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ABSTRACT 

 

 

 

 

 Water and energy are closely interlinked together. The goal to reduce water 

and energy simultaneously has been a growing research. However, previous studies 

only consider maximising water reuse and, in some cases, also include water 

regeneration. This study aims to develop a mathematical model to design water and 

energy network that further reduces the water consumption, considering the whole 

water management hierarchy (WMH) schemes. This includes elimination, reduction, 

reuse, outsourcing and regeneration. Two steps solution is proposed, which involves 

solving two MINLP models. First, water and energy minimisation network 

considering WMH schemes and direct heat transfer is designed. The obtained    

network is then improved by inclusion of indirect heat integration to minimise the 

objective cost function. Two cases of thermal data extraction are studied for heat 

integration, Case A extracts individual streams based on supply and targeted 

temperature, whereas Case B extracts stream after mixer based on mixer temperature 

and targeted temperature. Streams which temperature load is satisfied in direct heat 

transfer were excluded for heat integration. The proposed method has been tested    

with literature case study. The implementation of all possible WMH scheme yields a 

lower freshwater consumption and wastewater generation. The model selected 35% 

and 15% of reduction for demand 3 and demand 1 respectively.  Case A yields a     

lower total operating cost but slightly higher investment cost compared to Case B. 

Case B result in a simpler heat exchanger network, but degradation of the potential 

energy causes more heating and cooling. Case A is chosen as the optimal network     

and exhibits 13% reduction of the total cost compared to the literature case study.  
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ABSTRAK 

 

 

 

 

 Air dan tenaga saling berkait rapat. Penyelidikan dengan matlamat untuk 

mengurangkan penggunaan air dan tenaga pada masa yang sama semakin   

berkembang Namun, kajian sebelum ini hanya mempertimbangkan pemaksimuman 

penggunaan semula air dan dalam beberapa kes, juga pejanaanan semula air. Kajian 

ini bertujuan membina satu model matematik untuk mereka bentuk rangkaian air dan 

tenaga yang mengurangkan lagi penggunaan air, dengan mempertimbangkan 

keseluruhan skim hierarki pengurusan air (WMH). Ini termasuk penghapusan, 

pengurangan, penggunaan semula, penyumberan luar dan pertumbuhan semula.. 

Kaedah dua langkah penyelesaian dicadangkan dalam kajian ini dengan 

menyelesaikan dua model MINLP. Pertama, rangkaian pengagihan air dan haba 

melalui skim WMH dan pemindahan haba secara langusng direka. Rangkaian yang 

diperolehi kemudiannya ditambah baik dengan melakukan integrasi haba secara tidak 

langsung untuk mengurangkan fungsi objektif kos. Dua kes pengekstrakan data haba 

telah diuji, Kes A mengekstrak aliran indvidu berdasarkan suhu asal dan suhu    

sasaran, manakala Kes B mengekstrak aliran campuran berdasarkan suhu campuran 

dan suhu sasaran. Aliran yang telah menepati suhu sasaran tidak dimasukkan untuk 

integrasi haba. Kaedah yang dicadangkan telah diuji dengan menggunakan kes 

daripada kajian kesusasteraan.Pelaksanaan skim WMH telah menggurangkan 

penggunaan air dan penjanaan sisa buangan Model ini telah memilih 35% dan 15%   

ke atas operasi 3 dan operasi 1. Kes A menghasilkan kos operasi yang lebih rendah 

tetapi kos pelaburan yang lebih tinggi sedikit berbanding Kes B. Kes B menghasilkan 

rangkaian pertukaran haba yang lebih mudah daripada Kes A , namun degradasi  

tenaga keupayaan menyebabkan lebih banyak pemanasan dan penyejukan    

diperlukan. Kes A dipilih sebagai rangkaian optimal dan menunjukkan 13% 

pengurangan jumlah kos berbanding jumlah kos daripada kajian.kesusteraan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This chapter provides the current perspective of the global water and energy 

issues, followed by problem background and problem statement. Next, objective and 

scope of the study are discussed to develop the methodology and technique for 

designing the water and energy network.  

 

 

 

 

1.1 Global Water Issue 

 

 

The inadequate supply of the available freshwater resources to satisfy the  

needs has been a concern for past decades, even more, upsetting in these recent      

years. Human consumes water for various activities such as cooking, cleaning, 

washing, etc. The municipal use only accounts for a small fraction of the global 

freshwater consumption. Agriculture and industrial consume around 69% and 19% of 

the world’s fresh water as shown in Figure 1.1(AQUASTAT, 2014). Industrial use of 

water varies with countries’ income. High income countries in Europe and Northern 

America use more than 45%, while middle and low-income countries in Asia, Africa 

and     Southern     America     consume     less     than     10%     (AQUASTAT, 2014)
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Figure 1.1 Global fresh water consumption (AQUASTAT, 2014) 

 

The visible fresh water on the surfaces of rivers, lakes, and reservoir only 

represents a small part of the global freshwater resources. Figure 1.2 shows  the fresh 

water’s distribution on Earth. Almost two-third of the world’s freshwater is stored in 

glaciers and ice caps, and only one-third of freshwater is available for human 

consumption (Gleick, 1996). The available fresh water is recycled through the 

hydrologic cycle, hence the absolute volume of the world’s fresh water is relatively 

the same. 

