPER 
 
NONBON 
  N           1.8240  0.1700             same as n   
  H           0.6000  0.0157             same as hn  
  CT          1.9080  0.1094             same as c3  
  H1          1.4870  0.0157             same as hc  
  HC          1.4870  0.0157             same as hc  
  OH          1.7210  0.2104             same as oh  
  HO          0.0000  0.0000             same as ho  
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Figure S1. Timeline secondary structure calculation of TPN XIIc in implicit solvent for 100 
ns. T=turn, E=beta extended, B=beta bridge, H=α-helix, G=310 helix, I=pi helix, C=coil. 
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Figure S2. Timeline secondary structure calculation of TPN XIIc in explicit water solvent 
(TIP3P) for 30 ns.  
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Figure S3. Timeline secondary structure calculation of TPN XIIc in explicit methanol solvent 
(MEOH) for 30 ns. 
 
 
 
 
 
 
 
 
 
 



129 
 

 
 
Figure S4. The scree plot for eigenvalues of PC1 and PC2 of TPN XIIc dihedral PCA in 
water solvent. 
 
 
 
 

 
Figure S5. The scree plot for eigenvalues of PC1 and PC2 of TPN XIIc dihedral PCA in 
chloroform solvent. 
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