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ABSTRACT 

Photocatalytic conversion of carbon dioxide (CO2) and methane (CH4) offers 

a solution of greenhouse gas mitigation with alternative energy supply. The objective 

of this study is to design and fabricate photoreactor system and to synthesize silver 

(Ag) and lanthanum (La) modified protonated carbon nitride (pCN) coupled titanium 

dioxide (TiO2) photocatalysts for enhanced photocatalytic CO2 reduction with CH4 in 

the presence of water to fuels. The ternary Ag-La/pCN-TiO2 composite catalysts were 

synthesized through sonicated assisted hydrothermal and sol-gel methods. The 

performance of nanomaterials was investigated using photocatalytic bireforming of 

methane (BRM), dry reforming of methane (DRM), steam reforming of methane and 

steam reforming of carbon dioxide in a fixed-bed and monolith photoreactors under 

UV and visible light irradiations. Ag/La-loaded protonated carbon nitride nanotubes 

(pCNNT) produced both carbon monoxide (486 µmol g-cat-1 h-1) and hydrogen (79 

µmol g-cat-1 h-1) under visible light irradiations, while productivity was highest in 

BRM process, which was further improved in a monolith photoreactor with CO and 

H2 production rate of 770 and 891 µmol g-cat-1 h-1, respectively. Furthermore, using 

pCN-TiO2 composite loaded with La, higher amount of CO was obtained, while 

production of H2 had increased with Ag-loading. More importantly, a remarkable 

improvement in productivity of both CO and H2 with H2/CO ratio greater than one was 

obtained using Ag-La co-loaded pCN-TiO2 composite catalyst. The highest CO and 

H2 production rate of 2105 and 2387 µmol g-cat-1 h-1, respectively, were obtained using 

BRM process in a monolith photoreactor. The performance of monolith photoreactor 

was 1.4 and 3.2 fold higher for CO and H2 rich synthesis gas (syngas) production than 

using fixed-bed reactor over the composite catalyst under UV-light irradiations. The 

reaction mechanism based on Z-scheme system for DRM and BRM was successfully 

developed under UV light irradiation, while direct electron transfer was observed 

under visible light irradiations. The quantum efficiency of 4.07 % and 4.624 % was 

achieved for CO and H2 production, respectively in a monolith photoreactor, while it 

was only 1.144 % and 0.548 % in a fixed-bed photoreactor during BRM under UV-

light irradiations. Among the operating parameters, feed ratio was the influential 

parameter to maximize yield and selectivity. The stability test revealed prolonged life 

and reusability of Ag-La/pCN-TiO2 composite photocatalyst in three cyclic runs. The 

Langmuir-Hinshelwood model confirms surface reactions due to efficient sorption 

process in a monolith photoreactor over composite catalysts. In conclusion, Ag-La 

loaded pCN-TiO2 composite catalyst and monolith photoreactor via BRM provided an 

ideal system to get hydrogen enrich syngas production for renewable fuels 

productions.  
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ABSTRAK 

Penukaran fotobermangkin karbon dioksida (CO2) dan metana (CH4) 

menawarkan penyelesaian pengurangan gas rumah hijau dengan bekalan tenaga 

alternatif. Objektif kajian ini adalah untuk merekabentuk dan menghasilkan sistem 

fotoreaktor dan untuk mengsintesis fotomangkin karbon nitrida berproton (pCN) 

gandingan titanium dioksida (TiO2) terubahsuai dengan perak (Ag) dan lantanum (La) 

untuk meningkatkan penurunan CO2 fotobermangkin dengan CH4 dalam kehadiran air 

kepada bahan api. Pemangkin komposit tetiga Ag-La/pCN-TiO2 disintesis melalui 

kaedah hidrotermal dan sol-gel dibantu dengan sonikasi. Prestasi nanobahan dikaji 

dengan menggunakan dwipengubahan fotomangkin metana (BRM), pengubahan 

kering metana (DRM), pengubahan wap metana dan pengubahan wap karbon dioksida 

dalam fotoreaktor lapisan tetap dan monolit di bawah penyinaran cahaya UV dan 

nampak. Nanotiub karbon nitrida berproton termuat Ag/La (pCNNT) menghasilkan 

kedua-dua karbon monoksida (486 µmol g-cat-1 h-1) dan hidrogen (79 µmol g-cat-1 h-

