
MATEMATIKA, 2018, Volume 34, Number 2, 293–311
c© Penerbit UTM Press. All rights reserved

Nonlinear Partial Differential Equations Model Related to
Oxidation Pond Treatment System: A Case Study of mPHO at

Taman Timor Oxidation Pond, Johor Bahru

1Amir S. A. Hamzah∗, 2,3Ali H. M. Murid
1Department of Fundamental and Applied Sciences,

Faculty of Science and Information Technology,
Universiti Teknologi PETRONAS, 36210 Bandar Seri Iskandar, Perak, Malaysia

2Department of Mathematical Sciences, Faculty of Science,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3UTM Centre for Industrial and Applied Mathematics (UTM-CIAM),
Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR),

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
∗Corresponding author: syafiq.hamzah@utp.edu.my

Article history
Received: 22 November 2017
Received in revised form: No revision
Accepted: 27 December 2017
Published on line: 1 December 2018

Abstract

This study presents a mathematical model examining wastewater pollutant removal through
an oxidation pond treatment system. This model was developed to describe the reaction
between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dis-
solved oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
pollutant (COD) concentrations, respectively. The coupling of these equations occurred
due to the reactions between PSB, DO and COD to produce harmless compounds. Since
the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, com-
putational algorithm with a specific numerical method, which is implicit Crank-Nicolson
method, was employed to simulate the dynamical behaviour of the system. Furthermore,
numerical results revealed that the proposed model demonstrated high accuracy when
compared to the experimental data.

Keywords Oxidation pond; nonlinear PDEs; PSB; implicit Crank-Nicolson.

Mathematics Subject Classification 35B65, 65N99, 92B05.

1 Introduction

Oxidation pond technique has been acknowledged as the most popular approach among small
communities due to its low construction and operating costs [1]. The construction and mainte-
nance costs of this treatment are inexpensive compared to other recognized treatment systems
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including microbial fuel cell (MFC), membrane bioreactor (MBR), and rotating biological con-
tactor (RBC). The core procedure of an oxidation pond treatment process is the degradation
of contaminants and organic matter in two conditions; where oxygen is present (aerobic) or
absence (anaerobic). At each stage, existing microorganisms are used to breakdown either
organic or inorganic substances of influent and to reduce organic material into more concise
forms, which are carbon dioxide, water, and cell biomass.

Oxidation pond chosen for the pilot scale study is an exposed oxidation pond located at
Taman Timor Oxidation Pond, Tampoi, Johor, as it has been experimentally studied by J-
Biotech for three months period to observe the effects of microbe-based product (mPHO) in
treating sewage. Nonetheless, there is no specific study done on this product until now. Briefly,
the size of this pond is estimated about 1,909 square metres with a depth of 1.5 metres and
total water volume of 2,864.13 cubic metres or 2,864,125.13 litres (refer to Figure 2 and Figure
3). However, the input and output flow rate of wastewater as well as the volume of rain may
not change the volume of water in the pond as the wastewater is discharged due to overflow. In
order to intensify the effectiveness of oxidation pond technique and to accelerate the population
of Phototrophic bacteria (PSB) in the pond, mPHO containing mainly PSB have been added
regularly within three months period of study between 13 November 2013 to 12 February 2014.

The product mPHO is made from selected species of PSB (refer Figure 4) manufactured
by J-Biotech. About 1,375 litres of mPHO were applied to the pond throughout three months
of treatment. Samples were collected at two points, which are CP1 (influent and application
of mPHO) and CP2 (effluent) (refer to Figure 5). Comparison of data taken at both points
CP1 and CP2 demonstrated that mPHO has a good effect in reducing the concentration of
pathogenic bacteria (E. coli and Coliform), BOD, COD and other pollutants as the PSB and
dissolved oxygen (DO) concentration increases.

Figure 1: Relationship Between the Organic Carbon in Sewage [2]

2 Literature Review

There are several types of mathematical modelling that are widely used in wastewater treat-
ment process. Some examples of mathematical models related to rivers and ponds are also
stated in the sections below. Findings from this study demonstrated that these models were
further improved using the advancement in computing by considering the dynamical structure
of biological system.
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Figure 2: Aerial View of Taman Timor Oxidation Pond, Johor Bahru [3]

Figure 3: Physical Condition of Taman Timor Oxidation Pond, Johor Bahru [3]

Wastewater treatment process models consider various types of wastewater problem and
select proper modes of treatment as well as the design of the equipment required. Furthermore,
the theories involved in the specific process such as chemical kinetics, material and energy
balances are discussed. Wastewater process models can be successfully used in planning and
developing several applications such as river, pond and wetland.

