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Abstract
Passengers are more susceptible to experiencing motion sickness (MS) than drivers. The difference in the severity of MS
is due to their different head movement behavior during curve driving. When negotiating a curve, the passengers tilt
their heads towards the lateral acceleration direction while the drivers tilt their heads against it. Thus, to reduce the pas-
sengers’ level of MS, they need to reduce their head’s tilting angle towards the lateral acceleration direction. Designing
MS minimization strategies is easier if the correlation between the head movement and lateral acceleration is known
mathematically. Therefore, this paper proposes the utilization of a time delay neural network (TDNN) to model the cor-
relation of the occupant’s head movement and lateral acceleration. An experiment was conducted to gather real-time
data for the modeling process. The results show that TDNN manages to model the correlation by producing a similar
output response to the actual response. Thus, it is expected that the correlation model could be used as an occupant’s
head movement predictor tool in future studies of MS.
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1. Introduction

Motion sickness (MS) is an unpleasant condition com-

monly faced by passengers who are traveling by car, train,

air, and particularly by the sea.1 MS has received consider-

able attention within the automotive research community

because it negatively affects passengers’ comfort.

Generally, the wide range of signs and symptoms of MS

include sweating, salivation, dizziness, nausea, vomiting,

and other physical discomforts.2,3 In a conventional car,

passengers are more prone to MS compared to drivers.

The most widely accepted theory of MS occurrence is the

conflict of sensory inputs between the visual and vestibu-

lar inputs.4 Contrary to the driver, a passenger has less

ability to foresee the vehicle direction and thus loses of

control over their movement.5 Another well-known theory

is that MS is preceded by postural instability.6 Dong and

Stoffregen found that those who were consistent in their

movement over time are less likely to experience MS

compared to those who exhibited changes in movement.7

Another reason for passengers to be more at risk of getting

MS is because of their restricted vision of the outside

world as they are not required to have an out-of-the-win-

dow view to control the car.8 Several studies have

suggested that the reason behind the passengers’ and driv-

ers’ different level of MS is because of the difference in

their head tilting behavior towards lateral acceleration

direction when the vehicle is negotiating a curve.9,10 It has

also been reported that there is a correlation between head

movements and the vehicle’s lateral acceleration.11

Typically, during a curvature, passengers tend to tilt their

heads according to the lateral acceleration direction while

the drivers tend to tilt their heads against the lateral accel-

eration direction. Figure 1 illustrates the natural head tilt

movements of a passenger and a driver in a situation when

the vehicle turns into a corner.

The correlation between the head tilt movement and

lateral acceleration direction clearly indicates that to

reduce passenger susceptibility towards MS it is necessary
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to design strategies and approaches leading to passengers

imitating and mimicking the driver’s head tilting move-

ment. In 2011 and 2012, the passenger posture control

device was introduced, aiming to encourage passengers to

change their natural head tilt direction into the opposite

direction.12,13 The results indicate that the device managed

to reduce the passengers’ level of MS. Another method to

lessen the risk of MS among passengers is to minimize the

passenger’s head tilting angle towards the lateral accelera-

tion direction. The minimization can be realized by reduc-

ing the vehicle lateral acceleration during curve driving.

The method corroborates with the statement by

Wiederkehr and Altpeter that MS will increase if the lateral

acceleration is increased.14 Meanwhile, Elbanhawi et al.

suggest that a smooth lateral control strategy can be one of

the MS solutions.15 Wada et al. propose a speed control

strategy where the vehicle decelerates when it reaches a

corner.11 The reduction of the speed will affect the reduc-

tion of the lateral acceleration indirectly. Through the pro-

posed strategy, the minimization of MS was achieved.