1) di bawah penyinaran cahaya nampak, sementara produktiviti tertinggi dalam proses 

BRM, yang bertambah baik dalam fotoreaktor monolit dengan kadar penghasilan CO 

dan H2 masing-masing sebanyak 770 dan 891 µmol g-cat-1 h-1. Selain itu, dengan 

menggunakan komposit pCN-TiO2 termuat dengan La, jumlah CO yang lebih tinggi 

diperoleh, manakala penghasilan H2 meningkat dengan pemuatan Ag. Lebih penting 

lagi, peningkatan produktiviti kedua-dua CO dan H2 dengan nisbah H2/CO lebih besar 

daripada satu diperoleh dengan menggunakan pemangkin komposit pCN-TiO2 yang 

dimuatkan bersama Ag-La. Kadar penghasilan CO dan H2 tertinggi masing-masing 

sebanyak 2105 dan 2387 µmol g-cat-1 h-1 diperoleh dengan menggunakan proses BRM 

dalam fotoreaktor monolit. Prestasi fotoreaktor monolit adalah 1.4 dan 3.2 kali ganda 

lebih tinggi bagi penghasilan gas sintesis yang kaya dengan CO dan H2 (singas) 

berbanding dengan menggunakan reaktor lapisan tetap terhadap mangkin komposit di 

bawah penyinaran cahaya UV. Mekanisme tindak balas berasaskan sistem skema Z 

untuk DRM dan BRM berjaya dibangunkan di bawah penyinaran cahaya UV, 

manakala pemindahan elektron langsung diperhatikan di bawah penyinaran cahaya 

nampak. Kecekapan kuantum 4.07% dan 4.624% dicapai untuk pengeluaran CO dan 

H2, masing-masing di dalam fotoreaktor monolit, manakala hanya 1.144% dan 0.548% 

di dalam fotoreaktor lapisan tetap semasa BRM di bawah penyinaran cahaya UV. 

Antara parameter operasi, nisbah suapan adalah parameter berpengaruh untuk 

memaksimumkan hasil dan kepemilihan. Ujian kestabilan menunjukkan hayat 

berpanjangan dan kebolehgunaan semula fotomangkin komposit Ag-La/pCN-TiO2 

dalam tiga kitaran larian. Model Langmuir-Hinshelwood mengesahkan tindak balas 

permukaan disebabkan oleh proses penyerapan yang cekap di dalam fotoreaktor 

monolit melalui mangkin komposit. Kesimpulannya, mangkin komposit pCN-TiO2 

yang dimuatkan Ag-La dan fotoreaktor monolit melalui BRM menyediakan sistem 

yang ideal untuk mendapatkan singas diperkaya hidrogen untuk penghasilan bahan api 

yang boleh diperbaharu. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Overview 

Global warming effects due to greenhouse gases, primarily carbon dioxide 

(CO2) and methane (CH4) emitted due to fossil fuel combustion and human activities 

are prevalent [1]. The emission reduction of CO2 for cleaner environment can be 

categorized into three routes which include direct reduction of CO2 emission from the 

source [2], CO2 capture and storage (CCS) and utilization of CO2. The direct CO2 

emission at the source can be reduced using renewable energy resources that produces 

lesser CO2  [3], but these energy sources are limited compared to fossil fuels [4]. CO2 

capture and storage is a technology that is being developed to allow CO2 emissions 

from fossil fuel, capture at large point sources to be transported to safe geological 

storage, rather than being emitted to the atmosphere [5]. CCS disadvantage is the extra 

cost to transport and injection to the geological storage. Besides, due to 

industrialization integrated with daily human activities caused the increase of fossil 

fuels combustion; thus mitigating CO2 emission and/or storage for sustainable 

development is unachievable [6]. Therefore, utilization of CO2 to produce chemicals 

and fuels is the growing concern in recent years [7].  

