STREET LIGHTING USING HYBRID SOLAR/WIND SYSTEM FOR BALAI CERAPAN UTM

LEE SOO EU

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Power)

School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

provided by Universiti Teknologi Malaysia Institutional Repository

View metadata, citation and similar papers at core.ac.uk

brought to you by TCORE

DEDICATION

This project report is dedicated to

My beloved parents, Lee Hap Cheng and Teh Bee Heong

and

all my siblings

ACKNOWLEDGEMENT

I would like to take this opportunity to express my utmost gratitude to Dr. Norzanah Binti Rosmin, my supervisor for this research for her guidance, advice and recommendation throughout this project. Her endless support and inspirational encouragement has made this project successful. Once again, my sincere thanks to her for all her effort and forbearance.

I would like to thank the School of Electrical Engineering, Universiti Teknologi Malaysia for providing all the required facilities and resources for this research.

I would also like thank my mother for her continuous support and encouragement. She has helped me to go through my hardest moment during this project. Last but not least, I would also like to express my heartfelt thanks and appreciation to my close friend, Ms. Tan Pei Sze, who had always asked me not to give up.

ABSTRACT

Global issues such as global warming, rising sea level, deprivation of fossil fuel and rising electricity cost have accelerated the research and development on alternative energy sources. In recent years, wind and solar sources have become the prominent source of alternative energy. Wind and solar sources are popularly integrated together in renewable energy systems because solar cells can produce the electricity needed during sunny days while wind turbines can cover the electricity needs during windy days. In UTM, there are lots of street lights, powered by utility electricity installed. As the campus area of UTM is very wide, the amount of electricity cost incurred to UTM is very high. Hence, in this study, an alternative has been searched to reduce the dependency on fossil fuel electricity. Therefore, an appropriate hybrid solar/micro wind unit into a dedicated LED street lighting system has been proposed and installed at UTM's Balai Cerapan. The hybrid street light comprises of a 80W mini PV panel, a 300W micro wind turbine, a 90Ah battery, control unit and a 30W LED street light. The built in energy management control has been modified and tested to provide smarter control between PV panel and micro wind system throughout the day for a smarter energy management. This new algorithm is able to dim the LED lamp brightness when there is no motion detected. From the simulation, it has been found that potential energy savings of at least 77% can be achieved by using the new energy management algorithm. Hence, it can be concluded that the proposed hybrid solar/wind with dedicated LED street lighting system has been successfully installed, modified (through simulation) and operated at UTM's Balai Cerapan. As implication, it is hoped that installation of this similar proposed units will help to save the UTM's electricity bills on the street lighting purpose, without compromising the security and comfort to the users.

ABSTRAK

Isu-isu seperti pemanasan dunia, kenaikan paras air laut, sumber fosil yang berkurangan dan kenaikan harga elektrik menjadi pendorong utama penyelidikan dan pembangunan sumber tenaga alternatif. Kini, tenaga angin dan suria telah menjadi sumber tenaga alternatif utama yang digunakan bagi menggantikan sumber fosil. Sumber tenaga angin dan suria sering digandingkan dalam sistem tenaga boleh diperbaharui kerana panel suria boleh menjana tenaga elektrik pada waktu siang, manakala turbin angin boleh menjana tenaga elektrik pada waktu malam. Pada ketika ini, terdapat banyak lampu jalan yang bersambung dengan utiliti elektrik beroperasi sekitar kampus UTM. Kos elektrik yang perlu ditanggung adalah tinggi disebabkan kampus UTM yang luas. Satu pendekatan alternatif yang dapat mengurangkan kebergantungan terhadap elektrik fosil telah diterokai dalam kerja penyelidikan ini. Oleh yang demikian, satu lampu jalan LED yang berkonsepkan hibrid suria/ angin mini telah dicadangkan dan dipasang di Balai Cerapan UTM. Lampu jalan hibrid ini merangkumi komponen seperti panel suria mini 80W, turbin angin mini 300W, bateri 90Ah, unit kawalan dan lampu LED 30W. Unit kawalan asal telah diubahsuai dan diuji agar dapat memberikan kawalan yang lebih baik antara panel suria dan turbin angin mini sepanjang hari, bagi mencapai pengurusan tenaga yang lebih bijak. Pendekatan yang baru ini dapat mengurangkan kekuatan cahaya lampu LED semasa tiada pengerakan di sekitar kawasan lampu jalan. Hasil daripada simulasi yang dijalankan, adalah didapati bahawa pendekatan baru ini dapat menjimatkan sekurang-kurangnya 77% tenaga. Secara kesimpulannya, lampu jalan LED hibrid suria/angin mini yang dicadangkan telah berjaya dipasang, diubahsuai (secara simulasi) dan dioperasikan di Balai Cerapan UTM. Adalah diharapkan bahawa pemasangan lampu jalan yang serupa ini dapat menjimatkan kos elektrik lampu jalan UTM, tanpa menjejaskan keselamatan dan keselesaan penguna.