Mathematical modelling in solving actual problems such as water pollution has been devel-
oped since 1925 by Streeter and Phelps [4]. One of the issues of concern is to scrutinize the
quality of water accessible in rivers and stabilization ponds. One of the earliest mathematical
modelling of water quality given in Beck and Young [4] by using Streeter-Phelps Equation to
study the relationship between BOD and DO on the River Cam, Eastern England. The model
used a linear first order differential equation as

dD

dt
= k1 Lt − k2 D, (1)

where D is the saturation oxygen deficit, which can be derived from the dissolved oxygen
concentration at saturation minus the actual dissolved oxygen concentration (g m−3), k1 is
the deoxygenation rate (day−1), k2 is the reaeration rate (day−1), Lt is the oxygen demand
remaining at time t, and t is the elapsed time, usually in day.

This model explains how BOD and DO can vary along with observing period. Many studies
have been conducted to predict the effluent quality of river and stabilization ponds. The
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Figure 4: Beneficial Microbe-based Product (mPHO) Produced by J-Biotech company [3]

Figure 5: (a) Location of CP1 (Influent) (b) Location of CP2 (Effluent) [3]

Streeter-Phelps equation has been frequently used as a reference, while ordinary differential
equations were used as the basis in relating parameters to each other. Through this model,
significant relationship between parameters involved in the ecosystem is obtained. For instance,
the pollutant against DO, algae against DO, and bacteria against algae.

There are also other mathematical models developed for specific problems that occur in a
given locality. A study has been conducted on Tha Chin river stream in Thailand considering
the effects of pollutant with dissolved oxygen [5]. This study proposed the model of two-
dimensional coupled advection-dispersion equations for both state variables, respectively. The
relationship between state variables was used considering that the interactions occurred between
materials contaminated with oxygen will produce harmful substances. In this model, pollutant
and DO concentrations were permitted to fluctuate along the length of stream and dealt as
homogeneous over the cross-segment of river subject to Dobbin’s criterion [6]. For simplification,
the model was reduced to steady state solutions and analytically solved for simple cases.

Besides, there is another study developing mathematical model to predict the specific growth
rate and biomass concentration of microbes in wastewater treatment [7]. This study suggests
that the rate of bacterial growth can be defined as first order reaction

rg =
µm S

Ks + S
, (2)

where rg is the rate of bacterial growth (time−1), µm is the maximum specific growth rate
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(time−1), S is concentration of growth limiting substrate in the effluent (mass (unit volume)−1

time−1), Ks is the half velocity constant (mass (unit volume)−1 time−1). This finding presents
Michaelis-Menten term in the hypothesis of growth model with the view that the growth rate
of enzyme will take the same form. In biochemistry, Michaelis-Menten term expression can
be considered as among the best-known models for enzyme kinetics. This model is associated
with German biochemist Leonor Michaelis and Canadian physician Maud Menten. The model
describes the rate of enzymatic reactions by relating the reaction rate v with substrate S using
the formula of

v =
Vmax[S]

Km + [S]
,

where Vmax is the maximum rate attained by the system referred to as saturating substrate
concentrations (refer Figure 6). Meanwhile, the Michaelis constant Km is the substrate con-
centration that takes half the value of Vmax.

Apart from that, an ecological study has been conducted proposing a mathematical model
to obtain input/output relationships between upstream and downstream of a river for DO and
BOD parameters [8]. The appropriate example is the Beck modified Khanna Bhutiani (BMKB)
model, which is developed to study the coexisting interaction occurs between DO and BOD.
The study of wastewater took place at river Suswa, India. Precisely, the following model

λ1(S) = C1 λ1(S − 1) + C2 U1(S − 1) + C3 e1(S),

λ2(S) = C4 λ1(S − 1) + C5 U1(S − 1)− C6 e1(S),
(3)

was used where λ1(S) is the value of DO (mg/l) to be obtained in particular season, λ2(S) is
the value of BOD (mg/l), λ1(S − 1) is DO/BOD observation of same place in previous season,
U1(S−1) is DO/BOD observation of upstream in previous season, e1(S) is the error of possibility
while constants (c1, c2, . . . , c6) are described as the specific rates of the aforementioned term.
The results were achieved by computing DO divided by BOD of the same upstream in the
past season, which remains a single output solution. The model has been proved by the water
quality information of the samples gathered from river Suswa in various seasons.

