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ABSTRACT

Photocatalytic hydrogen (H2 ) generation is one o f the most promising 
solutions to convert solar power into clean energy to replace non-renewable fossil 
fuel. The objective of this study is to investigate montmorillonite (MMT) dispersed 
and silver (Ag)-bridged protonated carbon nitride/titanium dioxide (pCN/TiO2) Z- 
scheme heterojunction composite for stimulating photocatalytic H2  evolution under 
UV and visible light in different photocatalytic reactor systems. The newly designed 
MMT-Ag/pCN-TiO2 composite photocatalysts were fabricated through a sol-gel 
assisted hydrothermal method and were characterized by X-ray diffraction, Raman 
spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron 
microscopy, energy-dispersive X-ray mapping, transmission electron microscopy, 
Brunauer-Emmett-Teller, ultraviolet-visible (UV-vis) spectroscopy and 
photoluminescence spectroscopy. The photocatalytic activity was tested using slurry, 
fixed bed and monolith photo-reactor systems for continuous H2 production. Using 
slurry system, MMT-Ag/pCN-TiO2 photo-catalyst produced 667 |imol h-1 of H2 

which is 8.41 and 9.66 times higher than pCN/TiO2 and TiO2 samples, respectively. 
The efficiency was improved due to formation of heterojunction with faster charges 
separation, whereas, Ag provides hot photo-generated electrons by surface plasmon 
resonance and MMT traps electrons for H2 production. Optimization reveals that the 
highest production of H2 was obtained at pH 7, glycerol concentration of 5 wt. % and 
0.15 g of catalyst loading using slurry reactor. Furthermore, by applying an 
engineering approach MMT-Ag/pCN-TiO2 showed H2 production rate was increased 
to 8230 prnol h- 1  using a monolith reactor, which are 9.01 and 12.34 times higher 
than fixed-bed and slurry photo-reactors. The monolith honeycomb reactor exhibited 
a higher apparent quantum yield and space yield of 39.85 % and 54.86 |imol h-1cm"3 

compared to slurry (22.36 %, 5.13 |imol h-1cm"3) and fixed-bed reactors (4.42 %,
6.09 |imol h-1cm"3). The superior performance of a monolith reactor was due to 
higher photon flux utilization, large illuminated surface area and processing volume. 
The schematic of type II heterojunction and Z-scheme mechanism of MMT- 
Ag/pCN-TiO2 were developed and the photocatalytic performance was compared in 
all types o f systems. In conclusion, excellent performance o f composite catalyst 
using a monolith reactor compared to a slurry and fixed-bed reactor for H2 

production would offer a new opportunity in engineering approach for renewable 
fuels applications.
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ABSTRAK

