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Abstract 
 

This paper proposes anexact solution in terms of an infinite series to the classical Graetz problem represented by a 

nonlinear partial differential equation considering two space variables, two boundary conditions and one initial condition.  The 

mathematical derivation is based on the method of separation of variables whose several stages are elaborated to reach the 

solution of the Graetz problem. MATLAB was used to compute the eigenvalues of the differential equation as well as the 

coefficient series. However, both the Nusselt number as an infinite series solution and the Graetz number are based on the heat 

transfer coefficient and the heat flux from the wall to the fluid. In addition, the analytical solution was compared to the numerical 

values obtained by the same author using a FORTRAN program, showing that the orthogonal collocation method gave better 

results. It is important to note that the analytical solution is in good agreement with published numerical data. 
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1. Introduction 

 

The solutions of one or more partial differential 

equations (PDEs), which are subjected to relatively simple 

limits, can be tackled either by analytical or numerical ap-

proach. There are two common techniques available to solve 

PDEs analytically, namely the separation and the combination 

of variables. The Graetz problem describes the temperature 

(or concentration) field in fully developed laminar flow in a 

circular tube where the wall temperature (or concentration) 

profile is a step-function (Shah & London, 1978). The 

simplified version of the Graetz problem initially neglected 

axial diffusion, considering simple wall heating conditions 

 
(isothermal and isoflux), using a simple geometric cross-

section (either parallel plates or circular channel), and also 

neglecting fluid flow heating effects; this can be generally 

labeled as the Classical Graetz Problem (Braga, de Barros, & 

Sphaier, 2014). Min, Yoo, and Choi (1997) presented an exact 

solution for a Graetz problem with axial diffusion and flow 

heating effects in a semi-infinite domain with a given inlet 

condition. Later, the Graetz series solution was further im-

proved by Brown (1960).  

Hsu (1968) studied a Graetz problem with axial dif-

fusion in a circular tube, using a semi- infinite domain formu-

lation with a specified inlet condition. Ou and Cheng (1973) 

employed separation of variables to study the Graetz problem 

with finite viscous dissipation. They obtained the solution in 

the form of a series whose eigenvalues and eigenfunctions 

satisfy a Sturm–Liouville system. The solution approach is 

similar to that applicable to the classical Graetz problem, and 

therefore suffers from the same weakness of poor conver-
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gence near the entrance. The same techniques have been used 

by other authors to derive analytical solutions, involving the 

same special functions (Fehrenbach, De Gournay, Pierre, & 

Plouraboué, 2012; Plouraboue & Pierre, 2007; Plouraboue & 

Pierre, 2009). Basu and Roy (1985) analyzed the Graetz 

problem for Newtonian fluid, taking into account viscous 

dissipation but neglecting the effect of axial conduction. 

Papoutsakis, Damkrishna, and Lim (1980) presented an ana-

lytical solution to the extended Graetz problem with finite and 

infinite energy or mass exchange sections and prescribed wall 

energy or mass fluxes, with an arbitrary number of discon-

tinuities. Coelho, Pinho, and Oliveira (2003) studied the en-

trance thermal flow problem for the case of a fluid obeying 

the Phan-Thien and Tanner (PTT) constitutive equation. This 

appears to be the first study of the Graetz problem with a 

viscoelastic fluid. The solution was obtained by separation of 

variables and the ensuing Sturm–Liouville system was solved 

for the eigenvalues by means of a freely available solver, 

while the ordinary differential equations for the eigenfunc-

tions and their derivatives were calculated numerically with a 

Runge–Kutta method. In the work of Bilir (1992), a numerical 

profile based on the finite difference method was developed 

by using the exact solution of the one-dimensional problem to 

represent the temperature change in the flow direction. 

Ebadian and Zhang (1989) analyzed the convective 

heat transfer properties of a hydrodynamically fully developed 

viscous flow in a circular tube. Lahjomri and Oubarra (1999) 

investigated a new method of analysis and improved the 

solution of the extended Graetz problem with heat transfer in a 

conduit. An extensive list of contributions related to this pro-

blem may be found in the papers of Papoutsakis, Ramkrishna, 

Henry, and Lim (1980) and Liou and Wang (1990). In addi-

tion, the analytical solution proposed efficiently resolves the 

singularity, and this methodology allows extension to other 

problems such as the Hartmann flow (Lahjomri, Oubarra, & 

Alemany, 2002), conjugated problems (Fithen& Anand, 1988) 

and other boundary conditions. 