Figure 6: Michaelis-Manten Kinetics [12]
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A more complex model has been considered discussing on the variations of COD, DO,
ammonia, phosphorus, bacteria and algae concentrations with time and the dimensions of the
pond [9–11]. This model predicts the correlation between those aforementioned variables at the
effluent to measure the quality of the stabilization pond (natural pond). A two-dimensional
hydraulic model was employed taking into consideration the dispersed flow and diffusion in
horizontal and vertical directions, respectively. The pilot scale study of this model focused
around the accumulated data from a full-scale lake in Turkey. The model can be utilized to
redesign new outline for the lakes, thus enhancing the pro-fluent nature of the existing lakes.

Meanwhile, for this study, the advection-diffusion-reaction equation model proposed by Pim-
punchat et al. [5] was extended to three state variables in this study, which are phototrophic
bacteria (PSB), chemical oxygen demand (COD) and DO. Currently, there are several mathe-
matical models available for simulating oxidation pond process where some important param-
eters are considered such as bacteria (cleansing agent), pollutants and dissolved oxygen (DO).
However, previous results did not provide a good approximation on the required parameters.

3 Application of mPHO at Taman Timor Oxidation Pond

This section presents the application of mPHO product by J-Biotech Company at Taman Timor
oxidation pond, Skudai, Johor. The treatment was conducted within three months period from
14 November 2014 to 13 February 2015 [3]. The location for applying mPHO and sampling
points are presented in Figure 3.4. In the first week, 25 litres mPHO was applied each day with
2 days break in the weekend followed by adding 30 litres mPHO each day for the second week.
This phase is considered as the first phase of application. During the third until twelve-th week,
10 litres of mPHO was applied each day with 2 days break in the weekend (refer to Table 1 and
Table 2). Phase 1 and Phase 2 represented a continuous treatment of mPHO application within
91 days. All the amounts of mPHO given during the study were applied by the company using
trial and error method. Meanwhile, the two days break during the weekend is considered as the
regular holiday period. Hence, mathematical modelling was utilised in this study to assist in
explaining further treatment process and aid in managing a more efficient treatment process.

4 Advection-Diffusion-Reaction Equation Model (Transport of
Pollutant)

To represent the oxidation pond treatment system, the PDEs model was used considering
the dimensions of the pond (x) as well as time observed (t). Therefore, the length of pond
associated with variables x must be included as the independent variables for the model. This
model has to be considered by two independent variables, which are x and t. This will allow
the wastewater flows through the pond that contains several substances to be described by
both advection and diffusion terms. Advection is the transport of substances through fluid.
Mathematically, it can be written as the partial differential equation that governs the motion
of a conserved scalar field as it is advected by a known velocity vector field [13]. One example
of visualized phenomenon is the transport of crude oil dumped into a river. As the river flows,
crude oil will move downstream in an oscillating behaviour via advection where the water’s
movement transports the oil. Meanwhile, the diffusion term is known as the second order
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Table 1: Treatment Schedule for mPHO Application at Taman Timor Oxidation Pond
(Phase 1) [3]

Application / Activities Frequency Location

Pre-Sampling 3 times Both Point ( CP 1 & CP 2)

Treatment
Approaches

Day (Date)
Application
/ Activities

Quantity
/Frequency

Location

Intensive
(Phase 1)

1 (14/11/2013) Sampling 2 locations Both Point ( CP 1 & CP 2)

mPHO 25 liters CP 1 (Influent)

2 (15/11/2013) mPHO 25 liters CP 1 (Influent)

3 (16/11/2013) mPHO 25 liters CP 1 (Influent)

4 (17/11/2013) Sampling 2 locations Both Point ( CP 1 & CP 2)

mPHO 25 liters CP 1 (Influent)