Penjanaan fotopemangkinan hidrogen (H2) adalah salah satu jaminan 
penyelesaian untuk menukarkan tenaga suria kepada tenaga bersih bagi 
menggantikan bahan api fosil yang tidak boleh diperbaharui. Tujuan penyelidikan ini 
adalah untuk mengkaji serakan montmorillonite (MMT) dan perak (Ag)- 
menjambatani karbon nitrida diprotonkan/titanium dioksida (pCN/TiO2) Z-skema 
komposit heterosimpang untuk merangsang perkembangan fotopemangkinan H 2 di 
bawah sinaran UV dan nampak dalam sistem reaktor fotopemangkinan yang berbeza. 
Foto-mangkin komposit MMT-Ag/pCN-TiO2 yang baharu disediakan melalui 
kaedah sol-gel berbantukan hidrotermal dan dicirikan oleh pembelauan sinar-X, 
spektroskopi Raman, spektroskopi fotoelektron sinar-X, mikroskop elektron imbasan 
pancaran medan, pemetaan serakan tenaga sinar-X, mikroskop elektron transmisi, 
Brunauer-Emmett-Teller, spektroskopi ultralembayung-nampak (UV-vis) dan 
spektroskopi fotoluminesen. Aktiviti fotopemangkinan diuji menggunakan sistem 
reaktor buburan, lapisan-tetap dan monolit bagi penghasilan H2 yang berterusan. 
Menggunakan sistem buburan, foto-mangkin MMT-Ag/pCN-TiO2 menghasilkan 667 
prnol h-1 H2 di mana 8.41 dan 9.66 kali lebih tinggi masing-masing daripada sampel 
pCN/TiO2 dan TiO2 . Kecekapannya bertambah baik disebabkan oleh pembentukan 
heterosimpang dengan pemisahan caj yang lebih pantas, sedangkan, Ag memberikan 
foto-janaan elektron panas oleh permukaan plasmon resonans dan MMT 
memerangkap elektron untuk menghasilkan H 2 . Pengoptimuman mendedahkan 
bahawa H2 tertinggi diperolehi pada pH 7, kepekatan gliserol pada 5 wt. % dan 0.15 
g muatan mangkin menggunakan reaktor buburan. Tambahan pula, dengan 
menggunakan pendekatan kejuruteraan MMT-Ag/pCN-TiO2 menunjukkan kadar 
penghasilan H2 telah meningkat ke 8230 prnol h-1 menggunakan reaktor monolit,
9.01 dan 12.34 kali lebih tinggi daripada fotoreaktor lapisan-tetap dan buburan. 
Reaktor sarang lebah monolit menunjukkan lebih tinggi hasil kuantum ketara dan 
hasil ruang pada 39.85% dan 54.86 prnol h-1cm ' 3 berbanding dengan reaktor buburan 
(22.36%, 5.13 prnol h-1 cm-3) dan lapisan-tetap (4.42%, 6.09 prnol h-1 cm-3). Prestasi 
unggul reaktor monolit disebabkan oleh penggunaan fluks foton yang lebih tinggi, 
keluasan besar permukaan yang diterangi dan isipadu pemprosesan. Skema 
heterosimpang jenis II dan mekanisma Z-skema MMT-Ag/pCN-TiO2 telah 
dihasilkan dan prestasi fotopemangkinan telah dibandingan untuk semua jenis 
sistem. Kesimpulannya, prestasi cemerlang mangkin komposit menggunakan reaktor 
monolit berbanding reaktor buburan dan reaktor lapisan-tetap bagi penghasilan H 2 

akan menawarkan peluang baharu bagi pendekatan kejuruteraan untuk aplikasi bahan 
api yang boleh diperbaharui.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Natural resources such as coal and petroleum products as a source of energy 

are nearly exhausted [1]. The reduction of fossil fuel reserves has prompted 

substantial research efforts toward the usage of hydrogen (H2) as an environmentally 

friendly energy carrier for the post fossil fuel regime [2]. It is generally agreed that 

H2 may be the best option for tackling the triple issues of exhaustion, pollution and 

climate change effects [3]. One of the technologies for H2 production is photo- 

catalytic water splitting, since it entails photonic energy, which is the most abundant 

energy resource on the Earth [4]. Previous research states that solar based H 2 

generation by photo-catalysis provides near zero global warming and air pollutants 

[5] and can be stored easily [6 ]. Therefore, H2 is considered as a possible important 

energy in future, since it is free from toxic and it can produce high energy content 

from natural resources such as light (photon) energy and water, which are clean, long 

lasting sources of energy, and renewable resources [7].

The pioneer work of photo-catalytic for H2 production from water splitting 

using TiO2 semiconductor photo-catalyst was conducted by Fujishima [8 ]. Since 

then, the photo-catalyst development has become great attention from researchers to 

improve the photo-catalytic performance. Based on the previous research outcomes, 

the efficiency of H2 production via photo-catalytic water splitting is relatively low as 

the activity and stability of semiconductors is not much appreciable. However, H 2 

production via photo-technology can be improved using modified semiconductors 

and introducing sacrificial reagents such as alcohols as electron donor [9].

Among all, titanium dioxide (TiO2) with band gap 3.2 eV is a recognized 

photo-catalyst and it has been extensively studied because of numerous advantages



such as low cost, high photochemical stability and non-toxic. On the other hand, 

wide band gap limits its applications under visible light and faster charges 

recombination rate lowers its photo-catalytic activity [10]. Coupling TiO2 with 

visible light semiconductors can narrowing the band gap with faster charges 

separation, thus could enables enhanced photo-catalytic activity.

