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Abstract: This research aims at proposing a new artificial intelligence approach (namely RVM-ICA)
which is based on the Relevance Vector Machine (RVM) and the Imperialist Competitive Algorithm
(ICA) optimization for landslide susceptibility modeling. A Geographic Information System (GIS)
spatial database was generated from Lang Son city in Lang Son province (Vietnam). This GIS database
includes a landslide inventory map and fourteen landslide conditioning factors. The suitability of
these factors for landslide susceptibility modeling in the study area was verified by the Information
Gain Ratio (IGR) technique. A landslide susceptibility prediction model based on RVM-ICA and
the GIS database was established by training and prediction phases. The predictive capability of
the new approach was evaluated by calculations of sensitivity, specificity, accuracy, and the area
under the Receiver Operating Characteristic curve (AUC). In addition, to assess the applicability of
the proposed model, two state-of-the-art soft computing techniques including the support vector
machine (SVM) and logistic regression (LR) were used as benchmark methods. The results of this
study show that RVM-ICA with AUC = 0.92 achieved a high goodness-of-fit based on both the

Remote Sens. 2018, 10, 1538; doi:10.3390/rs10101538 www.mdpi.com/journal/remotesensing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/328816522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5091-6947
https://orcid.org/0000-0001-9668-8687
https://orcid.org/0000-0001-9707-840X
https://orcid.org/0000-0001-7601-9208
https://orcid.org/0000-0003-0409-8263
http://dx.doi.org/10.3390/rs10101538
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/10/1538?type=check_update&version=2


Remote Sens. 2018, 10, 1538 2 of 27

training and testing datasets. The predictive capability of RVM-ICA outperformed those of SVM
with AUC = 0.91 and LR with AUC = 0.87. The experimental results confirm that the newly proposed
model is a very promising alternative to assist planners and decision makers in the task of managing
landslide prone areas.

Keywords: hybrid intelligence; relevance vector machine; imperialist competitive algorithm; shallow
landslide; GIS; Vietnam

1. Introduction

Landslides are phenomena of large ground movements that are mainly caused by either climatic
or geophysical factors. These natural hazards often occur along one or several slip surfaces due to
shear displacement of soil and rock [1,2]. Besides climatic and geophysical factors, environmental
changes caused by humans, which alter the landforms have also been recognized as triggering factors
of landslides [3]. A landslide is a mass movement of slope-forming materials where the shear stress on
a slope is higher than the shear strength of the slope-forming materials [4].

Despite the fact that landslides occur frequently worldwide, the mechanism, the scale, and the
risk of landslides in many regions have not been thoroughly explored and understood [5–11]. Research
on landslide susceptibility and mitigation in many developing countries, especially in Vietnam, is still
limited. This fact has been demonstrated through a high number of human casualties and economic
losses caused by landslide incidences [12].

Earthquake and rainfall are widely recognized as the two main causes of landslide [13]. In Vietnam,
due to its typical geographic and climatic features, rainfall is the dominant factor of landslide
occurrence [14]. In recent years, because of the global climate change, extreme weather phenomena,
such as torrential rainfalls and tropical rainstorms, appear frequently [15,16]. Therefore, it is of
urgent need to construct a landslide susceptibility model with particular consideration of rainfall
as a triggering factor. This model may provide immense help to assess the likelihood of landslide
occurrence in the future and to establish appropriate strategies for hazard mitigation [17,18].

Some studies were conducted on engineering geology, slope stability, and landsliding by
researchers between the 1960s and 1970s. Some of these studies were done by consulting engineering
geologists which were not published [19]. However, during this decade some papers were published
on engineering geologic, landslide and slope stability. The 1970s was graphically landslide-based
where conditioning/controlling factor effects on landslide occurrence were known such as slope
exposure [19]. The U.S. Geological Survey undertook extensive regional mapping of landslide deposits,
analysis of the costs of damage produced by landsliding, preparation of regional slope maps, while the
preparation of slope stability maps were the most important productions in the 1970s [20,21]. On the
other word, studies of landslide susceptibility and hazard mapping are referred to 1970s by Nilsen et
al. [19]; and Kienholz [22,23].

A susceptibility map for a region can significantly decrease the negative effects of landslides. Based
on such a map, intact areas that are potentially damaged by future landslides can be clearly detected.
Accordingly, landslide hazard mitigation and prevention can be achieved either by constructing
landslide defense structures or by relocation of the local communities and industrial facilities in highly
susceptible areas to safer areas. In practice, the establishment of a susceptibility map is the most
important step in landslide hazard management [18,24]. This is because this map is an effective tool to
quantify the level of landslide hazard reflected by the spatial likelihood of the landslide occurrences
with respect to various conditions of topography, geography, vegetation, climate, and land-use [25–27].

In recent years, the advancements of GIS technology have paved the way for various data-driven
landslide susceptibility models. GIS has been extensively used and demonstrated its feasibility
and effectiveness for many types of natural hazard mapping including rainfall-induced shallow
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landslides [26,28–30]. The GIS database, which consists of a historical landslide inventory and a set
of landslide conditioning factors, is first established. Statistical and machine learning models are
then employed to generalize a decision boundary that distinguishes landslide areas from the entire
study region.

Statistical models including step-wise weight ratio assessment (SWARA) [31], multi-criteria
decision evaluation (MCDE) [32,33], logistic regression (LR) [34–36], bivariate and multivariate
regression [37,38], analytical hierarchy process (AHP) [4,39,40], multivariate adaptive regression
spline (MDRS) [41,42], weight of evidence (WoE) [43,44], evidential belief function (EBF) [45–47],
discriminant analysis (DA) [48], index of entropy (IOE) [49], random forest (RF) [50,51], and Chebyshev
theorem [52] have proven their feasibility in solving the task of interest. Among the above-mentioned
models, LR has been applied widely and efficiently in many landslide studies [53]. The main principle
of the LR algorithm is to apply maximum likelihood estimation to form a multivariate regression
relation between independent variables (influencing factors) and a dependent variable (landslide
or non-landslide status); such a relation is then used to estimate the probability of a landslide
occurrence. However, due to the superior capability in multivariate and nonlinear modeling, machine
learning-based methods have gained more attention from the academic community.

