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ABSTRACT 

In the last decades wireless communications has been growing tremendously 

and given that the trend will most likely continue at a cumulative pace it is imperative 

that in the future, the transceivers designed need to operate at a near ideal energy 

efficiency on new frequency bands demanded by the 5G standard. Since transmitters 

are the corner stone of any wireless communication systems and that power amplifier 

(PA) is a high power consuming device within it. It is evident that the design of a 

highly efficient PA might tackle the significant portion of power loss within RF and 

microwave systems. The design of PA proposed in this work is aimed at dual band 

frequencies based on the LTE standards of LTE 42 and LTE 43 having range of 3.4 

GHz to 3.6 GHz and 3.6 GHz to 3.8 GHz respectively.  The design of a PA begins at 

characterizing the transistor employed then followed by conjugate matching of the 

input aimed at the gate. In the design for a highly efficient power amplifier, the design 

of the OMN plays a pivotal role. This is usually achieved by employing load pull 

techniques aimed at the drain to find the optimum impedance requirement at desired 

frequency. Then by employing band-pass filters aimed only to allow the two LTE 

bands to pass through will cause all the other harmonic frequencies suppression. 

Having an ideal efficiency of 100% and their simplistic design over other PA classes 

makes the Class E amplifier a viable choice. Although theoretically Class E amplifier 

have an ideal efficiency, we expect by achieving 60% to 80% efficiency will be an 

acceptable target since in practice the efficiency largely depends on the type of 

transistor being implemented in the PA system.  
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ABSTRAK 

Sejak beberapa dekad yang lalu komunikasi tanpa wayar telah berkembang 

dengan pesat dan berkemungkinan besar akan berterusan pada kadar yang pantas. 

Ianya penting bahawa pada masa akan datang, gabungan pemancar dan penerima radio 

yang direka perlu beroperasi pada kecekapan tenaga yang ideal pada jalur frekuensi 

baru yang sesuai untuk piawai 5G. Oleh kerana pemancar adalah peralatan penting 

untuk semua sistem komunikasi tanpa wayar dan penguat kuasa adalah peranti yang 

memakan kuasa yang tinggi di dalamnya, maka ianya jelas bahawa reka bentuk 

penguat kuasa yang cekap akan dapat menangani sebahagian besar masalah kehilangan 

kuasa di dalam sistem frekuensi radio dan gelombang mikro. Reka bentuk penguat 

kuasa yang dicadangkan dalam keja ini menggunakan frekuensi dua jalur berdasarkan 

piawaian LTE iaitu LTE 42 dan LTE 43, masing-masing mempunyai 3.4 GHz hingga 

3.6 GHz dan 3.6 GHz hingga 3.8 GHz. Reka bentuk penguat kuasa bermula dengan 

mencirikan jenis transistor yang ingin digunakan dan kemudian diikuti dengan 

pemadanan konjugasi masukkan data di ‘gate’. Dalam reka bentuk untuk penguat 

kuasa yang sangat cekap, reka bentuk OMN memainkan peranan penting. Ini biasanya 

dicapai dengan menggunakan teknik tarik beban di 'drain' bertujuan untuk mencari 

impedans optimum yang diperlukan pada frekuensi yang dikehendaki. Kemudian 

dengan menggunakan penapis band-pass yang bertujuan untuk membolehkan kedua-

dua jalur LTE melepasi, menyebabkan semua frekuensi harmonik terhapus. 

Disebabkan mempunyai kecekapan yang ideal sebanyak 100% dan reka bentuk 

ringkas berbanding kelas penguat kuasa yang lain, penguat Kelas E menjadi pilihan 

yang terbaik. Walaupun secara teori penguat kuasa Kelas E mempunyai kecekapan 

yang ideal, kami menduga dengan mencapai kecekapan 60% hingga 80% ianya akan 

menjadi sasaran boleh terima kerana secara praktiknya kecekapan sangat bergantung 

kepada jenis transistor yang digunakan dalam sistem penguat kuasa.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The progress of telecommunication technology comes together with the market 

demands and government regulations which forces new development and application 

in wireless communication. With the coming of 5th generation wireless systems, the 

bandwidth spectrum usage of the wireless communication system is going to be 

saturated. The reason for this is that size of internet users is accumulating everyday as 

the Internet can be accessed in cafes, airports and mostly anywhere therefore the 

communication system we have now is soon going to be congested. 

To counter such congestions there is need of an efficient and cost effective and 

most importantly reliable transmission communication systems which is 

implementable on Cognitive Radio systems (1). The term Cognitive radio was initially 

instituted by J. Mitola in the year 1999 for effective spectrum usage. The Cognitive 

Radio gadgets uses the spectrum left out by primary radio hubs and it does so by 

changing and adjusting their parameters according to which spectrum is unused. This 

somewhat creates an openness of the frequency spectrum and reintroduces the already 

used spectrum for a bigger network (2). The main usage of CR is to make use of 

bandwidth spectrum that are unallocated as well as ameliorate spectrum utilization (3).  
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Figure 1. 1 Cognitive Radio Network maximizing spectrum utilization (3). 

 

To enable roaming across multiple systems numerous mobiles are operating in 

multi-modes and this is done in the RF industry by designing multi-band components 

since the complexity and power consumption will be reduced. One of such components 

is Power Amplifiers (PA) (4). The definition of a PA can be said to be an amplifier 

which is designed in such a way that maximum power is transferred only for a selection 

of active devices such as transistors (5). It has been stated in (1) that the most 

troublesome design in a RF front-end system is the design of power amplifiers. 