5 (18/11/2013) mPHO 25 liters CP 1 (Influent)

(19-20/11/2013 ) Break for 2 days

8 (21/11/2013) Sampling 2 locations Both Point ( CP 1 & CP 2)

mPHO 30 litres CP 1 (Influent)

9 (22/11/2013) mPHO 30 litres CP 1 (Influent)

10 (23/11/2013) mPHO 30 litres CP 1 (Influent)

11 (24/11/2013) Sampling 2 locations Both Point ( CP 1 & CP 2)

mPHO 30 litres CP 1 (Influent)

12(25/11/2013) mPHO 30 litres CP 1 (Influent)

PDEs. Cross sectional area (A) of a pond is also considered as one of the important factors
for this model. Additionally, this factor has been previously employed by Pimpunchat [5] for
a system of PDEs comprising DO and pollutants. This extended model is made to introduce
another state variable which is PSB as the cleansing agent used in the process of degrading
pollutants. Variables and parameters used in this mathematical model are stated in Table 4.14
and Table 4.15. Table 4.16 demonstrates the equation of all process rates considered in the
Mathematical Model.

Meanwhile, the unknown constants of the model which is stated in Table 4.15 can also be
determined using the parameter estimation (least squares) method in Mathematica routine
NonlinearModelFit based on the experimental data at CP2. Hence, a system consists of three
second order PDEs with coupled-equation for the aforementioned state variables is constructed
and listed in equations (4–6).
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Table 2: Treatment Schedule for mPHO Application at Taman Timor Oxidation Pond
(Phase 2) [3]

Treatment
Approaches

Cycles
(week)

Application /
Activities

Quantity
(Litre)

Location

Sampling 1 CP 1 & CP 2

Continuous
(Phase 2)

1st

(28/11/2013-
4/12/2013)

Application mPHO 100 CP 1 (Influent)

2nd

(5/12/2013-
11/12/2013)

Application mPHO 100 CP 1 (Influent)

3rd

(12/12/2013-
18/12/2013)

Application mPHO 100 CP 1 (Influent)

4th

(19/12/2013-
25/12/2013)

Application mPHO 100 CP 1 (Influent)

5th

(2/1/2014-
8/1/2014)

Application mPHO 100 CP 1 (Influent)

7th

(9/1/2014-
15/1/2014)

Application mPHO 100 CP 1 (Influent)

8th

(16/1/2014-
22/1/2014)

Application mPHO 100 CP 1 (Influent)

∂(A M(x, t))

∂t
= DM

∂2(A M(x, t))

∂x2
− υ

∂(A M(x, t))

∂x
+

c1
P (x, t)

kP + P (x, t)
A X(x, t)M(x, t) + µbM(x, t)

(
1− M(x, t)

km

)
(4)

∂(A P (x, t))

∂t
= DP

∂2(A P (x, t))

∂x2
− υ

∂(A P (x, t))

∂x
− c1

P (x, t)

kP + P (x, t)
A X(x, t)M(x, t),

(5)

∂(A X(x, t))

∂t
= DX

∂2(A X(x, t))

∂x2
− υ

∂(A X(x, t))

∂x
−

c1
P (x, t)

kP + P (x, t)
A X(x, t)M(x, t) + kL(α−X(x, t)), (6)
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Table 3: Description of State Variables Used in the Mathematical Model

Symbol Description Unit

M (x, t) Concentration of PSB in the pond where x varies from 0 to
54 metres and t varies from initial time up to 91 days

g m−3

P(x, t) Concentration of COD in the pond g m−3

X (x, t) Concentration of DO in the pond g m−3

U (t) Amount of mPHO applied to the pond according to schedule m 3 day−1

Mi(t) Input of PSB from the inlet source that varies with time g m−3

Pi(t) Input of COD from the inlet source that varies with time g m−3

Xi(t) Input of DO from the inlet source that varies with time g m−3

Table 4: Process Rates

Symbol Description Formula Unit

B Breakdown of organic/
inorganic matter

k1
P (x, t)

kP + P (x, t)
A X(x, t)B(x, t) g m−3

F Mass transfer of oxygen kL(α−X(x, t)) g m−3

L
Logistic growth of

bacteria
µb M(x, t)

(
1− M(x, t)

km

)
g m−3

where 0 ≤ t ≤ 90 day, 0 ≤ x ≤ 54 meter. At initial time and length of t = 0, and x = 0,
the value of PSB is 0.00036 g m−3 with 116.7 g m−3 COD and 2.764 g m−3 DO. The initial
conditions presented below were obtained by quadratic interpolation of the data at CP1 and
CP2 when t = 0.