Various machine learning based approaches for mapping of landslide susceptibility including
support vector machines (SVM) [54–56], Adaptive neuro-fuzzyinference system (ANFIS) [57–59],
artificial neural network (ANN) [45], Fuzzy Shannon entropy [60], decision trees (DT) [54], naive Bayes
(NB) [61], naive Bayes tree (NBT) [62], rotation forest ensembles (RFE) [63], multivariate adaptive
regression spline (MARS) [61], Bayesian logistic regression (BLR) [64], logistic model tree (LMT) [63],
and fuzzy logic system [65] have been put forward.

Among these, SVM is also a powerful method for landslide modeling [6]. The SVM method uses
statistical learning theory to find an optimum linear hyper-plane to separate two classes of landslide
and non-landslide. In this study, the nonlinear data is converted into the linearly separable data in a
high-dimensional feature space using the radial basis function (RBF) kernel function (KF) [66]. Recent
works reported by Reichenbach, et al. [67] and Huang and Zhao [68] point out an increasing trend of
applying GIS-based machine learning models for landslide susceptibility mapping. Although a variety
of models have been proposed, the investigation of other advanced machine learning approaches used
for tackling the problem of interest is very necessary. It is because data sets collected in different study
regions have unique characteristics. Thus, a model may perform well in one region but may not be
suitable for another region. This fact has been clearly demonstrated in the comparative works of Pham,
et al. [69], Wang, et al. [70], and Bui, et al. [45].

In addition, when applying machine learning models, an important issue is how to appropriately
determine their hyper parameters. The task of hyper parameter setting is widely known as the model
selection problem [71]. This is a crucial task because hyper parameters affect the learning process and
therefore strongly influence its generalization capability. If the model parameters are not set properly,
the constructed machine learning models suffer from either over fitting or under fitting, which clearly
undermines their prediction processes.

It is also to be noted that the problem of model selection is far from being trivial. The first challenge
is that a machine learning method may have many hyper parameters. The second challenge is that the
hyper parameters are searched in continuous ranges; thus, there are infinite parameter combinations.
To tackle these challenges, many researchers have resorted to metaheuristic algorithms such as the
Artificial Bee Colony [72], the Differential Flower Pollination [73], the Particle Swarm Optimization [74],
the Symbiotic Organisms Search [75], the Firefly Algorithm [76], and the Genetic Algorithm [77].
The integration of machine learning and metaheuristic algorithms has been demonstrated to be an
effective tool for solving complex problems including landslide spatial prediction [78,79].

In this research context, the current study aims at proposing a new artificial intelligent method
for landslide spatial modeling that hybridizes the Relevance Vector Machine (RVM) [80] and the
Imperialist Competitive Algorithm (ICA) [81]. RVM is a powerful machine learning method, which
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operates on the theory of Bayesian inference. Successful implementations of RVM in various fields
have been reported by previous studies [82]; nevertheless, its application in rainfall-induced shallow
landslide modeling is still very limited. Therefore, our research work is an attempt to fill this gap in the
literature. It is of note that the learning phase of RVM requires the determination of the Radial Basis
Function width as a hyper parameter. For determining this parameter of RVM, the ICA metaheuristic
method is employed.

To the best of our knowledge, none of the previous studies have investigated this integration
of RVM and ICA for spatial prediction of rainfall-induced shallow landslide as well as of other
natural hazards. In addition, a GIS database for the study area of Lang Son district in the northern
part of Vietnam was established. The performance of the new hybrid model, named as RVM-ICA,
was compared with those of the SVM and LR. The receiver operating characteristic (ROC) curve
and other statistical indicators (sensitivity, specificity, and accuracy) were selected as performance
measurement metrics.

2. Study Area and Data Acquisition

2.1. Description of the Study Area

Lang Son city is considered as the case study to implement the RVM-ICA model. The area under
investigation for landslide susceptibility is located in Lang Son province (Figure 1). The study area
belongs to the northeastern part of Vietnam; it lies between the longitudes of 106◦41′34′′E– 106◦48′32′′E
and the latitudes of 21◦49′43′′N–21◦57′13′′N. The study area covers about 101.3 km2. The elevation
of the Lang Son varies from 214 to 800 m above standard sea level with a mean elevation of 325.6 m.
The slope angles range from 0 to 80◦. Six lithological categories are observed in the study area
including tuff, sandstone, siltstone, quaternary deposit (gritstone, breccia, sand and clay), basalt, and
conglomerate [83,84]. Tuff occupies the largest area (29.2%), followed by siltstone (26.4%), gritstone,
breccia, sand, and clay (19.8%), conglomerate (11.6%), sandstone (9.2%), and basalt (3.8%). Quaternary
sediments, which consist of mainly grit/gritstone (sandstones composed of angular sand grains
and small pebbles), breccia (composed of angular particles which are larger than two millimeters in
diameter), pebble, boulder, sand, and clay. Seven land use types covering the study area are productive
forest land (PDL), paddy land (PL), barren land (BL), protective forest land (PTL), residential areas
(RA), crop land (PCL), and water surface land (WSL). PDL dominates the landscape with 32.3% of the
area, followed by PL (25.9%), BL (19.0%), RA (13.2%), PTL (7.5%), WSL (1.6%), and PCL (0.4%) [85].
The soil types were classified into eight categories including ferralic acrisols (FA) (76.4%), dystric
gleysols (DG) (6.3%), rhodic ferralsols (RF) (7.4%), eutric fluvisols (EF) (5.6%), plinthic acrisols (PA)
(1.6%), dystric fluvisols (DF) (1.2%), water surface (WS) (1.2%), and rocky mountain surface (RMS)
(0.2%) [85].