1.2 Problem Statement 

Upcoming wireless communication systems demands extremely gigantean 

data rates as well as efficient spectrum utilization. This means that there should be 

non-constant envelope modulation schemes and RF and microwave waveform having 

great peak-to-average power ratios (PAPR). In avertedly, it can cause the power 

amplifier (PA) at the transmitter to function at large power back-off where previous 

design of power amplifiers i.e. conventional power amplifiers display unsatisfactory 
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level of efficiency. Efficiency of the power amplifier is a paramount criteria to be 

considered in portable wireless devices since lower efficiency of the power amplifier 

easily drains the longevity of the battery functioning time. Considering applications 

where mobility is no considered such as base station applications, then the 

implementation of high efficiency PAs are an absolute must for reducing power 

consumption and heat sinking costs (6). Up till now even with the massive 

technological advancement, the design of power amplifiers (PAs) in transmitters are a 

serious “headache” to RF and Microwave engineers. It is widely known that linear PA 

is usually termed as Class A or AB design with the embedded benefits of low 

modulation distortion and high dynamic range. The drawback here is that linear PA 

needs power back-off to avert the nonlinearities and its ill-effects and this usually 

happens with a trade-off of high efficiency. Even nowadays The efficiency for the 

whole transmitter is still constraint to approximately only one device which is the 

linear PAs, even for the case of dual-mode or dual-band transmitters (4). By now the 

majority of microwave systems employed makes use of conventional PA systems, 

hence due to low efficiency of these systems, most input power is wasted and since 

power cannot be destroyed the wasted energy happens in terms of heat dissipation.  

This can be resolved by employing matching networks designed for Class E 

amplifier as it is a PA that has a theoretical efficiency of 100% however it is to be 

expected that here the trade-off  is non linearity. The significant increase in wireless 

communication has caused a near saturation of the frequency bands being used by the 

mobile sector. Also when dealing with Class E amplifiers, harmonics are always 

present as it is a nonlinear system and this affect the performance of the device whether 

it is smoothness of the waveform or power gain. Thus a new type of Class E PA 

systems need to be implemented that can work on multiple frequencies i.e. on different 

LTE bands (in this case LTE band 42 and 43) as well as efficiently tackling the 

problem of harmonics.  
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1.3 Objectives  

 Design of a Class E power amplifier for high efficiency performances with 

implementation of load-pull techniques.  

 To understand the practicality of employing harmonic filters beyond the 2nd 

harmonic vis-à-vis efficiency and gain.  

  To analyze the effect of implementing Sokal’s equation and his design at the 

OMN for Class E operation versus load pull techniques employed within this 

work. 

 To design a highly efficient Class E power amplifier aimed at dual-band 

operation based on the LTE band 42 and 43. 

1.4 Scope of Project 

Class E amplifier will be implemented in this project due to their ideal 

efficiency of 100% and their simplicity of design. The frequency band is based on LTE 

42 and LTE 43 having frequency range of 3.4-3.6 GHz and 3.6-3.8 GHz respectively.  

The two techniques that are being studied are by using load-pull configuration and the 

use of Sokal’s equation. Initially at the beginning of the design of the Class E amplifier, 

Sokal implemented his techniques on a BJT transistor at 3.9 MHz.  It is important to 

test the validity of his technique on a newer version of transistor capable of operating 

at much higher frequency and to analyze whether it can be implemented for multiple 

band of frequencies. Another crucial aspect to consider is to terminate the harmonics, 

and so here a band-pass filter will be employed as opposed to the current trend of using 

open circuiting. Power added efficiency (PAE) versus gain will be observed, analyzed 

and discussed in this project with respect to the harmonics. The software used for 

simulation is National Instrument NI AWR while the models for the transistor is 

obtained from Modelithics.  
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1.5 Research Contributions 

The design of PA in this project can be implemented for a Class E amplifier 

for dual band operation which can be used for applications where tackling power 

efficiency is of great importance on all the while capable of operating on more than a 

single band. This work also contribute to the study of the tradeoff between harmonic 

terminations versus efficiency and gain which has been a headache for RF designers. 

The simulations done will be benchmarked against previous researches to show its 

improvements and feasibility as a highly efficient power amplifier and provide a better 

understanding of matching networks employed for Class E operations. 

1.6 Design Specification 

Table 1. 1 Design Specification for a Class E circuit. 

Parameters Class E Circuit Specifications 

Operating Frequency Range LTE 42 and LTE 43 

Transistor Model NPTB00004  - GaN 

Target PAE >65%  

Loaded Quality Factor QL for 50% duty 

cycle (based on Sokal’s equation) 
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Input Power 22 dBm 

Target Gain Greater than 7 dB 

 

1.7 Chapter Summary 

This chapter explain the importance of power amplifier having a high 

efficiency which has been a headache to RF designers for a long time. This will be 

greatly useful when implementing 5G as wireless communication is booming 

especially in the mobile sector hence the high demand of energy efficient devices. This 



6 

will lead to a major bottleneck as even 5G technology is slowly creeping its way in 

our society the higher the frequency we are using but the applicability of switching the 

transistors is the major concern hence there should be an effective way to implement 

amplifiers where the transistors can undergo switching mode efficiently thereby the 

design of PA comes in the picture. The objective and scopes mentioned defines this 

project work into creating a Class E PA by using matching techniques aimed at load 

pull contours and Sokal’s methods for a high efficiency PA at high frequency 

operation. 
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