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ABSTRACT 

 

Microbial strains can be optimized using metabolic engineering which 

implements gene knockout techniques. These techniques manipulate potential genes 

to increase the yield of metabolites through restructuring metabolic networks. 

Nowadays, several hybrid optimization algorithms have been proposed to optimize the 

microbial strains. However, the existing algorithms were unable to obtain optimal 

strains because the nonessential genes are hardly to be diagnosed and need to be 

removed due to high complexity of metabolic network. Therefore, the main goal of 

this study is to overcome the limitation of the existing algorithms by proposing a 

hybrid of Differential Evolution and Minimization of Metabolic Adjustments 

(DEMOMA). Differential Evolution (DE) is known as population-based stochastic 

search algorithm with few tuneable parameter control. Minimization of Metabolic 

Adjustment (MOMA) is one of the constraint based algorithms which act to simulate 

the cellular metabolism after perturbation (gene knockout) occurred to the metabolic 

model. The strength of MOMA is the ability to simulate the strains that have 

undergone mutation precisely compared to Flux Balance Analysis. The data set used 

for the production of fumaric acid is S. cerevisiae whereas data set for lycopene 

production is Y. lipolytica metabolic networks model. Experimental results show that 

the DEMOMA was able to improve the growth rate for the fumaric acid production 

rate while for the lycopene production, Biomass Product Coupled Yield (BPCY) and 

production rate were both able to be optimized. 
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ABSTRAK 

 

Strain mikrob boleh dioptimumkan menggunakan kejuruteraan metabolik yang 

melaksanakan teknik-teknik penyingkiran gen. Teknik ini memanipulasi gen yang 

berpotensi untuk meningkatkan hasil metabolik melalui penyusunan semula rangkaian 

metabolik. Kini, beberapa algoritma pengoptimuman hibrid telah dicadangkan untuk 

mengoptimumkan strain mikrob. Walau bagaimanapun, algoritma sedia ada tidak 

berupaya mendapatkan strain optimum kerana gen yang tidak penting sukar untuk 

dikenal pasti dan perlu disingkirkan kerana rangkaian metabolik mempunyai tahap 

kekompleksan yang tinggi. Oleh itu, matlamat utama kajian ini adalah untuk mengatasi 

kekangan yang dihadapi oleh algoritma sedia ada dengan menghibridkan Evolusi 

Kebezaan dan Peminimuman Pelarasan Metabolik (DEMOMA). Evolusi Kebezaan 

(DE) dikenali sebagai carian stokastik algoritma yang berasaskan populasi dengan 

beberapa kawalan parameter kawalan. Peminimuman Pelarasan Metabolik (MOMA) 

adalah salah satu algoritma berasaskan kekangan yang bertindak untuk 

mensimulasikan metabolisme sel selepas pengusikan (penyingkiran gen) berlaku 

kepada model metabolik. Kekuatan MOMA adalah keupayaan untuk mensimulasikan 

strain yang telah menjalani mutasi dengan tepat berbanding algoritma Analisis 

Keseimbangan Fluks (FBA). Set data yang digunakan untuk pengeluaran asid fumarik 

adalah S. cerevisiae manakala set data untuk pengeluaran likopena adalah model 

rangkaian metabolic Y. Lipolytica. Keputusan eksperimen menunjukkan bahawa 

DEMOMA itu dapat meningkatkan kadar pertumbuhan bagi kadar pengeluaran asid 

fumarik manakala bagi pengeluaran likopena, kadar hasil ganding biojisim produk dan 

kadar pengeluaran dapat dioptimumkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

 

This chapter reviewed the fundamental study of the research which comprises 

production of fumaric acid and lycopene, Differential Evolution and Minimization of 

Metabolic Adjustment. The obstacle and difficulties confronted in producing fumaric 

acid and lycopene is expressed in problem background. Other than that, problem 

statement is diagnose to accomplish the objectives of this research. Research goal, 

objectives, scopes, motivations and summary are also expressed in this chapter.  

 

In this section, the production of fumaric acid and lycopene from the cell 

factory of a microbial strain is reviewed briefly. The importance of optimizing fumaric 

acid and lycopene is also described. Then, an introduction to the fundamental of 

metabolic engineering, Differential Evolution and Minimization of Metabolic 

Adjustment is presented to provide an idea of the overall research.  

 

 

 

 

 

 



2 

 

 

1.1.1 Microbial Cell Factory for Metabolite Production 

 

 

As part of the economically important component of food processing, 

preparing medicinal drugs and industrial materials, yet the present procedure to 

fabricate fumaric acid are unsustainable and facing with environmental problem. 

Basically, fumaric acid presently generated in large amount through three distinct 

strategies; chemical synthesis, enzymatic catalysis or fermentation (Xu et al., 2012a). 