Transient heat transfer for laminar pipe or channel 

flow has been analyzed by many authors.Ates, Darici, and 

Bilir (2010) investigated the transient conjugated heat transfer 

in thick-walled pipes for thermally developing laminar flow 

involving two-dimensional wall and axial fluid conduction. 

The problem was solved numerically by a finite-difference 

method for hydrodynamically developed flow in a two-section 

pipe, initially isothermal in the upstream region that is in-

sulated while the downstream region suddenly applies a 

uniform heat flux. Darici,Bilir, and Ates (2015) in their work 

solved a problem in thick-walled pipes by considering axial 

conduction in the wall. They handled transient conjugated 

heat transfer in simultaneously developing laminar pipe flow. 

The numerical strategy used in this work is based on the finite 

difference method with a thick-walled semi-infinite pipe that 

is initially isothermal, with hydrodynamically and thermally 

developing flow, and with a sudden change in the ambient 

temperature.Darici and Sen (2017) numerically investigated a 

transient conjugate heat transfer problem in microchannels 

with the effects of rarefaction and viscous dissipation. They 

also examined the effects of other parameters on heat transfer, 

such as the Peclet number, the Knudsen number, the 

Brinkman number and the wall thickness ratio. 

 Recently, Belhocine (2015) developed a mathema-

tical model to solve the classic problem of Graetz using two 

numerical approaches, the orthogonal collocation method and 

the method of Crank-Nicholson.  

In this paper, the Graetz problem that consists of 

two differential partial equations will be solved by separation 

of variables. The Kummer equation is employed to identify 

the confluent hypergeometric functions and their properties, in 

order to determine the eigenvalues of the infinite series that 

appears in the proposed analytical solution. Also, theoretical 

expressions for the Nusselt number as a function of the Graetz 

number were obtained. In addition, the exact analytical solu-

tion presented in this work was validated against numerical 

data previously published by the same author, obtained by the 

orthogonal collocation method that gave better results.  

 

2. Background of the Problem  
 

As a good model problem, we consider steady state 

heat transfer to fluid in a fully developed laminar flow through 

a circular pipe (Figure1). The fluid enters at z=0 at a tempera-

ture of T0 and the pipe walls are maintained at a constant 

temperature of Tω. We will write the differential equation for 

the temperature distribution as a function of r and z, and then 

express this in a dimensionless form and identify the impor-

tant dimensionless parameters. Heat generation in the pipe due 

to the viscous dissipation is neglected, and a Newtonian fluid 

is assumed. Also, we neglect the dependence of viscosity on 

temperature. A sketch of the system is shown below. 

 

 
 

Figure 1. Schematic of the classical Graetz problem and the coor-
dinate system 

 

 

 

2.1 The heat equation in cylindrical coordinates 
 

 The general equation for heat transfer in cylindrical 

coordinates, developed by Bird, Stewart, and Lightfoot 

(1960), is as follows; 
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Considering that the flow is steady, laminar and fully developed (Re 2400), and if the thermal equilibrium  has already 

been established in the flow, then 
0




t
T . The dissipation of energy is also assumed negligible. Other physical properties are also 

assumed constant (not temperature dependent), including ρ, µ, Cp, and k.  This assumption also implies incompressible 

Newtonian flow. Axisymmetry of the temperature field is assumed (
0







T ), where we are using the symbol θ for the polar angle.  

By applying the above assumptions, Equation (2) can be written as follows: 
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Given that the flow is fully developed laminar flow (Poiseuille flow), the velocity profile has parabolic distribution across the 

pipe section, represented by  
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Here u2  is the maximum velocity at the centerline. Substituting this for the speed in Equation (3), we get: 
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(5)        

 

The boundary conditions as seen in Figure.1 are 
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It is more practical to study the problem with standardized variables from 0 to 1. For this, new dimensionless variables are 

introduced, defined as 
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After simplifications, the following equation is obtained. 
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where the term 
k

CRu p2  is the dimensionless Peclet number (Pe), which in fact is Reynolds number divided by Prandtl number. 