TABLE OF CONTENTS

		TITLE	PAGE
D	ECLA	ARATION	ii
DEDICATION			
ACKNOWLEDGEMENT			iv
A	BSTF	RACT	\mathbf{v}
\mathbf{A}°	BSTR	RAK	vi
T	ABLI	E OF CONTENTS	vii
L	IST C	OF TABLES	ix
L	IST C	OF FIGURES	xi
L	IST C	OF ABBREVIATIONS	xiv
L	IST C	OF APPENDICES	XV
CHAPTER	1	INTRODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	5
	1.3	Objectives	5
	1.4	Scopes	5
	1.5	Research Outline	6
CHAPTER	2	LITERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Recent Research on Street Lighting Powered	7
		by Alternative Energy	
	2.3	Recent Research on Hybrid Solar-Wind Street	16
		Lighting	
	2.4	Recent Research on Wind Turbine	21
		Performance	
	2.5	Discussion Summary	27
	2.6 Direction of Further Research		

2.7	Chapter Summary		
CHAPTER 3	RESEARCH METHODOLOGY	35	
3.1	Introduction	35	
3.2	36		
3.3	Design Criteria	41	
3.4	Installation	44	
3.5	Proposed LED Energy Management System	45	
3.6	Proposed LED Dimmer	47	
3.7	PWM Pre-Test for Dimmer	48	
3.8	49		
3.8	50		
3.10	Chapter Summary	50	
CHAPTER 4	RESULTS AND DISCUSSIONS	51	
4.1	Introduction	51	
4.2	Hybrid Streetlight Commissioning Data	51	
4.3	, ,		
4.4	LED Dimmer Experiments and Simulation	63	
CHAPTER 5	CONCLUSION & FUTURE WORK	73	
REFERENCES		75	
Appendices A-C		81 - 85	

LIST OF TABLES

TABLE NO.	TITLE			
Table 1.1	Comparison between two different types of hybrid street	4		
Table 2.1	lights Cost comparison between conventional and hybrid	17		
14010 2.1	system	17		
Table 2.2	Economic analysis for different streetlight configuration	18		
	in Salalah			
Table 2.3	Performance Comparison between Wind Turbines of	22		
	10MW in Barbados			
Table 2.4	Performance Comparison between HAWT and VAWT	23		
Table 2.5	Comparison between HAWT and VAWT	24		
Table 2.6	Comparison on drag-based and lift-based VAWTs	25		
Table 2.7	Summary of the literatures in Street Lighting Powered	28		
	by Alternative Energy			
Table 2.8	Summary of literatures on Hybrid Solar-Wind Street	30		
	Lighting			
Table 2.9	Summary of literatures on Wind Turbine Performance	31		
Table 3.1	Sun travel direction throughout the year	38		
Table 3.2	Measured Wind Speed from 7 th to 9 th September 2018	40		
Table 3.3	Comparison between location 1, 2 and 3	41		
Table 3.4	Summary of Design Criteria	44		
Table 3.5	LED driver design criteria for Simulink's simulation	48		
Table 4.1	1 st set of data (26 th October 2018, day)	52		
Table 4.2	2 nd set of data (26 th October 2018, night)	54		
Table 4.3	3 rd set of data (27 th October 2018, dawn)	56		
Table 4.4	4 th set of data (1 st November 2018, day)	59		
Table 4.5	5 th set of data (1 st November 2018, afternoon)	59		
Table 4.6	6 th set of data (2 nd November 2018, day)			