Among the available CO2 utilization approaches, the most widely employed 

technologies are thermal and plasma processes.  In thermal process, CO2 can be 

converted through an endothermic process by providing an input energy at elevated 

temperature. However, higher temperature makes this process expensive and has 

adverse effect on the catalyst stability, while coke produced ultimately deactivates the 

catalyst [8]. On the other hand, plasma technology for dry reforming of methane is 

considered better alternatives compared to thermal process. The plasma reforming has 

advantages of high conversion because reactions are conducted by electron induced 

chemistry. However, production of large amounts of coke during dry reforming of 
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methane in plasma reactor is a great challenge.  In addition, higher input energy is 

required to generate plasma, which make this process un-economical [9-11].  

In recent innovations, phototechnology has gained much attention because it 

works in the presence of light irradiations. Using photocatalysis, CO2 reforming of 

CH4 would be possible at normal temperature and atmospheric pressure [12].  The 

requirement of input energy as like endothermic process can be provided through 

harvesting solar energy. More importantly, catalyst can be used with prolonged 

stability due to mild operating conditions, while economical production of chemicals 

and fuels.  

1.2 Photocatalytic CO2 Reforming of CH4 

Photocatalytic reduction of CO2 seems a potential technology to produce 

chemicals and fuels at normal operating conditions with the help of light irradiations. 

During the past three decades, photocatalytic reduction of CO2 over various 

semiconductor materials has been investigated by many researchers and products 

reported were carbon monoxide (CO), methane (CH4), methanol (CH3OH), formic 

acid (HCOOH) and acetic acid (CH3COOH) as discussed in Equations (1.1) to (1.5) 

[13-16].  

, ,

2 2CO 2H 2e CO+H Ohv catalyst gas phase   
    (1.1) 

, ,

2CO 2H 2e HCOOHhv catalyst slurry   
     (1.2) 

, , /

2 3 2CO 6H 6e CH OH+H Ohv catalyst slurry gas   
    (1.3) 

, ,

2 4 2CO 8H 8e CH +2H Ohv catalyst gas phase   
    (1.4) 

, ,

2 3 22CO 8H 8e CH COOH+2H Ohv catalyst slurry   
   (1.5) 

Since 1980s, water as a reductant for the reduction of CO2 in a gas phase and 

slurry system, has attracted considerable interest with diversity of products (e.g., CO, 
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CH4, H2, CH3OH, HCOOH and HCHO) [13-16]. Using gas phase system, CO2 with 

water can be converted to CO, CH4 and CH3OH as the potential products.  However, 

slurry system promoted the production of CH3OH, HCHO and CHOOH during CO2 

reduction with H2O [17]. In this perspective, production of CH4 from photo-reduction 

of CO2 with water vapours over Fe/TiO2 [18], photo-reduction of CO2 with H2O to 

liquid products (CH3OH, HCHO) over CeO/TiO2 [19], use of Ag-MgO/TiO2 for the 

production of CH4 from CO2 and water in gas phase system [20], Fe-doped CeO for 

CO and CH4 production from CO2 and water vapours [21], production of CO from 

CO2-water vapours over Ag/CdS [22], Ag/TiO2 nanorods [23], g-C3N4/Ag/TiO2 

composite catalyst for the production of CO and CH4 from CO2-water [24], production 

of CO from CO2-water using g-C3N4/N/TiO2 catalyst [25] and g-C3N4/Cu/TiO2 for the 

production of CH3OH, HCHO and HCOOH from CO2 in slurry system [26], have been 

reported.  