This partial differential equation for steady state in dimensionless form can be written as follows: 
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The boundary conditions are transformed as follows: 
 

 

 

 

It is proposed to apply separation of variables to solve Equation (9) with this set of boundary conditions. 

 

3. Analytical Solution by Separation of Variables  

 

In both analytical and numerical methods, the dependence of solutions on the parameters plays an important role, and 

there are always more difficulties when there are more parameters. We describe a technique that changes variables so that the 

new variables are “dimensionless”. This technique will simplify the equation to have fewer parameters. The Graetz problem is 

given by the following governing equation 
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where Pe is the Peclet number, L is the tube length and R is the tube radius, and the initial and boundary conditions are:  

 IC :         y = 0    ,   1  

 BC1 :      x=0     ,  0



x
  

 BC2 :      x=1    ,    0  

Introducing dimensionless variables as in (Huang, Matloz, Wen, & William, 1984): 
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On substituting Equation (13) into Equation (12) it becomes: 
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Notice that the term 
k

Rcu p2   in Equation (15) is similar to the Peclet number, P. 

Thus, Equation (15) can be written as 
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Now, on substituting Equations (17)-(19) into Equation (10), the governing equation becomes: 
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The right hand side can be expressed as 











































11
2

2
               (22)                                                                                                         

 

Finally, the equation that characterizes the Graetz problem has become:   
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Now, the energy balance in cylindrical coordinates allows decomposing this into two ordinary differential equations. 

This assumes constant physical properties of the fluid, neglecting axial conduction, and steady state. The associated boundary 

conditions for the constant-wall-temperature case are as follows: 
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Finally, Equation (23) can be expressed as follows: 
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where 2  is a positive real number intrinsic to the system. 

The solution of Equation (25) is 
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where 1c is an arbitrary constant. In order to solve Equation (26), transformations of dependent and independent variables need 

to be made: 
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Equation (28) is of the confluent hypergeometric type as cited in (Slater, 1960), and it is commonly known as the Kummer 

equation. 

 

3.1 Theorem of Fuchs 

 

A homogeneous linear differential equation of the second order is given by 
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On differentiating with respect to Z  

 

































!)1()2)(1(

)1()2)(1(

!2)2)(1(

)2)(1(

)1(

)1(
1),,(

2

n

Z

n

n

Z
ZZF

dZ

d

n
















  

=
),1,1( ZF  



                (32)                                                                                                                     

This gives {left hand side should have derivative, not q}   
 

 





























 222 ,2,

42

31

2

1
)(,1,

42

1










n

n

n

nn
n FF

q

d            (33) 



846 A. Belhocine & W. Z. W. Omar / Songklanakarin J. Sci. Technol. 40 (4), 840-853, 2018 

 

Thus, a solution of Equation (26) is given by: 
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where n = 1, 2, 3 ... and the eigenvalues n are the roots of Equation (35). These can be readily computed in MATLAB since it 

has a built-in hypergeometric function calculator. The solutions of our equation are the eigenfunctions of the Graetz problem. It 

can be shown by series expansion that these eigenfunctions are: 
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where F is the confluent hypergeometric function or the Kummer function. These functions have power series in ξ resembling the 

exponential function (Abramowitz & Stegun, 1965). The functions above have symmetry properties since they are even 

functions. Hence the boundary condition at ξ=0 is satisfied. Since the systemislinear, the general solutionis a superposition: 
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The constants in Equation (37) can be sought using the orthogonality of Sturm-Liouville systems after the initial condition is 

applied  
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                                 (38)                                                                          

 

The integral in the denominator of Equation (38) can be evaluated using numerical integration. 