Table 4.7	7 th set of data (2 nd November 2018, afternoon)	60
Table 4.8	Effect of Arduino's duty cycle to the LED bulb voltage	65
Table 4.9	Voltages across the LED bulb are measured at both ON	66
	and OFF states	
Table 4.10	Comparison between two different types of	68
	potentiometer control	
Table 4.11	Simulation results (value at t=0.1s)	72
Table 4.12	Energy saving analysis	72

LIST OF FIGURES

FIGURE NO.	TITLE		
Figure 1.1	Power generation of different renewable energy in	2	
	ASEAN		
Figure 1.2	Malaysia belonged to wind class 1, wind speed less than	2	
	4.4 m/s		
Figure 2.1	The circuit diagram for the system	8	
Figure 2.2	The circuit diagram for the DC system	9	
Figure 2.3	The block diagram for the system	9	
Figure 2.4	The diagram of the hybrid solar-wind streetlight	10	
Figure 2.5	The block diagram of the streetlight	11	
Figure 2.6	The Lighting Smart Grid configurationv	12	
Figure 2.7	The multiple Savonius VAWTs-solar streetlight	13	
Figure 2.8	The hybrid solar-wind streetlight at UTeM (VAWT	13	
	rated at 300W)		
Figure 2.9	The smart indoor hybrid solar-wind streetlight block	14	
	diagram		
Figure 2.10	The hybrid solar PV-fuel cell streetlight configurations	15	
Figure 2.11	The hybrid streetlight with passivity-based control	16	
Figure 2.12	The remote management system	19	
Figure 2.13	The configurations of the roadway microgrid	20	
Figure 2.14	A Firewinder	23	
Figure 2.15	Darrieus (left) and Savonius rotors	25	
Figure 2.16	A DS-700 hybrid VAWT	26	
Figure 2.17	Summary of research on Street Lighting Powered by	33	
	Alternative Energy		
Figure 3.1	Flowchart of general project flow	35	
Figure 3.2	Balai Cerapan in Google Maps	36	
Figure 3.3	Location 1 south-east, south-west and north-west views		

Figure 3.4	Location 2 south-east, south-west and north-west views	37	
Figure 3.5	Location 3 east, north-east and east views		
Figure 3.6	The streetlight installation	45	
Figure 3.7	The existing LED energy management system	45	
Figure 3.8	The proposed first method	46	
Figure 3.9	The proposed second method	47	
Figure 3.10	A Matlab's Simulink of the proposed LED energy	48	
	management system		
Figure 3.11	PWM pre-test for dimmer	49	
Figure 3.12	DC data logger locations	49	
Figure 4.1	The installed hybrid solar-wind tubrine street light at	52	
	Balai Cerapan		
Figure 4.2	1 st set of data plot	53	
Figure 4.3	Manufacturer's battery charging characteristic curve	54	
Figure 4.4	2 nd set of data plot	55	
Figure 4.5	The hybrid solar-wind turbine street light illumination at	55	
	night		
Figure 4.6	3 rd set of data plot	56	
Figure 4.7	The hybrid solar-wind turbine street light turning off at	57	
	dawn		
Figure 4.8	Extrapolated plot of battery and LED voltages from	58	
	2000-0630hrs		
Figure 4.9	Plot of battery voltage vs time	61	
Figure 4.10	Plot of solar PV output voltage vs time	62	
Figure 4.11	Plot of battery voltage vs time for three nights		
Figure 4.12	From left- a potentiometer and a PWM LED bulb	64	
	dimmer		