Although, different types of photocatalysts with appreciable improvement in 

CO2 reduction to fuels has been succeeded by numerous researchers, but main 

challenge is diversity of products distribution. In addition, research on utilization of 

both greenhouse gases (CO2 and CH4) is still relevant. CH4 is emitting from gas supply 

chain [27], landfill [28] and industries, is a severe challenge for the future. Therefore, 

recycling both greenhouse gases (CO2 and CH4) to valuable chemicals and fuels by 

reforming deems an attractive pathway for a cleaner environment. CO2 reforming is a 

method of producing synthesis gas (syngas), a mixture of CO and H2, from the mixture 

of CO2 and hydrocarbons, in particular, methane. Conventionally, syngas is produced 

via dry reforming of methane. The reforming of CO2 and CH4 is a challenging task as 

both are stable molecules, while reforming of these two molecules to syngas is an 

endothermic process that demands excessive supply of energy [29, 30]. However, it is 

a main raw material in the production of liquid fuels. Besides, syngas (H2/CO) ratio 

for the production of liquid fuels has great importance, e.g., a ratio of H2/CO of 2 

would be required in methanol synthesis process. 

Methane can be converted into syngas through different reforming 

technologies such as steam reforming of methane (SRM) as shown in Equation (1.6). 

CO2 can also be utilized with CH4 for the production of syngas through catalytic CO2 
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and CH4 reforming or dry reforming of methane (DRM) as explained in Equation (1.7) 

[31]. DRM offers advantages such as mitigating both greenhouse gases, and direct 

production of syngas [32]. However, DRM operates under higher temperature via 

thermal reforming is prone to coking and reduces catalyst stability [33]. 

4 2 2

298

298

CH H O CO 3H

H 206 kJ / mol

G 142kJ/mol

K

K

  

  

  
       (1.6) 

4 2 2

298

298

CH CO 2CO 2H

H 247 kJ / mol

G 170kJ/mol

K

K

  

  

  
      (1.7) 

Combination of SRM and DRM also known as bireforming of methane (BRM) 

could be a promising approach and interesting pathway for the production of H2 

enriched syngas as explained in Equation (1.8) [34]. BRM has advantage over SRM 

and DRM for producing hydrogen with a stoichiometric H2/CO ratio of 2, a more 

favourable composition for the production of liquid fuels via Fischer-Tropsch 

Synthesis (FTS) [35]. Although, BRM is an attractive approach compared to DRM, 

yet it also requires larger input energy due to endothermic process [36]. 

4 2 2 2

298

298

3CH CO 2H O 4CO 8H

H 220 kJ / mol

G 151kJ/mol

K

K

   

  

  
     (1.8) 

With the help of phototechnology, reforming processes can be conducted at 

normal temperature and atmospheric pressure. However, there are limited reports 

available on photocatalytic CO2 reduction with CH4 through phototechnology. 

Recently, photocatalytic CO2 reforming of CH4 to fuels over different semiconductor 

photocatalysts has been reported [37, 38]. In one of the earlier studies, Shi et al. [39] 

reported photocatalytic CO2 reduction with CH4 over Cu/CdS modified TiO2/SiO2 

photocatalyst in a fixed-bed photoreactor operating at high temperature. Products 

obtained were C2H6, CH3COOH, CH3COCH3 and CO. ZrO2 photocatalyst was 

employed for CO2-CH4 reduction under UV-light with the production of CO and H2 
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as the main products [40]. Similarly, CO and H2 were produced during CO2 reduction 

with CH4 over Pt-loaded TiO2 and Au/Rh loaded TNTs catalyst, respectively [41]. 

However, literature on photocatalytic CO2 reduction with CH4 in the presence of H2O 

via BRM is not available. Besides, ubiquitous TiO2 is mainly employed as a photo-

catalyst in CO2 reforming of CH4, but the production rate was not much appreciable. 

Lower TiO2 photoactivity attributing to poor CO2 adsorption due to acid nature and 

fast photogenerated charges recombination rate. 