It requires high cost to generate FA using chemical synthesis while converting an 

enzyme derived from petroleum to form into fumarate can bring ecological problem. 

Even though, it has been proven that fermentation process effectively produced FA, 

yet this process is inadequate to fulfill the industrial need. This is because, the fungi 

used to be fermented in producing FA are difficult to grow and their structure highly 

influence the amount of production generated. This issue becomes the motivation to 

produce FA using the microbial cell factory of organism that have been acknowledge 

to fulfill the amount of production yield at industrial scale. Therefore, yeast S. 

cerevisiae that own a good cultivation characteristic is selected to be manipulated in 

this research with the aim to optimize the production of fumaric acid.  

 

 

There are over 800 chemical compounds represented by carotenoids. The 

market of carotenoids has shown great demand for its commercial values in food 

additives, animal feed additives, and medicinal drug as well as in beauty care products. 

Lycopene is one of the carotenoid pigments which gives the vegetables and fruits their 

red color. Other than that, it is an effective cancer prevention agent. Given its cancer 

prevention agent properties, significant fieldwork has been dedicated to a viable 

association between lycopene intake and healthy lifestyle. However, there is only a 

few of carotenoid types can be synthesized chemically. Therefore, the biotechnological 

generation of carotenoids comes into center for commercial sector since only a few 

types are available to be produced from natural sources (Matthäus et al., 2014). 

Meanwhile, the products obtained from chemical process requires high expenditure 

and difficult to accomplish.  Thus, this research investigates how lycopene production 

as secondary product in Yarrowia lipolytica can be increased and optimized for 

industrial purpose. 
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1.1.2 In silico Metabolic Engineering 

 

 

Comprehensive insight of in silico metabolic engineering in enhancing 

metabolite production is represented in Figure 1.1. An increasing amount in production 

of particular chemical and biochemical compound can be achieved with the help of 

metabolic engineering. The adjustment made to the cell particularly the network of its 

metabolite so that the product is able to be produced when the ideal development rate 

is reached which is the main target of remodeling the metabolite (Yen, 2015).The 

technological properties of each organisms such as product yield and growth 

characteristics are the aspects to be improved through manipulation of their microbial 

strains that can lead to the overproduction of specific chemical compound. Deletion or 

addition some of genes into the metabolic network are some examples of metabolic 

engineering. Currently, researchers showed a formidable interest in the evolution of 

metabolic engineering to optimize the yield of target metabolites.  
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Figure 1.1 Overall view of in silico metabolic engineering 

 

 

The genome of microorganism is represented in the form of metabolic network. 

The metabolic network comprises of thousands of reaction and genes. Figure 1.2 

demonstrate how the metabolic network is entangled as it comprised of plentiful 

metabolites. The modification that aims to increase the production of specific 

metabolites can be conducted once a thorough finding have been done. This is because 

an adjustment to the network gives an impact since the gene is interdependent. 

Conventionally, the scientist has to perform the same experiments numerous times in 

the laboratory to test each combination of gene to obtain the optimal set of gene to be 

knockout. This scenario requires a high budget to be spent for the materials used in the 

laboratory. 

Genome-scale 

metabolic model 

In silico metabolic engineering 

Optimal strain design 

Industrial 

Manufacturing 
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The power of computational simulation used on metabolic engineering is 

strongly helpful to aid in enhancing the production of chemical compound since the 

wet-lab experiments is time-consuming and high cost to conduct the experiments. The 

improved phenotypes obtained from the identification of gene knockout strategies are 

the result of the algorithms proposed. The rising of available genome-scale metabolic 

model is also contributing to the effectiveness of computational simulation. Generally, 

there are recognized algorithms that widely in use for implementing metabolic 

engineering such as optimization algorithms, modeling algorithms and modeling 

framework. These kinds of algorithms are utilized to aid in triggering the cellular 

metabolism that leads an enhancement in production of target metabolites expressed 

in genome scale model.  

 

 

Figure 1.2 Characteristics of essential and nonessential metabolites in E. coli  

metabolism (Kim et al., 2007). 
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1.1.3 Differential Evolution 

 

 

Differential evolution is a simple and effective optimization algorithm and 

commonly being used for solving continuous optimization problem. DE belongs to 

Evolutionary Algorithms that is inspired by the nature of species evolves. Basically, 

the operation employed by DE in discovering the optimal solutions is through a 

population of candidate solutions which represent the individuals of the population 

must be initialized first instead of working just on a single solution. The perturbation 

of solutions with a scaled difference of two randomly selected population vectors 

eventually generates the offspring. Then, each of these individuals is compared to each 

other to be included in the next generation. The selected individuals is the vector that 

outperforms the objective function value of its corresponding parent. The performance 

of DE in solving a continuous optimization problem is affected by the proper 

initialization of population size and their associated control parameter values. Apart 

from metabolic engineering, DE has been successfully applied in diverse fields such 

as mechanical engineering (Rogalsky et al., 2000), communication (Storn, 1996) and 

pattern recognition (Ilonen et al., 2003). The implementation of DE in this research is 

to predict a near-optimal set of gene to be knocked out that leads to overproduction of 

metabolites. 

