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ABSTRACT

Subsurface water leaks not only waste precious natural resources, but also 
create substantial damages to the transportation system and structures within urban 
and suburban environments. While many geophysical techniques have been 
suggested for detecting water leakage including ground-penetrating radar (GPR), 
acoustic devices, gas sampling devices and pressure wave detectors, there is no ideal 
solution for it. Nonetheless, GPR, a non-destructive geophysical technique which 
uses high frequency electromagnetic waves to acquire subsurface information has 
been regularly utilized as GPR responds to the changes in electrical properties, which 
is a function o f soil and rock material, and moisture content. To evaluate the 
feasibility o f  GPR in detecting water pipe leakage, a finite-difference time-domain 
(FDTD) numerical modelling is conducted together with water pipe leakage 
detection fieldwork and experimental test. To properly design the features of the 
imaging approach, and test its capabilities in controlled conditions, the synthetic data 
was generated in a two dimensional FDTD forward modelling solver capable of 
accurately simulating real world GPR scenarios. Different types o f  simulate 
conditions involving sizes of leakage area, frequencies (250 MHz and 700 MHz), 
pipe materials (AC, DI, PVC, MS and HDPE) and pipe sizes (100mm, 200mm and 
300mm) were conducted. For the fieldwork, case studies were carried out using GPR 
scanning equipment (Detector Duo) to validate FDTD numerical model. For the 
experimental test, Detector Duo was used to collect data on top of District Metering 
Areas testbed. More understanding regarding the signature of leakage was gained in 
radargram. Compared to a distinct hyperbola or line as shown in radargram of intact 
pipes, the leakage zone is disturbed by the wave reflection caused by saturated soil. 
Numerically simulated results seem to be in agreement with the case studies and 
experimental results. The signature o f  pipe and leakage are clearly visible in the 
simulated radargram compared with those in the case studies and experimental 
radargram. Therefore, GPR survey seems promising as an efficient non-destructive 
geophysical technique for leakage detection approach. This finding is useful to 
provide protocols for GPR profile interpretation, particularly in underground water 
pipe leakage detection.
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ABSTRAK

Kebocoran air bawah tanah bukan sahaja membazirkan sumber alam semula 
jadi tetapi turut menyebabkan kerosakan besar terhadap sistem pengangkutan dan 
struktur di persekitaran dan pinggir bandar. Walaupun banyak teknik geofizik telah 
dicadangkan untuk mengesan kebocoran air termasuk Radar Penembusan Tanah 
(GPR), peranti akustik, peranti pensampelan gas dan pengesan tekanan gelombang 
tetapi masih tiada jalan penyelesaian yang sesuai untuknya. Walau bagaimanapun 
GPR, iaitu teknik geofizik yang tidak merosakkan yang menggunakan gelombang 
elektromagnetik berfrekuensi tinggi untuk mendapatkan maklumat bawah permukaan 
telah kerap digunakan kerana GPR bertindak balas kepada perubahan dalam sifat 
elektrik, yang merupakan satu fungsi kepada bahan tanah dan batuan serta 
kandungan kelembapan. Untuk menilai kebolehlaksanaan GPR dalam mengesan 
kebocoran paip air, pemodelan berangka perbezaan terhingga domain masa (FDTD) 
dilakukan bersama dengan kerja lapangan dan ujian eksperimen pengesanan 
kebocoran paip air. Untuk merekabentuk ciri-ciri pendekatan pengimejan, dan 
menguji keupayaannya dalam keadaan terkawal, data sintetik dihasilkan dengan 
penyelesai pemodelan dua dimensi FDTD yang mampu mengsimulasi senario GPR 
dalam dunia sebenar. Pelbagai jenis simulasi yang berbeza seperti saiz kebocoran, 
frekuensi radar (250 MHz dan 700 MHz), bahan paip (AC, DI, PVC, MS dan HDPE) 
dan saiz paip (100mm, 200mm dan 300mm) telah dijalankan. Bagi kerja lapangan, 
kajian kes dijalankan menggunakan peralatan pengimbas GPR (Detector Duo) untuk 
mengesahkan model berangka FDTD. Bagi ujian eksperimen, Detector Duo 
digunakan untuk mengumpul data di permukaan kawasan pengujian permeteran 
daerah. Pemahaman lebih lanjut mengenai tanda kebocoran diperoleh daripada 
radargram. Berbanding dengan hiperbola atau garisan berbeza seperti yang 
ditunjukkan dalam radargram, kawasan bocor terganggu dengan pantulan gelombang 
yang disebabkan oleh tanah tepu. Hasil simulasi secara berangka adalah sesuai 
dengan kajian kes dan keputusan eksperimen. Isyarat paip dan kebocoran kelihatan 
jelas dalam radargram simulasi berbanding dengan kajian kes dan ujian eksperimen. 
Oleh itu, kajian GPR adalah sesuai sebagai teknik geofizik yang tidak merosakkan 
untuk mengesan kebocoran. Dapatan ini sangat berguna untuk menyediakan protokol 
dalam pentafsiran profil GPR, terutamanya dalam mengesan kebocoran paip air 
bawah tanah.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Water pipe leakage is currently one o f  the most critical issues in water 

industry. This is mainly due to the waste of precious natural resources and of 

increasing water demand (Fontana and Morais, 2016). Moreover, water leakage has a 

very high potential that lead to the damage o f transportation system and structures 

within urban and suburban areas. According to an investigation made by the National 

Water Services Commission (SPAN) in 2013, the measurement of lost or 

‘unaccounted-for’ water from the water pipes is commonly 20 to 30 percent of 

aggregate water generation (Cheong, 1991; Ghazali, 2012; SPAN, 2013). Some other 

distribution systems, mostly older ones, may reach until 50 percent (AWWA, 1987). 