Monsoon winds (seasonal reversing winds) affect the study area by altering the regional
precipitation [85]. The average annual rainfall varies from 1200 to 1600 mm. The typical rainy
season is from May to September. Based on historical records, high amount of rainfall is the main
landslide triggering factor in the study area. According to meteorological data analyses, during the
past 20 years, the annual average temperature ranged from 17 to 22 ◦C. The highest and lowest average
monthly temperatures are 27.5 ◦C in July and 12.5 ◦C in January, respectively. Additionally, the annual
average relative humidity in the study area is between 80% and 85%. The highest humidity is recorded
in August while the lowest humidity is observed in December [85].
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Figure 1. Location of the study area and landslide inventory.

2.2. Data Preparation

2.2.1. Landslide Inventory Map

For the purpose of landslide spatial modeling, information regarding the landslide inventory
and landslide influencing factors must be collected from the study area. The landslide inventory
contains landslide events that occurred in the past. The landslide affecting factors cover a variety of
aspects including geomorphological, geological, hydrological, and climatic factors which influence the
likelihood of landslide occurrences.

In the study area, shallow soil slides and debris flows triggered by rainfall are the subject of
interest. The reason is that no earthquake-induced landslides have been recorded in the region. It is
of note that a small numbers of rock fall events were removed from the inventory due to their rarity,
insignificant damage, and also of a different mechanism. The landslide inventory map used in this
study was constructed by three means:

(i) The locations of landslides, occurring before the year 2003, are identified by the interpretation of
aerial photographs with resolution of about 1 m (obtained from the Aerial Photo-Topography
Company, 2003) and field survey data.

(ii) The landslide inventory maps established in 2006 and 2009 are obtained from the previous
research works [86,87].

(iii) Some recent landslide locations were identified during field works by Nguyen et al. [88].

The rationale of the landslide prediction model is based on the assumption that the factors that
triggered landslide events in the past will cause the landslide occurrences in the future [79]. Thus,
determining the landslide conditioning factors is the critical issue for constructing an accurate landslide
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susceptibility map [89]. In this study, a total of 101 landslide locations were collected to establish the
landslide inventory map (see Figures 1 and 2). They are soil mixed boulder slides, which occurred
during the last 15 years. These landslide locations are obtained from three projects carried out in
the previous research work Bui, Pradhan, Revhaug, Nguyen, Pham, and Bui [85]. It is proper to
note that the 101 landslide locations are divided into two groups: group 1 including 69 locations
is used for model training and group 2 consisting of 32 locations is employed for model validation.
The number of pixels in the two groups of data is 2410 and 1045. In other words, the training set
occupies ~70% of the data and the validation set consists of ~30% of the data. To complete the data set
used for machine learning model establishment, data samples belonging to non-landslide locations are
randomly sampled from the GIS database with the help of the ArcGIS 10.2 package.

  

Figure 2. Photo of two recent landslides at the Lang Son area (the photos were taken on October 2016
by Ha Viet Pham).

2.2.2. Landslide Conditioning Factors

Furthermore, fourteen landslide conditioning factors, used in this study, are categorized into two
groups of geo-morphometrical and geographical factors. The geo-morphometrical factors include slope
degree, slope length, aspect, curvature, elevation, topographic wetness index (TWI), stream power
index (SPI), sediment transport index (STI), valley depth, and toposhade. The geo-environmental
factors comprise lithology, land use, soil type, and distance to faults. The selection of these factors
is based on a literature reviewing process [8,45], a previous analysis by Nguyen et al. [88], and the
availability of data in the study region.

To retrieve the geo-morphometrical factors, a digital elevation model (DEM) was constructed
from the National Topographic Maps at scale of 1:5000 for Lang Son city. The resolution of the DEM is
5 m × 5 m and size of the DEM is 2567 and 2954 pixels. In this study, a raster resolution of 20 m was
used for all the conditioning factors in the landslide modeling process. Based on the constructed DEM,
slope degree, slope length, aspect, curvature, elevation, TWI, SPI, STI, valley depth, and toposhade
were extracted using the ArcGIS 10.2 software package. Continuous values of these factors (except
aspect) were reclassified into classes using Jenks Natural Break optimization method [67] available in
ArcGIS 10. 2, as suggested and explained by Hung et al. [90].

Slope angle is the major parameter for the slope constancy analysis [91]. Slope angle is very
frequently used in landslide susceptibility studies [92]. The slope map was generated and classified
into six classes (Figure 3a, Table 1).



Remote Sens. 2018, 10, 1538 7 of 27

Slope length has been considered an important factor in landslide activity since longer slope
lengths increase the potential of erosive agents to dislodge and transport materials downslope [93].
The slope length was prepared with five classes (Figure 3b, Table 1).

The slope aspect describes the direction of the slope and has an important effect on the rainfall,
wind, and sunlight exposure. Consequently, this factor has been frequently applied in landslide
susceptibility analyses by many scholars [94]. The aspect map was built with nine classes including
flat, north, northeast, east, southeast, south, south-west, west, northwest (Figure 3c, Table 1). Surface
curvature at any point is the arc of a line. It is formed by the intersection of the surface with a specific
alignment passing through this point. The value of the curvature can be either below, above, or equal
to 0.05, representing the concave, convex, or flat shaped curvatures, respectively [95]. A curvature
map was generated in five categories (Figure 3d, Table 1). Elevation is one of the important factors in
the occurrence of landslides. The height area affects the loading on the slope and thus enhances the
chances of landslides if the sliding plain has dip (orientation) towards the open excavation [96].

The elevation map was classified into seven classes (Figure 3e, Table 1). The topographic wetness
index (TWI) is a hydrological factor that is affected by the slope and the specific catchment area of a
watershed [97]. Moreover, the probability of landslide occurrence will be decreased when the TWI
increases [98]. The TWI is calculated as follows:

TWI = Ln (α/tanβ) (1)

where α is cumulative upslope area drainage through a point (per unit contour length) and β is the
angle of the slope at the point. Accordingly, the TWI map for the study area was classified into six
classes (Figure 3f, Table 1).

