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ABSTRACT 

 

 

 

 

Metabolic engineering has been successfully used for the production of a variety 

of useful compounds such as L-phenylalanine and biohydrogen that received high 

demand on food, pharmaceutical, fossil fuels, and energy industries. Reaction deletion 

is one of the strategies of in silico metabolic engineering that can alter the metabolism 

of microbial cells with the objective to get the desired phenotypes. However, due to the 

size and complexity of metabolic networks, it is difficult to determine the near-optimal 

set of reactions to be knocked out. The complexity of the metabolic network is also 

caused by the presence of competing pathway that may interrupt the high production of 

a desireable metabolite. Consequently, this factor leads to low Biomass-Product 

Coupled Yield (BPCY), production rate and growth rate. Other than that, inefficiency 

of existing algorithms in modelling high growth rate and production rate is another 

problem that should be handled and solved. Therefore, this research proposed a hybrid 

algorithm comprising Ant Colony Optimization and Flux Variability Analysis 

(ACOFVA) to identify the best reaction combination to be knocked out to improve the 

production of desired metabolites in microorganisms. Based on the experimental results, 

ACOFVA shows an increase in terms of BPCY and production rate of L-Phenylalanine 

in Yeast and biohydrogen in Cyanobacteria, while maintaining the optimal growth rate 

for the target organism. Besides, suggested reactions to be knocked out for improving 

the production yield of L-Phenylalanine and biohydrogen have been identified and 

validated through the biological database. The algorithm also shows a good performance 

with better production rate and BPCY of L-Phenylalanine and biohydrogen than existing 

results.  
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ABSTRAK 

 

 

  

 

Kejuruteraan metabolik telah berjaya digunakan untuk pengeluaran pelbagai 

sebatian berguna seperti L-Phenylalanine dan biohydrogen yang menerima permintaan 

yang tinggi dalam industri makanan, farmaseutikal, bahan api fosil, dan tenaga. Teknik 

penyingkiran reaksi adalah salah satu strategi di dalam kejuruteraan metabolik yang 

boleh mengubah metabolisme sel-sel mikrob dengan objektif untuk mendapatkan 

fenotip yang dikehendaki. Walau bagaimanapun, disebabkan oleh saiz dan kerumitan 

rangkaian metabolik, ia adalah sukar untuk menentukan set reaksi yang hampir optimum 

untuk disingkirkan. Kerumitan rangkaian metabolik ini disebabkan oleh kehadiran 

reaksi yang boleh mengganggu pengeluaran tinggi sesuatu metabolit yang diingini. 

Faktor ini menyebabkan nilai hasil bersama biojisim-produk, kadar pengeluaran dan 

kadar pertumbuhan menjadi rendah. Selain itu, masalah ketidakecekapan algoritma 

sedia ada dalam memodelkan kadar pertumbuhan dan pengeluaran yang tinggi juga 

perlu ditangani dan diatasi. Oleh itu, kajian ini mencadangkan satu algoritma hibrid iaitu 

Pengoptimuman Koloni Semut dan Analisis Fluks Kepelbagaian untuk mengenal pasti 

reaksi dan gen untuk disingkirkan bagi meningkatkan pengeluaran metabolit 

dikehendaki dalam mikroorganisma. Berdasarkan keputusan eksperimen, ACOFVA 

menunjukkan peningkatan dari segi BPCY dan kadar pengeluaran L-Phenylalanine 

dalam Yis dan biohydrogen dalam Cyanobacteria, di samping mengekalkan kadar 

pertumbuhan organisma  yang optimum. Selain itu, reaksi dan gen yang dicadangkan 

untuk disingkir bagi meningkatkan hasil pengeluaran L-Phenylalanine dan biohydrogen 

juga telah dikenal pasti dan disahkan melalui pangkalan data biologi. Algoritma ini juga 

menunjukkan prestasi yang baik dengan kadar pengeluaran dan BPCY L-Phenylalanine 

dan biohydrogen yang lebih tinggi berbanding keputusan yang sedia ada.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

This chapter discusses an overview of the introduction part of this study as an 

important prior step. The basic concept of metabolic engineering applies in biological 

systems is introduced in general. A brief explanation about some algorithms that exist 

in metabolic engineering is also presented. It is important to collect and understand 

metabolic engineering field because this research focuses on improving the production 

of metabolites such as L-phenylalanine and biohydrogen from microorganisms 

through in silico study. In addition, the objectives, scopes and justifications are also 

included for a clearer view of this research. 
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1.2 Introduction 

 

 

In this section, the background of microbial cell factory for metabolites productions is 

briefly discussed. Besides that, a brief explanation about the constraint-based 

modeling and optimization algorithms that applied in this research are presented. 

