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ABSTRACT

Most electricity worldwide is supplied from the established centralized energy 
generation (CEG) system network which mainly operates using fossil fuels. An 
alternative decentralized energy generation (DEG) system has emerged with the 
advantage of generating electricity from locally available resources (usually renewable 
energy) for local consumption. DEG systems could avoid significant power losses 
during transmission in the CEG network and reduce the reliance on fossil fuels. These 
DEGs however, are geographically scattered and their resources are intermittent. One 
notable problem is that, at one point of time, some DEGs may have excess electricity 
and some may have electricity deficits; depending on the resource availability and the 
electricity consumption pattern. Weather-depending resources such as solar and wind 
energy could also affect the system’s reliability. The energy gaps between one DEG 
to another can be solved, provided that the DEGs are integrated at the distribution level 
whereas the reliability issue can be overcome by integrating multiple DEGs to the 
existing CEG (which has a more stable electricity supply) at the transmission level. To 
deploy this complex integrated energy system, key decision parameters such as 
selection of technologies and their capacities, interactions between different units, 
overall system efficiency and costing at their optimum level have to be determined. 
There are limited studies in the literature regarding the wide-scale integration of DEGs 
with CEG and a lack of comprehensive optimization approach to solve for the system’s 
design and scheduling. To fill these gaps, this research aimed to develop a novel 
targeting and optimization methodology for the design and scheduling of the DEG- 
CEG integrated energy system. A new numerical DEG-CEG integration framework 
was developed based on two enhanced Power Pinch approaches: (i) Extended Power 
Pinch Analysis for on-grid DEG system, and (ii) Extended Electrical Power System 
Cascade Analysis for CEG system with generation flexibility. The numerical 
framework optimized only the system’s energy efficiency. A mixed integer nonlinear 
programming (MINLP) model was then developed to study the DEG-CEG system 
more holistically in terms of energy efficiency and costing, as well as to validate the 
optimal solutions resulted from the numerical framework. Both approaches were 
demonstrated using a hypothetical case study -  an integrated energy system with 
multiple DEGs (operating using solar, wind and biomass energy) at different locations 
connected to one CEG (operating using natural gas) to fulfil power demand from 
residential, commercial and industrial sectors. From energy-efficient aspect, the 
numerical framework resulted in the system operating at an efficiency of 77 %, while 
the MINLP model showed 80.7 %. The difference of 3.7 % confirms the relevance of 
the numerical DEG-CEG integration framework as a systematic and effective energy 
planning tool in solving the design and scheduling problems of a power system. In 
term of costing, the MINLP model revealed that the system can achieve 77 % with a 
total cost of RM 936 million/y. Nevertheless, the numerical method is still an 
important analytical tool as the analysis provides visual insights that can be easily 
understood and appreciated by users like energy engineers and policymakers.
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ABSTRAK

