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ABSTRACT 

The expression of heat shock proteins (HSPs) is an essential part of the heat shock 

response in plants where HSPs act as chaperones that help in protein folding and 

unfolding mechanism. This project focuses on determining the docking mechanism and 

conformation stability of HSPs from rice seed at several simulated temperatures. HSP20 

was selected from previously isolated rice seed proteins and the sequence was used for 

homology modelling. The suitable model of this sequence was then selected to undergo 

molecular dynamics simulation and docking procedure with the targeted proteins. The 

simulated environmental temperature was set as 37oC and 100oC during the simulation 

process. Model for the selected HSP20 protein was generated successfully via I-Tasser 

server. The results of 50ns simulation at 310K and 373K for selected model were plotted 

in the graphs of RMSD, RMSF, hydrogen bonding number and radius of gyration. The 

RMSD result showed that HSP20 model was more stable at simulated temperature of 

37oC as compared to 100oC. Whereas for the RMSF graph visualization, two significant 

loops of this model were found in the same position of its 3D structure as corresponded 

in both 37oC and 100oC results. For the results of hydrogen bonding number and radius 

of gyration, the mean numbers were around 102 and 1.6 respectively for 37oC and 100oC 

simulations. These findings indicated the responsible stability and flexibility of the 

model’s 3D structure in terms of its secondary structure, folding pattern and loops 

location. Molecular docking of this HSP20 model with the selected proteins: TPR and 

SGT1 was carried out successfully with ZDock server. The docked structures generated 

were used to understand the docking mechanism and protein-protein interactions between 

these proteins. Further study of these protein models is required for understanding on the 

roles of binding conformation between them as well as possible protein-protein 

interaction of HSP20 with other co-chaperones. 
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ABSTRAK 

 Ekspresi heat shock proteins (HSPs) atau protein tahan haba adalah suatu tindak 

balas tahan haba oleh tumbuh-tumbuhan. HSPs berperanan sebagai ‘chaperones’ dengan 

membantu dalam mekanisme penglipatan protein. Kajian ini menumpu pada mekanisme 

dok dan kestabilan struktur HSPs daripada beras padi dalam beberapa suhu simulasi. 

HSP20 dipilih daripada kandungan protein beras padi terpencil terdahulu dan digunakan 

untuk pemodelan homologi. Model yang sesuai seterusnya dipilih demi penjalanan 

simulasi dinamik molekul. Suhu simulasi ditetapkan pada 37oC dan 100oC sepanjang 

proses simulasi. Model protein HSP20 telah berjaya dihasilkan dengan server I-Tasser. 

Hasil simulasi bagi 50ns pada suhu 310K dan 373K telah diplotkan dalam graf-graf 

RMSD, RMSF, jumlah ikatan hidrogen serta radius gyration. Graf RMSD menunjukkan 

bahawa model HSP20 adalah lebih stabil pada suhu simulasi 37oC berbanding dengan 

100oC. Manakala dalam graf RMSF, didapati kedua-dua gelung dalam model ini berada 

pada kedudukan yang sama seperti 3D strukturnya sebagaimana dalam kehasilan simulasi 

pada 37oC and 100oC. Dalam graf-graf jumlah ikatan hidrogen dan radius gyration, 

nombor mean adalah kira-kira 102 dan 1.6 masing-masing bagi kedua-dua simulasi pada 

37oC dan 100oC. Penemuan ini juga bersesuaian dengan keputusan struktur 3D bagi 

model HSP20 dari segi struktur sekunder, bentuk lipatan dan lokasi gelung yang 

berkenaan. Proses dok molekul bagi model HSP20 dengan protein TPR dan SGT1 telah 

berjaya dijalankan dalam server ZDock. Struktur-struktur hasilan proses dok telah 

digunakan untuk memahami mekanisme dok serta interaksi protein-protein antara mereka. 