Figure 4.13	ON time (duty cycle) effect to the average output		
	voltage		
Figure 4.14	Circuit diagram of the test sample	66	
Figure 4.15	Flowchart of the Arduino sketch	66	
Figure 4.16	An ideal buck converter	67	
Figure 4.17	Typical PWM waveforms at duty-cycle of 0%, 100%	67	
	and 50%		
Figure 4.18	A buck converter with servo motor actuator	68	
Figure 4.19	Solar charge controller built-in with LED driver	69	
Figure 4.20	Circuit diagram and flowchart of the proposed lamp	69	
	dimmer		
Figure 4.21	From left- LED driver output voltage when the driver is	70	
	connected to LED and when the outgoing circuit open		
	circuited		
Figure 4.22	Vo when duty cycle is 67%	71	
Figure 4.23	Io when duty cycle is 67% (continuous current)		
Figure 4.24	Potential energy savings comparison to Case 1	72	

LIST OF ABBREVIATIONS

WT - Wind Turbine

HAWT - Horizontal Axis Wind Turbine

VAWT - Vertical Axis Wind Turbine

PV - Photovoltaic

FC - Fuel Cell

LCOE - Levelized Cost of Energy

COE - Cost of Energy

DNI - Direct Normal Irradiation

LED - Light Emitting Diode

O&M - Operation and Maintenance

TNPC - Total Net Present Cost

SOC - State of Charge

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	PWM Theoretical Calculations	81
Appendix B	Gantt Chart for Project 1	84
Appendix C	Gantt Chart for Project 2	85

CHAPTER 1

INTRODUCTION

1.1 Research Background

Global issues such as global warming, rising sea level, deprivation of fossil fuel and rising electricity cost have accelerated the research and development on alternative energy sources. In recent years, solar and wind source have become the prominent sources of alternative energy worldwide. Apart from power generation and transportation system, alternative energy has found their way into smaller scale applications such as remote villages, city lighting system, water pumping for irrigation and desalination [1].

Alternative energy or renewable energy has also been gaining momentum in ASEAN countries. Figure 1.1 shows the renewable energy establishment and targets for ASEAN countries as of year 2014. It can be seen that solar energy is the second most preferred renewable energy source for ASEAN countries. Meanwhile, solar energy is the most preferred and promising renewable energy technology in Malaysia [2]. There is also strong political support for solar energy in Malaysia as seen in the implementation of Feed-in Tariff (FiT) and Net Energy Metering (NEM) schemes for solar PV generations.

Country	Target Year	RE Targets	Most RE Technology Preference	RE Installed in 2014 (MW)	How Far?
Brunei Darussalam	2025	954 GWh	Solar energy (954 GWh)	1.67	0.2%
Cambodia	2020	2,241 MW	Hydropower (2,241 MW)	952	42%
Indonesia	2025	46,307 MW	Hydropower (21,300 MW)	6,680	16%
Lao PDR	2025	951 MW	Small hydro (534 MW)	3,348	5%
Malaysia	2050	21,370 MW	Solar energy (18,700 MW)	6,286	29%
Myanmar	2016	472 MW	Small hydro (472 MW)	3,204	N/A
Singapore	2020	350 MWp	Solar energy (350 MWp)	33.1	9%
The Philippines	2030	15,236 MW	Hydropower (8,937 MW)	5,898	38%
Thailand	2036	19,684 MW 15,236 MW	Solar energy (6,000 MW) Biomass (5,570 MW)	7,901	40%
Vietnam	2030	45,800 MW	Hydropower (27,800 MW)	17,140	37%

Figure 1.1 Power generation of different renewable energy in ASEAN [2]

