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ABSTRACT

Productivity o f  offshore fishing can increase if  there are offshore terminals 

providing services such as fish unloading and repair o f crafts and gears to the fishing 

fleets. This research proposed the use o f FORT (fishing offshore remote terminal) as a 

very large floating structure (VLFS). Structural analysis is key in the design o f VLFS. 

The research developed an adaptable framework to simulate FORT’s hydroelastic 

interaction and motion using Newtonian’s harmonic method. The governing partial 

differential equation o f motion including the effect o f deformation and torsional inertia 

was expressed in a dimensionless form. A finite difference algorithm was employed to 

transform the differential equations into linear algebraic equations. Linear and nonlinear 

dynamic responses was obtained using Hamilton principle with modal superposition 

coupled with finite element methods. Sensitivity tests are performed to quantify the 

effect o f  changing numerical parameter. Variety o f plate models is investigated. 

Techno-economic model is also developed. The solution for a selected load condition 

has been presented. The result on hydroelastic response for several wavelength q (0.12,

0.23 and 0.43) to structural length ratios (1:1, 2:1 and 4:1) revealed longish FORT 

experiences higher elastic deformations as compare a square FORT for higher 

wavelength. In continuous springing freeboard reaction, the safe margin decreases from 

4m to below 2m at higher wavelength ratio. At small wave length the hydroelastic 

response is the smallest for the lower ratio orientation. It is found that hydroelastic 

response is minimal as aspect ratio close to 1. Resultant stress on FORT stiffness when 

aspect ratio approaches 1 amplifies response amplitude by 35%. Sensitivity test 

indicates, for full load condition, larger structure will experience larger deformation 

stress (0.928 MN/m2 for 250m, 1.035MN/m2 for 500m, 1.035MN/m2 for 1000m). 

Permanent plastic deformation starts occurring at 20° and worsen at 45° causing higher 

shear force and moment. Maximum torsional force exceeds 51.25N/m2. For long crest 

o f 0.43 maximum torsional deflection measured are 250m (19.32N/m2 for 250m), 500m 

(27.55N/m2 for 500m), and 1000m (28.63N/m2 for 1000m). Net present value o f FORT 

is NPV o f  146mil, internal rate o f return o f 22.94% overl5 years. FORT as a new 

concept is thus techno economically feasible. The analytical model developed is a 

comprehensive tool for FORT designers.



ABSTRAK

Produktiviti perikanan luar pantai boleh ditingkatkan jika ada terminal luar 

pantai yang menyediakan khidmat seperti memunggah ikan, pembaikan bot dan 

peralatan kepada armada penangkap ikan . Kajian ini mencadangkan penggunaan FORT 

(terminal penangkapan ikan jauh luar pantai ) sebagai struktur terapung yang sangat 

besar (VLFS). Analisis struktur adalah utama dalam merekabentuk VLFS. Kajian ini 

membangunkan kerangka boleh sesuai untuk mensimulasi interaksi hidroelastik dan 

gerakan FORT dengan kaedah harmonik Newtonian. Persamaan gerakan pembezaan 

separa sebagai penentu kepada kesan ubah bentuk dan inersia kilasan telah dinyatakan 

dalam bentuk tanpa dimensi. Algorithma perbezaan terhingga digunakan untuk 

mengubah persamaan kebezaan ke persamaan algebra linear. Tindak balas linear dan 

bukan linear diperolehi dengan menggunakan prinsip Hamilton dengan superposisi mod 

dan kaedah unsur tak terhingga. Ujian kepekaan dilakukan bagi mengukur kesan 

perubahan parameter berangka. Pelbagai model plat dikaji. Model teknoekonomi juga 

dibangunkan. Penyelesaian bagi kes beban terpilih telah dibentangkan. Keputusan 

tindak balas hidroelastik bagi beberapa gelombang panjang, p (0.12, 0.23 dan 0.43) pada 

nisbah panjang struktural (1:1, 2:1, dan 4:1) menunjukkan FORT yang panjang 

mengalami ubah bentuk anjal yang lebih tinggi berbanding FORT segiempat sama pada 

gelombang yang lebih tinggi. Bagi tindak balas lambung bebas pegas berterusan margin 

keselamatan menurun dari 4m ke bawah 2m bagi nisbah panjang gelombang yang lebih 

tinggi. Bagi panjang gelombang yang kecil tindak balas hidroelastik adalah terkecil 