Among the low band gap semiconductors, polymeric graphitic carbon nitride 

(g-C3N4) has attracted more attentions as metal-free polymeric semiconductor in 

photo-catalytic water splitting. It is a visible light responsive with lower band gap 

and low cost semiconductor. It can be synthesized from cheap precursors such as 

melamine and urea by simple thermal approach. In addition, g-C3N4 has numerous 

advantages such as high thermal and chemical stability and appropriate band 

structure (2.7 eV) to absorb visible light irradiation [11]. Among the limitations, g- 

C3N4  has low surface area and small active sites for interfacial (photon) reaction, 

moderate oxidation reaction of water to H+ and low charge mobility which disrupt 

the delocalization of electrons. Hence, the coupling or/and doping g-C3N4  with other 

elements can overcome its limitations. Among the other alternatives, coupling g- 

C3N4  with TiO2 to develop type II heterojunction could be promising to get enhanced 

H2 production during photo-catalytic water splitting under visible light irradiations. 

Tan et al. [12] fabricated g-C3N4/TiO2 composite and 10.8 times higher efficiency for 

H2 production than bulk g-C3N4. Similarly, Li et al. [13] reported significantly 

improved H2 production over g-C3N4/TiO2 composite compared to TiO2 under 

visible light. In another work, g-C3N4 /TiO2 photo-catalysis reported by Yan and 

Yang [14] found very efficient for good activity for H 2 generation due to faster 

separation of electron-holes pairs.

In addition, protonation of g-C3N4 (pCN) has been considered as an effective 

method to affect surface charge properties which could be utilized to construct 

assembled catalysts to improve the efficiency of g-C3N4. The protonation effects the 

electrical surface by lowering the valance band (VB) that is good for water oxidation 

under visible light and helpful in charges separation [15]. Thus, combination of pCN 

with TiO2 to form heterojunction can alter the electronic structure and improves the 

efficiency of photo-catalyst with higher reduction ability.
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Furthermore, loading metals on pCN/TiO2 can further enhance the charges 

separation to retard the recombination. There have been several reports on doping 

semiconductor with noble metals such as silver (Ag), gold (Au) and platinum (Pt) 

[16-18]. Among them, Ag is more attractive because of low cost and can improve the 

efficiency under visible light due to surface plasmon resonance (SPR) [19]. Patra and 

Gopinath [20] reported that Ag doping TiO2 increased electrons density and SPR 

effect to enhance H2 production. Similarly, improved H2 production due to SPR 

effect of Ag/TiO2 was reported by Rather et al. [21]. Therefore, it can be suggested 

that Ag loading to TiO2 can further improve the H2 production due to SPR effect. 

Besides, Ag metal can act as mediator for Z-scheme system. Previously, Gong et al. 

[22] revealed Z-scheme of Ag2 CrO4 /Ag/g-C3N4 composites with Ag as mediator, 

thus exhibits superior photo-catalytic activity toward 2,4-DCP degradation under 

visible light irradiation. Similarly, Huang et al. [23] reported excellent activity and 

stability of indirect Z-scheme of Ag/AgBr@CoFe2 O4  photo-catalyst with Ag as a 

solid-state electron mediator for degradation of phenol. Although, Ag has been 

successfully reported as mediator in different applications, yet it has not been 

reported using Ag-pCN/TiO2 composite for H2 production. Furthermore, 

performance of Ag-pCN/TiO2 can also be improved by loading with low-cost, green 

and natural materials such as clay minerals.

Clay minerals are heterogeneous and environment friendly materials with 

lamellar structure with advantages such as non-corrosive, low-cost, abundant, 

resistance to chemicals and high thermal stability [24]. Among the clay mineral, 

montmorillonite (MMT) has been widely used as co-doping with semiconductors due 

to high cations exchange capacity and excellent electron trapping ability, which can 

be adjusted by treating with acid to exchange the cations in the interlayer space 