The substantial amount o f  water has lost in water conveyance frameworks while 

travel from the treatment plants to the end users. Whilst the ‘unaccounted-for’ water 

is normally due to spillage, metering blunders or thievery (Cheong, 1991; Salleh and 

Malek, 2012; SPAN, 2013). According to the International Water Supply 

Association (IWSA) survey, the major cause of water losses is leakage (Cheong, 

1991; Salleh and Malek, 2012).

The water distribution pipelines in Malaysia were used since ten years ago, 

where almost 50% of the total water production was lost and contribute to 

unaccounted-for-water (AWWA, 1987). According to Salleh and Malek (2012), 

there are about 127,275 km in length of water pipe of various types in the whole of 

Malaysia. These pipes are of asbestos cement type (AC) of 44,282 km (34.80%), 

mild steel pipe (MS) of 29,372 km (23.10%), HDPE pipe of 22,111 km (17.37%), 

un-plasticised polyvinyl chlorine (uPVC) of 18,683 km (14.70%), ductile iron pipe 

(DI) /CI of 9,885 km (7.70%) and other types with total length of 2942 km (2.30%) 

(Salleh and Malek, 2012). Among 127,275 km of water pipelines throughout
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Malaysia, the main reason for high physical loss of water are caused by leakage of 

these old water pipelines and dilapidated asbestos-cement (transmit) pipes where its 

pipe materials and structure are damaged due to aging, weathering and natural 

disasters like flood (Puust et al., 2010). These water losses happen in mostly all old 

distribution pipelines, even for those that are appropriately managed and maintained. 

Some of these water losses are not detectable as the pipelines are buried underground 

and do not cause severe disturbance to the water services. Water losses from these 

leakages can be active for a long time if no immediate actions are taken. As days go 

on, it is resulting in high volumes o f lost water which indirectly prompts out the 

issues of Non-Revenue Water (NRW) in Malaysia.

Table 1.1 shows the terminologies employed to evaluate the urban water 

supply system (Alegre et al., 2000). Non-revenue water (NRW) can be defined as the 

difference between the volume of water put into a water distribution system and the 

volume that is billed to customers. NRW is comprised of three components, i.e. real 

losses, apparent losses, and unbilled but authorised consumption. Actual losses are 

determined by losses in the service infrastructure, from the raw water to the point at 

which the water reaches the final user. Apparent losses are associated with 

unauthorised consumption and metering inaccuracies. While unbilled but authorised 

consumption is associate with unbilled metered consumption and unbilled unmetered 

consumption. Water management for each city will be inefficient i f  the levels o f 

water losses continue getting higher.
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suitable for PVC pipe. This is because the acoustical attributes of leakage indicators 

in PVC and metallic pipes are different, where PVC pipes are "quieter" and don't 

transfer echo or fluctuation as capable as metallic ones. Issues that are usually faced 

by spotting leakage using acoustic devices, e.g. meddling activity signs, and 

exhaustion o f leakage indicators along pipes, turn even worse for PVC pipes 

(AWWA and NRC, 2010).

The infrared thermography (IRT) method is based on detecting the 

temperature differences between the surroundings and piping systems. The thermal 

characteristics of soil adjacent to the pipe with a leak have a more massive heatsink 

compared with a pipe without a leak. Infra-red scanners are used to identify thermal 

anomalies above the pipes (Hunaidi et al., 2005). However, the IRT method can only 

be used with pipe structure with liquid or gas that has a higher temperature than its 

surroundings, such as the pipeline system for hot water or steam. Various elements 

may affect the capability o f  this method, for example, cloud cover, solar radiation, 

ambient temperature and surface conditions of the test area (Burn et al., 1999).

On the other hand, ground penetrating radar (GPR), a non-destructive image- 

based technique used for locating objects or interfaces buried beneath the earth’s 

surface or located within a visually opaque structure was introduced. GPR can detect 

both metallic and non-metallic targets in non or partially-conducting host materials. 

It measures and maps changes in the complex dielectric permittivity in the ground as 

a function of depth for any particular observation point. The main operational 

advantage o f this technique is that the radar antennae do not need to be in contact 

with the surface o f the earth, enabling rapid surveying. Besides that, GPR has 

advanced with its penetration proficiency until a few meters into the subsurface 

(Puust et al., 2010; Jaw and Hashim, 2011).

Ground penetrating radar technique produced a never-ending record or cross

sectional of subsurface options. Strategies like this are accustomed to discover 

leakage in water pipes by detection either signal distortion reflection from subsurface 

made by leaking water due to high moisture content around leakage area or by 

recognition of abnormalities of pipe deepness as measured by the measuring system.
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