Initial Conditions: 
M(x, 0) =

1

542
(0.001− 0.00036)x2 + 0.00036;

P (x, 0) =
1

542
(65− 116.7)x2 + 116.7;

X(x, 0) =
1

542
(2.8185− 2.764)x2 + 2.764.

(7)

Boundary Conditions:
∂M(x, t)

∂x

∣∣∣∣
x=0

= 0;
∂P (x, t)

∂x

∣∣∣∣
x=0

= 0;
∂X(x, t)

∂x

∣∣∣∣
x=0

= 0;

M(0, t) = Mi(t); P (0, t) = Pi(t); X(0, t) = Xi(t).

(8)
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Table 5: Parameter Values Used in the Mathematical Model

Symbol Description Value Unit Source

m0
Rate of PSB addition within the
pond

19.1
g m−3 MISG 2014

Report [3]

p0
Concentration of COD in one m3 of
sewage from input CP1

50.0 g m−3 MISG 2014
Report [3]

vs
Average amount of sewage from
CP1

290 m3 day−1 MISG 2014
Report [3]

vp Volume of the pond 2864 m3 MISG 2014
Report [3]

υ Velocity of wastewater in the pond 7.54 m day−1 MISG 2014
Report [3]

A
Cross section area of oxidation
pond

53 m2 MISG 2014
Report [3]

α Saturated oxygen concentration 3.4 g m−3 Calibrated

µb Maximum growth rate for PSB 31 m2 day−1 Calibrated

DM
Diffusion coefficient of PSB in the
x direction

50 m2 day−1 Calibrated

DP
Diffusion coefficient of COD in the
x direction

50 m2 day−1 Calibrated

DX
Diffusion coefficient of DO in the x
direction

50 m2 day−1 Calibrated

kL
Mass transfer rate for oxygen from
air to water

4 m2 day−1 Calibrated

kp
Half saturation oxygen demand
concentration for COD decay

560 g m−3 Calibrated

c1
Degradation rate coefficient for
COD

10 m3 g−1 day−1 Calibrated

km
Half-saturation coefficient for
growth of PSB

1.7×10−4 g m−3 Calibrated
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The boundary conditions M(0, t), P (0, t) and X(0, t) can be calculated through linear inter-
polation of given data at CP1 and by considering there is no out flux for all state variables at
CP1, which is at x = 0 at all time.

By using Crank-Nicolson algorithm as already mentioned earlier, equations (4-6) can be
discretized into

A

∆t
(M j+1

i −M j
i ) =

DM

2 (∆x)2
(M j

i+1 − 2 M j
i + M j

i−1 + M j+1
i+1 − 2 M j+1

i + M j+1
i−1 )

− υ

4∆x
(M j

i+1 −M j
i−1 + M j+1

i+1 −M j+1
i−1 ) + c1

P j
i

kP + P j
i

A Xj
i M j

i + µbM
j
i

(
1− M j

i

km

)
. (9)

A

∆t
(P j+1

i − P j
i ) =

DP

2 (∆x)2
(P j

i+1 − 2 P j
i + P j

i−1 + P j+1
i+1 − 2 P j+1

i + P j+1
i−1 )

− υ

4∆x
(P j

i+1 − P j
i−1 + P j+1

i+1 − P j+1
i−1 )− c1

P j
i

kP + P j
i

A Xj
i M j

i . (10)

A

∆t
(Xj+1

i −Xj
i ) =

DX

2 (∆x)2
(Xj

i+1 − 2 Xj
i + Xj+1

i−1 + Xj+1
i+1 − 2 Xj+1

i + Xj+1
i−1 )

− υ

4∆x
(Xj

i+1 −Xj
i−1 + Xj+1

i+1 −Xj+1
i−1 )− c1

P j
i

kP + P j
i

A Xj
i M j

i + kL(α−Xj
i ). (11)

