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ABSTRACT 

The main purpose of wastewater treatment is to protect humans against 

waterborne diseases and safeguard aquatic bio-resources like fish. However, there 

are environmental costs associated with attaining the required level of water quality 

such as greenhouse gas emissions due to energy production and eco-toxicity from 

sludge applications on land. The goal of this study is to assess the eco-efficiency of 

large-scale sewage treatment plants (STPs) in urban areas, focusing specifically on 

variations in treatment technologies. Life cycle assessment (LCA) and cost benefit-

analysis (CBA) were the analytical tools used to evaluate environmental and 

economic impacts, respectively. For the purpose of this assessment, three STPs in the 

major Malaysian cities of Kuala Lumpur, Penang, and Johor Bahru were chosen. 

These STPs employed different treatment technologies. The Jelutong STP in Penang 

used a sequence batch reactor to treat domestic wastewater. The Bunus STP in Kuala 

Lumpur as well as the Medini STP in Johor Bahru employed Aerobic activated 

sludge. Based on the STP data, Bunus STP had the highest performance in terms of 

wastewater pollutant removal through 96% biological oxygen demand, 90% 

chemical oxygen demand, and 68% phosphorus. Based on the LCA for 1m3 treated 

wastewater, STP Bunus Kuala Lumpur had the highest global warming 

potential(GWP) and acidification  potential (AP) at 2.69E-01 kg CO2-eq and 2.11E-

03 kg SO2, respectively. Jelutong STP had the highest eutrophication potential (EP) 

and human toxicity potential (HTP) at 1.47E-02 kg PO4
-3 and 5.63E-02 kg DCB-eq, 

respectively. Medini STP had the highest terrestrial toxicity (TETP) at 2.0E-02 kg 

DCB-qq. From CBA analysis, Medini STP had the highest operating cost for 1m3 

domestic wastewater treatment with RM 0.635 per day and RM232 per year, 

followed by Bunus STP with RM 0.311 per day and RM 111.6 per year as well as 

SBR Jelutong Penang with RM 0.157 per day and RM 57.4 per year. In terms of 

electricity consumption for 1m3 domestic wastewater treatment, aerobic activated 

sludge Medini STP consumed the highest amount of energy at RM1.02 per day. This 

is followed by Bunus STP at RM 0.27 per day and Jelutong with RM 0.19 per day. 

The LCA and CBA framework developed for Bunus plant 1 m3 domestic wastewater 

flow rate (as a hypothetical example) minimized the environmental impact of GWP 

by 25%, EP by 3%, AP by 26%, TETP by 3%, and HTP by 3%. In addition, the 

suggested scenario maximized the benefit of 1m3 domestic wastewater by RM 2.17 

per day. The study revealed very different impacts for the three plants, drawing 

attention to the importance of treatment process choice. The integration of LCA and 

CBA using the developed framework improve the sustainability of domestic 

wastewater treatment system in Malaysian urban areas. 
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ABSTRAK 

Tujuan utama rawatan air kumbahan adalah untuk melindungi manusia 

daripada penyakit bawaan air dan untuk melindungi sumber hidupan bio akuatik 

seperti ikan. Walau bagaimanapun, terdapat kos persekitaran yang berkaitan bagi 

mencapai tahap kualiti air yang diperlukan seperti pelepasan gas rumah hijau akibat 

pengeluaran tenaga, dan ketoksikan-eko dari aplikasi enapcemar ke atas tanah. 

Matlamat kajian ini adalah untuk menilai kecekapan eko loji rawatan kumbahan 

(STP) berskala besar di kawasan bandar, dengan memberi tumpuan khusus kepada 

variasi dalam teknologi rawatan. Penilaian kitaran hayat (LCA) dan analisis-manfaat-