untuk onentasi bernisbah yang lebih rendah. Juga ditemui tindak balas hidroelastik 

adalah minimum bila nisbah aspek menghampiri 1. Tekanan paduan pada kekakuan 

FORT bila nisbah aspek menghampiri 1 menguatkan ampitud tindak balas sebanyak 

35%. Ujian kepekaan menunjukkan bagi keadaan beban penuh, struktur yang lebih 

besar akan mengalami tekanan perubahan bentuk yang lebih besar ;0.928 MN/'m2 

(250m), 1.035MN/m2 (500m) dan 1.035MN/m2 (1000m). Perubahan bentuk plastik 

kekal mula pada 20° dan bertambah buruk pada 45° dan menyebabkan daya ricih dan 

momen yang tinggi. Daya kilasan maksimum melebihi 51.25N/m2. Bagi puncak 

maksimum 0.43 pesongan kilasan maksimum ialah 19.32N/m2 (250m), 27.55N/m2 

(500m) dan 28.63N/m2 (1000m). Nilai masa kini FORT ialah RM 146juta dan kadar 

pulangan dalaman 22.94% untuk tempoh 15 tahun. Dengan ini FORT sebagai konsep 

baiu adalah, secara tekno ekonomik boleh dilaksanakan. Model analitikal yang 
dibangunkan adalah alat menyeluruh bagi pereka FORT.
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CH APTER 1

INTRODUCTION

1.1 Introduction

Recently, very large floating structures (VLFS) have received considerable 

attention in civil and ocean engineering fields (Tripathy and Pani, 2014). These 

floating structures have great width and length and relatively small flexural rigidity. 

There is an extensive attention to understand the anomalies of wave interaction with 

floating structures to build infrastructures. The VLFS concepts are unique ocean 

structures primarily because of unprecedented lengths and displacements which 

consequently, hydroelastic response becomes dominant and has driven supporting 

research and development in global analytical methods for VLFS. Therefore, this 

chapter highlights the importance of structural hydroelastic effects in modelling of 

VLFS under multi parametric value. The research problems were extracted and 

compensated in this research for the inadequacy of previous works. The objectives 

have been defined in providing the resolution for the problem identified. The scope of 

the study and the significance the research has all been elaborated in show casing the 

research boundary and its contribution respectively within the state of the art of 

theories, concepts and fundamentals. The thesis has been structured in normal 

research approach in identifying, formulating, attaining, synchronizing and delivering 

the research deliverables are accessible.
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1.2 Research Background

Very large floating structures (VLFS) have attracted the attention of architects, 

planners, and engineers because they provide an exciting and environmentally friendly 

solution for land creation from the sea as opposed to the traditional land reclamation 

method. The applications of VLFS such as piers, hotels, fuel storage facilities, bridges, 

airports, and even floating cities have triggered extensive research studies in the past 

two decades. The VLFS technology has developed considerably and there are many 

innovative methods proposed to minimize the structure motion, especially on elasticity 

behaviour as illustrated in Figure 1.1. These characteristics of the global response 

with respect to the characteristic length are summarised in the map of Figure 1.2 

(Suzuki, 2005). Therefore most researches were concentrated on mooring system and 

structural integrity of the VLFS (Wang and Tay, 2011). The size (Thai et al., 2017) 

of a VLFS presents an essential challenge since it is difficult to scale directly the 

structural and hydrodynamic properties. A brief overview of the history, application 

and uniqueness of very large floating structures and the recent developments in the 

scientific arena of VLFS as well its significance level are in future scope of work 

(Tripathy and Pani, 2014). Collectively, the research on hydroelastic analysis of 

pontoon-type very large floating structures can be summarized to include, but not 

limited to wave forces, non-wave forces, VLFS models, VLFS shapes, mooring 

system, breakwaters, profiles of seabed, and anti-motion devices (Watanabe et al., 

2004a).

Figure 1.1: Global response under load (Suzuki et al., 1996)
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Figure 1.2: Mapping of global response of floating structures (Suzuki, 2006)

Computational method had achieved its maturity during the last three decades 

and efficient enough especially for preliminary design purposes. Currents works 

focused on developing efficient numerical tools by simplifying the structural model. 