Significant research has been conducted on developing efficient 

photocatalysts, while the use of basic oxide in TiO2 is considered as one prospect to 

promote CO2 adsorption. In recent years, rare-earth metals are typically investigated 

for the modification of TiO2 structure to enable the increment of surface oxygen 

vacancies [42]. Lanthanum (La), due to the unique electronic configuration and 

spectral characteristics,), is considered as the best dopant for modifying crystal 

structure, optical properties and surface adsorption of TiO2 [43, 44]. Li et al., [45] 

reported the use of La as an efficient metal for selective photocatalytic CO2 reduction 

with H2O to CH4 under UV-light. The enhanced and selective photoactivity of La/TiO2 

photocatalyst was due to higher CO2 adsorption because of its surface basicity with 

proficient charge separation. Similarly, silver (Ag) metal is gaining large interest due 

to its appropriate work function (Ws) for photocatalytic applications [46, 47]. Many 

research articles reported the use of Ag based semiconductors for selective CO2 

photoreduction during photocatalytic CO2 reduction with H2O under UV and visible 

light irradiations [48-52].  

Recently, graphitic carbon nitride (g-C3N4) semiconductor is considered very 

promising for CO2 reduction applications. This is because of its merits of low-cost 

preparation, high chemical stability and possessing appropriate electronic structure 

with medium band gap energy (2.70 eV) [53, 54]. Nevertheless, photoactivity of the 

pure g-C3N4 is still limited due to fast charges recombination rate [55]. Many attempts 

have been employed to increase the performance of g-C3N4 such as surface charge 

modification, designating an appropriate textural porosity, metal doping, non-metal 

doping and coupling with other semiconductors [26, 56]. Ong and co-workers reported 

the surface charge modification of g-C3N4 via protonation with enhanced photo-
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activity for CO2 reduction to CH4 [57]. In another work, g-C3N4 loaded with Pt for 

enhanced CH4 production during photocatalytic CO2 reduction has been reported [58]. 

CeO2 loaded into g-C3N4 remarkably enhanced photocatalytic activity for CO2 

reduction by H2O to CO and CH4 [59]. Similarly, Ag-loaded-gC3N4 has been 

investigated for selective H2 production as Ag suppressed the recombination of charge 

carriers [49, 60].  

In the recent development, fabrication of semiconductors heterojunctions or Z-

scheme photo-catalysts are considering more significant due to efficient charges 

separation with the adjustment of band structure for selective CO2 reduction to fuels. 

In this perspective, CO2 photoreduction with H2O to CH3OH was tested using g-

C3N4/Cu/TiO2 as a photo-catalyst [26]. In another work, indirect Z-scheme BiOI/g-

C3N4 was investigated for visible light driven CO2 reduction with H2O with the 

production of CO, H2 and CH4 [61]. The selective photocatalytic CO2 reduction with 

H2O over g-C3N4-N/TiO2 [62], ZnV2O6/g-C3N4 [63] and Mg-gC3N4 [64] composites 

have been investigated. Similarly, Ag-loaded g-C3N4/TiO2 for CO2 photo-reduction by 

H2O to fuels was explored [24]. g-C3N4 is widely investigated in photocatalytic CO2 

reduction with H2O, but not for CO2-CH4 reaction system via DRM and BRM. The 

efficiency of g-C3N4 can be further improved through surface charge modification via 

protonation [63]. Besides, development of Ag/La modified Z-scheme g-C3N4/TiO2 

composite would be promising for enhanced photocatalytic dry and bireforming of 

methane. 

Upscaling CO2 reforming of CH4 system to synthesis gas (CO and H2) requires 

stringent criteria for designing the photoreactor system. The choice of reactor is critical 

since it affects the overall CO2 reduction efficiency and products selectivity. Almost 

all photoinduced CO2-methane reaction systems were conducted in a fixed-bed 

photoreactor, where catalysts are distributed over the reactor surface. The fixed-bed 

reactors have limitations: (1) poor light utilization efficiency due to less exposed active 

surface area; (2) lower adsorption- desorption process due to less contact of gas with 

catalyst; (3) smaller catalyst loading and (4) less light intensity to stimulate complex 

nature of CO2-CH4 photocatalytic reaction [65]. Therefore, the design of highly 
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efficient photoreactor for CO2-CH4 reduction is crucial to scale up phototechnology 

from laboratory to commercial level.  

