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ABSTRACT

Surfactant-alcohol remediation have been reviewed by many researchers as an 
innovative technology to remediate tetrachloroethylene (PCE) from the subsurface. 
However, the application of surfactant-alcohol remediation to layered sand conditions 
is still obscurity and its implementation is limited due to flow sensitivity to site 
characterization. The laboratory experiment was performed in assessing the efficiency 
of surfactant-alcohol remediation through two-dimensional (2-D) saturated layered 
sand contaminated with tetrachloroethylene (PCE) spill. The 2-D physical model 
consist of front clear glass for easy visualization of 2-D PCE migration and framed 
with aluminum material has been developed. The type of sand use is fine sand and 
coarse sand. The laboratory investigation of PCE remediation in 2-D saturated layered 
sand using three different surfactant solutions. The first solution consist of 4 % 
surfactant, the second solution consist of 8 % surfactant and the third solution consist 
of 4 % surfactant and 15 % n-butanol. The PCE migration has been captured and 
analyzed to evaluate the dominant mechanisms and efficiency of PCE remediation. 
The laboratory experimental results shows that the dominant mechanism of PCE 
remediation in 2-D saturated layered sand using surfactant-alcohol treatment is 
solubilization and mobilization mechanisms. The solubilisation mechanisms are 
govern by the properties of surfactant itself where the surfactant are soluble in water 
due to the oxygen atom that are capable in forming hydrogen bond with the water 
molecules. The oxygen atom in surfactant are the hydrophilic head which is water 
lover attach to water and the other atom with the hydrophobic tail which is water hate 
attach to PCE. The interfacial tension between PCE, water and sand are lod because 
the surfactant molecules are surround PCE. The addition of co-surfactant, n-butanol in 
surfactant solution help in the formation of microemulsion which increase the number 
of micelles thus increase the solubilisation and mobilization of PCE. The reduction of 
total density of the microemulsion result in the PCE migration to the upward direction 
following its low density compared to water density. This shows that the prevention 
of uncontrolled downward migration of PCE are possible. The effect of microemulsion 
in lowering the interfacial tension between PCE, water and sand has result in no 
residual PCE left at the PCE source zone. The results of this study shows that 
surfactant-alcohol are very efficient solution to remediate PCE in 2-D saturated 
layered sand.
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ABSTRAK

Pemulihan surfaktan-alkohol telah dikaji oleh ramai penyelidik sebagai 
teknologi yang berinovasi untuk menyingkirkan tetrachloroethylene (PCE) dari 
subpermukaan. Walau bagaimanapun, penggunaan pemulihan surfaktan-alkohol 
kepada keadaan pasir yang berlapis masih kabur dan perlaksanaannya adalah terhad 
disebabkan oleh alirannya yang sensitif terhadap pencirian tapak. Satu eksperimen 
makmal telah dijalankan untuk menilai kecekapan pemulihan surfaktan- 
dipertingkatkan di dalam dua dimensi (2-D) lapisan pasir yang tepu yang tercemar 
dengan tumpahan tetrachloroethylene (PCE). 2-D fizikal model yang mengandungi 
gelas jelas didepan untuk penglihatan yang jelas untuk 2-D pergerakan PCE dan 
dibingkaikan dengan bahan aluminium telah dibangunkan. Jenis pasir yang digunakan 
adalah pasir halus dan pasir kasar. Kajian eksperimen pemulihan PCE di dalam 2-D 
lapisan pasir tepu menggunakan tiga larutan surfaktan-dipertingkatkan yang berbeza. 
Larutan pertama mengandungi 4 % surfaktan, larutan kedua mengandungi 8 % 
surfaktan dan larutan ketiga mengandungi empat peratus surfaktan dan lima belas 
peratus n-butanol. Pergerakan PCE dirakamkan dan dianalisa untuk menilai 
mekanisma utama dan keberkesanan pemulihan PCE. Keputusan eksperimen 
menunjukkan mekanisma utama pemulihan PCE di dalam 2-D lapisan pasir tepu 
menggunakan pemulihan surfactant-alkohol adalah ditadbir oleh sifat surfaktan itu 
sendiri dimana surfaktan tersebut adalah larut dalam air disebabkan oleh atom oksigen 
yang dapat membentuk ikatan hydrogen dengan molekul air. Atom oksigen di dalam 
surfaktan adalah kepala hyrodrophilic dimana ia adalah suka dengan air lampir dengan 
air dan atom yang lain dengan ekor hydrophobic dimana ia benci air lampir dengan 
PCE. Ketegangan dalam permukaan antara PCE, air dan pasir dikurangkan kerana 
molekul surfaktan mengelilingi PCE. Pertambahan pembantu surfaktan, n-butanol di 
dalam larutan surfaktan menolong pembentukan mikroemulsi dimana pertambahan 
jumlah micelles yang menyebabkan pertambahan perlarutan dan pergerakan PCE. 
Pengurangan jumlah ketumpatan microemulsi menyebabkan pergerakan PCE ke arah 
atas disebabkan ketumpatannya yang rendah daripada ketumpatan air. Ini 
menunjukkan pencegahan pergerakan PCE kebawah yang tidak dapat dikawal adalah 
boleh. Kesan dari microemulsi ini dalam mengurangkan ketegangan dalam 
permukaan antara PCE, air dan pasir telah menyebabkan tiada serpihan PCE tertinggal 
di dalam zon sumber PCE. Hasil kajian ini menunjukkan surfaktan-alkohol adalah 
larutan yang cekap untuk memulihkan PCE dari 2-D larutan pasir tepu.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Dense non-aqueous phase liquid (DNAPL) are organic compounds that are 