 

 

 

 

1.2.1 Microbial cell factory for metabolites productions overview 

 

 

Nowadays, there is a growing concern about energy generation by fossil fuels 

to be continued in usage as a source since it is renewable. Biohydrogen or hydrogen 

(H2) is a promising fuel that has better energy content and even higher than oil 

(Demirbas, 2002; Islam et al., 2005). Currently, hydrogen shows the tendency to be an 

alternative to fossil fuels for transportation (Veziroglu & Macario, 2011). Besides, it 

is also renewable, efficient and clean, showing that hydrogen production by this 

bacteria can be generated economically and in an environmental-friendly manner. 

Over the last decade, production of hydrogen of biological microbes gains more 

attention. Thus, this study investigates how H2 production as secondary fuel product 

in Cyanobacteria Synechocystis sp. PCC6803 can be increased and improved for 

industrial purpose. 

 

 

The market of an aromatic amino acid, L-phenylalanine (L-Phe) has shown 

great demand for its commercial value in pharmaceutical and food additives (Liu et 

al., 2013). According to Bongaerts et al., (2001), L-Phenylalanine, is one of the most 

important commercially produced amino acids. The production of L-phenylalanine is 

mainly carried out by fermentations. Glucose or sucrose is always used as a carbon 

source in the process to produce L-Phenylalanine.  L-phenylalanine is used as a 

precursor to vanillin production for food additives (Yin et al., 2013). Besides, L-

Phenylalanine has been widely used in pharmaceutical industry as a nutritional 
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supplement. It has been acknowledged that this supplement acts as a precursor for the 

production of numerous catecholamines which refer to hormones in human body. 

Therefore, this study targets to optimize the production of L-Phenylalanine in Yeast 

Saccharomyces cerevisiae to meet the high demand of this strain in industries for use 

in various applications such as flavoring as well as the pharmaceutical field.     

 

 

The present computational study can identify detailed systems biology and able 

to simulate metabolisms of bacteria and other microorganisms about their capability 

in producing metabolites such as H2 and L-Phe in the mutant strain. This refers to the 

extensive search for reaction or gene to be added or deleted in order to increase the 

desired production. The intention of this research is to examine how metabolites 

production in microorganism can be increased using a systematic in silico simulation 

of metabolic engineering strategy, for instance, constraint-based modeling algorithms. 

Therefore, to elucidate interesting features of these microorganisms and identify 

engineering targets to achieve enhanced physiological properties of the strain, 

metabolic engineering which applies modeling simulation and optimization a with the 

involvement of reaction deletion strategy is applied.  

 

 

 

 

1.2.2 Metabolic engineering 

 

 

Metabolic engineering has shown big improvement and is becoming more 

popular in these recent years. Metabolic engineering has been used to study and 

manipulate the biological microbial cell metabolism by many researchers in this field. 

An example of a strategy that is introduced by metabolic engineering is to suggest any 

genes or reactions from its complex metabolic network to be deleted. This theory has 

shown many achievements towards microbial fuel cell (MFC) in addressing high yield 

of product or biochemical. The advancement of metabolic engineering has gained 

more attention as it is able to improve any desired metabolites strain that can further 

the process to become valuable products for market industries. With such results, more 
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developments of quantitative models and algorithms using computational simulation 

are increasing in recent years. In addition, simulation through computational is 

powerful and able to save costs and time in manipulating phenotypes to optimize the 

desired strain model. The goal of metabolic engineering is to develop effective 

algorithms in order to improve the metabolic capabilities in producing desired 

metabolites in microorganism for industrial purpose (Wiechert, 2002). In metabolic 

engineering, there are some recognized algorithms available that are widely in use and 

which can assist in stimulation to improve metabolite productions in genome-scale 

model, for example, optimization algorithm, modeling algorithm, and modeling 

framework as discussed in the next section. 

