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Summary. — The paper aims to point out a novel geometric characterization of
the WDVV equations of 2D topological field theory.

1. – Introduction

The Witten-Dijkgraaf-Verlinde-Verlinde equations are a remarkable set of nonlinear
partial differential equations discovered in 2D topological field theory at the end of
80’s [1]. Afterwards they have found numerous and interesting applications in many
areas. I simply quote the 2D SUSY Yang-Mills theory, the theory of Seiberg-Witten
systems, the theory of Whitham equations, and the theory of integrable systems [2].

The mathematical structure of the WDVV equations has already been thoroughly
studied, in the 90’s, by Boris Dubrovin, who has invented the beautiful and far-reaching
concept of Frobenius manifold to give the WDVV equations a geometric interpreta-
tion. Since then, the theory of Frobenius manifolds has become a subject of interest in
itself [3-5]. The purpose of the present paper is to consider again the question of the
mathematical structure of the WDVV equations. I wish to argue that there are two
distinct ways of dealing with these equations. On the one hand, they can be seen as the
equations defining a special class of associative and commutative algebras. This is the
point of view followed by Boris Dubrovin, leading to the theory of Frobenius manifolds.
On the other hand, the WDVV equations may be red as the equations defining special
arrangements of 1-forms on a manifold, called Lenard complexes. This is the point of
view worked out in this paper, leading to the theory of Haantjes manifolds.

The paper is rather concise and direct, and the references to the theory of WDVV
equations and to the theory of Frobenius manifolds are reduced to the bare essential. The
WDVV equations are defined in sect. 2. In sect. 3 I remind the concept of Frobenius
manifold and its relationship to the WDVV equations. In sect. 4 I present the concept
of “Lenard complex”, and I explain why it is related to the WDVV equations.
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2. – WDVV equations

The WDVV equations are an overdetermined system of nonlinear PDE’s on a single
function F (x1, x2, . . . , xn) of n coordinates. The equations are constructed in two steps.
First one considers the Hessian matrix of the function F

(2.1) h = Hessian(F ),

and then the components

(2.2) cj =
∂h

∂xj
.

of the gradient of this matrix with respect to the given coordinates (x1, x2, . . . , xn). One
of these matrices, say c1, is assumed to be invertible. The WDVV equations are hence
written in the matrix form

(2.3)
∂h

∂xj
·
(

∂h

∂x1

)−1

· ∂h

∂xl
=

∂h

∂xl
·
(

∂h

∂x1

)−1

· ∂h

∂xj
.

Often a second assumption is made on the matrix c1, by requiring that it does not
depend on the coordinates xj :

(2.4)
∂c1

∂xj
= 0.

The acceptance of this assumption, however, depends on the field of interest. For in-
stance, it is accepted in 2D topological field theory and in the theory of Whitham
equations, but it is rejected in the theory of Seiberg-Witten systems [6]. Accordingly
I will consider eq. (2.4) as an auxiliary assumption, useful but not indispensable to
define the WDVV equations. In other words, in this paper I consider the “general-
ized” WDVV equations, which abstract from condition (2.4), contrary to the “ordinary”
WDVV equations which require it [7, 8].

There is another form of the WDVV equations which must be quoted. It is

(2.5) Cj · Cl − Cl · Cj = 0,

and concerns the matrices

(2.6) Cj =
(

∂h

∂x1

)−1

· ∂h

∂xj
.

In this form the WDVV equations are more specifically called “associativity equations”,
since they entail that the entries Cl

jk(x1, . . . , xn) of the matrices Cj are the “structure
constants” of an associative commutative algebra with unity.