Kebanyakan elektrik di dunia dibekalkan daripada rangkaian sistem penjanaan 
tenaga berpusat (CEG) yang beroperasi terutamanya menggunakan bahan api fosil. 
Satu sistem tenaga alternatif iaitu sistem penjanaan tenaga desentralisasi (DEG) telah 
muncul dengan kelebihan untuk menjana tenaga elektrik dari sumber tempatan yang 
tersedia (biasanya tenaga boleh diperbaharui) untuk penggunaan tempatan. Sistem 
DEG boleh mengelakkan kerugian kuasa yang besar semasa penghantaran dalam 
rangkaian CEG dan mengurangkan pergantungan kepada bahan api fosil. Walau 
bagaimanapun, lokasi DEG ini bertaburan dan sumber mereka terputus-putus. Satu 
masalahnya ialah, pada satu ketika, sesetengah DEG mungkin mempunyai lebihan 
elektrik dan sesetengahnya mengalami kekurangan bekalan elektrik; bergantung 
kepada ketersediaan sumber dan profil penggunaan elektrik. Sumber cuaca seperti 
tenaga suria dan angin juga boleh menjejaskan kebolehpercayaan sistem. Jurang 
tenaga sesama DEG boleh diselesaikan apabila sistem-sistem DEG diintegrasikan 
pada tahap pengagihan manakala isu kebolehpercayaan dapat diatasi dengan 
mengintegrasikan pelbagai DEG kepada CEG yang sedia ada (yang mempunyai 
bekalan elektrik yang lebih stabil) pada tahap penghantaran. Bagi melaksanakan 
sistem tenaga bersepadu kompleks ini, parameter keputusan utama seperti pemilihan 
teknologi dan kapasitinya, interaksi antara unit yang berbeza, kecekapan dan kos 
optimum keseluruhan sistem perlu ditentukan. Daripada kajian literatur, kajian 
mengenai penggabungan DEG dengan CEG berskala besar dan pendekatan 
pengoptimuman yang komprehensif untuk menyelesaikan reka bentuk dan 
penjadualan sistem adalah terhad. Untuk mengisi jurang penyelidikan ini, kajian ini 
bertujuan untuk menghasilkan metodologi penyasaran dan pengoptimuman yang 
novel untuk mengoptimumkan reka bentuk dan penjadualan sistem tenaga bersepadu 
DEG-CEG. Satu kerangka kerja integrasi DEG-CEG berangka baharu dihasilkan 
daripada gabungan dua pendekatan Power Pinch yang telah dipertingkatkan: (i) 
Extended Power Pinch Analysis untuk sistem DEG di-grid, dan (ii) Extended 
Electrical Power System Cascade Analysis untuk sistem CEG dengan penjanaan 
fleksibel. Rangka berangka hanya mengoptimumkan kecekapan tenaga sistem. Model 
MINLP kemudiannya dihasilkan untuk mengkaji sistem DEG-CEG dengan lebih 
holistik dari segi kecekapan tenaga dan kos, serta untuk mengesahkan penyelesaian 
optimum hasilan kerangka berangka. Kedua-dua pendekatan ini didemonstrasikan 
melalui kajian kes hipotetikal - sistem tenaga bersepadu dengan pelbagai DEGs 
(beroperasi menggunakan tenaga solar, angin dan biomas) di lokasi yang berbeza yang 
berkaitan dengan satu CEG (beroperasi menggunakan gas asli) untuk memenuhi 
permintaan elektrik daripada sektor kediaman, komersial dan perindustrian. Dari aspek 
kecekapan tenaga, kerangka berangka membuktikan bahawa sistem tersebut dapat 
beroperasi pada kecekapan 77 %, sementara model MINLP menunjukkan 80.7 %. 
Perbezaan 3.7 % ini mengesahkan kesesuaian kerangka integrasi DEG-CEG berangka 
sebagai alat perancangan tenaga yang sistematik dan berkesan dalam menyelesaikan 
masalah reka bentuk dan penjadualan sistem kuasa. Dari segi kos pula, keputusan 
model MINLP menunjukkan bahawa sistem tersebut boleh mencapai 77 % dengan 
jumlah kos RM 936 juta setahun. Walau bagaimanapun, kaedah berangka masih 
merupakan alat analisis penting kerana ia memberikan pandangan visual yang mudah 
difahami dan dihargai oleh pengguna seperti jurutera tenaga dan penggubal dasar.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Energy drives a nation’s development. From basic living requirement to the 

operations in industrial and commercial activities, energy plays a vital role. From 

Figure 1.1, it is projected that the world will reach an incline of energy consumption 

about 28 %, from 575 quadrillion British thermal units (Btu) in 2015 to 736 quadrillion 

Btu by 2040 (U.S. EIA, 2017). The increment of energy demand is mostly attributed 

to non-Organization for Economic Cooperation and Development (OECD) countries, 

including China and India. The key drivers to the rising energy demand in these 

regions are strong economic growth, rapid population increase and energy market 

liberalization (U.S. EIA, 2017).