More recently, the attention on immobilized photocatalytic systems with 

enhanced light utilization efficiency has surged [66, 67]. Among the different supports, 

monolithic substrates are mainly studied because of the unique structure, higher 

adsorption-desorption process, larger active surface area, more catalyst loading, 

controlled selectivity and large photonic efficiency [66, 68]. In this perspective, 

monolith photoreactor found very efficient for photocatalytic CO2 reduction to CO 

with enhanced selectivity and yield using H2O and H2 reductants over different types 

of semiconductor materials [48, 69].  

The focus of this study is to design and develop structured Ag/La modified g-

C3N4-TiO2 nanocomposite for photocatalytic dry and bireforming of methane in a 

monolith photoreactor. The coupling TiO2 and g-C3N4 will be suitable for Z-scheme 

photocatalytic reactions under UV-light and direct heterojunction electron transfer 

under visible light. The modification of g-C3N4/TiO2 with La/Ag metals will develop 

novel polymeric complexes that would maximize the process efficiency under UV and 

visible light irradiations. The use of water in dry reforming of methane would be 

suitable for the production of hydrogen enrich syngas. The monolith photoreactor will 

maximize the illuminated surface area even at lower light intensity, thus increasing the 

efficiency of reactor system for CO2 photo-reduction to hydrogen enrich syngas. The 

optimization of different operating parameters and kinetic investigation will further 

improve the system efficiency.  

1.3 Problem Statement 

The conversion of greenhouse gases i.e., CH4 and CO2 to renewable fuels has 

become a challenge to achieve net-zero carbon cycle for monitoring energy crises and 

environment pollution. The breaking stable molecules of CH4 and CO2 demands higher 

input energy, while overcoming this barrier through external supply of energy makes 
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this process uneconomical. The main challenges for the conversions of greenhouses to 

chemicals and fuels are as follows:  

1. Thermal process requires higher input energy to break stable CO2 and CH4 

molecules. The energy barrier for recycling CO2 and CH4 can be resolved using 

phototechnology, yet limited reports are available on photocatalytic CO2 

reduction with CH4. The lower production rate during photocatalytic 

conversion of CO2 and CH4 with diversity of products is another barrier in the 

use of phototechnology; 

2. Among the semiconductors, TiO2 and metal modified TiO2 photocatalysts have 

been investigated for CO2 reforming of CH4. However, TiO2 yielded lower 

photo-activity due to faster charges recombination and inappropriate redox 

potentials. This urges to find new and highly efficient composite photocatalyst 

for selectivity DRM process under UV and visible light irradiations. Recently, 

g-C3N4 has been investigated for CO2 reduction with H2O applications, 

however, it has not been reported in DRM and BRM applications; 

3. The production of synthesis gas with higher H2/CO ratio in another challenge 

in photocatalytic dry reforming of methane process. This is because, during 

photocatalytic CO2 reduction with CH4, diversity of products has been 

reported; 

4. Besides, photoreactors investigated are fixed-bed which have lower quantum 

efficiency. These reactors are not very efficient due to inefficient light 

distribution and have minimum surface area for carrying catalytic reactions.  

 

1.4 Research Hypothesis 

The lower CO2 conversion efficiency and production rates through 

phototechnology can be improved by employing an efficient reducing agent, 

photocatalyst and photoreactor.  Therefore, the followings are the research hypothesis: 
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1. Although, both CO2 and CH4 are very stable molecules, yet CO2 and CH4 can 

be converted to chemicals using phototechnology. The problem of lower TiO2 

photoactivity can be resolved by loading with basic oxide materials, in 

particular lanthanum (La). Basic oxides would be helpful to improve CO2 

adsorption and will promote charges separation.  