denser than water and cannot mix with water. The DNAPL tends to sink below 

groundwater table and stop when it reaches impermeable layer. The penetration of 

DNAPL into an aquifer makes them difficult to locate and remediate.

The DNAPL is a poisonous and dangerous substance. It can cause burning in 

the mouth and throats, as well as causing stomach pains. Direct contact with DNAPL 

can cause severe skin irritation, burning sensation on the surface of the eyes, 

convulsions and mental confusion, kidney or liver problems, unconsciousness, and 

even death. The potential for significant long-term soil and groundwater contamination 

by DNAPL chemicals depends on their toxicity, limited solubility, and significant 

migration potential in soil gas, groundwater, and/or as a separate phase liquid. One of 

well-known source of DNAPL is tetrachloroethylene (PCE).

1.2 Background of the Problem

Tetrachloroethylene (PCE) are hydrocarbon liquids that spills or leaks into the 

ground and become DNAPL. Since the early 20th century, hydrocarbon has been 

produced and utilised widely by industrial facilities, superfund sites, military bases,
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dry cleaner sites, grain elevators, etc. However, hydrocarbon spill, which causes 

contamination to soil and groundwater, has not been realised until 1980 because of the 

lack of analytical methods and equipment of PCE detection.

Many researchers have come up with their research the application of 

surfactant-alcohol remediation through simulation, laboratory research, field 

demonstration. They study the solubilisation, mobilisation, displacement and physical 

forces analysis of surfactant in porous media to visualise the PCE removal (Pennell et 

al., 1996; Walker et al., 1998). Surfactant partitioning which involved surfactant 

mixture polydispersity, surfactant hydrophobicity, and interfacial tension was 

investigated (Cowell et al., 2000).

Solubilisation increase when micelle is added to the groundwater to increase 

the contaminant removal rate. Mobilisation increases when interfacial tensions 

between PCE and groundwater are low thus release PCE from pores (Van Valkenburg, 

1999). The surfactant-alcohol remediation follows the study of removal effectiveness 

(Ang and Abdul, 1991; Lee et al., 2002; Saenton et al., 2002). This be supported by 

studies of micelles contributing removal of hydrocarbon (Chu, 2002; Chu and Kwan, 

2003).

The addition of alcohol in surfactant solution increases the solubilisation and 

mobilisation of PCE. Ramsburg et al. (2004) in their study showed that surfactant- 

alcohol increase solubilisation and mobilisation of PCE. At the same time, the 

surfactant-alcohol can control downward migration of PCE. Alcohol was found to be 

able to enhance oil recovery from subsurface similar with steam, but has a much better 

improvement in terms of capillary retention and oil phase behavior.

The type of alcohol selected for surfactant-alcohol treatment determines the 

efficiency of PCE remediation. In previous PCE remediation, the alcohol were 2- 

methyl-2-propanol (Darcy, 1856), n-butanol (Berner, 2013; Fetter, 1994; Streeter, 

1962) and 1-butanol solution with low interfacial tension (IFT) solution (Bruch and 

Street, 1967; Ramsburg et al., 2004).
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1.3 Statem ent of the Problem

The PCE is a dangerous substances and hazardous to humans, animals, and 

natural habitats. This issue has encouraged many researchers to investigate the best 

method of PCE remediation. A study that aimed to investigate the PCE remediation 

has been conducted through laboratory experiment using surfactant-alcohol 

remediation. The investigation was performed in two-dimensional (2-D) saturated 

heterogeneous porous media model.

Surfactant-alcohol remediation, has been widely used in remediation of PCE 

worldwide. The surfactant-alcohol remediation’s main goal is to remove as much PCE 

as possible with the least chemical in a short time. Surfactant-alcohol remediation has 

also been stimulated from surfactant-enhance oil recovery in the petroleum industry 

and has been recognised as an advanced innovation in PCE remediation technology. 