The stream power index (SPI) demonstrates the erosion power of the stream in a region [99].
These hydrological factors are defined based on the specific catchment area (AS) which is proportional
to the discharge (Q) in a watershed. It is computed as follows:

SPI = As tan β (2)

where As is the specific catchment area, and β is the local slope gradient (in degree) [100].
The SPI map was prepared and categorized into six classes (Figure 3g, Table 1). In addition,

the sediment transport index (STI) indicates the amount of sediment transported by overland flow.
This hydrological factor is based on the catchment evolution erosion theories and the transport capacity
limiting sediment flux [101,102]. The STI is calculated from the following formula [103]:

STI =
(

As

22.13

)0.6( sin β

0.0896

)1.3

(3)

where As is the specific catchment area (m2/m) and β is the slope gradient [100]. In this study, the STI
map was divided into six classes (Figure 3h, Table 1).

The valley depth (VD) factor is defined as the difference in elevation between the pixel and the
upstream ridge; this factor has a major contribution in the slope instability assessment [104]. The VD
map for this study was constructed with six classes (Figure 3i, Table 1).

The toposhape as one of the important conditioning factors in occurrence of landslide in the
current study was created and categorized into ten classes namely ridge, saddle, flat, ravine, convex
hillside, saddle hillside, slope hillside, concave hillside, inflection hillside, and unknown hillside as
suggested in [105,106] (Figure 3j, Table 1). Land use has a significant influence on slope instability
and is widely considered in landslide susceptibility [107]. The land use map of the study area with
seven classes (Figure 3k, Table 1) was constructed based on the land use status map at 1:50,000 scale;
this land use map was provided by the local authority [88]. The dominant land use type in the study
area is the forest land (43.4%) in which 35.7% and 7.7% of the land belong to productive and protective
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forests, respectively. Additionally, paddy land covers 21.5% of the total study area, followed by barren
land (20.4%) and residential areas (6.9%), respectively.

Figure 3. Cont.
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Figure 3. Landslide conditioning factors used in the study area: (a) Slope; (b) Slope length; (c) Aspect;
(d) Curvature; (e) Elevation; (f) TWI; (g) SPI; (h) STI; (i) Valley depth; (j) Topo-shape; (k) Land use
(RA: Residential Area; PTL: Protective Forest Land; PDL: Productive Forest Land; PL: Paddy Land;
BL: Barren Land; PCL: Perennial Crop Land; WSL: Water Surface Land); (l) Soil type (FA: Ferralic
Acrisols; DG: Dystric Gleysols; PA: Plinthic Acrisols; WS: Water Surface; DF: Dystric Fluvisols; EF:
Eutric Fluvisols; RF: Rhodic Ferralsols; RMS: Rocky Mountain Surface; (m) Lithology; (n) Distance
to faults.

Soil has been considered an important factor in the occurrence of landslides due to its important
role in instability of the slopes [108]. The soil type map with a scale of 1:100,000 was obtained from
National Pedology Maps (NPM) [88]. Ferralic acrisols (FA) is the dominant soil type in the total study
area (76.4%). It is followed by rhodic ferralsols (RF) (7.4%), dystric gleysols (DG) (6.3%), eutric fluvisols
(EF) (5.6%), plinthic acrisols (PA) (1.6%), and dystric fluvisols (DF) (1.2%). Water surface (WS) occupies
about 1.2% of the area and rocky mountain surface (RMS) forms 0.2% of the study region (Figure 3l,
Table 1).

Lithology plays a very important role in the landslide occurrences. Soft and weathered rocks
are more vulnerable than hard unjointed rocks thus lithological units have different vulnerability
degrees to landslides [109,110]. In this study, the lithology map is compiled based on four tiles of the
Geological and Mineral Resources Map (GMRM) of Vietnam at the scale of 1:50,000 [84] in ArcGIS 10.2.
The study area consists of various types of lithological units (Figure 3m, Table 1).

Moreover, distance to faults is one of the most important affecting factors of landslides as slope
may fail along the faults depending on the nature and orientation of the faults [111]. The distance to
faults map with five categories (Figure 3n) was constructed from the fault lines of the lithological data
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with the help of ArcGIS 10.2 (Table 1). Table 1 and Figure 3 show all fourteen conditioning factors and
their classifications used in the current study.

Table 1. Landslide conditioning factors and their classes.

No. Factors Classes

1 Slope (degree)
(1) 0–8.1; (2) 8.2–15.1; (3) 15.2–24.3; (4) 24.4–31.5; (5) 31.6–41.1;

(6) 41.2–80.4

2 Slope length (m) (1) 0–8.6; (2) 8.7–34.8; (3) 34.9–61.1; (4) 61.2–84.9; (5) 85–774.2

3 Aspect (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7) SW; (8) W; (9) NW

4 Curvature (1) >−2.1; (2) −2–−0.1; (3) −0.1–0.1; (4) 0.1–2.1; (5) <2.1

5 Elevation (m)
(1) 214.7–269.7; (2) 269.8–295.6; (3) 295.7–326.5; (4) 326.6–373.6;

(5) 373.7–413.9; (6) 432–553.4; (7) 553.5–800.2

6 TWI (1) 1.3–4.2; (2) 4.3–5.3; (3) 5.4–6.4; (4) 6.5–8.1; (5) 8.2–9.4; (6) 9.5–20.8

7 SPI
(1) 0–20.2; (2) 20.3–80.8; (3) 80.9–151.8; (4) 151.9–211.8; (5) 211.9–270.1;

(6) >270.1

8 STI (1) 0–6.8; (2) 6.9–22; (3) 22.1–38.2; (4) 38.3–44.2; (5) 44.3–72.9; (6) >72.9

9 Valley depth (m)
(1) −128.8–−12.1; (2) −12–13.4; (3) 13.5–32.2; (4) 32.3–53.7; (5) 53.8–85.9;

(6) 86–213.4

10 Toposhade
(1) Ridge; (2) Saddle; (3) Flat; (4) Ravine; (5) Convex hillside; (6) Saddle

hillside; (7) Slope hillside; (8) Concave hillside; (9) Inflection hillside;
(10) Unknown hillside