2. The use of graphitic carbon nitride (g-C3N4) would be promising in 

photocatalytic CO2 reduction with CH4 due to its visible light response, 

appropriate band structure and low-cost synthesis. The surface charge 

modification and addition of metals such as Ag and La metals would be 

promising to improve efficiency and selectivity for synthesis gas production; 

3. Coupling g-C3N4 with TiO2 will provide appropriate band structure with 

efficient charges separation and would enable efficient reduction of CO2 with 

CH4 under UV and visible light irradiations. For this purpose, direct 

heterojunction of g-C3N4/TiO2 for visible light and Z-scheme g-C3N4/TiO2 

nanocomposites would be promising for UV-light applications. The efficiency 

of composite will be further improved by loading with Ag and La metals, thus 

would be helpful to improve photoactivity and selectivity; 

4. Composition of synthesis gas can be adjusted using different reforming 

technologies. The lower H2/CO ratio in synthesis gas during CO2 reduction 

with CH4 can be improved by combining DRM process with steam reforming 

of methane (SRM). Thus, photocatalytic CO2 reduction with CH4 in the 

presence of H2O via bireforming of methane (BRM) would be promising to get 

higher production rate and selectivity; 

5. The lower quantum efficiency of photoreactor system because of inefficient 

light distribution over the catalyst surface is intended to overcome employing 

monolith photoreactor. The monolith photoreactor will be productive to 

provide larger illuminated active surface area, higher adsorption-desorption 

and efficient mass transfer toward the catalyst surface. Higher light distribution 

and harvesting over the catalyst surface would also be possible utilizing micro-

channels, ultimately stimulating higher quantum efficiency toward efficient 

reduction of CO2 with CH4/water system; 
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6. The effect of different parameters and their optimization would also be helpful 

to improve production rate and products selectivity. The kinetic study will 

further provide insights about the photon flux utilization and reaction rate 

limitations.  

 

1.5 Research Objectives 

The objectives of this research are: 

(a) To synthesize and characterize Ag/La modified g-C3N4-TiO2 nanocomposite 

photocatalysts functional under UV and visible light irradiations; 

(b) To study the performance of composite nanocatalysts for photocatalytic CO2 

reduction with CH4/H2O through dry and bireforming of methane under UV 

and visible light irradiations; 

(c) To compare quantum performance of fixed-bed with a monolith photoreactor 

for photocatalytic CO2 reduction with CH4/H2O through dry and bireforming 

of methane; 

(d) To investigate effect of process parameters on photocatalytic bireforming of 

methane over composite photocatalyst in a monolith photoreactor; 

(e) To optimize process parameters using response surface methodology and 

develop kinetic model to determine reaction rate parameters in photocatalytic 

bireforming of methane.  

 

1.6 Research Scope 

This study focused on determining some mechanistic and fundamental 

problems pertaining to lower CO2 and CH4 reduction efficiency and products 

selectivity.  The fabrication of plasmonic and polymeric nanocatalysts with various 

metals and co-metals loading into pCN and pCN-TiO2 nanostructures has been 
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inspected. The effects of operating parameters on CO2 reduction such as metal-doping 

levels, feed ratios, and reaction temperature and irradiation times is also deliberated.  

The performance analysis of a monolith with a fixed-bed photoreactors has been 

investigated to get higher yield and selectivity. The reaction mechanisms of CO2 

reduction and CH4/water oxidation and quantum efficiency analysis has been 

deliberated.  The CO2 reduction efficiency is related to maximize yield of desired 

products.  Therefore, the specific research scope of this study is as follows: 

1. The catalysts such as TiO2, pCN pCN-TiO2, Ag-La/pCNNT and Ag/La 

modified pCN-TiO2 are synthesized using sol-gel and hydrothermal methods 

to investigate the route of CO2 reduction with CH4/H2O. The optimized 

materials are supported over the monolith channels using sol-gel dip-coating 

method. The catalysts are characterized using XRD, SEM, FESEM, HRTEM, 

BET, XPS, UV-Visible and PL spectroscopy. This was helpful to investigate 

crystallinity, phase, morphology, surface area, pore size distribution, metals 

transition states and optical properties.  

2. The performance of catalysts for photochemical reduction of CO2 with 

CH4/H2O is investigated using photocatalytic steam reforming of methane 

(SRM), photocatalytic dry reforming of methane (DRM) and photocatalytic 

bireforming of methane (BRM) under UV and visible light irradiations. The 

role of each catalysts is critically evaluated to understand their impacts on the 

products yield and selectivity in the presence of different reforming processes 

and light systems.  