The WDVV equations are clearly non tensorial. Any change of coordinates, differ-
ent from an affine transformation, destroys the form of the equations. The coordinates
(x1, x2, . . . , xn) are therefore a basic constituent of the theory. This remark serves to
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clarify that the problem of giving the WDVV equations a geometric (or intrinsic) inter-
pretation has two complementary aspects. On one side, one would write these equations
in a form that does not depend on the choice of the coordinates. On the other side,
one must demand that the geometrical structure used to attain this result should be
capable to select a class of coordinates, affinely related, in which the intrinsic equations
take the specific form (2.3). The rule for the selection of the distinguished coordinates
(x1, x2, . . . , xn) is the key point of the process of geometrization of the WDVV equations.
It is also the point which will mark the difference between the two approaches discussed
in this paper.

Before leaving the subject of WDVV equations, let me show an amazing example.
It has been worked out by M. Kontsevich in 1994 [9]. The equation

f2
x2x2x3

= fx3x3x3 + fx2x2x2 · fx2x3x3

is one of the most simple instances of WDVV equations in R
3. It comes from the standard

WDVV equation (2.3) by choosing a function F of the form

F (x1x2x3) =
1
2
(x2

1x3 + x1x
2
2) + f(x2, x3).

Albeit the equation is nonlinear, one may look for a solution in form of series

F =
∑

k

Nk

(3k − 1)
x3k−1

3 ekx2 .

The insertion of this series into the equation gives a recursive relation on the coefficients:

N1 = 1, Nk =
∑

p+q=k≥2

NpNqp
2q

[
q

(
3k − 4
3k − 2

)
− p

(
3k − 4
3k − 1

)]
.

The first coefficients are

N2 = 1,

N3 = 12,

N4 = 620.

They are integers. These integers are of interest for the enumerative geometry. Indeed,
N1 is the number of straight lines passing through two distinct points; N2 is the number of
conics passing through five points in generic positions; N3 is the number of cubics passing
through eight points, and so on [10]. As proved by Kontsevich, all these coefficients are
of interest to the enumerative geometry.

3. – Frobenius manifolds

In the early 90’s, Boris Dubrovin has been the first to tackle the problem of giving
the WDVV equations an intrinsic form, namely a form which does not depend on the
choice of the coordinates. His idea has been to focus the attention on the matrices c1
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and Cj which enter into the WDVV equations in the way explained before. He con-
siders the symmetric matrix c1 as the matrix of the components of a semi-Riemannian
metric, in the distinguished coordinate system (x1, . . . , xn). Since he uses the additional
assumption

(3.1)
∂c1

∂xj
= 0,

characteristic of 2D topological field theory , this metric is flat. Furthermore, he considers
the entries Cl

jk(x1, . . . , xn) of the matrices (C1 = Id, C2, . . . , Cn) as the components
of a third-order tensor field of type (1,2). This tensor field defines a product on the
tangent bundle. The product is first defined on the basis associated with the coordinates
(x1, . . . , xn)

(3.2) ∂j ◦ ∂k = Cl
jk∂l,

and then extended by linearity. It is known under the name of “multiplicative structure
on the tangent bundle”. If the matrices Cj verify the associativity equations (2.5), this
product is clearly associative, commutative, and with unity. The unity is the distin-
guished vector field ∂

∂x1
.

These preliminary remarks have led Boris Dubrovin to choose, as the proper setting
where to frame the geometric study of the WDVV equations, a class of manifolds endowed
with three geometric structures:

1. a flat semi-Riemannian metrics g : TM × TM → R

2. an associative and commutative product ◦ : TM × TM → TM

on the tangent bundle
3. a distinguished vector field e : M → TM.

The conditions which must relate these structures in order to reproduce the WDVV
equations are specified by Dubrovin in his definition of Frobenius manifold.

Definition 1. A Frobenius manifold is a semi-Riemannian manifold (M,g), endowed
with an associative and commutative product on the tangent bundle, and with a distin-
guished vector field e : M → TM , which verify the following five conditions:

1. Riemann(g) = 0

2. g(X ◦ Y,Z) = g(X,Y ◦ Z)

3. e ◦ X = X

4. ∇•e = 0

5. ∇W (g(X ◦ Y,Z)) = ∇Z(g(X ◦ Y,W ))

for any set of four covariantly constant vector fields (X,Y,Z,W).