 

 

 

 

1.1.4 Minimization of Metabolic Adjustment 

 

 

Minimization of metabolic adjustment (MOMA) is a constraint-based 

modeling algorithm used to model and mimic biological processes for phenotype 

prediction. The common use of MOMA is to forecast the aftereffect of perturbation 

introduced to the metabolic network, for example gene knockout. The behavior of 

perturbed metabolic network can be predicted precisely since MOMA find the minimal 

distance between solutions of the mutant strain relative to the wild type solution. The 

defined objective function is solved using quadratic programming. However, MOMA 
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is not able to predict the optimal set of gene to be removed in order to achieve the 

optimal production. Thus, MOMA is then hybridized with DE to overcome the 

limitations aforementioned.  

 

 

 

 

1.2 Background of Problem 

 

 

There are a series of modeling frameworks such as OptKnock, OptGene and 

OptReg have been developed. These frameworks highlighted continuous efforts on the 

advancement of in silico metabolic engineering. Optknock, the first systematic 

optimization-based method is developed for suggesting gene knockout strategies for 

biochemical overproduction by coupling the production of a desired compound with 

cellular (Burgard et al., 2003). OptReg which is the upgraded version of OptKnock 

also include the modulation on pathways by up- or down-regulating reactions besides 

knocking them out to maximize the production of desired compound.  

 

 

From a metabolic engineering perspective, such models can be used for 

computer-aided design of optimal genetic and culture condition manipulation 

strategies to improve the production of industrially relevant compounds (Machado and 

Herrgård, 2015). However, given the size of metabolic networks, the exhaustive 

analysis of multiple simultaneous genetic manipulations becomes computationally 

infeasible. The aforementioned properties are also the cause to the drawbacks of these 

approaches which it tends to fall into premature convergence and takes high 

computational time to find the global optima.  

 

 

OptKnock, the bilevel optimization where the outer optimization layer 

maximizes the product yield, while the inner layer optimizes for the cellular growth. 

The limitation of this framework is the degeneracy in the solution of inner problem, 

which sometimes result in the overly optimistic predictions and lead to strain designs 
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that are not effectively growth-coupled. This drawback has laid the foundation for a 

diversity of bilevel methods for rational strain designs that take the consideration to 

ensure that the production of desired compound is produced in maximum amount 

without abandoning the growth characteristic of the production host. 

 

 

These common used framework employ Mixed Integer Linear Programming 

(MILP) to formulate the problem where it can be used to find a globally optimal 

solution. This formulation can lead to worst case for the computational cost, increase 

exponentially with the number of reaction deletions. The approach that implement 

heuristic optimization strategies to cope with complex optimization problems cannot 

guarantee to find global optimal solutions. It often finds sufficiently good solutions 

with a reasonable computational cost. This drawback indicates that the approach is 

lack in the accuracy to predict the optimal solutions.  

 

 

The hybrid algorithm of DE and MOMA is proposed in this study to solve the 

aforementioned drawback of previous approach. This hybrid algorithm is the 

combination of evolutionary algorithm and constraint based method. The 

combinatorial problem can be solved with the implementation of DE while to predict 

the effect of knocking out genes is portrayed by MOMA. DE is known to be one of 

the algorithm commonly used to solve a complex problem by having operator 

(crossover, mutation and selection) that can predict the optimal solution within the 

minimum computation cost. The probability of having overly optimistic predictions 

can be encounter with the help of implementing MOMA, as the objective function is 

to reduce the flux distribution between wild type and mutant. This feature shows that 

genetic perturbations that occur to the metabolic network is being considered by 

MOMA.  
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1.3 Statement of Problem 

 

 

The overproduction of desired compound can be achieved with the advent of 

in silico metabolic engineering method. However, it is a challenging task in identifying 

the optimal genes to be knockout that eventually become the obstacle to optimize the 

production to its maximum yield. The process of identification nonessential genes 

suffers from problems such as premature convergence, high computational cost and 

the accuracy of optimal solutions cannot be guaranteed.  

 

 

The complexity of metabolic network has made the process to identify optimal 

genes to be knockout difficult. This is because the network is entangled and the 

modification of the genes cannot be done without a thorough study on the genome. 

High number of reactions available in the genome-scale metabolic model led to a 

combinatorial problem and cause high computational cost in order to converge to 

global optimal solutions.  