11 Land use (1) RA; (2) PTL; (3) PDL; (4) PL; (5) BL; (6) PCL; (7) WSL

12 Soil type (1) FA; (2) DG; (3) PA; (4) WS; (5) DF; (6) EF; (7) RF; (8) RMS

13 Lithology
(1) Tuff; (2) Sandstone; (3) Siltstone; (4) Quaternary; (5) Basalt;

(6) Conglomerate

14 Distance to fault (m) (1) 0–100; (2) 100–200; (3) 200–300; (4) 300–400; (5) >400

3. Methodology

3.1. Relevance Vector Machine

Relevance Vector Machine (RVM), proposed by Tipping [112], is a popular machine learning
technique, which can construct nonlinear classification models with probabilistic outcomes.
This algorithm is essentially a supervised pattern classification problem relying on a training set
of feature vectors X = {xn}

N
n=1 with the outputs C = {cn}

2
n=1. Herein, C1 and C2 denote the landslide

and non-landslide data samples, respectively. In landslide modeling, the task of interest is to establish
a nonlinear classification model that assigns the set of feature vectors into two decision regions, which
corresponds to the two aforementioned class labels. The problem at hand is non-trivial due to the
multivariate, complex, and uncertain natures of landslide prediction.

Thus, RVM is deemed very suitable for modeling the task of interest. Similar to the concept of
SVM, RVM first maps training data samples from the original input space to a higher dimensional space
(called feature space). Accordingly, a hyperplane used for discriminating the data can be constructed
in the feature space. The concept of RVM is demonstrated in Figure 4.
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Figure 4. Illustrated concept of RVM classification model [113].

Without the loss of generality, the outputs Ci are assigned with two possible outcomes: 0 for
no landslide occurrence and 1 for landslide occurrence. The conditional distribution of landslide
occurrence given information of the landslide predisposing factors and the probabilistic model is
provided as follows:

P(ci|x, w) = σ(y) (4)

where σ(y) = 1
1+e−y represents a logistic sigmoid function; and y denotes a linearly-weighted sum of

M basis functions:

y(x, w) =
M

∑
m=1

wmφm(x) + wo = w.φ (5)

where φ represents a Gaussian radial basis function. Its functional formula is stated as follows:

φ(xi, xj) = exp(
−||xi − xj||

2

2 × r2 ) (6)

where r represents the width of the radial basis function (RBF).
In this method, weights must be determined using a prior distribution function over the vector to

formulate a Bayesian training criterion. Additionally, to prevent an over-fitting problem (very large
values of w), achieving small weights in order to make a smooth classification boundary is the main
objective [80,114]. This can be attained by assigning a zero-mean Gaussian distribution on the weight
as follows [79]:

p(w|α) =
M

∏
m=1

N(wm|0, α−1
m ) (7)

where α is a vector of independent hyper-parameters; each element αm of the vector dictates how far its
associated weight Wm may vary from zero. Additionally, a sparse weight prior distribution is attained
by assigning a different variance parameter for each weight [112]. Thus, the prior distribution over w

is written in the following form [79]:

p(w|α) =
M

∏
m=1

N(wm|0, α−1
m ) = (2π)−M/2

M

∏
m=1

α1/2
m exp(−

αmw2
m

2
) (8)
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Given initial values of the hyper-parameter α and p(w|C, α) ∝ P(C|w)p(w|α), the most probable
weight µ can be found by maximizing the penalized negative log-likelihood function over w [79]:

log{P(C|w)p(w|α)} =
N

∑
i=1

[ci log yi + (1 − ci) log(1 − yi)]− 0.5wT Aw (9)

where A = diag (α1, α2, . . . , αm).
Furthermore, the least squares algorithm (LSA) is applied on weights iteratively and then the

Laplace approximation procedure to solve the above optimization problem is conducted; the most
probable weight µ and language its covariance Σ are computed as follows [79]:

µ = Σ·ϕT ·B·C Σ = [ϕT ·B·ϕ + A]
−1

(10)

where B = diag(β1, β2, . . . , βN) with βi = σ{y(xi)}·[1 − σ{y(xi)}].
The remarkable result when the optimization process terminates is that many elements of the

hyper parameter vector α approach infinity; therefore, the weight vector w only has a few non-zero
elements, which are considered as relevant vectors [112]. After finishing the training process, the vector
of model weight w is then used to predict the posterior of the class label Ci given an input vector x

utilizing Equation (4).
It is of note that the performance of RVM is dependent on the setting of the parameter r, which is

the RBF basis width. This parameter strongly influences the smoothness of the classification boundary
and therefore affects the model predictive capability [79]. A too smooth boundary may under-fit
the data; meanwhile, a too rough boundary may lead to over-fitting [71]. The process of selecting a
model parameter appropriately is widely known as a model selection problem. Since model selection
can be formulated as an optimization task, we employed Imperialist Competitive Algorithm (ICA)
optimization in this study as powerful metaheuristic to solve the model selection problem for RVM.
The ICA algorithm is described in the subsequent part of the study.

3.2. Imperialist Competitive Algorithm (ICA)

The Imperialist Competitive Algorithm (ICA), proposed by Atashpaz-Gargari and Lucas [81],
is inspired from the field of human social evolution. This algorithm belongs to the group of swarm
intelligence, which can effectively deal with continuous optimization problems [115]. As other
metaheuristics, ICA is specifically designed for solving optimization problems in which no exact
algorithm can be applied in polynomial time, also called NP-hard problem. The task of finding an
optimal value for the machine learning model can be classified as an NP-hard problem since interaction
between the model structure and the training data is very complex and there is an infinite number
of possible values of the tuning parameter. Since successful applications of ICA have been widely
observed [116], this algorithm can be helpful to assist the training phase of RVM by selecting an
optimal width of the radial basis function.

ICA is a population-based (metaheuristic optimization) stochastic search inspired by imperialistic
competition [81]. This algorithm attempts to mimic the social policy of imperialism in the real world.
When an empire rises, it dominates more colonies and takes advantage of their sources; if one empire
falls, other empires will compete to take its possessions. In ICA, individuals within the population
represent countries and they interact with each other to form empires that possess colonies (Figure 5).
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Figure 5. A framework population of the ICA algorithm.