To cope with energy security and sustainability issues against the growing 

energy consumption, the world has gradually inclined into the selection of cleaner 

resources and more efficient technologies since the last few decades. A study 

conducted by U.S. EIA (2017) claimed that the world’s carbon dioxide emission 

resulted from power generation activities has been slowed to an average of 0.6 % per 

year compared to 1.3 % per year (from 1990 to 2014) since 2015. This is mainly owing 

to the increase in energy efficiency initiatives as well as a gradual switch of resources 

from coal to natural gas and renewable energy (RE).



World energy consumption
quadrillion Btu

1990 2000 2010 2015 2020 2030 2040

Figure 1.1 Records and projections of world energy consumption from 1990 to 
2040 (U.S. EIA, 2017)

As shown in Figure 1.2, the global consumption of traditional fuels such as 

diesel and gasoline is facing a declining fashion, while the use of RE fuels (such as 

ethanol and biodiesel) has been a gradual increase. In the year 2012, RE has accounted 

for 23 % of the global electricity generation, which is equivalent to 4,892 TWh 

(16,692.2 Btu). This indicates that RE has begun to gain popularity and has potential 

in replacing the non-RE in the future.

Based on Figure 1.3, hydropower remains as the largest contributor of 

renewable electricity. Wind and solar energy have recently become the fastest-growing 

renewable technologies compared to others, owing to the dramatic fall of their 

installation price (U.S. EIA, 2016). Wind and solar energy have become the dominant 

investment fields viewing from the global total RE investment in 2012 (Figure 1.4), 

with an approximate of 50 billion USD and 20 billion USD allocated. Dealing with the 

growing penetration of RE into the current energy system, even more challenging with 

the intermittent supplies from solar and wind power, the planning of a more flexible 

and reliable power generation system to adapt the unpredicted changes is deemed the 

next important agenda.
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Figure 1.2 Global consumption of fuel (NREL, 2013)

Figure 1.3 Worldwide renewable energy generation by technology (NREL, 2013)

3



Global Total Investment

■  Advanced Transportation
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■  Marine
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■  Efficiency
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■  Geothermal

■  Wind

■  Solar

■  Biofuels

Figure 1.4 Global total investment in different renewable energy-related sectors in 
year 2012 (NREL, 2013)

1.1.1 Centralized Energy Generation

At present, a vast majority of electricity generated worldwide is from the 

conventional centralized energy generation (CEG) system -  a large-scale electricity 

generation facility (about 2,000 to 9,000 MW), connected to a network of high-voltage 

transmission lines (U.S. EPA, 2018a) to provide electricity to an entire region. CEG 

operates based on coal, gas and nuclear power plants. Some generates from 

hydropower plants, wind and solar farms. Normally CEG serves high-demand urban 

areas; however, the facilities are usually located away from the end-users (Origin 

Energy, 2015). Economies of scale in generation facilities and technical viability are 

the major factors of successful implementation of CEG (Martin-Martinez et al., 2017).

In the advent of energy demand rise, CEG which mostly utilizes fossil fuels for 

combustion process cannot be a prolonged technology, considering the carbon 

emission, supply security due to depletion of non-RE resources and costing issues. 

Despite the enormous and bulky infrastructures, CEG is vulnerable in term of stability 

and reliability under unforeseen events (Momoh et al., 2012). There is also a
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significant amount of energy wasted during the power transmission and distribution. 

On average, only 28 to 32 % of the generated electricity is delivered to the end- 

consumers (Jiang et al., 2009; The World Bank Group, 2018). These losses are 

cumulatively accounted as “line loss” (U.S. EPA, 2018a).

1.1.2 Decentralized Energy Generation

Nowadays the power generation trend has become more localized with the 

employment of decentralized energy generation (DEG) system. The interest in the 

development of DEG has been catalysed by environmental policies and regulations as 

well as governmental subsidies, such as net metering, advancement of DEG 

technologies, feed-in tariff (FiT) scheme etc. (Momoh et al., 2012).