[25,26]. Since, MMT has 2D interface, it is predicting to have large specific surface 

area with dense active surface groups to trap electrons efficiently. Moreover, it is 

abundance and cheap to make MMT a promising matrix support for semiconductors 

in order to prevent the aggregation and form a new innovation to improve the 

performance in catalytic composites [27]. Previously, MMT-loaded Fe/TiO2 has been 

reported for CO2 reduction to fuels [28]. Koci et al., [35] reported CO2 reduction 

over ZnS/MMT with enhanced photo-activity. Thus, MMT dispersed g-C3N4/TiO2 

heterojunction composite would be helpful to avoid recombination of charges by
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trapping electron from g-C3N4/TiO2 within MMT structure. Although, MMT has 

been successfully reported in different applications, yet it has not been reported using 

MMT-Ag/pCN-TiO2 composite for H2 production.

Recently, the formation of Z-scheme photo-catalytic system, analogous to 

artificial photosynthesis, is one of the latest strategies to improve photo-catalytic 

performance as compared to using single semiconductor photo-catalyst. Commonly 

investigated Z-scheme systems have three classifications that are with shuttle redox 

mediators, without electron mediators, and with solid-state electron mediators [29]. 

These systems can enhance the efficiency of photo-catalyst performance, since it 

effectively increases the visible light absorption, accelerates the separation and 

transportation of charge carriers.

In addition, surface modification such as catalyst structure and morphology 

can improve performance due to increasing surface area and efficient charge carrier 

separation [30]. The configuration of semiconductors has been designed and 

investigated in the form of nanoparticles, nanosheets, nanotubes and nanowires [31]. 

Therefore, semiconductor photo-catalyst selection and modification has great 

potential to narrow the band gap, utilizing visible light and promoting charge 

separation towards selective H2 evolution. Furthermore, photo-catalytic efficiency 

can be achieved in the presence of sacrificial reagents such as reforming alcohols, 

which play roles as electron donor and hole scavenger, since the oxidation potential 

of alcohol is lower than reduction of H+ to H2. From the previous research, glycerol 

is more helping for the generation of H2 than using methanol and ethanol. Bahruji et 

al. [32] investigated 20 different sacrificial reagents and proved increasing H 2 

production rate in order triols > diols > primary ( 1 °) alcohols > secondary (2 °) 

alcohols > tertiary (3°) alcohols. The production of H2 also depends on the location 

of physical properties of alcohols like number of a-H or OH atoms and alcohols 

polarity [33].

The design and selection of photo-reactor is another engineering approach 

which contributes significantly in evolution of H2 during photo-catalysis. Since, the 

effectiveness of photo-catalytic activity depends on the absorption of photons and

4



reactants on the catalyst surface, the innovations on photo-reactors should include 

selection of light sources and distribution, shape and dimension of reactor, and 

design of irradiation device such as reflectors. Typically, slurry reactor is used in 

photo-catalysis process, yet it has limitations such as low light distribution, lower 

light penetration depth, excessive cost for catalyst separation and cannot maximize 

H2 production. Therefore, photo-technology has been developed and recently, 

monolith reactor has attracted the attention of researchers among the photo-reactors 

such as slurry, fluidized, fixed-bed and optical fiber photo-reactor. Monolith, which 

contains parallel straight channels, have been exploited very efficiently due to higher 

illuminated surface area, high utilization of photon flux energy and tends to generate 

more H2 under flow operation [34]. Previously, the monolithic support was used to 

enhance the photo-activity and reusability of Fe-MMT/TiO2 heterojunction in a CO2 

reduction [28]. According to previous research, the photo-catalytic water splitting for 

H2 production over MMT-Ag/pCN-TiO2 composite based on engineering approach 

has never been reported.

Herein, synergistic effect between MMT-Ag/pCN-TiO2 composite and photo­

reactor systems for enhanced photocatalytic H2 production has been investigated. 

The MMT-Ag/pCN-TiO2 was synthesized by hydrothermal assisted sol-gel method 

and MMT-Ag/pCN-TiO2 monolithic support was synthesized by dip-coating method. 