kos (CBA) adalah alat analisis yang digunakan masing masing untuk menilai kesan 

alam sekitar dan ekonomi. Bagi tujuan penilaian ini, tiga STP di bandar utama 

Malaysia iaitu Kuala Lumpur, Pulau Pinang dan Johor Bahru telah dipilih. STP ini 

menggunakan teknologi rawatan yang berbeza. STP Jelutong di Pulau Pinang 

menggunakan reaktor kelompok turutan untuk merawat air kumbahan domestik. STP 

Bunus di Kuala Lumpur dan STP Medini di Johor Bahru menggunakan enapcemar 

aktif. Berdasarkan data STP, STP Bunus menunjukkan prestasi yang tertinggi dalam 

penyingkiran pencemaran air sisa melalui 96% permintaan oksigen biologi, 90% 

permintaan oksigen kimia dan 68% fosforus. Berdasarkan LCA untuk 1m3 air 

kumbahan dirawat, STP Bunus Kuala Lumpur menunjukkan potensi pemanasan 

global (GWP) dan potensi pengasidan (AP) masing-masing pada 2.96E-01 kg CO2-

eq dan 2.11E -03 kg SO2. STP Jelutong mempunyai potensi eutrofikasi (EP) dan 

potensi toksisiti manusia (HTP) paling tinggi masing-masing Pada 1.47E-02 kg PO4
-3 

dan 5.63E-02 kg DCB-eq. Medini STP mempunyai ketoksikan terestrial tertinggi 

(TETP) pada 2.0E-02 kg DCB-eq. Dari analisis CBA, STP Medini mempunyai kos 

operasi tertinggi untuk rawatan air kumbahan domestik 1m3 dengan RM 0.635 sehari 

dan RM232 setahun diikuti oleh STP Bunus dengan RM 0.311 sehari dan RM 111.6 

setahun serta SBR Jelutong Penang dengan RM0.157 sehari dan RM57.4 setahun. 

Dari segi penggunaan elektrik untuk rawatan 1m3 air kumbahan domestik, AS STP 

Medini menggunakan jumlah tenaga tertinggi sebanyak RM1.02 sehari. Ini diikuti 

oleh STP Bunus pada RM 0.27 sehari dan STP Jelutong dengan RM 0.19 sehari. 

Rangka kerja LCA dan CBA yang dibangunkan untuk loji Bunus 1m3 kadaran air 

kumbahan domestik (sebagai contoh hipotesis) meminimumkan kesan alam sekitar 

GWP sebanyak 25%, EP sebanyak 3%, AP sebanyak 26%, TETP sebanyak 3 % dan 

HTP sebanyak 3%. Di samping itu, senario yang dicadangkan memaksimumkan 

manfaat 1m3 air sisa domestik sebanyak RM 2.17 sehari. Kajian ini menunjukkan 

impak yang sangat berbeza untuk ketiga-tiga rawatan yang menarik perhatian kepada 

kepentingan pemilihan jenis rawatan. Mengintegrasikan LCA dan CBA 

menggunakan rangka kerja yang dibangunkan meningkatkan kelestarian sistem 

rawatan air sisa domestik di kawasan bandar Malaysia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Malaysia has a long history of environmental pollution due to rapid economic 

development and population growth (Hezri, 2014). The current Malaysian population 

is estimated to be 31,127,247 million, most of which are concentrated in urban areas. 

The contributes to environmental problems through the generation of domestic 

wastewater (Meters, 2014). The amount of sewage has rapidly increased due to the 

migration of citizens from rural to urban areas. This has made sewerage networks 

more become extensive in Malaysia. Furthermore, water consumption has increased, 

with the volume of wastewater generated by municipal and industrial sectors in 

Malaysia estimated to be 2.97 million cubic meters annually (Mat et al., 2013; Cann 

et al., 2013; Dhama et al., 2013).  

In recent years, domestic wastewater in urban areas has become a noticeable 

source of environmental pollution. In addition, human well-being could be at risk 

because of diseases such as cholera and E coli that can quickly spread without 

adequate sewage treatment.  Electricity consumption for domestic wastewater 

treatment is a major source of global warming. This is due to the high rate of energy 

consumption (Ozgun et al., 2013). High energy consumption, operation, and 

technology maintenance costs can reduce the quality of treated wastewater, which 

further affects human health and the environment. Also, discharged wastewater will 

increase Eutrophication Potential (EP) and Terrestrial Eco Toxicity (TETP) while 

negatively impacting soil, vegetation, and human health. Therefore, the provision of 

environmental and economic sustainable wastewater treatments is very important.  