From global view, there are huge potentials of wind energy that can be tapped into power generation worldwide. Figure 1.2 illustrates the wind velocities at different sites worldwide [3]. As of year 2014, China is the country that has the most number of established wind power capacity (114,609 MW) worldwide. Moreover, China strives to increase its wind power capacity by another 50% by year 2020, and is currently working on technologies to harness wind power in the lower wind speed areas. Wind energy development in Malaysia is a more challenging subject because Malaysia is located in a low wind speed area. Currently, wind energy is not included in the FiT scheme. The Sustainable Energy Development Authority (SEDA) of Malaysia has embarked on project to produce a comprehensive wind map for Malaysia [4]. It is worthwhile to conduct wind energy researches in Malaysia as the current micro wind turbine technologies are becoming more matured and reliable.

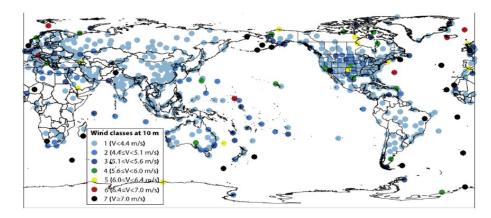


Figure 1.2 Malaysia belonged to wind class 1, wind speed less than 4.4 m/s [3]

One of example application that utilizes solar and wind technologies is street lights. Street lights themselves use 43.9 billion kWh of electricity annually. Conventional street lights are powered by utility connected electricity. They have higher carbon footprints, and are considered less sustainable plus less environmental friendly compared to renewable energy powered street lights [5]. In addition to that, most of the urban area street lights are controlled manually, by a control switch installed in each of the streetlight. Energy saving is very difficult to be achieved with manual control [6]. In Lebanon, the luminaries used for conventional street lights are the 250W and 400W high pressure sodium (HPS) lamps. It was mentioned that for the same output luminance, HPS lamps consumed 50% more energy than the newer type LED lamps [7].

The two more common types of hybrid street lights are solar PV streetlight and solar PV- wind turbine (PV-WT) streetlight. Table 1.1 shows the comparison between the two types of hybrid street lights. The advantage of solar PV streetlight is the relatively cheaper cost due to lesser components, such as the absence of costly wind turbine and sophisticated hybrid energy management control unit. On the other hand, the main disadvantage of solar PV streetlight is the unavailability to provide continuous illumination in places that are far away from the equator. The solar irradiation in these places depends much on the seasons. During winter season, solar irradiation is weaker. Since the daylight duration is shorter, the lighting duration and load also increased [8].

The coupling of solar PV and WT enables the street light to function better. When the solar PV is unable to perform, WT will act as a back-up, and vice-versa. Solar PV can generate electricity during day time, while WT can support the street light during cloudy days and also during night time where winds are usually available [9]. On cloudy days, wind speed is normally high, but the solar irradiation is poor. On sunny days, wind speed is low but the solar irradiation is high [10]. Another advantage of coupling solar PV and WT is that the electricity generating capacity can be increased, and the dependency of batteries is greatly reduced [11]. A simulation carried out showed that a solar-WT street light is able to illuminate 61%

of the needed lighting hours. In countries with cold climate, WT provided the main electricity supply during the winter season [12].

Table 1.1 Comparison between two different types of hybrid street lights

Solar PV streetlight	Solar PV- WT streetlight	
Advantage:	Advantages:	
• Lower cost than solar PV-WT	• WT can support during night time,	
streetlight	cloudy days, and winter season	
	Bigger generating capacity	
	Smaller battery size	
Disadvantage:	Disadvantage:	
• Unable to provide continuous	• Higher cost than solar PV streetlight	
illumination in places far away from		
equator		

The solar PV- WT street lights received widespread use [13]. Research on this newer system were carried out by various institutions worldwide, such as the Faculty of Technology of Marmara University, Turkey [14], Faculty of Electrical Engineering of UTeM, Malaysia [15], Technical University of Ostrava, Czech Republic [16], and Politechnic University of Marche, Italy [12]. In Bahrain and China, big buildings are already installed with street lights powered with solar PV and VAWTs. There has been an increase in the use of VAWTs over HAWTs because they have better aesthetic value and able to harness wind energy disregard of the wind direction [17].