From the discussion, the findings on the correlation are

worth mentioning because of their importance. However, it

would be more convenient if the correlation could be rep-

resented in a mathematical expression. Previously, the cor-

relation between head movement and lateral acceleration

in curve driving had been modeled by Saruchi et al. using

the system identification (SI) method.16,17 SI is a statistical

method that can build a mathematical model based on the

measured data. The author used the linear transfer function

identification and Hammerstein–Wiener as the modeling

tools. However, the efficiency achieved by the developed

model is less than 70%. Therefore, alternatively, this study

proposes to model the correlation between the head tilt

movement and the vehicle lateral acceleration using the

time delay neural network (TDNN) method. The popular-

ity of artificial neural networks (ANNs) is because of their

ability in handling noisy data and approximating the

degrees of complexity in nonlinear systems.18 An occu-

pant’s head movement is nonlinear in nature with no par-

ticular form. Thus, an ANN is an effective candidate to

model such a nonlinear system. Moreover, compared to

statistical models, an ANN does not require any simplify-

ing assumptions or prior knowledge to solve problems. It

is one of the optimal solutions through learning input and

output data and has been commonly used in pattern recog-

nition, data classification, speech processing, control sys-

tems, and weather forecasting.19 In general, TDNN has a

similar topology as ANN in that they both have input, hid-

den, and output layers.20 TDNN application is appropriate

in developing the correlation model because the interac-

tions between head tilt movement and lateral acceleration

are nonlinear in nature, have no specific form, and vary

depending on time. For the sake of the modeling process, a

scenario that triggers MS is set up under a real experimental

environment and the naturalistic data from the experiment,

namely the vehicle’s lateral acceleration, passenger’s head

roll angle, and driver’s head roll angle, were collected. The

effectiveness of the TDNN model is compared to the ANN

model, which is built under similar conditions. The influence

of the number of time delays on the model’s accuracy is

investigated as well.

The remainder of this paper is structured as follows. The

next section presents the procedures of the experiment. The

third section describes the TDNN and ANN architecture to

model the correlation based on the experimental data. Then,

the results and discussions from the conducted experiment

and the modeling process are presented in the fourth section.

Finally, in the last section, concluding remarks are given

and targeted areas for future work are described.

2. Experiment

An experiment that considers MS provocation was set up

based on the research works of Wada et al.21 The objective

Figure 1. Passenger’s and driver’s typical head tilt movement during a curvature. (a) Passenger. (b) Driver.
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is to investigate the correlation between the vehicle occu-

pant’s head tilt movements and vehicle lateral acceleration

direction during cornering. To realize the objective, the

experiment focuses on gathering data of the passenger’s

and the driver’s head roll angle and the vehicle lateral

acceleration in the slalom path.

2.1. Apparatus

In this experiment, a multi-purpose vehicle (MPV) is

used for data acquisition. The MPV was equipped with

several pieces of equipment and sensors, as depicted in

Table 1.

Dewesoft, the device used as the data acquisition mod-

ule, was placed in the vehicle’s trunk. Meanwhile, the

monitor was attached behind the passenger’s front seat.

There were three MTi-G motion sensors used in this

experiment. Each of the sensors was used to measure the

passenger’s head roll angle and the vehicle lateral accel-

eration, respectively. The sensors used for the head roll

measurement were attached to the cap worn by the partici-

pants. The lateral acceleration sensor was attached to the

vehicle’s center of gravity, which was located approxi-

mately at a flat space close to the hand brake. Figure 2

illustrates the equipment placement in the car.

2.2. Design

Six cones were arranged in a straight line of 150 m on a

standard track. The gap between each cone was set at 20 m.

The drivers were instructed to drive in a slalom driving style

through the cones at a constant velocity of 30 km/h. The

nominal frequency of lateral acceleration for this customized

test track was 0.21 Hz, a frequency that triggers MS. Figure

3 illustrates the schematic of the test track used in this study.

A total of 10 healthy adults participated in this experi-

ment. The participants participated as both the passenger

and driver. The driving behavior was considered and

treated as a normal driving behavior regardless of gender,

age, and skill. Participants were asked to act naturally with

the tilting movement and avoid any intentional action to

move to the opposite with the typical head tilt movement.

2.3. Procedure

The driver and passenger were seated in a normal sitting

position. For safety reasons, both participants were

required to wear safety belts. During the experiment, they

were constantly reminded not to be distracted by other

activities such as chatting and interacting with mobile

phones. Before the real test began, all participants had

some practice runs to get accustomed to the slalom path. It

is possible for the participants to subconsciously tilt their

heads more or less because of their awareness of what

kinds of behaviors are being measured. Thus, the trial ses-

sions were important because they can somehow reduce

that possibility. When the participants are used to the path,

they would naturally tilt their heads. Extra practices were

allowed upon request. Each participant experienced the

role of a passenger and a driver three times per role.

Table 1. List of equipment installed in the MPV.

Type Function

Dewesoft Data acquisition module
Monitor Data monitoring
MTi-G sensor (Xsense Technologies) Data measuring

Figure 2. The placement of equipment installed in a Proton Exora.
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Therefore, with 10 participants, there are 30 results for

passenger and 30 for driver. The data were then used in

the TDNN modeling process, which is discussed in the

following section.