Hong et al. (2009) reported that the inadequate treatment of wastewater leads 

to disposal of effluent with high organic content such as Chemical Oxygen Demand 
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(COD), Biological Oxygen Demand (BOD), nitrite, nitrate, Total Nitrogen (TN), and 

phosphorus. This contributes to eutrophication and increases the pollutions of water 

bodies, soil, and waterways, which further affects human health and the environment. 

On the other hand, the remnants of domestic and wastewater treatment (sludge) have 

many substances that damage the soil and subject the environment to heavy metals 

(Mara, 2013; Maldonado et al., 2008). This increases the impact of Terrestrial 

Toxicity (TETP) on the ecosystem. This study assesses the environmental impact of 

domestic wastewater treatment systems in Malaysian urban areas.  

The CML2001 Life Cycle Impact Assessment (LCIA) method using the 

Gabi6 database was used to determine what technology has the highest and lowest 

impact on human health and the environment. Normalization and result weighting for 

CML 2001 was done based on global references to obtain a single impact score for 

available emissions based on the Gabi6 database. Cost Benefit Analysis (CBA) was 

used to assess the operation costs, energy use, fuel consumption, chemical 

substances, maintenance, wages, and economic gain. The eco-efficiency framework 

was done through a combination of Life Cycle Assessment (LCA) and Cost Benefit 

Analysis (CBA). CBA was selected instead of LCC because CBA reflects benefits 

while LCC reflects costs. The minimization of the environmental impact and cost of 

domestic wastewater treatment plants was supported by both scenarios. The first 

scenario produced electricity using biogas and bio solids while the second scenario 

reused effluent water to produce fertilizer and annamox process bacteria. This 

minimized the environmental impact and cost of domestic wastewater treatment 

systems. The developed framework proposed the best solution for the environmental 

and economic sustainability of domestic wastewater treatment systems in Malaysian 

urban areas. 

1.2 Problem Statement 

Environmental pollution from wastewater disposal is a concern in many 

nations around the world. Wastewater effluent contains high-levels of organic 

substances that have a significant environmental impact on water bodies, rivers, and 
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waterways. Developing countries like Malaysia face serious wastewater pollution 

problems that affect water bodies, groundwater, human health, and the environment 

(Adnan et al., 2012). The technology presently in use is an aerobic process that 

consumes large amounts of energy (Azimi and Rocher, 2017). This technology also 

has a high Global Warming Potential (GWP) due to the adverse negative impact and 

high rate of energy consumption,  which reflects a high rate of fuel consumption. The 

current technology in use increases energy consumption (Soares et al., 2017). 

According to Grzes et al. (2014), wastewater handling represent 54% of Greenhouse 

Gas Emissions (GHG). Mohd Safuan et al. (2014) reported that the common way of 

disposing sludge on land or sea is costly and environmentally harmful. Converting 

sludge to useful energy is cheap and has negative environmental consequences due to 

the energy consumption of drying sludge. 

Wastewater treatment in many places around the world is characterized by 

high surplus biomass, high operation costs, and high maintenance costs (Soares et 

al., 2017). This process emits gases such as carbon dioxide and methane that play an 

important role in Global Warming Potential (Gu et al., 2017; Li et al., 2017; Plants, 

2000; Qiu et al., 2010; Vigneswaran et al., 2009). Furthermore, substances such as 

ammonia, nitrogen, COD, BOD, nitrates, aluminium, ferric salts, lime, and residual 

phosphorus precipitation from wastewater treatments have contributed greatly to 

environmental pollution (Semerjian and Ayoub, 2003). For the environmental impact 

and cost of domestic wastewater treatment systems to be reduced there is a need for 

new domestic wastewater treatment processes. Eutrophication (EP) and Terrestrial 

Toxicity Potential (TETP) are the main parts affected by increases or decreases in 

domestic wastewater treatment process efficiency (McNamara, 2016). 