 

 

 

 

1.2.2.1 Ant Colony Optimization Algorithm 

 

 

 Ant Colony Optimization (ACO) algorithm is a general search technique based 

on the population size. This algorithm is developed to solve difficult combinatorial 

problems. ACO is inspired by the behavior of real ants that always tends to find the 

best shortest path from a food source to the nest. The ant colonies deposited a chemical 

called pheromone along the trails they used in searching for food from the nest (Lin et 

al., 2008). The density of pheromone become higher when there is more ants walking 

through the path, showing that the path is better in the context of distance. This is 

because ants tend to find the shortest path that leads to a better food source in a short 

time with promising food quality. The pheromone is used as a guide by other ants. 

Initially, ants move randomly to the food source while the next ant chooses one path 

and the higher density of pheromones have a higher probability to be chosen and in a 

period of time, a common path is finally be developed through positive feedback 

process. The behavior of this algorithm can be exemplified as illustrated in Figure 1.1. 
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Figure 1.1 Basic Ant Colony Optimization Behavior at Different Time Stamps 

(Tavares et al., 2011) 

 

 

 

 

1.2.2.2 Flux Variability Analysis 

 

 

Flux variability analysis (FVA) is an extension algorithm to further analyze the 

result obtained by Flux Balance Analysis (FBA) on the genome-scale metabolic 

network. FVA is a constraint-based algorithm applies for modeling simulation of the 

metabolic engineering cell. FBA is a linear programming algorithm that searches for 

the optimal value of the objective function in a genome-scale metabolic network. 

However, FBA has some limitation on it searching technique. This is caused by the 

presence of multiple pathways in the solution space which FBA is not set to consider 

the unique of the solution space. Thus, FVA is used to overcome this constraint. 

Different from FBA, FVA is able to determine maximum and minimum values of all 

available fluxes which satisfy the mentioned constraint. Technically, FVA is more 

advanced than FBA in terms of its modeling simulation process. Moreover, FVA 

calculates the flux value in a range which reflects to some percentage optimal value 

restrict. In this research, FVA is used to simulate the growth rate and production rate 

of microorganisms Synechocystis sp. PCC6803 and Saccharomyces cerevisiae of both 

wild-type and modified mutant models. 
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1.3 Background of the Problem  

 

 

The advance in metabolic engineering strategies in enhancing many cell 

factories to produce metabolite of interest has been acknowledged in this era. 

However, there are some limitations of today’s technology that have not been 

addressed yet. The challenges and problems faced in metabolic engineering are 

predominantly caused by the complexity of the metabolic network. This complexity 

issue affects the production of desirable metabolite as there are many competing 

reactions that are present, hence achieving a desired metabolic state through genetic 

modification remains difficult (Ohno et al., 2013). Apart from that, according to Liu 

et al. (2013) and Hallenbeck and Ghosh (2012) production of metabolites such as L-

phenylalanine and biohydrogen from wild-type cell is currently low. This shows the 

lack of effective genome models which can predict and simulate low production yields 

as being an important aspect of handling in order to produce higher fitness of the 

objective function. 

 

 

The aforementioned issues relate to the algorithmic used by previous 

researchers to study in silico metabolic engineering.  With regards to the complexity 

of the metabolic network, this directly results in low production yield due to the 

presence of competing for non-desirable compounds. This can relate to the low 

accuracy of existing algorithms in constructing solutions to acquire the best value. 

There are numbers of developed algorithms used to simulate flux distribution of 

particular metabolites from cell factories of the genome-scale model that can directly 

be applicable for many industrial purposes either by single or hybrid algorithms. 

Previously, a hybrid of ant colony optimization (ACO) with minimization of metabolic 

adjustment (MOMA) or flux balance analysis (FBA) have been developed. However 

existing algorithms constructed are still lacking. This is because MOMA (Raman and 

Chandra, 2009) and FBA (Lee et al., 2006) have certain limitations in their flux 

distribution methodology. FBA shows no unique and sometimes unrealistic flux 

distribution value (Megchelenbrink et al., 2015) and unreliable in predicting the flux 

value of by-product (Khannapho et al., 2008). On the other hand, MOMA is weak at 

predicting the final steady state of growth rate and conditionally, unable to represent 
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the true metabolic state of the organism compared to FBA (Shlomi et al., 2005). ACO 

(Colorni et al., 1991) is superior to Continuous Bee Algorithm (CBA) and Artificial 

Bee Colony (ABC) (Karaboga, 2005) as it has several advantages over other 

evolutionary algorithms including offering positive feedback resulting in rapid 

solution finding and having distributed computation which avoids premature 

convergence (Ab Wahab et al., 2015). Since ABC is a new algorithm, thus it requires 

new fitness test for the new parameters to improve the performance (Ab Wahab et al., 

2015).  Bees algorithm also has several parameters that needs to be tuned before it can 

be used directly (Yuce et al., 2013). These limitations also affect the lack of effective 

genome model constructed in order to generate better value for the objective function. 