 
         Figure 1.2  Distribution of Earth’s water (Gleick, 1996) 
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While the supply of fresh water is limited, the water demand continues to 

increase rapidly. The world’s population is continuously growing, and it is projected 

to expand to 9 billion people by 2050 (World Water Development, 2009). According 

to the United Nations, water use has grown at more than twice the rate of population 

increase in the last century and water withdrawals are predicted to increase by 50 

percent by 2025 in developing countries, and 18 percent in developed countries 

(Global Environment Outlook, 2015).  

 

 

The population growth is not the only factor to consider, the freshwater is 

withdrawn to meet the needs of different users. Industrial, urbanisation, irrigation for 

agriculture, and other sectors contribute a larger section of the world’s fresh water 

consumption.  These sectors are mounting and the competition for water is    

increasing. Water pollution from industrial wastewater and agriculture excess  

nutrients degraded the water quality result in less fresh water available for direct use.  

 

 

Moderate water shortage was first recorded in the 18th century and it has 

increased with time and affected more people around the world in the years 1960 to 

2005 mainly in Africa and Asia (Kummu et al,2010). Analysts estimate two-third of 

the human population will face water shortage by 2025 (United Nation, 2006).  The 

water crisis is often associated with negative effects. People with limited access to 

clean freshwater usually faced inadequate sanitation which may lead to various     

health complications such as cholera, diarrhea, and dysentery. 

 

 

Water is not distributed evenly over the glove, less than 10 countries possess 

60% of the world’s available fresh water supply (World Business Council for 

Sustainable Development, 2008). Many countries are sharing the same river basins, 

changes within a basin can lead to transboundary tensions. Water has been ranked as 

the top global risk in the World Economic Forum’s 2015 Global Risks Report.  
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Water should be recognised as a great priority, correcting measures still can   

be taken to avoid the crisis to be worsening. There is an increasing awareness that     

our freshwater resources are limited and need to be protected both in terms of     

quantity and quality. Implementing water management for water-related activity is a 

good practise for decision-makers.  

 

 

 

 

1.2 Global Energy Issue 

 

 

Energy is important in today modern life. It powers the light and appliances    

at home, powers many industry processes and transportation. Figure 1.3 shows the 

world energy consumption for 2012. Approximately 52% of global energy is 

consumed for industrial activities while another 26% and 14% of global water are   

used for transportation and residential, respectively (EIA, 2012). 

 

 

 

 Figure 1.3 Global energy consumption by sector (EIA, 2012) 
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Fuel is required to generate energy, several fuel types include fossil (coal, oil, 

natural gas), nuclear, and renewable resource. Fossil fuels provide most of the energy 

in the world. Liquid fuels, natural gas, and coal account for 81% of total world      

energy consumption (EIA, 2014). Figure 1.4 shows the world energy supplies by    

fuels. Oil supplies the most with 31.3% followed by coal and natural gas with 28.6% 

and 21.2% respectively (EIA, 2014). These resources are finite and limited, and high 

consumption will lead to the depletion of non-renewable resources. 

 

Figure 1.4 World energy supplies by fuel (EIA, 2014) 

Economic growth in some regions especially Asia is projected to increase by 

87% in 2040 as shown in Figure 1.5 (EIA, 2016). Energy demand increases as     

nations progress and living standards improve. More infrastructure, facilities, 

transportation are being built and the capacity to produce goods and services increase 

in fast-paced economic countries around the world.  Population growth also drives    

for more transportation, houses, and businesses. Both factors are contributing to a 

higher global energy demand which put pressure on the global fossil fuel   

consumption. 
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Figure 1.5 Energy consumption by region (EIA, 2016) 

 

The main concern of many countries around the world is how to secure the 

resources for energy production to meet the user’s needs. Energy is not only a matter 

of economic and financial but also affects the environment and social aspect. High 

environmental degradation is associated with the fossil fuel extraction activities. 

Emission of carbon dioxide into the Earth’s atmosphere primarily from burning fossil 

fuels for energy is the main cause of the rising global temperature. The ideal goal is   

to protect the environment and having adequate energy supplies to meet the needs.  

 

 

Much of the energy consumed in the world is wasted through transmission, 

heat loss and inefficient technology. Energy efficiency is an important tool to address 

the climate change and energy security. The main aim of energy efficiency is to   

reduce energy usage to provide the same amount of services and products. Energy 

efficiency also improves the competitiveness of businesses and  reduces the 

dependence on foreign supplies for countries that import energy. Most of the   

countries share the common interest in improving energy efficiency performance.  
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1.3 Problem Background 

Process industries consume a large amount of water for various activities in   

the process plant such as washing, cooling, separating, and etc. These activities   

require water with a certain quality at the specified temperature. Heating or cooling 

utilities are consumed to heat or cool the water to meet the operating condition. Most 

industries generate pollutants as by-products which contaminate the used water. 

Hence, pre-treatment is required to treat the water before discharge at end pipe.  