High energy consumption in term of grid costs comes from fuel consumption 

and contributes to climate change though the emission of CO2 and CO (Gu et al., 

2017). In addition, high operational and maintenance costs for current wastewater 

treatment technologies had led to the use of cheap materials and equipment that 

affects the quality of treated wastewater. Attempts to increase the efficiency of these 

technologies in removing pollution has led to a high rate of energy consumption, 

which consequently affects the environment as well as firm and government costs. 
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Inefficiencies in existing technologies in removing waste pollution (in terms 

of performance, environmental impact, and cost) created the research gap addressed 

by this study. Cornejo (2015) and Lim et al., (2008) studies on wastewater, 

Combined Life Cycle Assessment (LCA), and Life Cycle Costs (LCC) have reduced 

the cost and environmental impact of wastewater treatments. Previous studies have 

revealed that the use of LCC did not reflect wastewater benefits (Koul and  John, 

2015; Rodriguez-Garcia et al., 2011). The advantage of using CBA instead of LCC is 

that CBA reflects wastewater benefits. Therefore, research on the use of domestic 

wastewater that accommodate its benefits, reduces environmental damage, 

maximizes pollution removel efficiency, and reduces costs is lacking. Studies that 

integrated the effect of LCA and CBA for domestic wastewater treatment 

sustainability is lacking. This study developed a framework for minimising the cost 

and impact of domestic wastewater treatment system, which is novelty of the study. 

Integrating LCA and CBA provides a solution for improving the environmental and 

economic efficiency of domestic wastewater treatment systems in Malaysian urban 

areas. 

1.3 Study Objectives 

The aim of this research is to assess the environmental and economic 

sustainability of domestic wastewater treatment systems using LCA and CBA. This 

study developed framework for minimising the cost and impact of domestic 

wastewater treatment systems. This was done by integrating LCA and CBA. The 

objectives of this research are as follows: 

(a) To collect inventory input and output data for different domestic wastewater 

treatment systems in Malaysian  urban areas.  

(b) To analyse the potential environmental impacts of different domestic 

wastewater treatment systems using the LCA approach. 

(c) To assess the cost and economic feasibility of the domestic wastewater 

treatment systems in Malaysian urban areas. 
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(d) To develop an eco-efficiency framework for sustainable domestic wastewater 

treatment systems that minimizes environmental impact and cost. 

1.4 Study Scope  

The study scope consisted of three domestic wastewater treatment plants in 

Malaysian urban areas. Domestic wastewater treatment plants were selected based on 

daily domestic wastewater generation, plant scale, and wastewater treatment 

efficiency. The first part assesses the potential impact of domestic wastewater 

treatments in terms of environment and economic aspects in three Malaysian urban 

areas (Kuala Lumpur, Johor, and Penang). The system in Bunus Kuala Lumpur and 

Medini Johor Bahru were aerobic activated sludge system. While the system in 

Jelutong Penang was sequencing batch reactor. The system boundary of this study 

was from gate to gate. 

Sampling was conducted to collect primary data that was compared with data 

with from Indah water Konsortium IWK. Secondary data was collected from IWK 

(data average). Data collection in the three urban areas took approximately five 

months to finish. Some data such as the construction cost of the selected plants was 

taken from Jabatan Perkhidmatan Pembetungan (JPP). Other secondary data such as 

the cost of one person equivalent for the Bunus Kuala Lumpur plant was collected 

from the literature. 

The purpose of this assessment was to minimize the environmental impact of 

Domestic Wastewater Treatment (DWWT) in urban areas. This was achieved by the 

use of soil reclamation, recycling, and domestic wastewater reuse in addition to 

current domestic wastewater practices (DWW disposal). Besides, electricity and 

biogas was produced from the methane in domestic wastewater. Data for the study 

was taken from Indah Water Konsortium (IWK). The second part of this study 

compared the environmental impact of adopted technologies and economic aspects 

(chemical and biological treatments) such as sequence batch reactors, and activated 

sludge. LCA was used to assess the environmental impact of domestic wastewater 
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treatment and the used technologies while CBA was applied to assess economic 

costs. 