For the Graetz problem, it is noted that: 
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where  )( 3  is the function of the weight  /
n eigenvalues  
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0
d

dGn  for 0  , 0nG  for 1              (42)                                                                                          
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Relation of orthogonality    
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By considering  
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On combining Equations (49), (50) and (51) this reduces to 
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Let’s multiply Equation (43) by Equation (53) and then integrate Equation (54), 
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This shows that: 

(i) If (n ≠ m)the result is equal to zero (0)  

(ii) If (n = m) the result is  
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Substituting Equation (52) into Equation (55) gives 
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The constants Cn are given by  
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4. Results and Discussion 

 

4.1 Evaluation of the first four eigenvalues and the constant Cn 

 

A few coefficients values of the series are given in Table 1 together with the corresponding eigenvalues. The calculated 

central temperature as a function of the axial coordinate ζ is also summarized in Table 2.  

 

Table 1.     Eigenvalues and constants for the Graetz’s problem. 

n Eigenvalue  βn Coefficient Cn 

 

)0( nG  

 

1 
 

2.7044 
 

0.9774 
 

1.5106 

2 6.6790 0.3858 -2.0895 
3 10.6733 -0.2351 -2.5045 
4 14.6710 0.1674 -2.8426 

5 
 

18.6698 
 

-0.1292 
 

-3.1338 

 

 

               Table 2.     The central temperature θ (ζ)  

ζ Temperature (θ) )0,(  

 

0 
 

1.0000000 
 

1.0000000 
0,05 0,93957337 1,02424798 
0,1 0,70123412 0,71053981 

0,15 0,49191377 0,49291463 
0,25 0,23720134 0,2372129 
0,5 0,03811139 0,03811139 

0,75 0,0061231 0,0061231 
0,8 0,00424771 0,00424771 

0,85 0,00294671 0,00294671 
0,9 0,00204419 0,00204419 

0,95 0,00141809 0,00141809 
0,96 0,00131808 0,00131808 
0,97 0,00122512 0,00122512 
0,98 0,00113871 0,00113871 
0,99 0,0010584 0,0010584 

1 0,00098376 0,00098376 
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The leading term in the solution for the central temperature is  
 

)0(9774.0)0,(
704.2

Ge





                        (58) 

 

4.2 Graphical representation of the exact solution of the Gratez problem  

 

The central temperature profile is shown in Figure 2, obtained by truncating the series to five terms. As seen in this 

figure, the dimensionless temperature (θ) decreases with the dimensionless axial position (ζ). Note that the five-term series 

solution is not accurate for ζ<0.05.  

 
 

Figure 2. Axial temperature profile in the dimensionless variables temperature (θ) and axial distance (ζ) 

 

4.3 Comparison between the analytical model and prior numerical simulation results 

 

In order to compare with prior numerical results in Belhocine (2015) for our heat transfer problem, we chose the results 

of orthogonal collocation that gives the best results. Figure 3 shows the comparison with clearly good agreement between the 

numerical results and the analytical solution of the Graetz problem, along the centerline. 

 

 
 

Figure 3. A comparison of the present analytical results with prior numerical results from orthogonal collocation (Belhocine, 2015) 
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4.4 Heat transfer coefficient correlation 

 

The heat flux from the wall to the fluid )(zq
is a function of axial position. It can be calculated directly from 
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T
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               (59) 

 

but as we noted earlier, it is customary to define the heat transfer coefficient )(zh  via  
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              (60) 

 

where the bulk or cup-mixing average temperature 
bT  is introduced. The way to experimentally determine the bulk average 

temperature is to collect the fluid coming out of the system at a given axial location, mix it completely, and measure its 

temperature. The mathematical definition of the bulk average temperature is  
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where the velocity field )1()( 22

0 Rrvrv  . You can see from the definition of the heat transfer coefficient that it is related to 

the temperature gradient at the tube wall in a simple manner: 

 

)(

),(

)(
bTT

zR
r

T
k

zh









               (62) 

 

We can define a dimensionless heat transfer coefficient known as the Nusselt number. 
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where  
b  is the dimensionless bulk average temperature.  

By substituting the infinite series solution for both the numerator and the denominator, the Nusselt number becomes 

 

 






















1

1

0

3

1

)()(4

)(

2
2

)(
2

2

n

nn

n

n
n

dGeC

G
eC

k

Rh
Nu

n

n












            (64) 

 

The denominator can be simplified by using the governing differential equation for )(nG , along with the boundary conditions, 

to finally yield the following result.  
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We can see that, for large   , only the first term in the infinite series in the numerator, and likewise the first term in the infinite 

series in the denominator are important. Therefore, as 656.3
2

,
2

1 


 Nu . Also: 
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where 

kL

Rvc
N

p

Gr
2

2

max
 is the Graetz number. 