Kajian lanjut bagi model-model ini adalah diperlukan bagi pemahaman berhubung 

peranan ikatan dalam konformasi mereka serta kemungkinan interaksi protein-protein 

antara HSP20 dengan protein ‘co-chaperone’ yang lain.  
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Background Information 
 

 

One common environmental variable encountered by organisms is the surrounding 

temperature that influences homeostasis maintenance. High temperature will cause 

negative impacts that interrupt cellular homeostasis and physiology at various growth 

stages of plants. A complex signaling network is therefore constructed by plants to 

minimize the effects of heat stress. This involves rapid induction of genes with the 

expression of heat shock proteins (HSPs), which acts as an essential part of the heat shock 

response (Zhang et al., 2016). In general, HSPs are categorized in terms of their molecular 

weight and have been grouped in families including HSP90, HSP70, HSP60, HSP40, and 

small HSPs (sHSPs). Basically, HSPs act as chaperones which help in protein folding and 

unfolding mechanism. They also served as stress-response factors that have vital role in a 

range of cell processes, such as apoptosis, cell cycle and division, development as well as 

differentiation (Martín-Folgar et al., 2015). 

 

 

Rice (Oryza sativa L.) can be referred as one of the critical crops in eastern Asia. 

Numerous rice cultivars and wild species of rice have been widely grown for identification 
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of their genetic and molecular makeup. According to the study of Bernier and co-workers, 

rice ecosystems can be divided into four major categories: deep-water, irrigated, rainfed 

lowland and rainfed upland (Bernier et al., 2008). On the other hand, rice is also 

considered as model plant in monocot category due to its small size genome which 

consists of about 430 million base pairs and around 30,000 genes responsible for proteins 

production (Komatsu et al., 2003). When it comes to proteomics in rice, it basically 

involved the study of proteomes in various parts of rice. These proteins are resulted from 

specific gene expression under various growth and developmental conditions, as well as 

under different abiotic and biotic stresses. Kim and co-workers mentioned about 

technological development and improvement in both gel-based and gel-free approaches, 

especially MS analysis and bioinformatics resources in plant proteomics have contributed 

greatly to the global advance of rice proteomics analyses (Kim et al., 2014). 

 

 

 

 

1.2 Problem Statement 
 

 

HSPs expression can be referred as the strategy of plants to cope with the several 

biotic and abiotic stresses as well as environmental changes due to their sessile properties. 

Study regarding the mechanism of HSPs in plants is particularly important in 

understanding of their functions and discover more of their potential roles. Although 

currently there are some studies on HSPs from rice plants, but molecular docking of HSPs 

sequences isolated from rice seed is still not available. Moreover, there is also a lack of 

research on binding mechanism of HSP20 with co-chaperones or other proteins, which is 

crucial for HSPs role in plant immunity. Thus, a study on comparison of selected HSP20 

conformation under different simulated temperature would provide preliminary 

information before proceeding to the determination of HSP20 stability and its docking 

mechanism followed by the prediction on protein-protein interactions of HSP20 with the 

chosen proteins. 

 



3 
 

1.3 Objectives 
 

 

1. To determine the stability of HSP20 at 37oC and 100oC 

2. To determine the docking mechanism of HSP20  

3. To predict the protein-protein interaction of HSP20 with coat protein, TPR 

(Tetratricopeptide Repeat) and SGT1 (Suppressor of G2 allele of SKP1) 

 

 

 

 

1.4 Significance of Work 
 

 

This project focuses on determining the docking mechanism and conformation 

stability of HSPs from rice seed at several simulated temperatures. Current studies on 

HSPs are mainly based on animal sources rather than plants for eukaryotes and study 

regarding rice HSPs is very few. There is still absent of work related to molecular docking 

of HSPs from rice seed. Hence, this study could provide information for structure stability 

of selected HSPs at different simulated temperatures as well as possible interaction 

between HSPs and the chosen ligands. 

 

 

 

 

1.5 Scope of Work 
 

 

HSP20 was selected from previously isolated rice seed proteins (Lee, 2015) and 

these HSP20 sequences were used for homology modelling. The suitable model of the 

chosen HSP20 sequence was proceeded with molecular dynamics simulation. The 

simulated environmental temperatures were set as 37oC and 100oC during the 50ns MD 
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run. The stability and flexibility of the selected HSP20 model can therefore be identified. 

Molecular docking of HSP20 model with the targeted TPR and SGT1 proteins was also 

be carried out as for the prediction of protein-protein interactions between these docked 

structures could be achieved successfully. 
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