 

 

Therefore, the main problem in this research is the unoptimised metabolites 

production because the nonessential genes that prevent the production to be optimized 

are hardly to be diagnosed and need to be knockout. The difficulty to discover the 

optimal genes to be knockout is due to high complexity of metabolic network. Thus, 

this research intends to address the aforementioned problems based on the following 

research questions: 

 

i. How to reduce the complexity of metabolic network in order to optimize the 

fumaric acid and lycopene production? 

ii. How to evaluate and validate the performance of the proposed hybrid 

algorithm in optimizing the metabolites production?  
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1.4 Research Goal 

 

 

The goal of this research is to propose a hybrid of Differential Evolution and 

Minimization of Metabolic Adjustment to reduce the complexity of metabolic network 

by identifying a near optimal set of gene knockout that leads to overproduction of 

fumaric acid and lycopene.  

 

 

 

 

1.5 Objectives 

 

 

The research target can be accomplished by conducting the following 

specified objectives.  

 

 

i. To develop a hybrid of Differential Evolution and Minimization of 

Metabolic Adjustment for reducing the metabolic network complexity 

that leads toward optimizing production of fumaric acid and lycopene. 

ii. To analyze the results of fitness values (biomass product couple yield, 

growth rate and production rate) of each metabolites and list of 

reactions deletions which correspond to the information of reactions 

and genes from the biological databases. 
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1.6 Scope of Study 

 

 

The scopes of this research are listed as following: 

i. Two datasets used are: 

a. Model iND750.xml downloaded from published literature by (Xu et al., 

2012b) derived from bigg.ucsd.edu/models/iND750 

b. Model yli v1.7.xml from published literature by (Nambou et al., 2015) 

ii. Format of dataset is in System Biology Markup Language (SBML). The 

biological processes of models are represented in SBML based on XML which 

is a readable language machine. This type of machine language gives features 

to any experimental data for exchanging information, storing and also fitting 

the parameters. The significant modifications made on genome models can be 

predicted accurately through this given features. 

iii. The software used is Constraints Based Reconstruction and Analysis 

(COBRA) Toolbox for constraint-based modeling which is implemented in 

MATLAB. 

iv. The proposed method is a hybrid of Minimization of Metabolic Adjustment 

and Differential Evolution to identify the near-optimal set of genes to be 

knocked out for production improvement. 

v. Metabolites production of fumaric acid in S. cerevisiae and lycopene in Y. 

lipolytica are the products focused in this research. 

 

 

 

 

1.7 Significant of Study 

 

 

In this study, the effect of modifications made on the genome model is 

simulated and explored to enhance the production of fumaric acid and lycopene 

through the implementation of computational algorithm. The significance of 

conducting this research is listed below: 
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i. The prospective enhancement of metabolites production is explored in 

the microbial cell factories. 

ii. Deliver better understanding of function at the cell level through the 

computational modeling and analysis that can lead to a better 

comprehension of fumaric acid and lycopene production from 

microbial cell factory. 

iii. The metabolites yield can be improved through the development of 

the hybrid algorithm that combines the optimization and constraint 

based modeling. 

iv. The near-optimal set of genes to be knockout suggested by the 

proposed hybrid algorithm can be reference for the researchers and 

biologist to conduct the laboratory experiment towards a more 

promising production in time effective manner. 

 

 

 

 

1.8 Thesis Outline 

 

 

Chapter 1 discussed a brief introduction to metabolites production and 

metabolic engineering included Differential Evolution and Minimization of Metabolic 

Adjustment. Background of problem which presented the existing issue in the related 

field and followed by the problem statements of this research is described in detail. 

The aim, objectives and scopes are also enclosed precisely. 

 

 

Chapter 2 presents some reviews of previous published literary works and other 

available sources on the existing algorithms used to analyze the genome-scale 

metabolic model. In addition, some information about metabolic engineering which 

comprises different groups of algorithms such as constraint-based analysis, 

optimization algorithms and hybrid algorithms are deliberated briefly. The reference 

materials related to this research topic that is helpful such as journals, articles and 

conference working papers are listed too.  



13 

 

 

Chapter 3 explains precisely the research methodology designed to conduct 

this research. The comprehensive illustration of activities covered are reviewed and 

divided according to each phases respectively for a better understanding. The 

information of data set chosen is elucidated. Then, the pre-requisite hardware and 

software as well as performance measurements that are being practiced for this 

research are explicitly presented. The proposed algorithms is presented in this chapter. 