ICA commences with an initial population and a pre-specified objective function. Based on the
objective function value, the most powerful countries are chosen as imperialists and the others are
colonies of them. The algorithm then simulates the competition among imperialists in order to acquire
more colonies. The best imperialist typically has more chance to occupy more colonies. A population
of ICA is illustrated in Figure 6.

 

it is noted that α represents a uniformly distributed random number, generated as follows 

)
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=
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Figure 6. Initial population of ICA.

After colonies have been assigned to each imperialist, these colonies move towards their
corresponding imperialists. These movements of colonies are demonstrated in Figure 6. In this
figure, it is noted that α represents a uniformly distributed random number, generated as follows [117]:

α ∼ U(0, θ × S) (11)

where θ denotes a constant variable; typically, θ is greater than 1 (e.g., 1.5). S is the distance between
the colony and the imperialist.

During the competition process, the weakest empire gradually loses its colonies and other
powerful empires attempt to obtain them. Moreover, the colonies will exchange their positions
when they are more powerful than their relevant imperialist [118]. The empire that has no colonies
will collapse and eventually the most powerful empire will dominate all other empires and represents
the final optimal solution for the optimization problem at hand.
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3.3. Performance Evaluation

3.3.1. Statistical-Based Measures

Statistical index-based methods are applied to evaluate and compare the performance of a
new proposed model with other soft computing benchmark models. In this study, sensitivity (recall),
specificity, precision (positive predictive value (PPV)), and accuracy were utilized. To better understand
the definition and formulation the above mentioned criteria, four types of possible consequences
including True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) are
necessary to be described [119]. The TP and FP are defined as the proportion of the number of pixels
that are correctly classified as landslide and non-landslide, respectively. Meanwhile, TN and FN are
the number of pixels classified correctly and incorrectly as non-landslide, respectively [4]. Basically,
the goodness-of-fit (using training dataset) and prediction power (using validation dataset) of the
landslide susceptibility models are evaluated based on these statistical measures.

Moreover, sensitivity (recall), specificity, and accuracy are also commonly employed performance
measurement metrics. These three metrics are computed as follows [120]:

Sensitivity =
TP

TP + FN
; Specificity =

TN
FP + TN

; Accuracy =
TP + TN

TP + TN + FP + FN
(12)

3.3.2. Receiver Operating Characteristic (ROC) Curve

The ROC curve is also widely used to assess the predictive power and quality of probabilistic
classification models. The global performance of a landslides model is evaluated by the area under the
ROC curve (AUROC) [121]. It is to be noted that the ROC is constructed based on the sensitivity (true
positivity rate) and the specificity (false negative rate) results. The AUROC can be computed as:

AUROC =
∑ TP + ∑ TN

P + N
(13)

To quantify the global performance, AUROC that varies between 0.5 and 1 is also used. The closer
the AUC is to one, the more accurate the prediction of the model is. Accordingly, The AUROC values
of 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1 indicate insufficient, moderate, good, very good, and
excellence performance, respectively [84].

3.4. The Proposed Integration Approach Based on RVM and ICA for Spatial Modeling of Rainfall-Induced
Shallow Landslides

3.4.1. GIS Database, Training and Validation Datasets

In order to construct a machine learning based model for shallow landslide prediction, it is
necessary to establish a GIS database. The GIS database used in this study is illustrated in Figure 7.
The locations of the past shallow landslide occurrences, maps of topographic feature, land use data,
and the map of the geological features are processed and integrated into a single database. In total,
fourteen input variables are employed to model the status of the rainfall-induced shallow landslide.
It is worth noting that data was acquired, processed, and integrated via ArcGIS and IDRISI Selva
packages. Consequently, for producing the susceptibility maps, the susceptible indexes of all the pixels
of the area were calculated by the RVM inference process, the SVM, and the LR models. The two SVM
hyper parameters of the kernel width (γ = 0.7) and the regularization parameter (C = 0.5) were selected
to implement the SVM prediction model. Thereafter, these pixels with susceptible indexes were
converted to GIS data using the ArcGIS 10.2 software (ESRI, California, USA) and a supplementary
module developed in C++ by the authors.
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Figure 7. The established GIS database.

To construct the shallow landslide prediction model, information of 6908 pixels within the map of
the studied region was collected. Among them, 3453 pixels were associated with landslide occurrences.
Since we formulate the landslide modeling as a supervised learning task, landslide occurrence data
(or pixels) are assigned to the class label of C1 = 1; and the label of non-landslide data are denoted
as C2 = 0. In addition, the whole data set is divided into two subsets: Training Set (70%) used for
model construction and Validation Set (30%) employed for model testing. In this study, to facilitate
the modeling process, all continuous and discreet condition factors were normalized and converted
from categorical classes into continuous values within the range of 0.01 and 0.99 by the frequency ratio
method described in Tien Bui et al. [85].

3.4.2. The Proposed Model Structure

The overall structure of the RVM-ICA model which is a combination of RVM and ICA algorithms
is shown in Figure 8. RVM serves as a pattern recognition algorithm to distinguish data samples
with a landslide label from data samples with a non-landslide label. This machine learning method
was employed to generalize a classification boundary from the collected data set. This classification
boundary is capable of recognizing the status of landslide occurrences in the study area. The prediction
results of RVM were then used to construct a landslide susceptibility map for the city of Lang Son.
As aforementioned, the model construction of RVM necessitates an appropriate setting of the RBF basis
width. Therefore, in this study, we employed ICA to fine-tune this parameter of RVM and achieve the
most desirable prediction performance.

At the first iteration, the RBF basis width of RVM is produced randomly between 0 and 1.
The RVM model associated with this basis width value is established with the data from the training
set. To better evaluate the quality of a RVM model, we further divide the training set into two data
groups: Data for model construction (70%), is denoted as group 1 and data for model prediction (30%)
is denoted as group 2. The data in Group 1 is used to train the RVM model; the data in group 2 serves
as unknown patterns. In the model evaluation of RVM, the following objective function is used;

fRVM =
1

CSRGroup1 + CSRGroup2
(14)

where CSRGroup1 and CSRGroup2 denote classification success rates of the two groups of interest.
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Figure 8. The proposed RVM-ICA used for landslide spatial modeling.