3. Time delay neural network modeling

The main contribution of this work is the proposal of the

TDNN method to model the correlation between the vehi-

cle occupant’s head tilt movement and vehicle lateral

acceleration. TDNN is considered one of the effective can-

didates to model such a system where the relation between

input and output is unknown or very complex. Modeling

of TDNN can be done by going through a training phase

where it learns to recognize patterns based on the given

input and output data. TDNN is reported to be an effective

feed-forward network architecture in modeling a wide and

long range of temporal contexts.22,23 It is a network that

has a hidden time factor inside the signal with implicit rep-

resentation.24 Its modeling process includes extracting

information from the present and past inputs.25 The differ-

ence between TDNN and ANN topologies is the existence

of tapped delay line memory at the input to the first layer

of the static feed-forward network in TDNN.26 Because of

the delay, it is possible for the TDNN model to capture

the dynamic behavior between consecutive elements of a

sequence.27 Moreover, the tapped delay line, which

appears only at the input of the network, enables TDNN to

train faster than other dynamic networks. The response of

TDNN in time t is based on the previous inputs

x t � 1ð Þ, x t � 2ð Þ, . . . , x t � Nð Þ, which makes it suitable

for a time-series prediction. The mathematical equation

for the TDNN output y tð Þ at time tð Þ is as follows:

y tð Þ= f x tð Þ, x t � 1ð Þ, x t � 2ð Þ, . . . , x t � Nð Þ½ � ð1Þ

where x(t) is the input at time t and n is the maximum time

delay. The value of time delay depends on the system’s

sampling time. In this study, the value of one time delay is

equal to 0.01 s.

This study adopted the TDNN approach to generate the

estimated output responses of the passenger’s and the driv-

er’s tilt movements based on the input response of the

vehicle lateral acceleration. Data for the head roll angle

and lateral acceleration were directly measured from the

motion sensors during the experiments and used to estab-

lish the correlation model. To sum up, the comparison

between TDNN and ANN models with the same number

of hidden neurons were carried out to analyze the pro-

posed model’s accuracy.28 Figure 4 illustrates an overview

of ANN and TDNN models structures which are imple-

mented in this study. Basically, both feed-forward network

models are organized in three interconnected layers,

namely an input layer, a hidden layer, and an output layer.

Figure 3. Schematic of the test track.

Figure 4. The overview of ANN and TDNN for passenger’s and driver’s models.
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The input layer consists of input data, the hidden layer

consists of processing nodes called neurons, and the output

layer consists of neurons whose output is considered the

network output. The strength of the interconnection is

known as weight. As shown by the figure, passenger and

driver are modeled separately. The input and output data

for the passenger’s TDNN and ANN models are the pas-

senger’s head roll angle, uH P, and vehicle lateral accel-

eration, ay. The output data for driver’s TDNN and ANN

models are the driver’s head roll angle, uH D, and vehicle

lateral acceleration, ay. The respective data are divided

into two parts. The first part is for the training process to

create a nominal model with regards to the loaded data.

The second part is the unlearned data, which is used for

the evaluation of the developed model’s efficiency and the

analysis of its generalization ability. In the training pro-

cess, data were divided into two sets: (1) 70% input sam-

ples for network training; and (2) 30% input samples for

network validation.

Figure 5 describes the details of TDNN architecture. In

the figure, xi is the input data, t is the time, N is the num-

ber of delay, w1, i, j is the connecting weight between input

and hidden layers, bj is the bias of neuron at the hidden

layer, w2, j, k is the connecting weight between hidden and

output layers, ck is the bias of neuron at the output layer,

and y is the network output. The mathematical representa-

tion of the architecture is expressed as follows:

y= f
XM
j= 1

w2, j, k � f
XN

d = 0

w1, i, j t � dð Þ+ bj)

 !
+ ck

 !

ð2Þ

where d is the delay 04 d 4Nð Þ and j is the number of

neurons in the hidden layer 14 j4Mð Þ.
For Equation (2), a set of optimum weights are needed

to obtain the desired output. This study used the

Levenberg–Marquardt back propagation (LMBP) algo-

rithm as the network’s training scheme. The Levenberg–

Marquardt (LM) technique is a widely used tool to solve

fitting problems.29 Its advantage is that it requires less

training time during a modeling process.30 In the LM algo-

rithm, the training process optimizes the weights through

iterations based on the input–output time series.28 The

back propagation (BP) algorithm consisted of the forward

and backward paths.31 In the forward path, the feed-

forward network was created, the weights were initialized,

and the network was trained. Meanwhile, weights and

biases were updated in the backward path.