The first four conditions are simple and natural: the metric is flat; the product is sym-
metric with respect to the metric; the distinguished vector field e is the unity of the
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product; it is covariantly constant with respect to the Levi-Civita connection induced by
the metric. The fifth condition, on the contrary, is much less intuitive. It demands that
the covariant derivative of the symmetric tensor field g(X ◦ Y,Z) be still a symmetric
tensor field of the fourth-order. Notwithstanding, this fifth condition is the key to arrive
to the WDVV equations.

The return to the WDVV equations proceeds as follows. The metric g gives the flat
coordinates xj ; the product gives the structure constants Cl

jk(x1, . . . , xn); the structure
constants and the metric give the third-order symmetric tensor field

(3.3) cjkm = gmlC
l
jk(x1, . . . , xn).

The fifth condition implies that the components of this tensor field, in the flat coordinates,
are the third-order derivatives of a function F (x1, x2, . . . , xn). The associativity property
of the product, finally, entails that this function satisfies the ordinary WDVV equations.

This is the essence of the geometric interpretation of the WDVV equations in the
language of the theory of Frobenius manifolds.

4. – Lenard complexes

There is another way of giving the WDVV equations a geometrical interpretation.
It appears on the stage when the attention is focused on the Hessian matrix of the
function F

h = Hessian(F ),

rather than on its derivatives

c1 =
∂h

∂x1
Cj =

(
∂h

∂x1

)−1

· ∂h

∂xj
.

This shift of focus has the effect to bring into action a novel geometrical structure, called
a Lenard complex on a Haantjes manifold.

The most convenient way to discover the novel geometrical structure is to consider
the problem of the characterization of the Hessian matrices on a manifold M .

Problem (geometrical characterization of the Hessian matrices). Given n2

scalar-valued functions Ajl : M → R satisfying the symmetry condition

(4.1) Ajl = Alj ,

the problem is to know if there exist a distinguished coordinate system xj, on M, such
that the functions Ajl, written in these coordinates, are the entries of the Hessian matrix
of a suitable function F (x1, . . . , xn). Stated in a different form, the problem is to work
out a criterion that guarantees that the system of partial differential equations

(4.2)
∂2F

∂xj∂xl
(x1, . . . , xn) = Ajl(x1, . . . , xn),

where both the coordinates xj and the function F are unknown, admits a solutions.
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To state this criterion, I need a few new objects. The first is the square of 1-forms
whose entries are the differentials of the functions Ajl. The second is a specific column
of this square, chosen according to the criterion that the differentials sitting on this col-
umn are linearly independent. The third is the special differential of this column which
belongs to the diagonal. The fourth is the family of tensor fields of type (1,1) which in-
tertwine the remaining columns of the square with the distinguished column which has
been selected. To be specific, let me assume that the distinguished column is the
first column of the square of 1-forms. I use special symbols to denote the entries of
the first column of the square and, in particular, the entry sitting on the diagonal.
I set

dal = dA1l(4.3)

dA = dA11.(4.4)

The tensor fields Kj : TM → TM which intertwine the columns are accordingly defined
by the relations

(4.5) Kjdal = dAjl.

I noticed that K1 = Id, and that

(4.6) KjKldA = dAjl,

by the symmetry condition (4.1).

Definition 2. The 1-form dA, the functions al, and the tensor fields Kj are called the
pivot, the a-coordinates, and the recursion operators attached to the square of 1-forms
dAjl respectively.

Let me now consider any vector field X on the manifold M . The recursion operators
Kj allow to generate the chain of vector fields

Xj = KjX.

Of particular interest, for our problem, are the derivatives of the functions Ajl along the
vector fields of the chain. They will be denoted by the symbols

cjlm = Xm(Ajl) = dAjl(Xm).