 Figure 4 shows the Nusselt number against the dimensionless length along the tube with uniform heat flux. As 

expected, the Nusselt number is very high at the beginning in the entrance region and thereafter decreases exponentially to the 

fully developed Nusselt number.  

Figure 4. Nusselt number versus dimensionless axial coordinate 

4. Conclusions

In this paper, an exact solution of the Graetz 

problem was successfully obtained by separation of variables. 

The hypergeometric functions were employed in order to 

determine the eigenvalues and constants Cn, and later on to 

find a solution for the Graetz problem. The mathematical 

approach in this study can be applied to predicting the 

temperature distribution in steady state laminar flow with heat 

transfer, based on the fully developed velocity for fluid flow 

through a circular tube. In future work, we may pursue Graetz 

solutions by separation of variables for a variety of cases, 

including non-Newtonian flow, turbulent flow, and other 

geometries besides a circular tube.  It is important to note that 

the present analytical solutions of the Graetz problem are in 

good agreement with previously published numerical results 

of the author. It will be also interesting to compare actual 

experimental data with the proposed exact solution.  

References 

Abramowitz, M., & Stegun, I. (1965). Handbook of Mathe-

matical Functions. New York, NY: Dover Publi-

cations. 

Ates, A., Darıcı,S., & Bilir,S. (2010). Unsteady conjugated 

heat transfer in thick walled pipes involving two-

dimensional wall and axial fluid conduction with 

uniform heat flux boundary condition. International 

Journal of Heat and Mass Transfer, 53(23), 5058–

5064. 

Basu, T., & Roy, D. N. (1985). Laminar heat transfer in a tube 

with viscous dissipation. International Journal of 

Heat and Mass Transfer, 28, 699–701. 

Belhocine, A. (2015). Numerical study of heat transfer in fully 

developed laminar flow inside a circular tube. 

International Journal of Advanced Manufacturing 

Technology, 85(9-12), 2681-2692. 

Bilir, S. (1992). Numerical solution of Graetz problem with 

axial conduction. Numerical Heat Transfer Part A-

Applications, 21, 493-500. 

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Trans-

port Phenomena. New York, NY: John Wiley and 

Sons. 

Braga, N. R., de Barros, L. S., & Sphaier, L. A. (2014). 

Generalized Integral Transform Solution of Ex-

tended Graetz Problems with Axial Diffusion. The 

5th International Conference on Computational 

Methods, 1-14.  



852 A. Belhocine & W. Z. W. Omar / Songklanakarin J. Sci. Technol. 40 (4), 840-853, 2018 

 

Brown, G. M. (1960). Heat or mass transfer in a fluid in 

laminar flow in a circular or flat conduit. AIChE 

Journal, 6, 179–183. 

Coelho, P. M., Pinho, F. T., & Oliveira, P. J. (2003). Thermal 

entry flow for a viscoelastic fluid: the Graetz 

problem for the PTT model.International Journal of 

Heat and Mass Transfer, 46, 3865–3880. 

Darıcı,S., Bilir, S., & Ates, A. (2015). Transient conjugated 

heat transfer for simultaneously developing laminar 

flow in thick walled pipes and minipipes.Inter-

national Journal of Heat and Mass Transfer, 84, 

1040–1048. 

Ebadian, M. A., & Zhang, H. Y. (1989). An exact solution of 

extended Graetz problem with axial heat con-

duction. International Journal of Heat and Mass 

Transfer, 32(9), 1709-1717. 

Fehrenbach, J., De Gournay, F., Pierre, C., & Plouraboué, F. 

(2012). The GeneralizedGraetz problem in finite 

domains. SIAM Journal on Applied Mathematics, 

72, 99–123. 

Fithen, R. M., & Anand, N. K. (1988). Finite Element Ana-

lysis of Conjugate Heat Transfer in Axisymmetric 

Pipe Flows. Numerical Heat Transfer, 13, 189-203. 