The results obtained by different photo-catalysts and parameters such as catalyst 

loading, sacrificial reagent, pH and stability under visible light irradiation in slurry 

reactor were analyzed and compared. Then, engineering approach using different 

type of photo-reactor system was investigated over MMT-Ag/pCN-TiO2 under 

visible and UV light for H2 production. In addition, the performance of reactor 

system was analyzed and compared according to the apparent quantum yields (AQY) 

based on the ratio of H2 production rate with photon intensity strike on the catalyst 

surface. The space yield was calculated to reflect the reaction effect on the 

volumetric yield of reactor. Based on the experimental data, the schematic reaction 

mechanisms of water splitting for H2 production over MMT-Ag/pCN-TiO2 

composite was proposed.
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1.2 Problem Statement and Hypothesis of Research

Though, water splitting for H2 production is getting increased attention in 

recent years, still there are certain limitations faced and the main challenges are low 

yield of the products and lesser selectivity. To this end, the problems and solution 

approaches are:

(a) Photocatalytic system required higher irradiation of light energy for H2 

production. Mostly researchers have conducted photocatalytic H2 production 

under TiO2 based photo-catalysts. However, TiO2 is UV-active only and has 

higher recombination of photo-generated charge rate, resulted low yield rate. 

Therefore, lower TiO2 activity can be overcome by coupling with low cost 

pCN. The use of pCN and Ag which is active to visible light irradiation will 

increase the yield rate of H2 production under solar energy. The fabrication of 

MMT-Ag/pCN-TiO2 composite can improve the efficient production rate. 

The plasmonic Ag metal can provide more electron from SPR effect, 2D 

layered MMT structure with impressive skill to capture charges and great 

potential for cation transfer can acts as electron trap while, pCN/TiO2 can 

prevent the fast recombination through Z-scheme system. Thus, it will help to 

improve H2 production efficiency through water splitting process under 

visible light irradiations.

(b) The performance of photo-catalytic H2 production in liquid system has lower 

yield and selectivity of H2. However, it can be improved by addition of 

sacrificial reagent in feed reactant to act as electron donor for reaction 

process to produce more H2. Photo-catalytic water splitting has been 

conducted using slurry reactors and it has lower light harvesting efficiency, 

lower illuminated surface area and less quantum efficiency for H2 production. 

The lower production rate of H2 can be overcome using micro-channel 

monolith photo-reactor. The monolith can provide higher light distribution 

and adsorption over the catalyst surface area since the photo-catalyst is coated 

as thin film over the monolithic structured channels. The monolith has 

quantum efficiency, larger illuminated reactor volume and higher sorption 

process to stimulate enhanced H2 production. Monolith photo-reactor in gas
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phase system can be employed to maximize the yield of H2 as it provides 

large surface area contact with high illumination of light between gas reactant 

and catalyst

(c) The optimization of operating parameters would be helpful to improve H2 

production rate. Therefore, it is expecting that with optimizing parameters 

such as catalyst loading, pH and reaction time would provide higher H2 

production. Meanwhile, the comparison of different reaction systems, 

reaction pathways and analysis of apparent quantum yield and space yield 

would be helpful to get deep insight of the effectiveness towards H2 

production.

1.3 Objectives of Study

The aim of this research is to investigate the performance of new develop 

MMT-Ag/pCN-TiO2 composite heterojunction in slurry and monolith photo-reactor 

for H2 production. In order to achieve this objective, the following sub-objectives are 

identified:

(a) To develop MMT-Ag/pCN-TiO2 modified nanocatalysts for photo-catalytic 

H2 production;

(b) To investigate performance of newly developed catalysts and study effect of 

operating parameters for photocatalytic H2 production under visible light 

irradiation;

(c) To evaluate performance of photo-reactors systems for H2 production using 

slurry, fixed-bed and monolith photo-reactors;

(d) To propose reaction mechanism and determine quantum analysis in different 

reactions systems for maximum H2 production.
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1.4 Scope of Study

This study was focused on developing new MMT-Ag/pCN-TiO2 catalysts for

photo-catalytic H2 production and following are the scope of this research:

(a) The pristine TiO2 was prepared from Titanium (IV) isopropoxide and 

hydrolysed by acetic acid by sol-gel method while, the pCN was prepared 

from melamine under pyrolysis process and protonated by HNO3. MMT- 

Ag/pCN-TiO2 composite was synthesized using sol-gel method and MMT- 

Ag/pCN-TiO2 supported monolithic was coated by sol-gel dip-coating 

method. The TiO2 and pCN based catalysts were characterized using X-ray 

Diffraction (XRD), Raman, XPS, Field Emission Scanning Electron 

Microscopy (FESEM), EDX Mapping, Transmission Electron Microscopy 

(TEM), Brunauer-Emmerr-Teller (BET) Surface Area, UV-Visible 

Spectrophotometer and PL spectra.