Among the numerous numerical methods on the hydro elasticity of a VLFS, most of 

them are within the scope of linear wave theory and in frequency domain or time 

domain. There are only a few numerical models that consider the global hydroelastic 

response of a VLFS in nonlinear waves, which is a naturally complicated 

phenomenon. In linear hydro elasticity analysis of a mat-type VLFS, the flow is 

usually assumed to be governed by linear potential theory. A VLFS is generally 

modelled as an elastic plate and only the vertical motion is considered. It is also 

assumed that there is no gap between the VLFS and the free surface, i.e., no slamming 

is allowed. Most of the researcher works on beam method, water depth technique 

(Mei and Black, 1969, Andrianov and Hermans, 2003, Lee and Liew, 2014, Chen et 

al., 2016) for both the case of finite and infinite water depths, the application of Eigen 

function expansion (Gasimov et al., 2016) and orthogonal mode coupling relation, the 

behaviour of a flexible, porous, floating breakwater connected by mooring lines kept 

under tension by small buoyancy chamber at the tip (Wang and Tay, 2011). The wave 

induced responses was also explored (Wu et al., 2014a), the elastic plate using Eigen 

function expansion (Kim and Ertekin, 1998) and modal expansion matching method 

(Sengupta et al., 2017).
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More often, the hydroelastic analysis is carried out in the frequency domain 

(Wei et al., 2017, Lin, 2016) since this is more straightforward than it would have been 

in the time domain. The fluid problem is generally solved by the boundary-integral 

method, i.e., by use o f the Green function or by use o f quantum mechanics 

Hamiltonian. The plate response is often solved by the finite element method (FEM), 

or alternatively, as part of the boundary-element of the fluid domain. There have been 

two major approaches to the frequency-domain analysis: the modal expansion method 

and the direct method. Modified modal functions have been introduced by many 

authors, primarily to increase the numerical efficiency o f the computations. The 

common approaches for time-domain analysis o f VLFS can be categorized as the two

dimensional direct integration method (Liu et al., 2015). The two-dimensional 

nonlinear model to simulate the hydroelastic response to random waves, and non

periodic nonlinear waves such as a tsunami. However, the frequency domain analysis 

is not valid in extreme situations such as in a large storm. Such extreme events have 

to be considered in the VLFS design for safety and survivability reasons. More work 

should be done to investigate the non-linear responses such as the transient response 

o f VLFS under large wave impact (Wang and Tay, 2010). Thus, it shows that higher- 

order analysis such three dimensional approach play an important role in the 

prediction o f VLFS response to non-linear waves (Lin, 2016) and a more sophisticated 

approach could resolve that issue (Taylor, 2007).

Therefore, there is no extrapolation or even modification has been done based 

on Mindlin plate models that use various aspect ratio in both linear and non-linear 

conditions. Implying that the available models insufficient in demonstrating offshore 

floating structure behaviour especially for deep sea fishing application with its special 

boundary and operational conditions. As a result, the structural behaviour predictions 

have been under estimated and could result violating the Det Norske Veritas 

Classification Standards and criteria (Veritas, 2012). The present work is a study on 

a floating offshore remote terminal (FORT) which aims to provide researchers and 

engineers with an unambiguous method for obtaining structural responses using 

Mindlin plate analysis for both linear and non-linear perspectives as a fluid-structure 

interaction problem. Following this, the boundary element method (BEM), finite- 

element method (FEM), quantum mechanics o f Hamilton’s principle and linearization
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are introduced, and the solution approach is detailed. Finally, the results for both the 

linear and cnoidal wave (Ertekin and Xia, 2014) solutions o f the problem and 

emphasize the importance of nonlinearity in the structural response predictions of a 

FORT in mathematical analysis and computational approach. Hence, expected use of 

thick plate theory (Wu et al., 2014a) should improves on hydro elasticity behaviour 

especially on torsional effects at end and mid location of the structure (Wang and Tay, 

2011). However, the hydroelastic analysis requires a huge amount o f computational 

time and cost. A numerical model of typical VLFS says of 300m length has more than 

70,000 DOF. Many researchers have tried to reduce computational time. Nevertheless, 

the cost for hydroelastic analysis is still three or more times larger than only for 

numerical analysis of structures with the same DOF. This fact makes it hard to directly 

use hydroelastic analysis tools in real design procedures o f VLFS (Jingyun Kim, 

2011).

1.3 Floating Offshore Remote Terminal Structure (FORT)

FORT is a genuinely new concept proposed with the intention to bring all the 

services the offshore fishermen require closer to their fishing grounds. These services 

include fish landing terminal, packing, packaging and storage, business area, 

maintenance and services facilities, supplies and refuel centre, health and recreational 

services, accommodation and tourism, etc. With adequate technical and structure 

analysis, FORT will be strategically anchored in the middle of the ocean, close to the 

offshore fishing grounds. FORT will ultimately be a technology development for 

ocean space utilization. FORT proposes the integration o f the required functions. It 

is expected to improve the logistics management and ensure operational effectiveness. 