A DEG unit has a small-scale energy generation, where its capacity normally 

ranges between 1 kW to 250 MW (Ogunjuyigbe et al., 2016). Opposite to the CEG, 

DEG is not directly connected to the bulk transmission system and is not centrally 

dispatched. It is constructed within the distribution of a power network that is closer 

to consumers (Allan et al., 2015) and produces electricity at the local level. DEG 

enables electricity access to remote housing areas with geographical constraint where 

the grid network connection is difficult to reach (Fadaee and Radzi, 2012).

Using renewable resources, DEG gives indisputable environmental advantages, 

due to its reduced global warming impact, inexhaustibility and lower environmental 

costs (Vezzoli et al., 2015). In term of operation, when power is distributed locally, 

the “line loss” can be reduced. However, intermittency of the renewable resources may 

greatly affect the power quality and reliability of DEG system. In economic aspect, 

DEG, which is usually employed in smaller economic scale, is difficult to gain a profit 

margin. Stiff competition of its fuel cost with non-RE and the lack of technologies 

maturity are factors that makes DEG less cost-attractive compared to CEG.

5



1.2 Problem Statement

Although the utilization of RE for power generation becomes prevalent, their 

sources are, however, geographically scattered and intermittent. Harnessing these RE 

sources are therefore more suitable at DEG level compared to CEG. As more RE-based 

DEG units emerge at different locations where the sources can be easily accessed, one 

notable problem arising is that some DEGs may have excess electricity and some may 

have insufficient electricity to self-sustain. The scenario is very much dependent on 

local resource availability and the local consumption pattern. These energy gaps 

between one DEG to another can be solved, provided that they are integrated to form 

a grid network at the distribution level. Even if the DEGs are integrated, weather- 

depending renewable resources such as solar and wind will pose an additional problem 

to the DEG system in term of reliability. This can be overcome by integrating multiple 

DEGs to the existing CEG, which has a more stable electricity supply, at the 

transmission level. Moreover, most places in the world already have an established 

CEG network. The benefits of integrating DEGs with CEG are to maximize the 

utilization of local renewable energy while relying less on the CEG. Reduced reliance 

of CEG can avoid large amount of power losses during transmission and the 

consumption of fossil fuels (as CEG systems mainly operates using fossil fuels).

The implementation of such a complex DEG-CEG integrated system requires 

careful and thorough planning. In term of scheduling, the availability of resources and 

deficiency of demands for different DEG units are not the same. The operation of 

existing CEG is no longer the same and needs to be more flexible when DEGs are 

integrated into the CEG to form a new power system network. Key decision parameters 

such as selection of technologies and their capacities, interconnections between 

different units, overall system efficiency and costing at their optimum level are to be 

determined. However, there is a lack of studies in the literature regarding the wide- 

scale integration of DEG with CEG as well as a comprehensive optimization approach 

to solve for the design and scheduling of the system. In order to fill the gaps, this 

research will study the large-scale integration of DEG-CEG system, along with a 

systematic and effective approach for targeting and optimizing the integrated energy 

system.
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1.3 Research Objectives

Based on the problem statement, this research aims to develop a novel targeting 

and optimization methodology for the design and scheduling of an integrated energy 

system (constitutes of multiple DEGs connected to one CEG) which is technically and 

economically sound.

The targeting and optimization methodology developed includes:

(a) A new numerical integration framework to design and schedule the integrated

CEG-DEG system

(c) A holistic mathematical model to design and schedule the integrated CEG-

DEG system considering cost and energy efficiency factors

The developed methodology is then demonstrated on an illustrated case 

scenario which represents the integrated energy system, constitutes of multiple DEGs 

operating with a varied combination of energy resources and demand at different 

locations and are connected to one CEG. The following parameters could be 

determined:

(a) The optimal capacities of DEG and CEG systems

(b) The optimal power generation and charging/discharging schedule of DEG and 

CEG systems

(c) The interaction and power-sharing between DEG and CEG systems in the grid 

network

(d) The overall performance of the integrated energy system in term of energy 

efficiency and total system cost
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1.4 Research Scope

To achieve the intended research objectives, the scope of research has been 

drawn as followed:

(a) Studying the state-of-the-art development and technologies related to 

centralized (CEG) and decentralized energy generation (DEG) systems and 

identifying gaps and potential improvement of Power Pinch and mathematical 

modelling approaches for power system optimization.