(b) The Ag and pCN loading on TiO2 were investigated for optimizing of 

deposited for H2 yield while the TiO2 -based, pCN-based and newly 

developed catalyst were tested the performance of H2 production. The 

operating parameters such as catalyst loading, type of sacrificial reagents and 

operating pH were investigated using slurry photo-reactor under visible light 

irradiation. The catalyst loading was investigated using 0.05, 0.1, 0.15 and

0.2 g catalysts dispersed in the alcohol-water mixture. The effect of different 

sacrificial reagents was tested in different type of feed alcohol-water mixture 

included water and 5% of methanol, ethanol, ethyl glycol and glycerol. The 

effect of pH solution on catalyst performance was experimented in neutral 

medium of DI water, acidic and basic medium. The DI water was added with 

HCl and NaOH for adjustment to acidic and basic condition, respectively. 

The stability of the catalyst was tested for three cycles with 4 h/cycle and the 

reactor was purged with N2 gas without light for 1 h to remove H2 and other 

gasses at the end of each run.
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(c) The effect of sacrificial reagent in gas phase was tested using gas feed of 

water and 5% of alcohol-water mixture. The alcohols include methanol, 

ethanol, ethyl glycol and glycerol. The effectiveness of photo-reactors system 

was investigated using slurry, fixed-bed and monolith reactor to observe the 

production of H2. In fixed-bed catalyst was distributed inside the reactor. 

Meanwhile, the monolith made from ceramic with channels per square inch 

(CPSI) = 100 was cut into cylinder with length 1 cm and diameter 6  cm. The 

monoliths were coated with catalyst using sol-gel dip coating method. Then, 

the coated monoliths were placed in the reactor chamber with light source at 

the top of reactor. In addition, the photo-reactor system was analysed and 

compared using apparent quantum yield and space yield.

(d) After proper analysis and study of results obtained, reaction mechanism of 

type II heterojuction which electrons transfer between semiconductor from 

CB of higher negative to CB of lower negative while Z-scheme system 

transfer electron from CB of lower negative to VB of lower positive 

semiconductor through solid mediator were proposed. In different system, the 

quantum analysis was determined using apparent quantum yield (AQY) and 

space yield. The AQY was evaluated based on the ratio of H 2 production rate 

with photon intensity strike on the catalyst surface. The space yield was 

calculated to reflect the reaction effect on the volumetric yield of reactor.

1.5 Significant of Study

This study has immersed contribution to researchers in photo-catalysis, the 

scientific community and the public for the following reasons. Firstly, the research 

on MMT-Ag/pCN-TiO2 composite and the monolith reactor provides more insight as 

it workable under lower light intensity as well as direction on the mechanism of 

composite during water splitting. In addition, the effect of parameter in water 

splitting can be better understood from this research. A photo-catalyst which is 

stable, high charge separation and environmental is introduced.
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1.6 Thesis Outline

This thesis comprised of five chapters. Chapter 1 is the introduction; it 

consists of research background of photo-catalytic water splitting for H2 production, 

problem statement and hypothesis, objectives, scopes, and the significant of the 

research. Chapter 2 is the literature review which consists of fundamentals and 

thermodynamics of photo-catalysis. The advancements in photo-catalysts for water 

splitting are reviewed from previous studies. The heterojunction construction, factors 

that influence photo-catalyst activity and advancements in photo-reactor are 

explained. In Chapter 3, the catalysts synthesis, and characterization procedure are 

explained. The reactor setup, parameter study and apparent quantum yield and space 

yield calculation are also discussed. The results and discussion are presented in 

Chapter 4 while, conclusions and recommendations are stated in Chapter 5.
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