 

 

Chapter 4 deliberates and reviews the flow implementation of the proposed 

hybrid algorithm, DEMOMA. Steps to pre-process the two data sets as a groundwork 

to have a compatible dataset. The discussion on the formulated steps in DEMOMA is 

also included. After that, the analysis of results obtained from the proposed hybrid 

algorithm is presented along with the explanation about the reactions and genes 

suggested to be removed that leads to the improvement in production of metabolites 

are also represented in this chapter. 

 

 

Chapter 5 concludes the contents of all formerly discussed chapters. 

Contributions, limitations and future works that can be conducted on this research are 

also being explained. 

 

 

 

 

1.9 Summary  

 

 

This chapter elaborates on the practice of metabolic engineering that is getting 

more consideration and the accomplishment of in silico modeling utilizing refined and 

mimic microbial cell factory to improve coveted metabolites. The exposition on the 

proposed algorithm that integrates constraint-based and optimization algorithms is also 

included. The aim of this research can be fulfilled once the objectives have been 

identified. The incoming chapter reviews the information about the existing algorithms 
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taken from published literary works. This is crucial to determine the most applicable 

algorithm to be implemented in this research to achieve the proposed objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 

 

 

 

REFERENCES 

 

Aghazadeh, F., and Meybodi, M. R. (2011). Learning bees algorithm for optimization. 

Paper presented at the International Conference on Information and Intelligent 

Computing. 

Alper, H., Jin, Y.-S., Moxley, J., and Stephanopoulos, G. (2005). Identifying gene 

targets for the metabolic engineering of lycopene biosynthesis in Escherichia 

coli. Metabolic engineering, 7(3), 155-164. 

Amorim-Carrilho, K., Cepeda, A., Fente, C., and Regal, P. (2014). Review of methods 

for analysis of carotenoids. TrAC Trends in Analytical Chemistry, 56, 49-73. 

Asadollahi, M. A., Maury, J., Patil, K. R., Schalk, M., Clark, A., and Nielsen, J. (2009). 

Enhancing sesquiterpene production in Saccharomyces cerevisiae through in 

silico driven metabolic engineering. Metabolic engineering, 11(6), 328-334. 

Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.-L., Molina-Jouve, C., and 

Nicaud, J.-M. (2009). Yarrowia lipolytica as a model for bio-oil production. 

Progress in lipid research, 48(6), 375-387. 

Bilecová-Rabajdová, M., Birková, A., Urban, P., Gregová, K., Durovcová, E., and 

Mareková, M. (2013). Naturally occurring substances and their role in chemo-

protective effects. Central European journal of public health, 21(4), 213. 

Brochado, A. R., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., and Patil, K. 

R. (2010). Improved vanillin production in baker's yeast through in silico 

design. Microbial cell factories, 9(1), 1. 

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel 

programming framework for identifying gene knockout strategies for 

microbial strain optimization. Biotechnology and bioengineering, 84(6), 647-

657. 

Cao, N., Du, J., Gong, C., and Tsao, G. (1996). Simultaneous Production and Recovery 

of Fumaric Acid from Immobilized Rhizopus oryzae with a Rotary Biofilm 



113 

 

 

Contactor and an Adsorption Column. Applied and environmental 

microbiology, 62(8), 2926-2931. 

Chavali, A. K., D’Auria, K. M., Hewlett, E. L., Pearson, R. D., and Papin, J. A. (2012). 

A metabolic network approach for the identification and prioritization of 

antimicrobial drug targets. Trends in microbiology, 20(3), 113-123. 

Chong, S. K., Mohamad, M. S., Salleh, A. H. M., Choon, Y. W., Chong, C. K., and 

Deris, S. (2014). A hybrid of ant colony optimization and minimization of 

metabolic adjustment to improve the production of succinic acid in Escherichia 

coli. Computers in biology and medicine, 49, 74-82. 

Ciccone, M. M., Cortese, F., Gesualdo, M., Carbonara, S., Zito, A., Ricci, G., et al. 

(2013). Dietary intake of carotenoids and their antioxidant and anti-

inflammatory effects in cardiovascular care. Mediators of inflammation, 2013. 

Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Distributed optimization by ant 

colonies. Paper presented at the Proceedings of the first European conference 

on artificial life, 134-142. 

Dbouk, T., and Harion, J.-L. (2015). Performance of Optimization Algorithms Applied 

to Large Nonlinear Constrained Problems. American Journal of Algorithms 

and Computing, 2(1), 32-56. 

Dorigo, M., and Stützle, T. (2010). Ant colony optimization: overview and recent 

advances. In Handbook of metaheuristics (pp. 227-263): Springer. 

Duarte, N. C., Herrgård, M. J., and Palsson, B. Ø. (2004). Reconstruction and 

validation of Saccharomyces cerevisiae iND750, a fully compartmentalized 

genome-scale metabolic model. Genome research, 14(7), 1298-1309. 

Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory. 