FORT is expected reduce the ‘distance barrier’ and many more. Instead o f the 

harvested fish need to be stored at limited storage capacity, and brought back to main 

land terminal, FORT will hold, process and keep the fish quality. At the same time is 

able to supply resources such as fuel, fresh water, fishing gears to the fishing vessels.
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1.4 Research Gap

Figure 1.3 chronologically registers all research works directly related to 

studies on structural analysis o f VLFS. The fundamental difference between one and 

the other is on method of analysis. Based on this the research works can be categorised 

into three groups; beam method, thin plate method and thick plate method. Sub

categorisation within each o f the three group is also apparent on the basis o f either the 

mathematical methods employed or the modelling boundaries and conditions.

Figure 1.3: Past research related to FORT structural analysis

Structural analysis o f VLFS using beam method was pioneered by Mei and 

Black (1969) but constrained it for finite water depth only. Che et al. (1994) used 

modified beam model and analyse within 2D condition using polynomial function.
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Kim and Ertekin (2003) used beam model. Andrianov and Hermans (2003) picked up 

the finite water depth constrained o f Mei and Black (1969) and used beam model for 

different water depth. Until then all analyses were for linear waves. Taylor (2007) 

recommended analysing VLFS structural analysis for non-linear waves condition. Lim 

and Liew (2014) pursues the work o f Andrianov and Hermans (2003) on beam method 

for different water depth and so as Chen et al. (2016). Adoption of beam method 

continues to the recent years with the work of Wei et al. (2017) using frequency 

domain approach and the work o f Sengupta et al (2017) using expansion matching 

beam modelling. The shift to thin plate method was pioneered by Wang and Tay 

(2011). Two recommendation was proposed; the used o f thick plate method and for 

non-linear response. W u et al. (2014a) used thin plate for wave induced response. Liu 

et al. (2015) used thin plate in 2D environment but recommended an analysis for 3D 

environment. Lin (2016) pursued the recommendation by Wang and Tay (2011) and 

used thin plate for non-linear situation. Karmakar et al. (2011) applied thin plate and 

proposed linearization of the analysis. Chen et al. (2015) highlights the growing 

interest in further developing the 3D non-linear approach of analysing VLFS structure. 

Gasimov et al. (2016) applied thin plate method and adopted Eigen function 

expansion. Shirkol et al. (2016) agrees with Karmakar (2011) on the possibility of 

linearization strategy but stick on thin plate method. The shift to thick plate method 

is by Thai et al (2017). His analysis is on coupled stress in 3D non-linear response. 

The important remarks-cum-recommendation by Thai et al (2017) is the challenge of 

scaling.

1.5 Problem Statement

Floating offshore remote terminal (FORT) as a thick plate in linear and non

linear operations involves static and dynamic wave height representing various 

operating condition, such as loading and unloading. However, comparison of 

mathematical modelling using vector mechanics or variational and energetic 

principles, indicates that the thin plate disposed the differential element which are



8

summed to obtain the equilibrium or motion equations (Ismail, 2016). Meanwhile, 

in obtaining equation for the energetic methods, the thick plate includes various types 

o f virtual work principles, such as minimum potential energy or the complementary 

potential energy. Structurally, the thick plate will show a softer crystallization 

deformation behaviour due to the presence of potential energy. Such simplistic 

practise which is presumably due to the inadequacy o f data and knowledge in the field 

inevitably causes large errors in the predictions as much as 10 to 20% difference in 

the relative error o f the displacement in the middle o f the plate (Vrabie and Baetu, 

2013). As a result, the predictions violate the Det Norske Veritas Classification 

Standards and criteria (Veritas, 2012). Additionally, the current approaches has led to 

underestimation o f properties as non-linear wave approaching and hitting the structure 

(Wang and Tay, 2010). The effect o f nonlinear waves has to be considered as it is 

common practice o f linear waves analysis and it is not valid in extreme situations such 

as large storms (Andrianov, 2005). Despite its utmost importance to reliability o f the 

prediction results and convenience of the modelling, until now no mathematical model 

has specifically added the hydroelastic torsion formulas and aspect ratio in wave 

propagation. Therefore, this research begins with the hypothesis that bounding the 

hydroelastic torsion formulas and aspect ratio will significantly improve the modelling 

o f structural effects under energy equilibrium perspective. It is already mentioned that 

hydroelastic analysis using Navier-Stokes equation are usually neglected in the 

hydroelastic analysis (Wang and Tay, 2010) especially within deep or offshore water 

where the waves with longer wave length will move faster.