Definition 3. The chain of vectors fields Xj is called the Lenard chain generated by X
and by the recursion operators Kj. The functions cjlm are called the “3-points correlation
functions”, relating the chain of vector fields to the square of 1-forms.

The chain of vector fields and the associated correlation functions are the tools which
allow to answer the question set initially.
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Lemma 1. The system of partial differential equations (4.2) has a solution if and only
if the following two conditions hold true:

I. There exists a vector field X on M which generates a Lenard chain of linearly
independent commuting vector fields

(4.7) [Xj ,Xl] = 0.

II. The 3-points correlation functions of the Lenard chain of vector fields are symmetric
in (j,l,m):

(4.8) dAjl(Xm) = dAjm(Xl).

Proof. If: By assumption (I) there exists a coordinate system xj such that

Xj =
∂

∂xj
.

By assumption (II), in these coordinates the partial derivatives of the functions Ajl are
symmetric in the indexes (j, l,m):

∂Ajl

∂xm
=

∂Ajm

∂xl
.

Therefore, these functions are the second-order derivatives of a single function
F (x1, . . . , xn).

Only if : Let me assume that the functions Ajl are the entries of the Hessian matrix
of a function F , in a distinguished coordinate system xj . I set X = ∂

∂x1
. To complete

the proof of the Lemma, I have to show that

(4.9) Kj
∂

∂x1
=

∂

∂xj
,

namely that the basis ∂
∂xi

, associated with the distinguished coordinates, is the Lenard
chain generated by the recursion operators Kj and by the vector field ∂

∂x1
corresponding

to the pivot of the square of 1-forms. I notice that

dal

(
Kj

∂

∂x1

)
= dAjl

(
∂

∂x1

)

=
∂Ajl

∂x1

=
∂A1l

∂xj

= dal

(
∂

∂xj

)
.

This shows that condition I is true. Since condition II is obviously satisfied, the proof is
complete. �
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After this preliminary study of the Hessian matrices in general, the return to the
WDVV equations is rather simple. As the reader may expect, the solutions of the
“generalized” WDVV equations are characterized by the property that the recursion
operators attached to their Hessian matrices, in the sense explained above, commute in
pairs. More precisely, one may prove the following claim.

Lemma 2. The recursion operators attached to the Hessian matrix of any solution of the
WDVV equations commute in pairs, and they identify the basis ∂

∂xj
, of the distinguished

coordinates used to write the WDVV equations, with the Lenard chain generated by ∂
∂x1

.
Viceversa, assume that the recursion operators Kj attached to any set of functions Ajl,
verifying the symmetry condition Ajl = Alj, commute in pairs. Assume, furthermore,
that there exist a vector field X, on M, which satisfies the condition I of Lemma 1. Then
the functions Ajl are the entries of the Hessian matrix of a function F which satisfies
the WDVV equations.

Proof. The proof follows from the simple remark that the matrices representing the
recursion operators Kj , on the basis ∂

∂xj
= KjX defined by the chain of vector fields, are

(4.10) Kj =
(

∂h

∂x1

)−1

· ∂h

∂xj
,

where h denotes the symmetric matrix whose entries are the functions Ajl. Thus, the
operators Kj commute if and only if the matrices ∂h

∂xj
obey the WDVV equations (2.3).

�

The above two Lemmas suggest to consider the following composite geometric struc-
ture, called a “Lenard complex on a Haantjes manifold”. It is a mild extension of the
concept of “Lenard chain on a bi-Hamiltonian manifolds” [11,12]. To define the complex
one needs:

1. a vector field, X : M → TM,

2. an exact 1-form, dA : M → T ∗M,

3. a family of tensor field of type (1,1), Kj : TM → TM,

in number equal to the dimension of the manifold. By assumption, they pairwise
commute

KjKl − KlKj = 0.

Their action on X and dA gives rise to the usual chains of vectors fields

Xj = KjX

and of 1-forms

θj = KjdA.
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More importantly they also give rise to the (symmetric) square of 1-forms

θjl = KjKldA.