Paper presented at the Proceedings of the sixth international symposium on 

micro machine and human science, 39-43. 

Edwards, J. S., Covert, M., and Palsson, B. (2002). Metabolic modelling of microbes: 

the flux‐balance approach. Environmental microbiology, 4(3), 133-140. 

Eiben, A. E., and Smith, J. E. (2003). Introduction to evolutionary computing (Vol. 

53): Springer. 

Gowen, C. M., and Fong, S. S. (2011). Applications of systems biology towards 

microbial fuel production. Trends in microbiology, 19(10), 516-524. 

Haupt, R. L., and Haupt, S. E. (2004). Practical genetic algorithms: John Wiley & 

Sons. 



114 

 

 

Heider, S. A., Peters-Wendisch, P., Netzer, R., Stafnes, M., Brautaset, T., and 

Wendisch, V. F. (2014). Production and glucosylation of C50 and C40 

carotenoids by metabolically engineered Corynebacterium glutamicum. 

Applied microbiology and biotechnology, 98(3), 1223-1235. 

Hjersted, J., and Henson, M. (2009). Steady-state and dynamic flux balance analysis 

of ethanol production by Saccharomyces cerevisiae. IET systems biology, 3(3), 

167-179. 

Höffner, K., Harwood, S., and Barton, P. (2013). A reliable simulator for dynamic flux 

balance analysis. Biotechnology and bioengineering, 110(3), 792-802. 

Huang, Z., and Chen, Y. (2013). An improved differential evolution algorithm based 

on adaptive parameter. Journal of Control Science and Engineering, 2013, 3. 

Hwang, S.-F., and He, R.-S. (2006). A hybrid real-parameter genetic algorithm for 

function optimization. Advanced Engineering Informatics, 20(1), 7-21. 

Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002). Escherichia coli K-12 

undergoes adaptive evolution to achieve in silico predicted optimal growth. 

Nature, 420(6912), 186-189. 

Ilonen, J., Kamarainen, J.-K., and Lampinen, J. (2003). Differential evolution training 

algorithm for feed-forward neural networks. Neural Processing Letters, 17(1), 

93-105. 

Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: GA, 

PSO, and DE. Industrial Engineering and Management Systems, 11(3), 215-

223. 

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. 

Nucleic acids research, 28(1), 27-30. 

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization: 

Technical report-tr06, Erciyes university, engineering faculty, computer 

engineering departmento. Document Number) 

Karaboga, D., Gorkemli, B., Ozturk, C., and Karaboga, N. (2014). A comprehensive 

survey: artificial bee colony (ABC) algorithm and applications. Artificial 

Intelligence Review, 42(1), 21-57. 

Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003). Advances in flux balance 

analysis. Current opinion in biotechnology, 14(5), 491-496. 



115 

 

 

Kenealy, W., Zaady, E., du Preez, J. C., Stieglitz, B., and Goldberg, I. (1986). 

Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. 

Applied and environmental microbiology, 52(1), 128-133. 

Kim, J., and Reed, J. L. (2010). OptORF: Optimal metabolic and regulatory 

perturbations for metabolic engineering of microbial strains. BMC systems 

biology, 4(1), 1. 

Kim, P.-J., Lee, D.-Y., Kim, T. Y., Lee, K. H., Jeong, H., Lee, S. Y., et al. (2007). 

Metabolite essentiality elucidates robustness of Escherichia coli metabolism. 

Proceedings of the National Academy of Sciences, 104(34), 13638-13642. 

King, Z. A., Lloyd, C. J., Feist, A. M., and Palsson, B. O. (2015). Next-generation 

genome-scale models for metabolic engineering. Current opinion in 

biotechnology, 35, 23-29. 

Koo, C. L., Salleh, A. H. M., Mohamad, M. S., Deris, S., Omatu, S., and Yoshioka, 

M. (2014). A gene knockout strategy for succinate production using a hybrid 

algorithm of bees algorithm and minimization of metabolic adjustment. Paper 

presented at the Granular Computing (GrC), 2014 IEEE International 

Conference on, 131-136. 

Lampinen, J., and Zelinka, I. (2000). On stagnation of the differential evolution 

algorithm. Paper presented at the Proceedings of MENDEL, 76-83. 

Laporte, G., and Osman, I. H. (1996). Foreword. Annals of Operations Research, 

63(1), 1-2. 

Machado, D., and Herrgård, M. J. (2015). Co-evolution of strain design methods based 

on flux balance and elementary mode analysis. Metabolic Engineering 

Communications, 2, 85-92. 

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic flux balance analysis 

of diauxic growth in Escherichia coli. Biophysical journal, 83(3), 1331-1340. 

Mahadevan, R., and Schilling, C. (2003). The effects of alternate optimal solutions in 

constraint-based genome-scale metabolic models. Metabolic engineering, 

5(4), 264-276. 