The purpose of data separation in the training set is to alleviate the over-fitting problem. It is
of note that one may simply identify the most suitable RBF basis width parameter by considering
the model prediction performance on the whole the training set. However, the prediction results on
the training set alone are not good indicators of the model generalization due to an over-fitting issue.
The over-fitting generally occurs when a model learns the training data very well but with the data
poorly predicts outside of the training set.

Therefore, the data in group 2 is utilized to penalize the over-fitted model and identify a good
value for the RBF basis width. Since the objective function has been defined, the ICA operation can
start. During the searching process, ICA gradually recognizes suitable values of the tuning parameter
and discards inappropriate ones. When the stopping criterion is satisfied, the ICA operation stops;
accordingly, a desirable tuning parameter has been identified. The optimized RVM-ICA model is
re-trained with the whole training set and the prediction outcome on the validation set can be obtained.

4. Results and Analysis

4.1. Factor Selection Using Information Gain Ratio (IGR)

In landslide prediction, it is necessary to preliminarily investigate the relevancy of the influencing
factors to ensure that the essential factors are selected and the irrelevant factors are removed from
further analysis [122]. In this study, Information Gain (IGR) algorithm, which is a commonly-used
feature selection method [91], was selected for expressing the prediction power of the aforementioned
landslide conditioning factors. The IGR, as a filtering approach, is an entropy-based method that
only considers important factors on landslide occurrence. This method aims at ranking subsets of
features based on the results of information gain entropy in a decreasing order [123]. Consider C as a
training dataset composed of n input samples which is the number of samples in the training dataset
C, belonging to the class label (landslide, non-landslide locations). The IGR for a specify landslide
conditioning factor (CF) and training data (C) is obtained with the following equation [63,124]:

IGR (C, CF) =
Entropy (C)− Entropy (C, CF)

SplitEntropy (C, CF)
(15)

Entropy (C) = −
2

∑
i=1

n(Li, CF)
|C|

log2
n(Li, CF)

|C|
(16)
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Entropy (C, CF) =
m

∑
j=1

Cj

|C|
Entropy (C) (17)

SplitEntropy(C,CF) = −
m

∑
j=1

|Cj|

|C|
log2

|Cj|

|C|
(18)

The results of the factor evaluation based on IGR are shown in Table 2. It can be observed that
slope is the most significant factor for shallow landslide modeling in this study because it has the
highest value of average predictive ability (0.601 0.002), followed by STI (0.378 0.005), aspect (0.230 422
0.003), SPI (0.217 0.004), TWI (0.215 0.003), land use (0.155 0.002), curvature (0.152 0.003), toposhade
(0.121 0.002), lithology (0.118 0.002), elevation (0.119 0.001), slope length (0.072 0.003), distance to faults
(0.068 0.002), soil type (0.055 0.001), and valley depth (0.023 0.001), respectively. It can be observed
that slope is the most significant factor for shallow landslide modeling in this study because it has
the highest value of average predictive ability, followed by STI, aspect, SPI, TWI, land use, curvature,
toposhade, lithology, elevation, slope length, distance to faults, soil type, and valley depth, respectively.

Table 2. Predictive ability of the fourteen influencing factors using the Information Gain
Ratio technique.

No Conditioning Factor Average Predictive Ability Standard Deviation

1 Slope (degree) 0.601 0.002
2 STI 0.378 0.005
3 Aspect 0.230 0.003
4 SPI 0.217 0.004
5 TWI 0.215 0.003
6 Land use 0.155 0.002
7 Curvature 0.152 0.003
8 Toposhade 0.121 0.002
9 Lithology 0.118 0.002

10 Elevation (m) 0.119 0.001
11 Slope length (m) 0.072 0.003
12 Distance to fault (m) 0.068 0.002
13 Soil type 0.055 0.001
14 Valley depth (m) 0.023 0.001

4.2. Training and Validation Process

In this study, based on the training dataset, the modeling of landslide occurrences was performed
and analyzed. Based on the optimization outcome of ICA, the optimal RVM hyper parameter, which
is the basis width, was found to be 0.979. Therefore, the proposed model was trained with the basis
width of 0.979. The training result of the proposed model is reported in Table 3. It can be observed that
the proposed model has very high values of sensitivity (87%), specificity (96.6%), as well as accuracy
(91.3%). The training result with the collected dataset demonstrates that the learning phase of the
proposed RVM-ICA has been achieved successfully, reflected by a goodness-of-fit between the actual
and predicted class labels.

Additionally, the proposed model was evaluated using the validation dataset to assess its
prediction power in shallow landslide modeling. The validating results of the proposed RVM-ICA are
reported in Table 4 and Figure 9. It can be seen that the proposed model also obtained high values of
sensitivity (84.1%), specificity (90.6%), and accuracy (87.1%). Moreover, the predictive results of the
ROC curve analysis pointed out that the proposed model has a very high value of AUC (0.92) (see
Figure 9). The observed validation results are in line with the training outcomes. In summary, both
the training and validating phases indicate that the proposed model achieved a very good predictive
capability for shallow landslide modeling.
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Figure 9. Area under the ROC curve (AUC) of the three models using the validation dataset.

Table 3. Model performance using the training dataset.

Statistical Index Relevance Vector Machine Logistic Regression Support Vector Machine

True positive 2338 2200 2319
True negative 2061 2040 2109
False positive 72 209 91
False negative 349 370 301
Sensitivity (%) 87.0 85.6 88.5
Specificity (%) 96.6 90.7 95.9
Accuracy (%) 91.3 88.0 91.9

Table 4. Model validation using the validation dataset.