The selection of wastewater treatment plant sites was done based on their 

location in urban areas, their use of non-conventional wastewater treatment 

technologies, and the quality of their effluent wastewater. Another consideration was 

done the environmental impact of the 1m3 of wastewater. This study integrated LCA 

and CBA instead of LCC because CBA reflect wastewater benefits. The study 

considered the cost and present values of the selected plants based on a plant life 

span 30 years. The selection of a 30 year life span was best in terms of benefits 

because past 30 years maintenance increases and benefits decrease. 

Cost estimation was done co-operatively with IWK. Microsoft excel was used 

to calculate the cost and the economic feasibility of domestic wastewater. The third 

part analysed the potential environmental impact of domestic wastewater system 

inputs and outputs from different points of view (Materials, chemical substances, 

energy requirements, and environmental impact). The obtained data was imputed 

into Gabi software to analyse the potential environmental impact of domestic 

wastewater and the technologies use. In summary, the scope of this study achieved 

the following objectives: 

(a) Input and output data for domestic wastewater treatment systems in Malaysia 

were collected using IWK. Input and output data contained the use of 

electricity, transportation fuel, COD, BOD, nitrate, nitrite, and phosphorus. 

(b) This research covers only domestic wastewater treatment systems in 

Malaysian urban areas. The Bunus Kuala Lumpur plant, Medini Johor Bahru 

plant, and Jelutong Penang plant were considered during data collection. 

(c) The potential environmental impact assessment of different domestic 

wastewater treatment systems was limited to the LCA approach. 

(d) Analysis of the potential environmental impacts of different domestic 

wastewater systems was limited to the Gabi6 software. 
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(e) The fuel consumption costs for the transportation of materials and chemicals 

within investigated plants were included. 

(f) The system boundaries included raw materials and gate to gate wastewater 

processing. 

1.5 Significance of Research 

A framework was developed to evaluate the eco-efficiency of wastewater 

treatment plants. This study minimized the environmental impact and cost of 

domestic wastewater treatment systems. The integration of LCA and CBA using the 

suggested framework decreased the environmental impact below the selected 

environmental threshold values. The developed framework is important to guiding 

decision makers to choose the best domestic wastewater treatment technologies with 

the lowest environmental impact and cost. In addition, this research will increase 

awareness on how to use recycle domestic wastewater for economic gain (fertilizer, 

soil reclamation, electricity generation, and cooking gas). Furthermore, this research 

is important for choosing the best solution for sustaining sewage systems without 

negative odours and pathogens by suggesting the best treatments with the lowest cost 

and environmental impact. This enhances the balance between human health and 

environment by reducing pathogens, costs, and environmental impact. The cost of 

domestic wastewater treatment systems was minimized to less than the selected 

economic threshold values. Therefore, the suggested framework provided the best 

solution for increasing the eco-efficiency of domestic wastewater treatment, which 

enhanced environmental and economic sustainability in Malaysian urban areas. 

1.6 Thesis Layout 

The layout of this study is structured as follows:  



 

8 

 

Chapter 1 gives the introductory background. It also highlights the problems 

associated with the research area. In addition, this chapter outlines the goal and 

significance of this study.  

Chapter 2 discuss previous studies related to Domestic Wastewater Treatment 

(DWWT) technologies. The analysis-based techniques are presented. Important 

concepts such as LCA, cost benefits tools, and Gabi software are discussed.  

Chapter 3 describes the methodology used in this research. It explains the 

research tools and processes. It also explains the economic and environmental 

domestic wastewater analysis using LCA and CBA.  

Chapter 4 presents the results of the LCA approach to analyse the potential 

environmental impact of domestic wastewater treatments and technologies.  

Chapter 5 presents the cost estimates done using inventory data, IWK annual 

reports, and consultations with IWK executives. Costs included operational costs and 

maintenance as well as daily, monthly, and annual wages. The calculation of these 

case studies was done in sequence, starting from operation to polymer cost.  

Chapter 6 shows the results for the 1m3 domestic wastewater flow rate 

framework in terms of treatment sustainability 

Chapter 7 presents the conclusion and recommendations for future research 

based on the study findings 
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