Equations (9-11) can be rewritten as

− A

∆t
M j

i −
DM

2 (∆x)2
(M j

i+1 − 2 M j
i + M j

i−1) +
υ

4∆x
(M j

i+1 −M j
i−1)

− c1
P j

i

kP + P j
i

A Xj
i M j

i + µbM
j
i

(
1− M j

i

km

)
= − A

∆t
M j+1

i +
DM

2 (∆x)2
(M j+1

i+1 − 2 M j+1
i + M j+1

i−1 )− υ

4∆x
(M j+1

i+1 −M j+1
i−1 ). (12)

− A

∆t
P j

i −
DP

2 (∆x)2
(P j

i+1 − 2 P j
i + P j

i−1) +
υ

4∆x
(P j

i+1 − P j
i−1) + c1

P j
i

kP + P j
i

A Xj
i M j

i

= − A

∆t
P j+1

i +
DP

2 (∆x)2
(P j+1

i+1 − 2 P j+1
i + P j+1

i−1 )− υ

4∆x
(P j+1

i+1 − P j+1
i−1 ). (13)

− A

∆t
Xj

i −
DX

2 (∆x)2
(Xj

i+1 − 2 Xj
i + Xj

i−1) +
υ

4∆x
(Xj

i+1 −Xj
i−1) + c1

P j
i

kP + P j
i

A Xj
i M j

i

= − A

∆t
Xj+1

i +
DX

2 (∆x)2
(Xj+1

i+1 − 2 Xj+1
i + Xj+1

i−1 )− υ

4∆x
(Xj+1

i+1 −Xj+1
i−1 ). (14)

Equations (12-14) can be rearranged to follow Crank-Nicolson scheme by(
− DM

2(∆x)2
− v

4∆x

)
M j

i−1 +

(
− A

∆t
+

DM

(∆x)2
− c1

P j
i

kP + P j
i

A Xj
i + µb

(
1− M j

i

km

))
M j

i(
− DM

2(∆x)2
+

v

4∆x

)
M j

i+1 =

(
DM

2(∆x)2
+

v

4∆x

)
M j+1

i−1 +

(
− A

∆t
+

DM

(∆x)2

)
M j+1

i

+

(
DM

2(∆x)2
− v

4∆x

)
M j+1

i+1 (15)
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− DP

2(∆x)2
− v

4∆x

)
P j

i−1 +

(
− A

∆t
+

DP

(∆x)2
+ c1

Xj
i M j

i

kP + P j
i

A

)
P j

i(
− DP

2(∆x)2
+

v

4∆x

)
P j

i+1 =

(
DP

2(∆x)2
+

v

4∆x

)
P j+1

i−1 +

(
− A

∆t
+

DP

(∆x)2

)
P j+1

i

+

(
DP

2(∆x)2
− v

4∆x

)
P j+1

i+1 (16)(
− DX

2(∆x)2
− v

4∆x

)
Xj

i−1 +

(
− A

∆t
+

DX

(∆x)2
+ c1

P j
i M j

i

kP + P j
i

A

)
Xj

i(
− DX

2(∆x)2
+

v

4∆x

)
Xj

i+1 =

(
DX

2(∆x)2
+

v

4∆x

)
Xj+1

i−1 +

(
− A

∆t
+

DX

(∆x)2

)
Xj+1

i

+

(
DX

2(∆x)2
− v

4∆x

)
Xj+1

i+1 . (17)

Lastly, equations (15-17) can be written into a linear equation matrix system as follows

b0 c0 0 0 0 0
a1 b1 c1 0 0 0
0 a2 b2 c2 0 0

0 0
. . . . . . 0 0

0 0 0
. . . . . . 0

0 0 0 0 aimax bimax

−− −− −− −− −− −−
b0 c0 0 0 0 0
a1 b1 c1 0 0 0
0 a2 b2 c2 0 0

0 0
. . . . . . 0 0

0 0 0
. . . . . . 0

0 0 0 0 aimax bimax

−− −− −− −− −− −−
b0 c0 0 0 0 0
a1 b1 c1 0 0 0
0 a2 b2 c2 0 0

0 0
. . . . . . 0 0

0 0 0
. . . . . . 0

0 0 0 0 aimax bimax





M j
0

M j
1

M j
2

...