Matthäus, F., Ketelhot, M., Gatter, M., and Barth, G. (2014). Production of lycopene 

in the non-carotenoid-producing yeast Yarrowia lipolytica. Applied and 

environmental microbiology, 80(5), 1660-1669. 



116 

 

 

Mohamed, A. W., Sabry, H. Z., and Khorshid, M. (2012). An alternative differential 

evolution algorithm for global optimization. Journal of Advanced Research, 

3(2), 149-165. 

Moonchai, S., Madlhoo, W., Jariyachavalit, K., Shimizu, H., Shioya, S., and 

Chauvatcharin, S. (2005). Application of a mathematical model and 

Differential Evolution algorithm approach to optimization of bacteriocin 

production by Lactococcus lactis C7. Bioprocess and biosystems engineering, 

28(1), 15-26. 

Moradi, S., Fatahi, L., and Razi, P. (2010). Finite element model updating using bees 

algorithm. Structural and Multidisciplinary Optimization, 42(2), 283-291. 

Nambou, K., Jian, X., Zhang, X., Wei, L., Lou, J., Madzak, C., et al. (2015). Flux 

Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by 

a Metabolically Engineered Strain of Yarrowia lipolytica. Metabolites, 5(4), 

794-813. 

Neri, F., and Tirronen, V. (2010). Recent advances in differential evolution: a survey 

and experimental analysis. Artificial Intelligence Review, 33(1-2), 61-106. 

Nesbitt, N. M., Baleanu-Gogonea, C., Cicchillo, R. M., Goodson, K., Iwig, D. F., 

Broadwater, J. A., et al. (2005). Expression, purification, and physical 

characterization of Escherichia coli lipoyl (octanoyl) transferase. Protein 

expression and purification, 39(2), 269-282. 

Neto, R. T., and Godinho Filho, M. (2013). Literature review regarding Ant Colony 

Optimization applied to scheduling problems: Guidelines for implementation 

and directions for future research. Engineering Applications of Artificial 

Intelligence, 26(1), 150-161. 

Nevoigt, E. (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. 

Microbiology and Molecular Biology Reviews, 72(3), 379-412. 

Nookaew, I., Olivares-Hernández, R., Bhumiratana, S., and Nielsen, J. (2011). 

Genome-scale metabolic models of Saccharomyces cerevisiae. In Yeast 

Systems Biology (pp. 445-463): Springer. 

Ohno, S., Furusawa, C., and Shimizu, H. (2013). In silico screening of triple reaction 

knockout Escherichia coli strains for overproduction of useful metabolites. 

Journal of bioscience and bioengineering, 115(2), 221-228. 

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nature 

biotechnology, 28(3), 245-248. 



117 

 

 

Park, J. M., Kim, T. Y., and Lee, S. Y. (2009). Constraints-based genome-scale 

metabolic simulation for systems metabolic engineering. Biotechnology 

advances, 27(6), 979-988. 

Patil, K., Rocha, I., Förster, J., and Nielsen, J. (2005a). Evolutionary programming as 

a platform for in silico metabolic engineering. BMC bioinformatics, 6(1), 1. 

Patil, K. R., Rocha, I., Förster, J., and Nielsen, J. (2005b). Evolutionary programming 

as a platform for in silico metabolic engineering. BMC bioinformatics, 6(1), 

308. 

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2011). The 

Bees Algorithm–A Novel Tool for Complex Optimisation. Paper presented at 

the Intelligent Production Machines and Systems-2nd I* PROMS Virtual 

International Conference 3-14 July 2006, 454. 

Price, N. D., Papin, J. A., Schilling, C. H., and Palsson, B. O. (2003). Genome-scale 

microbial in silico models: the constraints-based approach. Trends in 

biotechnology, 21(4), 162-169. 

Ranganathan, S., Tee, T. W., Chowdhury, A., Zomorrodi, A. R., Yoon, J. M., Fu, Y., 

et al. (2012). An integrated computational and experimental study for 

overproducing fatty acids in Escherichia coli. Metabolic engineering, 14(6), 

687-704. 

Rashid, A. H. A., Choon, Y. W., Mohamad, M. S., Chai, L. E., Chong, C. K., Deris, 

S., et al. (2013). Producing succinic acid in yeast using a hybrid of differential 

evolution and flux balance analysis. Int. J. Bio-Sci. Bio-Technol.(IJBSBT), 

5(6), 91-100. 

Rocha, M., Maia, P., Mendes, R., Pinto, J. P., Ferreira, E. C., Nielsen, J., et al. (2008). 

Natural computation meta-heuristics for the in silico optimization of microbial 

strains. BMC bioinformatics, 9(1), 499. 