1.2 Problem Statement

In UTM, there are lots of street lights installed, powered by utility electricity. As the campus area of UTM is very wide, the amount of electricity cost incurred to UTM is very high.

1.3 Objectives

The objective of this work is:

- 1. To install a micro street lighting system using hybrid solar/wind system at UTM's Balai Cerapan.
- 2. To design, develop and test the performance of a smarter energy management algorithm in the installed hybrid unit.

1.4 Scopes

The scopes of this work are:

- 1. Usage of a 80 W mini PV panel and a 300 W micro wind turbine as free energy source.
- 2. The micro wind turbine will be of a hybrid Savonius-Darrieus type VAWT.
- 3. Smart control between PV panel and micro wind system during day and night.

1.5 Research Outline

In the following sections, further details on this work will be presented. The literature reviews related to this work are given in Chapter 2. The research process and method are described in Chapter 3. The preliminary results of the hybrid solarwind street light are presented in Chapter 4. Finally, the work's conclusion based on the preliminary results is made in Chapter 5.

RERERENCES

- [1] L. Liu, Z. Wang, "The development and application practice of wind-solar energy hybrid generation systems in China", *Renewable and Sustainable Energy Reviews 13*, pp. 1504-1512, 2009.
- [2] Energy Commission, "Towards a world-class energy sector", *Energy Malaysia*, vol. 10, pp. 38-40, 2016.
- [3] M.M.A. Bhutta, N. Hayat, A.U. Farooq, Z. Ali, S.R. Jamil, Z. Hussain, "Vertical axis wind turbine a review of various configurations and design techniques", *Renewable and Sustainable Energy Reviews 16*, pp. 1926-1939, 2012.
- [4] L.W. Ho, "Wind energy in Malaysia: Past, present and future", *Renewable and Sustainable Energy Reviews 53*, pp. 279-295, 2016.
- [5] G. Liu, "Sustainable feasibility of solar photovoltaic powered street lighting systems", *Electrical Power and Energy Systems*, vol. 56, pp. 168-174, 2014.
- [6] Y. Wu, C. Shi, X, Zhang, W. Yang, "Design of New Intelligent Street Light Control System", 8th IEEE Conference on Control and Automation, Xiamen, China, 9-11 June, 2010.
- [7] S. Georges, F.H. Slaoui, "Case study of hybrid wind-solar power systems for street lighting", 21st International Conference on Systems Engineering, Las Vegas, USA, 16-18 August, 2011.
- [8] J. Lagorse, D. Paire, A. Miraoui, "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery", *Renewable Energy*, vol. 34, pp. 683-691, 2009.