In addition, wild-type model can only predict low flux value. These issues highlight 

the need for a new generation of biofuel technology and the strain production of L-

phenylalanine (Delucchi, 2010; Melillo et al., 2009; Khamduang et al. 2009). Thus, 

an improved modeling algorithm with new modified genome model is important to 

highlight. FVA outperform MOMA and FBA as it calculates the full range of flux 

distribution value while maintaining high growth rate and optimizing the objective 

function (Mahadevan and Schilling, 2003). In addition, FVA explores alternate 

solution in the optimal flux space as frequently there is not only one optimal flux 

distribution can be found (Hay and Schwender, 2014). This indicates that FVA 

methodology is more detailed and shows realistic flux value in predicting possible by-

product production rates under maximal biomass production (Müller and Bockmayr, 

2013).    

 

 

In order to clarify the potential of metabolites strain production, several 

computational algorithms have been introduced. This is because in silico or 

computational simulation is preferred as less time is required, no labor involved, less 

research expenditure, and eventually, cost reduction (Salleh et al., 2015). In this study, 

a hybrid of ACO and FVA is proposed to overcome the current limitations faced by 

other algorithms in order to enhance the microbial secondary metabolites production 

and strain improvement. ACO is used for the optimization process in order to prevent 

the solution from being trapped in local optima that can cause premature convergence 

while FVA is applied to calculate precisely the flux distribution value of the compound 

in a genome model. 
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1.4 Problem Statement  

 

 

As previously discussed, the production of metabolites from microorganisms 

is in demand and to fulfill the urge of biohydrogen and L-Phenylalanine production. 

Briefly, the innate potential for higher production of desired metabolites is obscure and 

relates to the lack of effective genome models. This is mainly due to the fact that in 

producing metabolites by microorganisms, the presence of interaction among 

thousands of reactions in the metabolic network caused complex and higher 

dimensional data size (Liu et al., 2010; Price et al., 2004; Stephanopoulos and 

Simpson, 1997; Toya and Shimizu, 2013; Wittmann and Lee, 2012). Complex network 

is caused by the intracellular relationship between reactions, genes, metabolites. In 

addition, the presence of competing pathways of the non-desirable product may affect 

the desired metabolite production. Thus, the best way to enhance the desired 

production beyond the wild type limit is through the computational simulation 

implementation. Figure 1.2 shows the complex metabolic network which involves 

interaction between pathway, genes, and metabolites. 

 

 

Computational simulation involves modeling, optimization, and simulation are 

used to perform the modification of the cell network and to obtain an important insight 

about the metabolic system. Computational time is increasing as the problem size 

increases, thus some computationally pre-process steps are required, which match the 

biological theory in having a more suitable and compatible data. Other than that, the 

models need to undergo an optimization process in order to prevent the solution from 

being trapped in local optima, causing premature convergence. ACO is used as an 

optimization algorithm as it is better at exploring and constructing a good solution in 

a short time. This algorithm is efficient in avoiding premature convergence compared 

to other existing algorithms. FVA as a modeling simulation algorithm for simulating 

the entire flux distribution of a cell in the range of maximum to minimum of the 

solutions constructed by the optimization algorithm of a particular objective function. 

The hybrid of both algorithms with applying reactions deletion strategy is applied for 

this research to overcome current limitations in metabolic engineering study and to 

enhance the metabolites production of a strain model. 
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Figure 1.2 Graph theoretical of a complex metabolic network (Genetic 

Engineering and Biotechnology News, 2016). 

 

 

 

 

1.5 Aim 

 

 

The aim of this research is to propose a hybrid of ACO and FVA to reduce the 

complexity of metabolic network by identifying a near-optimal combination of 

reactions to be knocked out in order to improve the production of L-Phenylalanine and 

biohydrogen. 
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1.6 Objectives 

 

 

Several objectives have been identified in order to achieve the aim: 

 

1. To model a hybrid algorithm of Ant Colony Optimization and Flux Variability 

Analysis for metabolites production in a genome-scale metabolic model of 

microorganisms.  