 Reduction of fresh water and energy is preferable in process plant mainly due 

to economic and environmental factors. Various studies have been conducted to 

minimise water (Liu et al., 2008; Wan Alwi et al., 2008; Deng et al., 2011; Gadalla, 

2015; Fan et al., 2016; Li and Guan, 2016) or to minimise energy (Huang et al.,      

2012; Gadalla, 2015; Chen et al., 2015). These studies consider minimisation energy 

and water separately for many years. However, water and energy interact closely. For 

instance, some heat generated in water streams outlet may be used to heat another 

stream. These potential resources are often neglected and wasted. 

The current drive towards environmental sustainability and the rising costs of 

fuel and water lead process industries to find new ways to reduce water and energy 

consumption. Freshwater and energy minimisation should be considered 

simultaneously since reducing fresh water usage leads to a lower energy    

consumption. Savelski and Bagajewicz (1997) first addressed simultaneous water    

and energy and later followed by Savulescu and Smith (2005a, 2005b), and many 

studies have emerged since then using graphical (Polley et al., 2010;     

Leewongtanawit et al., 2009; Hou et al., 2014 and Xie et al., 2016) or mathematical 

programming (Bogataj et al., 2008; Dong et al., 2008; Sahu et al., 2010; Boix et al., 

2012; Ahmetovic et al., 2013; Yan et al., 2016 and Almaraz et al., 2016).  

Most of the simultaneous water and energy studies only focus on water reuse 

or water regeneration. Minimum freshwater usage is one of the main aims in the 
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process plant which eventually result in lower utility consumption as well.  Manan   

and Wan Alwi (2006) suggested the use of water management hierarchy (WMH) 

together with pinch analysis to achieve the minimum water target. WMH is is a 

hierarchy of water conservation priorities which consists of five different levels; 

namely: elimination, reduction, outsourcing/reuse ,regeneration and original. The  

most preferred option is elimination, followed by reduction of water demand. Next, 

direct reuse/recycling and water outsourcing through method such as rainwater 

harvesting are preferred. This is followed by regeneration or treatment of wastewater 

before being reused. Freshwater is the least preferred and will only be used when all 

water-saving options have been explored. This framework has successfully led to a 

significant water reduction. Hence, the aim of this study is to design an optimal water 

and energy network using WMH options and considering minimising total cost as the 

objective function.  

1.4 Problem Statement 

Given a set of temperature, flow rate, and contaminant concentration of     

global water operations, it is desired to develop a mathematical model to design a 

network that minimises fresh water usage, energy consumption, and total annual     

cost. The system will consider all water management hierarchy (WMH) options and 

direct-indirect heat transfer to achieve the objectives.  

1.5 Objective 

The main objective of this research is to develop a new mathematical model 

for designing a minimum water and energy network with minimum total          
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annual cost. The system considers WMH schemes .The main objective is achieved 

by incorporating below objectives:- 

 

1. To develop the mathematical model for maximising water recovery with 

minimum energy requirement based on available model in the literature 

 

2. To extend the mathematical model by including other water management 

hierarchy options  (Model 1); elimination, reduction, outsourcing and 

regeneration 

 

3. To extend the mathematical model by including indirect heat integration; 

i.e, the usage of intermediate fluid to transfer heat between process streams, 

into the network to further reduce the energy consumption                       

(Model 2) 

 

4. To apply the mathematical model to the relative case study 

 

 

 

 

1.6 Scopes of Work 

 

 

There are six main scopes in this study:- 

1. Reviewing the state of the art of simultaneous water and energy reduction   

using mathematical model and graphical approaches. 

 

2. Developing the mathematical model for maximising water recovery with 

minimum energy requirement based on an available model in the literature. 
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3. Developing the mathematical model for minimising water and energy 

utilisation considering the whole water management hierarchy options – 

elimination, reduction, reuse, outsourcing, and regeneration (Model 1). 

4. Developing the mathematical model to minimise the total annual cost 

correspond to heat integration  (Model 2). 

5. Applying the mathematical models on the relative literature case study. 

6. Comparing the model results with literatures. 

 

 

 

 

1.7 Overview 

This thesis consists of six chapters. Chapter 1 provides an overview of the 

global water and energy issues, problem background, problem statement, objective   

and scope of the study. 

 

 

Chapter 2 provides a review of the relevant literature for this study. The state-

of-art review of the development in water and energy minimisation separately, as    

well as simultaneous water and energy are reviewed. Conceptual and mathematical 

programming techniques are also reviewed in this chapter. 

 

 

Chapter 3 presents a general description of the proposed methodology of this 

study, whereas chapter 4 describes the detailed mathematical model construction. It 

consists of the water and energy network superstructure to achieve the minimum 

freshwater and utilities that correspond to the total annual cost, as well as the 

mathematical formulation derived from the superstructure.   
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Chapter 5 presents the results from the implementation of the developed 

methodology on the relative case study. The result is analysed and compared to 

determine the capability of the model on solving simultaneous water and energy 

problem Finally, Chapter 6 summarises the main points and includes recommendations 

to further improve this thesis 
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