M j
imax−1

M j
imax

−−−
P j

0

P j
1

P j
2
...

P j
imax−1

P j
imax

−−−
Xj

0

Xj
1

Xj
2
...

Xj
imax−1

Xj
imax



=



Y 1j
0

Y 1j
1

Y 1j
2

...

Y 1j
imax−1

Y 1j
imax

−−−
Y 2j

0

Y 2j
1

Y 2j
2

...

Y 2j
imax−1

Y 2j
imax

−−−
Y 3j

0

Y 3j
1

Y 3j
2

...

Y 3j
imax−1

Y 3j
imax



(18)

where

Y 1j
i =

(
DM

2(∆x)2
+

v

4∆x

)
M j+1

i−1 +

(
− A

∆t
+

DM

(∆x)2

)
M j+1

i +

(
DM

2(∆x)2
− v

4∆x

)
M j+1

i+1 ,

Y 2j
i =

(
DP

2(∆x)2
+

v

4∆x

)
P j+1

i−1 +

(
− A

∆t
+

DP

(∆x)2

)
P j+1

i +

(
DP

2(∆x)2
− v

4∆x

)
P j+1

i+1 ,
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Y 3j
i =

(
DX

2(∆x)2
+

v

4∆x

)
Xj+1

i−1 +

(
− A

∆t
+

DX

(∆x)2

)
Xj+1

i +

(
DX

2(∆x)2
− v

4∆x

)
Xj+1

i+1 .

Equation (18) with the given initial and boundary conditions in equation (7) and equation
(8) was solved using Mathematica routine NDSolve with Crank-Nicolson method as earlier
discussed.

5 Numerical Results

The results are depicted in Figures 7-15. Figure 7 and Figure 8 showed the 3D and contour plot
of the solution of PSB along the pond (x) and time (t). Figure 9 and Figure 10 describe the 3D
and contour plot of pollutant (COD). Meanwhile, Figure 11 and Figure 12 present the 3D and
contour plot of DO. Lastly, the comparison between the simulated Model and the experimental
data at CP2 for all three state variables was shown in Figures 13-15 for PSB, COD and DO,
respectively.

Table 6: Values of Calibrated Constants and Values Specified in Literature

Symbol Model Calibration Value Unit Source

µb 0.6 2 – 10 day−1 Tchobanoglous and

kL 4 2.67 m2 day−1 Burton [14]

DX 50 45 m2 day−1

DM 50 45 m2 day−1 Beran and Kargi [9]
DP 50 45 m2 day−1

km 0.00017 0 – 0.1 g m−3 Ahmed and Mayo [15]

The simulated model demonstrated a result from all state variables supporting the experi-
mental data given at CP2. As can be seen, the amount of DO in the pond increased as time
increases. The variation of PSB in the pond showed that the concentration of PSB has contin-
uously increased until the end of treatment period. Lastly, an increase in COD concentration
was observed throughout the treatment period. This was due to the increased amount of COD
that goes into the oxidation pond as time increases, which was displayed from the data provided
by J-Biotech.

6 Conclusion

In summary, this study has proposed a mathematical model for oxidation pond treatment
system. The PDEs model comprising advection-diffusion-reaction equations for transporting
pollutants. This mathematical model was considered as the best model in terms of complexity
along with a good result compared to experimental data.
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Figure 7: 3D Graph of PSB Based on the Mathematical Model

Figure 8: Contour Plot of PSB Based on the Mathematical Model
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Figure 9: 3D Graph of COD Based on the Mathematical Model

Figure 10: Contour Plot of COD Based on the Mathematical Model
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Figure 11: 3D Graph of DO Based on the Mathematical Model

Figure 12: Contour Plot of DO Based on the Mathematical Model
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Figure 13: Graphical Comparison between Experimental Data and Simulated Model for PSB
(The blue curve represents the numerical results and red dots are the experimental data (R2 =
0.90))
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Figure 14: Graphical Comparison between Experimental Data and Simulated Model for COD
(The blue curve represents the numerical results and red dots are the experimental data (R2 =
0.86))
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Figure 15: Graphical Comparison between Experimental Data and Simulated Model for DO
(The blue curve represents the numerical results and red dots are the experimental data (R2 =
0.92))
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