 

2. To develop a hybrid algorithm of Ant Colony Optimization and Flux 

Variability Analysis to solve the complex metabolic network issue by 

identifying a list of reactions to be knocked out for improving the production 

rate and Biomass-Product Coupled Yield (BPCY)  of L-phenylalanine and 

biohydrogen in microbial strains.  

 

3. To evaluate the experimental results (BPCY, production rate, and growth rate) 

of each metabolites with previous works and validate the list of reactions and 

genes deletion through biological database. 

 

 

 

 

1.7 Scopes of Study 

 

 

The scopes of this study are listed as below: 

 

i. L-Phenylalanine in Yeast and Biohydrogen in Cyanobacteria are the 

products being focused. 

 

ii. Two datasets going to be used are: 

 



11 

a) Model yeast4.05.xml downloaded from published literature by Nogales  

et al., (2010) derived from http://sourceforge.net/projects/yeast/files/ 

yeast_4.05.zip/download 

b) Model iJN678.xml from published literature by Sohn et al., (2010) 

derived from bigg.ucsd.edu/models/iJN678 

 

iii. The format of the dataset is in System Biology Markup Language (SBML). 

SBML is representing models of biological processes based on XML, 

which is a readable language machine. SBML contains metabolic 

networks, cell-signaling pathways, regulatory networks, and many kinds of 

systems. It is a standard language for exchanging information, storing and 

also fitting parameters for any given experimental data. These features play 

important roles in the modification of accurate genome model. 

 

iv. The software used in this research is Constraints Based Reconstruction and 

Analysis (COBRA) Toolbox for constraint-based modeling which is 

implemented in MATLAB to perform the hybrid algorithm. 

 

v. A hybrid of Ant Colony Optimization and Flux Variability Analysis 

(ACOFVA) is used in this research which involves and consider reaction 

deletion strategy and regulatory networks information. 

 

 

 

 

1.8 Significance of study 

 

 

This research is conducted to simulate and analyze the effect of genome metabolic 

modification of microorganism in order to improve the production of desired 

biohydrogen and L-Phenylalanine by implementing a computational simulation. The 

following points shows the significant of conducting this research: 
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i. Investigate the potential improvement of metabolites production in the 

microbial cell factories. 

 

ii. Give a clear insight of biohydrogen and L-Phenylalanine production from 

microbial cell factory by using computational modeling and analysis that 

can provide a better understanding of cellular level function. 

 

iii. Developments of in silico modeling of microbial cell factory that enable 

the optimization of interest production yield with better prediction. 

 

iv. Researchers and biologists can use this information to do laboratory 

experiment using the constructed metabolic model as references towards a 

more promising production in time effective manner.  

 

 

 

 

1.9 Thesis Organization 

 

 

i) Chapter 1 presents a brief introduction to metabolites production and 

metabolic engineering included Ant Colony Optimization and Flux 

Variability Analysis. The background of the problems which refers to the 

existing issue in the related field and also problem statements of this study 

are described in detail.  Some important points for this study included the 

aim, objectives, and scopes are also presented precisely. 

 

ii) Chapter 2 presents some literature reviews retrieved from published 

journals and other available sources on the existing algorithms that are used 

in analyzing the genome-scale metabolic model. Besides, some details 

about metabolic engineering that consist of some different groups related 

to it such as constraint-based analysis, optimization algorithm, and 

modeling framework are discussed comprehensively.  Reading materials 
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that relate to this research topic with beneficial and helpful information, 

such as journals, articles, and conference working papers are listed, too. 

  

iii) Chapter 3 discusses the research methodology as a planning form used to 

conduct this research.  The detailed descriptions of activities involved are 

presented and divided by particular phases for easy following.  The 

information about the data set chosen to be used is clarified. Besides, basic 

requirements of hardware and software and performance measurement that 

is used for this research are clearly described. The proposed algorithm is 

presented in this chapter. 

 

iv) Chapter 4 explains and discusses the flow of implementation of the 

proposed hybrid algorithm, which is ACOFVA.  Pre-processing step and 

preparation of the two data sets chosen are performed in this chapter. The 

designed steps involved in ACOFVA is also discussed. The results of the 

proposed hybrid algorithm with the explanation about the reactions and 

genes suggested to be deleted in order to increase the production of 

metabolites are also included in this presentation. 

 

v) Chapter 5 summarizes the contents of all previously discussed chapters. 

Conclusion, contributions, and limitations of this research are also being 

discussed. 
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