Surfactant-alcohol remediation challenges are finding PCE location, determining 

optimum surfactant solution, finding a variation of subsurface properties over 

treatment zone, and the risk of uncontrolled downward migration during surfactant 

flood (Mackay and Cherry, 1989).

The use surfactant-alcohol remediation is important to identify and visualise 

their effectiveness and capabilities of PCE removal in saturated porous media. These 

results can be used to evaluate possible conservancy effects for an adequate dissolution 

of PCE. This provide characterisation and remediation to avoid the spreading of 

contamination. The study of mechanisms of surfactant-alcohol would give a perfect 

solution in improvising the PCE remediation method.

The removal of PCE using surfactant-alcohol remediation was investigated to 

identify, acquire, analyse, visualise, and evaluate the effectiveness of the remediation. 

Several parameters can be controlled to justify the success of the remediation. A 

comprehensive understanding of the subsurface environment, multiphase fluid flow, 

and the physical processes is required to prevent PCE remediation failure.
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1.4 Research Objectives

This research attempts to investigate the efficiency of PCE remediation in 

saturated layered sand using laboratory experiment of surfactant-alcohol remediation. 

The findings of this research guide the development of an effective PCE remediation 

technology.

The research objectives (RO) can be further detailed as follows:

1. To develop the 2-D physical model filled with layered sand for PCE 

migration and remediation experiment.

2. To investigate the PCE remediation in 2-D saturated layered sand through 

laboratory experiment of surfactant-alcohol.

3. To evaluate dominant mechanisms and efficiency of PCE remediation 

through laboratory experiment of PCE remediation using surfactant- 

alcohol.

1.5 Scope of the Study

A two-dimensional physical model filled with layered soil was develop in 

Objective (1). The model was developed to perform the PCE remediation in Objective 

(2). The subsurface media characteristic is layered sand comprising two type of sand 

which are fine sand and coarse sand. The PCE remediation was investigated using 

laboratory experiment of surfactant-alcohol. There are three different surfactant 

solution which are 4 % surfactant solution, 8 % surfactant solution and surfactant- 

alcohol. All three solution applied on the same model with sequences.

The dominant mechanisms of surfactant-alcohol remediation in Objective (3) 

determined. The PCE migration area and the PCE penetration depth measured through
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qualitative measurement. The behavior of PCE migration and remediation was 

discussed to determine the dominant mechanisms. The performance and efficiency of 

surfactant-alcohol remediation evaluated.

The qualitative measurement in a laboratory experiment is different from the 

quantitative measurement, whereby the former does not involve the saturation data and 

mapping but more to providing the characteristics and the appearances such as area, 

perimeter, and penetration depth. In addition, qualitative measurement is inclusive of 

the measurement of volume calculated based on the mass balance calculation. Unlike 

the qualitative measurement, the quantitative measurement in laboratory experiment 

involves the saturation data and mapping for both PCE and water.

1.6 Significance of the Study

The study is valuable and beneficial in protecting the subsurface specific to 

fine sand and coarse sand from hazardous contaminant of PCE which risking human 

health and ecosystems. The research is favorable to the environmental protection 

agencies, contaminated site owner, and environmental consultant firms who want to 

remediate sand from PCE. The investigation consequently reduce PCE contaminant 

sites in preserving better soil and groundwater quality for the benefit of humans, 

animals, and nature.

1.7 Thesis Organisation

Chapter 1 provides the introduction to this research, which includes the 

research background, problem statement, research objectives, research scope, the 

significance of the research, and thesis organisation. Chapter 2 is a review of existing 

literature related to this research including the sources and effects of PCE to humans 

and ecosystems, theory of PCE’s distribution in subsurface, and the PCE remediation 

technologies of surfactant-alcohol remediation
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Chapter 3 provides the research methodology of surfactant-alcohol 

remediation. The development of 2-D physical physical model was presented together 

with the research design, data collection, laboratory experiment process of PCE 

migration and remediation using surfactant-alcohol remediation.

Chapter 4 presents the results and discussion obtained from laboratory 

experiment of surfactant-alcohol remediation. The PCE migration area and the PCE 

penetration depth during surfactant-alcohol remediation was determined. The results 

of PCE volumes and PCE penetration depth was compared with past existing 

experiment. The dominant mechanisms of surfactant-alcohol remediation was 

discussed. The performance and efficiency of surfactant-alcohol remediation was 

evaluated.

Chapter 5 presents the conclusions derived from this research and the 

recommendations for future studies.
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