(b) Improving the existing algorithms in Power Pinch approaches to solve for more 

realistic power plant scenarios. The improvement is specifically targeted on the 

supply-side management of the power plant itself and the entire energy system. 

Specific scopes include:

(i) Extending the established Power Pinch Analysis (PoPA) by 

incorporating the role of grid network into a Hybrid Power System 

(HPS) through strategies of purchasing or selling of grid electricity

(ii) Extending the established Electrical Power System Cascade Analysis 

(ESCA, term amended from previous “Electric System Cascade 

Analysis”) in consideration of flexibility in thermal power generation 

defined by the change of heat rate with the plant’s load factor.

(c) Integrating the newly extended Power Pinch methods in (b) into a systematic 

numerical framework to determine the optimum design and scheduling of the 

integrated energy system and the interactions between the DEG and CEG units. 

Power distribution and transmission losses occurring at the grid network are 

addressed.

(d) Developing a holistic and comprehensive superstructure-based mathematical 

model that replicates the integrated energy system in (c) and solves for the 

system’s optimum design and scheduling using General Algebraic Modelling 

Systems (GAMS) software. Specific scopes include:
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(i) Developing a mixed integer nonlinear programming (MINLP) model 

that is time-oriented (hourly basis) and includes factors like heat rate 

variations from the plant’s operating load, efficiency losses due to 

storage’s charging or discharging, current conversion, transmission and 

distribution losses to the power transfer and cost into the analysis

(ii) Evaluating the reliability and practicality of the integrated energy 

system model in both technical (i.e. energy efficiency of the entire 

system) and economic (i.e. overall system cost) aspects

(e) Examining the applicability of the developed numerical framework in (c) in 

term of accuracy and optimality by verifying and comparing the results 

obtained using the mathematical model developed in (d). Both approaches are 

used to solve for one identical case scenario.

1.5 Research Contributions

Through the work conducted in this PhD research, several key contributions 

can be identified from this research. They are listed as follows:

(a) Improvement in the field of power system optimization

The optimization approaches developed in this research address the new form 

of losses due to transmission and distribution power transfer, as well as the 

increment of heat rate due to the different operating loads in a power plant. The 

inclusion of these elements into the analysis leads to a more holistic, realistic 

and better-optimized power system design and scheduling. Unnecessary 

expenses or unexpected system failure due to under-sizing or oversizing issues 

can thus be avoided.

(b) Facilitation in decision and policy-making

The numerical method developed in this work is able to provide users like 

energy engineers and policy-makers valuable insights to the problem being 

solved. Users can have a full control and understanding on how to match the
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power supply and demand in a manual but systematic way. Measures of 

improvement can be easily identified hence it facilitates the decision-making 

process. The analysis results are also useful references for energy system 

planning and policy-making.

(c) Commercialization value of research product

The formulated energy model can be matured and packaged into a commercial 

software, specialized in solving various power-related scenarios. The 

inclusiveness of the model allows a large volume of data to be processed in a 

short time, increases the variation of the system configuration with a 

combination of intermittent and non-intermittent sources together with 

different renewable and non-renewable based technologies.

Several publications have been produced from this research as a part of

intellectual contributions. They are enumerated in the List of Publications.

1.6 Organization of Thesis

This thesis contains eight chapters. Chapter 1 is the research introduction, 

highlighting the background of the study, problem statement, research objectives, 

scope and contributions. Chapter 2 is the literature review where state-of-art of power 

systems and the technologies are presented. In the same chapter, previous studies on 

power system optimization approaches, mainly on the Power Pinch and mathematical 

modelling, are also reviewed and analyzed to search for the research gaps. Chapter 3 

describes the general research methodology in order to achieve the targeted objectives. 

For the research findings, they are reported in separate chapters (Chapter 4, 5, 6 and 

7). Last but not least, Chapter 8 concludes all the research output from this study and 

recommends possible future work to be explored.
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