Rogalsky, T., Kocabiyik, S., and Derksen, R. (2000). Differential evolution in 

aerodynamic optimization. Canadian Aeronautics and Space Journal, 46(4), 

183-190. 

Salleh, A. H. M., Mohamad, M. S., Deris, S., Omatu, S., Fdez-Riverola, F., and 

Corchado, J. M. (2015). Gene knockout identification for metabolite 

production improvement using a hybrid of genetic ant colony optimization and 

flux balance analysis. Biotechnology and Bioprocess Engineering, 20(4), 685-

693. 



118 

 

 

Segre, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural and 

perturbed metabolic networks. Proceedings of the National Academy of 

Sciences, 99(23), 15112-15117. 

Selvi, V., and Umarani, D. R. (2010). Comparative analysis of ant colony and particle 

swarm optimization techniques. International Journal of Computer 

Applications (0975–8887), 5(4). 

Shlomi, T., Berkman, O., and Ruppin, E. (2005). Regulatory on/off minimization of 

metabolic flux changes after genetic perturbations. Proceedings of the National 

Academy of Sciences of the United States of America, 102(21), 7695-7700. 

Sivanandam, S., and Deepa, S. (2008). Introduction to particle swarm optimization 

and ant colony optimization. In Introduction to Genetic Algorithms (pp. 403-

424): Springer. 

Soons, Z. I., Ferreira, E. C., Patil, K. R., and Rocha, I. (2013). Identification of 

metabolic engineering targets through analysis of optimal and sub-optimal 

routes. PloS one, 8(4), e61648. 

Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International 

Transactions in Operational Research, 22(1), 3-18. 

Storn, R. (1996). On the usage of differential evolution for function optimization. Paper 

presented at the Fuzzy Information Processing Society, 1996. NAFIPS., 1996 

Biennial Conference of the North American, 519-523. 

Storn, R., and Price, K. (1997). Differential evolution–a simple and efficient heuristic 

for global optimization over continuous spaces. Journal of global optimization, 

11(4), 341-359. 

Sun, Y., Sun, L., Shang, F., and Yan, G. (2016). Enhanced production of β-carotene 

in recombinant Saccharomyces cerevisiae by inverse metabolic engineering 

with supplementation of unsaturated fatty acids. Process Biochemistry, 51(5), 

568-577. 

Tang, P. W., Choon, Y. W., Mohamad, M. S., Deris, S., and Napis, S. (2015). 

Optimising the production of succinate and lactate in Escherichia coli using a 

hybrid of artificial bee colony algorithm and minimisation of metabolic 

adjustment. Journal of bioscience and bioengineering, 119(3), 363-368. 

Wang, Y., Liu, X., Robbins, K., and Rekaya, R. (2010). AntEpiSeeker: detecting 

epistatic interactions for case-control studies using a two-stage ant colony 

optimization algorithm. BMC research notes, 3(1), 1. 



119 

 

 

Wu, C.-Y., and Tseng, K.-Y. (2008). Topology optimization of structure using 

differential evolution. J. Syst. Cybern. Inform, 6(1), 46-51. 

Xu, G., Liu, L., and Chen, J. (2012a). Reconstruction of cytosolic fumaric acid 

biosynthetic pathways in Saccharomyces cerevisiae. Microbial cell factories, 

11(1), 1. 

Xu, G., Zou, W., Chen, X., Xu, N., Liu, L., and Chen, J. (2012b). Fumaric acid 

production in Saccharomyces cerevisiae by in silico aided metabolic 

engineering. PloS one, 7(12), e52086. 

Xue, X.-d., Xu, B., Wang, H.-l., and Jiang, C.-p. (2010). The basic principle and 

application of ant colony optimization algorithm. Paper presented at the 

Artificial Intelligence and Education (ICAIE), 2010 International Conference 

on, 358-360. 

Yen, J. Y. (2015). Designing metabolic engineering strategies with genome-scale 

metabolic flux modeling. Clinical Epidemiology, 7, 149-160. 

Yusup, N., Zain, A. M., and Hashim, S. Z. M. (2012). Evolutionary techniques in 

optimizing machining parameters: Review and recent applications (2007–

2011). Expert Systems with Applications, 39(10), 9909-9927. 

Zhao, Q., and Kurata, H. (2006). Comparison of the Prediction Abilities of FBA, 

MOMA and ROOM for a pykF Mutant of E. coli. Paper presented at the The 

17th International Conference on Genome Informatics, 107-101. 

Zhu, Q., and Jackson, E. N. (2015). Metabolic engineering of Yarrowia lipolytica for 

industrial applications. Current opinion in biotechnology, 36, 65-72. 

 

 

 

 

 

 

 

 

 

 

 

 