In accordance with Figure 5, the TDNN configuration

consisted of two activation functions. The sigmoid func-

tion was located in between the input layer and hidden

layer, while the linear function was located in between the

hidden layer and the output layer. The combination of

these two functions is typical in the two layers of the BP

neural network.32 The sigmoid function maps the real

numbers into the range of 0 until 1. The advantage of the

sigmoid function is that it allows both the linear and non-

linear decision boundaries, thus making computation easy

to perform and computation time for the network’s train-

ing can be minimized.33 In addition, another usage of the

linear activation function is to generate unbounded output

values.

The accuracy of the model construction is affected by

the number of neurons in the hidden layer. Various strate-

gies have been introduced to find the best numbers. These

are trial and error, rule of thumb, simple, two-phase, and

sequential orthogonal approaches.34 It has been indicated

that it is impossible to accurately determine the parameters

of the numbers of neurons and the delays by calculation

since they depend on many factors.35 Therefore, this study

implemented the trial and error method to search for the

most suitable neuron number. In order to obtain a fair

comparison of TDNN and ANN models, it was necessary

Figure 5. TDNN architecture.
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to set the same number of neurons for both models. The

trial and error approach was tested during the ANN model-

ing process. It started by selecting the smallest number of

hidden neurons from 1 to 20. Then, the ANN networks

were trained. The developed models from the training pro-

cess were compared with the unlearned data to investigate

its generalization ability. The procedure of adding the neu-

ron number, training, and comparing were repeated until

the optimum number of neurons was obtained. The opti-

mum number was chosen by selecting which model can

produce the lowest comparison error with the unlearned

response. The results of this method showed that the best

number of neurons for passenger’s ANN and driver’s

ANN models were 8 and 17. Thus, to train the proposed

TDNN model, the number of neurons was selected based

on the ANN model’s optimal number. Details of the ANN

training process can be referred to elsewhere.36 As TDNN

utilized the present and past time-series data in the learn-

ing process, it has the number of delays that showed to

what extent the present and past data had been input into

the model.28 The influence of time delay on the model’s

accuracy was investigated. In this study, the parameter of

time delay is set to be 0 until 10 with an interval of 1 and

10 until 100 with an interval of 10.

4. Results and discussion
4.1. Experimental results

For this experiment, 30 data values consisting of lateral

acceleration, the passenger’s head roll angle, and the driv-

er’s head roll angle were measured and recorded. Figure 6

presents data from 10 driving tests.

The experimental results show that the directional pat-

tern of passenger’s head roll and lateral acceleration are

synchronized. Meanwhile, the directions pattern of the

driver’s head roll and lateral acceleration are the opposite

of each other. The results are in agreement with the typical

vehicle passenger’s head movement towards the lateral

acceleration direction, which supports the previous study

by Wada et al.21 Next, in the following analysis, the focus

is restricted to the correlation between the passengers’ and

drivers’ head roll angle and the vehicle’s lateral

acceleration.

4.2. Modeling results with the influence of the
number of delays

In this study, the TDNN model is built using MATLAB

software. Two models representing the data of passenger

and driver were derived. The analysis of their regression,

root-mean-squared-error (RMSE), and generalization abil-

ity are carried out to investigate the performance of the

TDNN model.

Figure 7 presents the regression results of ANN and

TDNN modeling methods for both the passenger and

driver models. Initially, the model is trained from time

delay 1 until 10 with an interval of 1. However, as illu-

strated in Figure 7, the regression value fluctuated within a

small range. Then, the time delay was extended to 100

with an interval of 10 in consideration of the effect of large

time delay towards the model’s accuracy. Based on the fig-

ures, the regression values from time delay also fluctuated

within a small range. The result shows that the ANN’s

regression at time delay 0 is 0.901 for the passenger’s

model and 0.922 for the driver’s model. The TDNN’s min-

imum regression values for both models were 0.903 and

0.912, while their maximum regression values were 0.922

and 0.933. Based on the results, the TDNN’s had 2.28%

and 1.18%, a slightly higher regression value than ANN’s.

Table 2 provides a summary of the regression results for

both models.