- [9] S. Jahdi, L.L. Lai, D. Nankoo, "Grid integration of wind-solar hybrid renewables using AC/DC converters as DG power sources", *World Congress on Sustainable Technologies*, London, UK, 7-10 Nov, 2011.
- [10] R. Ricci, R. Romagnoli, S. Montelpare, D. Vitali, "Experimental study on a Savonius wind rotor for street lighting systems", *Applied Energy 161*, pp. 143-152, 2016.
- [11] Q. Huang, Y. Shi, Y. Wang, L. Lu, Y. Cui, "Multi-turbine wind-solar hybrid system", *Renewable Energy*, vol. 76, pp. 401-407, 2015.
- [12] R. Ricci, D. Vitali, S. Montelpare, "An innovative wind-solar hybrid street light: development and early testing of a prototype", *International Journal of Low-Carbon Technologies*, vol. 10, pp. 420-429, 2015.
- [13] W. Wang, X. Xu, T. Li, J. Fu, "Static and dynamic analysis of a wind-solar hybrid street lamp", *International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering*, Chengdu, China, 15-18 July, 2013.
- [14] I. Kiyak, B. Oral, V. Topuz, "Smart indoor LED lighting design powered by hybrid renewable energy systems", *Energy and Buildings* 148, pp. 342-347, 2017.
- [15] M.N.M. Nasir, N.Z. Saharuddin, M.F. Sulaima, M.H. Jali, W.M. Bukhari, Z.H. Bohari, M.S. Yahaya, "Performance evaluation of standalone hybrid PV-wind generator", *International Conference on Mathematics*, Engineering and Industrial Applications, Penang, Malaysia, 28-30 May, 2014.
- [16] S. Misak, L. Prokop, "Off-grid Power Systems", 9th International Conference on Environment and Electrical Engineering, Prague, Czech Republic, 16-19 May, 2010.
- [17] R.A. Berdanier, K.E. Hernandez, C.P. Raye, C.P. Horvath, L.M. Graham, T.P. Hatlee, N.H. Phan, P.M. Pelken, T.Q. Dang, "Integrating vertical-axis wind turbines and photovoltaic solar cells to power a self-sustaining outdoor light source", *ResearchGate*, 2010.
- [18] M. Becherif, M. Y. Ayad, A. Henni, A. Aboubou, "Hybridization of solar panel and batteries for street lighting by passivity based control", *IEEE*

- International Energy Conference, Manama, Bahrain, 18-22 December, 2010.
- [19] M.A.D. Costa, L. Schuch, L. Michels, C. Rech, J.R. Pinheiro, G.H Costa, "Autonomous street lighting system based on solar energy and LEDs", IEEE International Conference on Industrial Technology, Vina del Mar, Chile, 14-17 March, 2010.
- [20] L. Ling, X. Wu, M. Liu, Z. Zhu, Y. Li, B. Shang, "Development of photovoltaic hybrid LED street lighting system", *IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference*, Xi'an, China, 3-5 October, 2016.
- [21] S.H. Hosseini, S.K. Haghighian, S. Danyali, H. Aghazadeh, "Multi-input DC boost converter supplier by a hybrid PV/wind turbine power systems for street lighting application connected to the grid", *47th International Universities Power Engineering Conference*, London, UK, 4-7 September, 2012.
- [22] M. Jaureguizar, D. Garcia-Llera, M. Rico-Secades, A.J. Calleja, E.L. Corominas, "Enerlight project: walking from electronic lighting systems to lighting smart grid", *International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances*, Gijon, Spain, 11-13 December, 2013.
- [23] M. Becherif, M. Y. Ayad, A. Henni, M. Wack, A. Aboubou, "Hybridization of fuel cell, solar panel and batteries on the DC link for street lighting application", 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, USA, 7-10 November, 2010.
- [24] M.T. Chaichan, H.A. Kazem, A.M.J. Mahdy, A.A. Al-Waeely, "Optimal sizing of a hybrid system of renewable energy for lighting street in Salalah-Oman using Homer software", *International Journal of Scientific Engineering and Applied Science*, vol. 2-5, pp. 157-164, 2016.
- [25] S.V. Viraktamath, G.V. Attimarad, "Power Saving Mechanism for Street Lights using Wireless Communication", *International Conference on Signal Processing, Communication, Computing and Networking Technologies*, Thuckafay, India, 21-22 July, 2011.