Statistical Index Relevance Vector Machine Logistic Regression Support Vector Machine

True positive 945 798 857
True negative 867 869 911
False positive 90 246 187
False negative 178 176 135
Sensitivity (%) 84.1 81.9 86.4
Specificity (%) 90.6 77.9 83.0
Accuracy (%) 87.1 79.8 84.6

4.3. Construction of the Susceptibility Map

Since RVM-ICA has achieved a very good predictive result with the data set collected from the
study area, this hybrid intelligent model was employed to prepare a landslide susceptibility map for
the city of Lang Son (Vietnam). The landslide susceptibility map for the study area (Figure 10) was
constructed with five susceptible classes including very low (40%), low (20%), moderate (15%), high
(15%), and very high (10%) [125,126]. These labels were determined on the basis of reclassification of
susceptible indexes of all pixels in the map.

To validate the reliability of the produced susceptibility map, the landslide inventory map, which
includes the actual landslide locations, was overlaid with the newly constructed map. The graphic
curve [127] was plotted with the percentage of the landslide pixels on the y-axis and the percentage of
pixels of susceptible classes which were sorted from high to low susceptible indexes. It can be seen
from the graphic curve that most of the actual landslide pixels were detected in high and very high
classes whereas very few actual landslide pixels were located in low and very low classes. The AUC
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was obtained with the models for the whole study area (Figure 10). These results depicted that the
produced landslide susceptibility map established by the proposed RVM-ICA model is highly reliable
for practical landslide hazard management.

 

Figure 10. Landslide susceptibility map using the RVM model optimized by the ICA algorithm for the
study area.

4.4. Model Comparison

Since the proposed model has been newly introduced for landslide prediction, its predictive
capability should be compared with other well-known existing methods. In this study, two benchmark
models including the LR and SVM were selected for comparison. The results of the model comparison
are reported in Tables 3 and 4, and Figure 8. It can be shown that the sensitivity, specificity, accuracy,
and AUC of the proposed model are better than those of the other benchmark models (SVM and LR)
in both training and validation phases. According to the results, the proposed model outperformed
the SVM and LR models in shallow landslide prediction.

5. Discussion

Landside modelling has been studied based more on qualitative and quantitative methods
throughout the world. Among these, machine learning and evolutionary algorithms have been more
favored [4,124]. The aim of the introduction of these techniques is to use an accurate method to
prepare a reliable landslide susceptibility map. Basically, in the current study we present a new
state-of-the-art evolutionary/optimization algorithm of the imperialistic competitive algorithm (ICA)
based relevance vector machine (RVM) namely ICA-RVM for spatial prediction of landslides in
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Lang Son city. Additionally, two machine learning algorithms including LR and SVM were used for
comparison of the new proposed model.

The ICA-RVM had not been explored for spatial prediction of landslides. We selected fourteen
condition factors for the modelling process. The information gain ratio was used to determine the most
important factors for the modelling process. Results indicated that slope angle was the most significant
factor for landslide occurrence in the study area. The analysis results are reasonable because slope
is well-known as the most important affecting factor for landslide occurrences [128]. The outcomes
of IGR-based analysis also show that all factors are relevant to landslide modeling as the average
predictive ability of all factors is high; therefore, all fourteen influencing factors were selected for
landslide modeling in this study.

Results analysis concluded that the new proposed model had the highest goodness-of-fit and
performance according to the training and validation datasets, respectively (see Tables 3 and 4).
However, the ICA-RVM (accuracy = 87.1%) model can significantly enhance the performance of LR
(accuracy = 79.8%) and SVM (accuracy = 84.6%). The validity of landslide susceptibility maps prepared
using the new hybrid model and two state-of-the-art algorithms, LR and SVM, was checked by the
validation dataset and designing the ROC curve (Figure 8). The results of this figure indicated that the
ICA-RVM outperformed and outclassed the LR and SVM as benchmark algorithms. The reason for the
improvement in prediction accuracy of the proposed method is that RVM-ICA is a hybrid model which
inherits the advantages of both machine learning and metaheuristic approaches [72]. Additionally,
the proposed model used the RVM model as the classifier which has many advantages compared with
others machine learning approaches. The first advantage is that RVM has only one hyper parameter;
this significantly eases its model selection phase. The second advantage is that the resulting model
constructed by RVM generally has fewer support vectors. This means that the model of RVM is less
complex than the standard SVM [78]; therefore, RVM is less prone to over fitting than SVM. Moreover,
the results which demonstrate that the SVM model outperforms the LR model for landslide prediction
in the present study are in agreement with the findings in previous studies [129].

6. Concluding Remark

In this study, RVM-ICA, which is a combination of two advanced computational intelligence
methods of RVM and ICA, was proposed for spatial landslide modeling with the case study of Lang
Son city (northern part of Vietnam). This area has experienced many serious landslides in recent
years during the monsoon season. The proposed model was constructed and validated with a dataset
generated from the GIS database of the study area. The data set includes 101 historical landslide
locations and fourteen landslide influencing factors. The predictive capability of the proposed model
was verified by the employment of the area under the ROC curve (AUROC), and three statistical
indexes (sensitivity, specificity, and accuracy).

In addition, two benchmark models including SVM and LR were used to compare and validate
the applicability of the new shallow landslide prediction model. Analysis results showed that the new
hybrid model obtained a very good training performance (accuracy = 91.3%) and a desired predictive
outcome with the validating data set (accuracy = 87.1%). More specially, the performance of the
proposed model is significantly better than those of the two benchmark models (SVM and LR). These
facts indicate that the hybrid machine learning model is a very promising alternative for shallow
landslide modeling. In short, the hybrid approach of the advanced machine learning classifier and the
metaheuristic optimization method is capable of producing an accurate landslide susceptibility map.
One significant advantage of the hybrid RVM-ICA model is that the model parameter selection phase
is carried out automatically with the help of the metaheuristic algorithm. This means that the training
and prediction phases of the proposed model can be performed autonomously with minimum human
intervention. Thus, the model can be used by local authorities without much domain knowledge
in machine learning. This advantage and the experimental outcome confirm that RVM-ICA is very
helpful for planners and decision makers in the task of landslide hazard management in the study
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areas. The designed hybrid model can be applied for the same purposes to the other cities with the
same weather and topographic conditions; however, caution and careful verification are very necessary.
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