1.6 Research Objectives

This research work is utilizing the thick plate theory addressing offshore 

fishing issues via technology and advancement in floating structure application. The 

study aims:
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i. To develop of a typical design of FORT structure

ii. To develop a mathematical model for the identification o f loading variable in 

linear and non-linear under thick plate theory

iii. To simulate of FORT behavior under selected conditions

1.7 Research Approach and Scope

The general research approach is sequentially as follows:

i. FORT as a concept its required functions are developed through knowledge and 

understanding gathered on the current process of pre-to-post catching activities.

ii. The elements o f FORT system are identified based on (i) above so that all the 

various subsystems are in place and their interrelationships established.

iii. Hardware and software systems for FORT selected based on a sound method and 

detailed out to the extent of estimating their cost magnitude.

iv. The thick plate model is developed based on established methodology and 

comprehensive enough to capture the elements of sustainability.

v. The model developed is validated by empirical validation method.

1.8 Thesis Motivation

Applying ecosystem approach to fisheries management is considered the 

preferred option and best practice under the Coral Triangle Initiative. The idea of 

having FORT as intermediate terminal is new to its application. Therefore, the 

structural integrity must be evaluated based on good practice framework by using 

higher order modelling (Li et al., 2016) approach and simulation capability 

(Loukogeorgaki et al., 2012). Moreover, the inclusion o f the symmetric generalized
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added mass matrix and the non-symmetric generalized hydroelastic in fluid-structure 

interaction. On the other hand, FORT is created and motivated for the research is 

traceable to the real shortage in fish supply in Malaysia. Malaysia has the economic 

ground to be explored further as done by many developing countries to pursue offshore 

fisheries development strategies (James et al., 2005). The research is also made in line 

with the blueprint for the full implementation of an ecosystem approach to fisheries 

management in Malaysia in 2016 (Pomeroy et al., 2015).

1.9 Research Significance

The research significance of the work developed in this thesis is the 

implementation of a thick plate theory on wave-structure formulation into a plate 

model. By identifying and implementing structure loading component procedure in 

the existent linear and non-linear, the FE program it is possible to perform frequency 

and time-dependent and evolutive construction analyses o f structures under significant 

wave height. As the formulation is based on the fixed loading approach, the effects of 

structure reinforcement in the resistant mechanism o f plate components are properly 

simulated, in contrast with existent research works. By these means and motivated by 

its computational efficiency, it is intended to create an alternative numerical tool to 

the high complex 2D/3D FE models for the linear and nonlinear assessment. Also, the 

proposed model aims to be a practical engineering tool to accurately assess the 

structural behaviour and also serving as a decision tool for floating structure-based 

development.

1.10 Overview of Thesis Structure

The present thesis is divided into 7 chapters. After this first opening chapter 

that points out the overall context, the most relevant motivations and objectives of
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the research work, an overall description of the state-of-the art is presented in 

Chapter 2. This second chapter is focused on the topics that are essentially related 

with the ambit o f the research work carried out in this thesis. Being so, it makes a 

generally description o f the plate models and the very high advanced state they 

reached for the case o f wave effect analysis.

Afterwards, the complexity of the phenomenology and modelling o f the 

structural mechanism o f plate elements is revised. Existent forces, kinematic and 

constitutive theories are discussed, as well, as its adaptability to plate models. 

Subsequently, a general view on the subject of new algorithm is presented, focussing 

on the importance of linear and non-linear models able to assess the actual state of 

the structures to predict the efficiency o f structure behaviour projects. Finally, a 

general discussion on the state-of-the-art is presented. The context in which the 

present research is inserted in, and the gap o f knowledge that it pretends to fill, are 

remarked. Accordingly, the options taken in the development of the numerical 

model, which were supported by previous findings reported in the literature, are 

highlighted. It detailed down discussion on design comprehensiveness. The 

conclusions of the present study are summarized and presented in chapter 6. 

Suggestions and recommendations for future work are also included in this chapter. 

Finally, list of the references are given at the end of this thesis.
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