3. The photoreactors employed are fixed bed and monolith of multiple channels. 

The quantum performance of both photoreactors is investigated using different 

reforming systems (i.e., SRM, DRM and BRM) under UV and visible light 

irradiations. In a fixed bed, photocatalysts are distributed at the reactor bottom, 

however, they are coated inside monolith microchannels using sol-gel dip-

coating method. The mass flow controllers are employed to adjust feed flow 

rates and feed ratios in different reaction system. A reflector type 200W Hg 

lamp is used as a source of UV-light irradiations with intensity 150 mW/cm2 

and wavelength 254 nm.  A solar simulator is used as a source of visible light 



12 

irradiations with intensity equal to 100 mW/cm2. More importantly, solar 

arrays with batteries are installed to provide input electricity for the operation 

of both photoreactors.  

4. The operating parameters investigated are reaction temperature, feed ratios, 

and monolith geometry and irradiation time. The reaction mechanism is 

developed to find out key parameters in CO2 reduction applications for 

different reforming systems under UV and visible light irradiations. 

5. The optimization of process parameters is carried out using response surface 

methodology (RSM). The kinetic model is developed using Langmuir-

Hinshelwood mechanism and rate constants are determined.  

 

1.7 Research Significance 

Greenhouse gas CO2 is efficiently reduced with CH4 for synthesis gas (CO, H2) 

production in the presence of different photo-catalytic systems. The monolith 

photoreactor performance is very encouraging while the efficiency found was much 

higher compared to fixed-bed photoreactor. The composite catalysts are highly 

productive for CO2 and CH4 reduction to syngas gas. The several outcomes of this 

research are described below: 

(a) A new route for photocatalytic CO2 reduction with CH4 through dry reforming 

of methane (DRM) and bireforming of methane (BRM) reactions. 

(b) Development of microchannel monolith photoreactor system to investigate 

efficient photocatalytic DRM and BRM for synthesis gas production. 

(c) New methods and findings on the synthesis of protonated graphitic carbon 

nitrides nanotubes and z-scheme composite catalysts. 

(d) Low-carbon economy shift through CO2 recycling. 

(e) Alternative solutions to energy crises and global warming. 
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1.8 Layout of Thesis 

The research is focused on the photocatalytic CO2 reduction with CH4 through 

dry reforming of methane and bireforming of methane over Ag or La doped and Ag-

La co-doped pCN-TiO2 composite nanocatalyst in a fixed-bed and continuous mode 

operation of monolith photoreactor. The development of Ag-La modified pCN-TiO2 

nanocatalyst suitable for efficient CO2 reduction via DM and BRM with H2/CO and 

hydrocarbon fuels has been investigated. The synthesis and characterization of 

materials, optimization of metals loading, investigation of operating parameters, and 

evaluation of reactor performances for higher production rate and reaction mechanisms 

are discussed in different chapters.  This thesis consists of eight chapters. 

Background of the research and problem at hand, research hypothesis, 

objectives and scope of this study are discussed in Chapter 1.  Chapter 2 presents 

literature survey pertaining to possible pathways for CO2 recycling, fundamentals and 

progress in CO2 reduction to hydrocarbon fuels, progress in CO2 reduction with CH4 

over different photo-catalysts, selection of photo-catalysts, and description of 

photocatalytic reactors.  In Chapter 3, general description of research methodology and 

detailed experimental strategies are discussed.  The characterizations of nanocatalysts 

are discussed in Chapter 4.  Performance analysis of metals modified TiO2 and pCN 

in a fixed-bed and monolith photoreactor for photocatalytic CO2 reduction with 

CH4/H2O is presented in Chapter 5. Chapter 6 investigates the photocatalytic CO2 

reduction via BRM over Ag-La modified pCN-TiO2 catalysts in a microchannel 

monolith photoreactor under UV-light irradiations. The optimization of process 

parameters using response surface methdology and kinetic model development has 

been presented in Chapter 7. Finally, Chapter 8 contains the overall conclusions of this 

study and recommendations for future work. 
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