Graetz, L. (1882). Ueber die Wärmeleitungsfähigkeit von 

Flüssigkeiten. Annalen der Physik, 254, 79. 

doi:10.1002/andp.18822540106 

Hsu, C. J. (1968). Exact solution to entry-region laminar heat 

transfer with axial conduction and the boundary 

condition of the third kind. Chemical Engineering 

Science, 23(5), 457–468. 

Huang, C. R., Matloz, M., Wen, D. P., & William, S. (1984). 

Heat Transfer to a Laminar Flow in a Circular Tube. 

AIChE Journal, 5, 833. 

Lahjomri, J., & Oubarra, A. (1999). Analytical Solution of the 

Graetz Problem with Axial Conduction. Journal of 

Heat Transfer, 1, 1078-1083. 

Lahjomri, J., Oubarra, A., & Alemany, A. (2002). Heat 

transfer by laminar Hartmann flow in thermal 

entrance eregion with a step change in wall tem-

peratures: The Graetz problem extended. Interna-

tional Journal of Heat and Mass Transfer, 45(5), 

1127-1148. 

Liou, C. T., & Wang, F. S. (1990). A Computation for the 

Boundary Value Problem of a Double Tube Heat 

Exchanger. Numerical Heat Transfer Part A, 17, 

109-125. 

Min, T., Yoo, J. Y., & Choi, H. (1997). Laminar convective 

heat transfer of a bingham plastic in a circular pipei. 

Analytical approach—thermally fully developed 

flow and thermally developing flow (the Graetz 

problem extended). International Journal of Heat 

and Mass Transfer, 40(13), 3025–3037.  

Ou, J. W., & Cheng, K. C. (1973). Viscous dissipation effects 

in the entrance region heat transfer in pipes with 

uniform heat flux. Applied Scientific Research, 28, 

289–301. 

Papoutsakis, E., Damkrishna, D., & Lim, H. C. (1980). The 

Extended Graetz Problem with Dirichlet Wall 

Boundary Conditions. Applied Scientific Research, 

36, 13-34. 

Papoutsakis, E., Ramkrishna, D., & Lim, H. C. (1980). The 

Extended Graetz Problem with Prescribed Wall 

Flux. AlChE Journal, 26(5), 779-786. 

Pierre, C., & Plouraboué, F. (2007). Stationary convection 

diffusion between two co-axial cylinders.Interna-

tional Journal of Heat and Mass Transfer, 50(23-

24), 4901–4907. 

Pierre, C., & Plouraboué, F. (2009). Numerical analysis of a 

new mixed-formulation for eigenvalue convection-

diffusion problems. SIAM Journal on Applied 

Mathe-matics, 70, 658–676. 

Sen, S., & Darici, S. (2017). Transient conjugate heat transfer 

in a circular microchannel involving rarefaction 

viscous dissipation and axial conduction effects. 

Applied Thermal Engineering, 111, 855–862. 

Shah, R. K., & London, A. L. (1978). Laminar Flow Forced 

Convection in Ducts. Retrieved from 

https://www.elsevier.com 

Slater, L. J.(1960). Confluent Hypergeometric Functions. 

Cambridge, England: Cambridge University Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 A. Belhocine & W. Z. W. Omar / Songklanakarin J. Sci. Technol. 40 (4), 840-853, 2018 853 

 

Appendix 

 

Nomenclature 

 
 a   :parameter of confluent hypergeometric function 

b  : parameter of confluent hypergeometric function 

cp  :heat capacityf 

Cn  : coefficient of solution defined in Equation (38) 

F (a;b;x)  : standard confluent hypergeometric function 

K  : thermal conductivity 

L  : length of the circular tube 

NG  : Graetz number 

Nu  : Nusselt number 

Pe  : Peclet number 

R  : radial cylindrical coordinate 

r1  : radius of the circular tube 

T  : temperature of the fluid inside a circular tube 

T0  : temperature of the fluid entering the tube 

Tω  : temperature of the fluid at the wall of the tube 

υmax  : maximum axial velocity of the fluid 

 

 Greek letters  

 

βn   : eigenvalues 

ζ  : dimensionless axial direction 

θ  : dimensionless temperature 

ξ  : dimensionless radial direction 

ρ  : density of the fluid 

µ  : viscosity of the fluid 

 