This square of forms is the main novelty of Lenard complexes with respect to the old
theory of Lenard chains. Another difference is that the recursion operator Kj are not the
powers of a single operator K. A third difference is that nothing is assumed, a priori,
on the torsion of the recursion operators Kj . They may have torsion. Notwithstanding,
it can be shown that the recursion operators of a Lenard complex have always vanishing
Haantjes torsion. This is the ultimate reason to call Haantjes manifolds the manifolds
supporting a Lenard complex.

Definition 4. The composite structure formed by the chain of vector fields Xj, by the
chain of 1-forms θj, and by the square of 1-forms θjl is a Lenard complex on the Haantjes
manifold M if

[Xj ,Xl] = 0,
dθj = 0,

dθjl = 0,

that is if the vector fields commute and if the 1-forms both of the chain and of the square
are closed and, therefore, locally exact. If, furthermore, K1 = Id the Lenard complex is
said to admit a unity.

By adopting this language, the main content of Lemma 2 may be finally stated in the
following geometric form.

Proposition. There exists a one-to-one correspondence between the solutions of the gen-
eralized WDVV equations and the Lenard complexes with unity on a Haantjes manifold.
In other words: the Hessian matrix of any solution of the WDVV equations is the matrix
of the potentials of the square of 1-forms of a Lenard complex with unity; viceversa, the
potentials of the square of 1-forms of a Lenard complex with unity are the entries of the
Hessian matrix of a function which satisfies the WDVV equations.

This Proposition is a simple restatement of the previous two Lemmas, and does not
require accordingly an independent proof. Allowing to identify the solutions of the
WDVV equations with the Lenard complexes (with unity) on a Haantjes manifold, it
provides the second geometric interpretation of the WDVV equations announced at the
beginning of this paper.

5. – Concluding remarks

In this paper I have compared two different geometrical interpretations of the WDVV
equations of 2D topological field theory. The first is the classical interpretation proposed
by Boris Dubrovin, based on the concept of Frobenius manifold. The second is a novel
interpretation, based on the concept of Lenard complex on a Haantjes manifold. The
geometric scheme of Frobenius manifolds suggests to interpret the derivatives of the
Hessian matrix of a solution of the WDVV equations

c1 =
∂h

∂x1
Cj =

(
∂h

∂x1

)−1

· ∂h

∂xj
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as a flat semi-Riemannian metric and as a multiplicative structure on the tangent bun-
dle respectively. The geometric scheme of Haantjes manifolds suggests to interpret the
Hessian matrix itself, rather than its derivatives, as the matrix of the potentials of the
square of 1-forms of a Lenard complex. By the first approach the theory of WDVV
equations is framed into the geometry of semi-Riemannian flat manifolds. By the second
approach the same theory is framed within the geometry of bi-Hamiltonian manifolds.
The main difference is in the way of introducing the distinguished coordinates xj that
are used to write the WDVV equations. In the scheme of Frobenius manifolds they are
the flat coordinates of the flat semi-Riemannian metric. This point of view demands the
supplementary condition

∂c1

∂xj
= 0

and, therefore, restrict the attention to the ordinary WDVV equations. In the scheme of
Haantjes manifolds, instead, the coordinates xj are the coordinates defined by a Lenard
chain of commuting vector fields. It does not demand the supplementary condition. Thus
it allows to deal with the generalized WDVV equations as well.

∗ ∗ ∗
I had the chance to present the content of this paper in two different occa-

sions: in November 2014, at a conference for the 80th birthday of Prof. C.M. Marle
at IHP in Paris, and in March 2015, at a conference for the 70th birthday of Prof. G.
Vilasi, in Vietri al Mare. Both of them are friends and colleagues since long time. I am
glad to dedicate this paper to them. I am also glad to thank Boris Konopelchenko for
his constant encouragement during this study of the geometry of WDVV equations.
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