The analysis process continued by investigating the

ANN model performance based on the validation error in

terms of root-mean-square (RMS) values. Figure 8 shows

(a)

(b)

(c)

Figure 6. Experimental results based on 10 driving tests. (a)
Lateral acceleration. (b) Passenger’s head roll. (c) Driver’s head
roll.
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the validation error results for the passenger and driver

models developed by ANN and TDNN modeling tools

from time delay 0 until 100. The RMSE value of ANN is

3.35 for the passenger’s model and 2.15 for the driver’s

model. Based on the previous regression results, it is

expected that the RMSE results of TDNN were also fluc-

tuated within a small error span, although the time delay

increased to 100. The minimum and maximum RMSE val-

ues for passenger’s model are 3.18 and 3.32, respectively,

while the driver’s model produced 1.97 and 2.14 of mini-

mum and maximum RMSE values, respectively. The com-

parison between ANN’s and TDNN’s validation error

results shows that TDNN generated 5.07% and 8.37%

lower values than ANN. Table 3 presents a summary of

the validation error for both models.

Table 2. Summary of the regression results for ANN and
TDNN models.

Model ANN TDNN Improvement
(%)

Min Max

Passenger 0.901 0.903 0.922 2.28
Driver 0.922 0.912 0.933 1.18

Figure 7. Regression results from time delay 0 until 100. (a) Passenger. (b) Driver.

Figure 8. Validation error (RMSE) from time delay 0 until 100. (a) Passenger. (b) Driver.

Table 3. Summary of the validation error results for ANN and
TDNN models.

Model ANN (RMS) TDNN (RMS) Improvement
(%)

Min Max

Passenger 3.35 3.18 3.32 5.07
Driver 2.15 1.97 2.14 8.37
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Some data from the passenger’s and driver’s experi-

mental data were taken before the learning process, and

both were recognized as unlearned data. The unlearned

data was compared with the estimated output responses

generated by the ANN and TDNN models, as shown in

Figure 9. Additionally, the comparison error between the

unlearned and estimated responses from time delay 0 to

100 was calculated and presented in Figure 10. Table 4

summarizes the comparison results for both the passen-

ger’s and driver’s models based on ANN and TDNN.

According to the table, the passenger’s and driver’s mod-

els developed by ANN produced comparison errors of

3.39 and 1.84. Meanwhile, the passenger’s and driver’s

model utilized by TDNN produced lesser comparison

errors, which were 3.14 and 1.76. Figure 10 illustrates the

comparison between the output responses of ANN and

TDNN models with the unlearned data. In addition, the

estimated responses from TDNN model with the number

of delays 9 (passenger) and 30 (driver) were used as they

achieved the least error values. The figure also shows that

both the ANN and TDNN models managed to produce

output responses that imitated the pattern of unlearned

data regardless of the number of delays. From the numeri-

cal results, TDNN produced lower comparison error than

ANN for the passenger and driver models, which amounts

to 7.37% versus 4.35%.

Based on the above results, it can be concluded that the

proposed TDNN method has better modeling performance

compared to the ANN method. Even though the parameter

of time delay was increased from 1 to 100 during the

TDNN modeling process, there was no significant differ-

ence in the model’s accuracy. Since this study utilized only

a single input parameter to predict the output, the system

still captures the same information even though data from

the same input was introduced to the network. As a result,

the developed model produced similar output responses

even though the parameter of the time delay was set to be

100 times larger.

(a)

(b)

Figure 9. Comparison between estimated and unlearned
responses. (a) Passenger. (b) Driver.

Table 4. Summary of the comparison error results for ANN
and TDNN models.

Model ANN (RMSE) TDNN (RMSE) Improvement
(%)

Min Max

Passenger 3.39 3.14 3.52 7.37
Driver 1.84 1.76 1.94 4.35

Figure 10. Comparison error of estimated and unlearned responses from time delay 0 to 100. (a) Passenger. (b) Driver.
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5. Conclusion and future work

This study established a correlation model between the

passenger’s and driver’s head tilt movements with vehicle

lateral acceleration using the TDNN modeling method.

The results show that the TDNN model is capable of pro-

ducing similar output responses with real data taken from

the experiment. TDNN achieved a higher regression value

with a lower validation and comparison errors than ANN.

The influence of the number of time delays on the effi-

ciency of the models also shows that TDNN has better

modeling performance than ANN.

The correlation model can be useful in predicting occu-

pant’ head movement while traveling in curved paths. It is

expected that these models can be used as head movement

predictor in the future MS studies. By predicting the head

movement, researchers do not need to rely on for hardware

sensors and other tools to measure the movement
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