- [26] C. Zhang, X. W, C.J. Zhang, "Design and implementation of wind-solar hybrid street light management system based on ZigBee", Advanced Materials Research, vols. 608-609, pp. 808-813, 2013.
- [27] Y.M. Yusoff, R. Rosli, M.U. Kamaluddin, M. Samad, "Towards smart street lighting system in Malaysia", *IEEE Symposium on Wireless Technology and Applications*, Kuching, Malaysia, 22-25 September, 2013.
- [28] W. Qiao, A. Sharma, J.L. Hudgins, E.G. Jones, L. Rilett, "Wind/ solar hybrid generation- based roadway mircogrids", *IEEE Power and Energy Society General Meeting*, Detroit, USA, 24-29 July, 2011.
- [29] X. Xu, W. Wang, P.P. Fan, "Finite element analysis of a wind-solar hybrid powered street light", *Applied Mechanics and Materials*, vols. 365-366, pp. 201-205, 2013.
- [30] J.D.K. Bishop, G.A.J. Amaratunga, "Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados", *Energy Conversion and Management 49*, p.p 1652-1661, 2008.
- [31] Y. Kumar, J. Ringenberg, S.S. Depuru, V.K. Devabhaktunin, J.W. Lee, E. Nikolaidis, B. Andersen, A. Afjeh, "Wind energy: trends and enabling technologies", *Renewable and Sustainable Energy Reviews* 53, p.p 209-224, 2016.
- [32] https://inhabitat.com/visualize-the-wind-with-wind-powered-led-light-firewinder/ (accessed online on 11th May 2018)
- [33] A. Tummala, R.K. Velamati, D.K. Sinha, V. Indraja, C.H. Krishna, "A review on small scale wind turbines", *Renewable and Sustainable Energy Reviews* 56, p.p 1351-1371, 2016.
- [34] M.M.A. Bhutta, N. Hayat, A.U. Farooq, Z. Ali, S.R. Jamil, Z. Hussain, "Vertical axis wind turbine a review of various configurations and design techniques", *Renewable and Sustainable Energy Reviews 16*, pp. 1926-1939, 2012.
- [35] R. Kumar, K. Raahemifar, A.S. Fung, "A critical review of vertical axis wind turbines for urban applications", *Renewable and Sustainable Energy Reviews* 89, p.p 281-291, 2018.

- [36] Y. Wang, X. Sun, X. Dong, B. Zhu, D. Huang, Z. Zheng, "Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades", *Energy Conversion and Management 108*, 2016.
- [37] S. Montelpare, V.D. Alessandro, A. Zoppi, R. Ricci, "Experimental study on a modified Savonius wind rotor for street lighting systems: analysis of external appendages and elements", *Energy 144*, pp. 146-158, 2018.
- [38] https://www.gps-coordinates.net/map/country/MY (accessed online on 11th May 2018).
- [39] en-gb.topographic-map.com/places/Malaysia-275484/ (accessed online on 11th May 2018).
- [40] https://weatherspark.com (accessed online on 11th May 2018).
- [41] globalsolaratlas.info (accessed online on 11th May 2018).
- [42] http://www.sun-direction.com/city/39023,johor-bahru/ (accessed online on 10th Sep 2018).
- [43] https://earth.nullschool.net/#current/wind/surface/level/orthographic (accessed online on 11th May 2018).
- [44] https://www.alibaba.com/product-detail/300w-high-efficient-vertical-wind-turbine (accessed online on 1st March 2018).
- [45] https://www.powerstream.com/battery-capacity-calculations.htm (accessed online on 1st March 2018).
- [46] T. Wakui, Y. Tanzawa, T. Hashizume, T. Nagao, "Hybrid configuration of Darrieus and Savonius Rotors for Stand-Alone Wind Turbine-Generator Systems", *Electrical Engineering in Japan*, vol. 150, pp. 13-22, 2005.
- [47] D.W. Hart, "Power electronics", McGraw-Hill, pp. 211-218, 2011.
- [48] https://www.aoguan.com (accessed online on 20th September 2018).
- [49] https://www.createthis.com (accessed online on 14th November 2018).
- [50] https://www.circuitmagic.com (accessed online on 16th November 2018).
- [51] https://www.arduino.cc (accessed online on 21st November 2018).

[52] J. Tucker, "Understanding output voltage limitations of DC/DC buck converters", Analog Applications Journal, Texas Instruments Incorporated, pp. 11-13, 2008.