The energy of four graphs of some metacyclic 2-groups

Nur Idayu Alimon*, Nor Haniza Sarmin, Amira Fadina Ahmad Fadzil
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
* Corresponding author: nhs@utm.my

Article history

Submitted 6 October 2017
Revised 15 December 2017
Accepted 4 January 2018
Published Online 8 Mac 2018
Graphical abstract

Abstract

Let G be a metacyclic 2-group and Γ_{G} is the graph of G. The adjacency matrix of Γ_{G} is a matrix $A=$ $\left[a_{i j}\right]$ consisting of $0^{\prime} s$ and $1^{\prime} s$ in which the entry $a_{i j}$ is 1 if there is an edge between the $i^{\text {th }}$ and $j^{\text {th }}$ vertices and 0 otherwise. The energy of a graph is the sum of all absolute values of the eigenvalues of the adjacency matrix of the graph. In this paper, the energy of commuting graph, non-commuting graph, conjugate graph and conjugacy class graph of some metacyclic 2-groups are presented. The results show that the energy of these graphs of the groups must be an even integer.

Keywords: Energy of graph, adjacency matrix, conjugacy class, metacyclic group.
© 2018 Penerbit UTM Press. All rights reserved

INTRODUCTION

Ivan Gutman has first defined the energy of a graph in 1978 motivated by Hückel's theory in 1930's [1]. Hückel Molecular Orbital Theory has been used by chemists in approximating the energies related to p-electron orbitals in conjugated hydrocarbon [2]. In mathematics, the energy of a graph of a group is basically the sum of the absolute values of the eigenvalues. The eigenvalues are determined based on the adjacency matrix of the related graph.

This paper consists of three sections. The first section is the introduction section, followed by the second section, namely the preliminaries where some basic concepts, definitions and previous results on group and graph theory are stated. In the third section, the main results on computing the energies of four graphs of some metacyclic 2-groups are presented. These graphs are the commuting graph, non-commuting graph, conjugate graph, and conjugacy class graph.

PRELIMINARIES

Group theory is widely used in many branches of physical sciences. It is also used in solving Rubik's cube and to study the shape of viruses. When an operation like multiplication or composition is applied to a set or system, then the group is formed [2]. The following are some definitions in group theory that are used in this research.

Definition 1.1 [3] Metacyclic Group

A group is metacyclic if it has a cyclic normal subgroup H such that G / H is cyclic.
The following is the definition of the conjugate between two elements of a group G.

Definition 1.2 [4] Conjugate

Let a and b be two elements in finite group G, then a and b are called conjugate if there exist an element g in G such that $g a g^{-1}=b$.

Definition 1.3 [5] Conjugacy Class

Let $x \in G$. The conjugacy class of g is the set $\operatorname{cl}(g)=\left\{a g a^{-1} \mid a \in\right.$ $G\}$ for all a in G.

Definition 1.4 [6] Center of a Group

The center, $Z(G)$ of a group G is the subset if elements in G that commute with every element of G, written as $Z(G)=\{a \in G \mid a x=$ $x a, \forall x \in G\}$.

Graph theory has a wide range of applications in numerous areas such as engineering, biological sciences and computer sciences [7]. A graph of a group, $\Gamma(G)$ is a graph which consists of a finite set of vertices and edges where the vertices can consist of the elements of the group or based on the properties of group while K_{n} denotes a complete graph of n vertices in which all vertices are connected to each other. The following are some basic concepts on graph theory which will be frequently used in the later sections.

Definition 1.5 [8] Commuting Graph

Let G be a finite group. The commuting graph of G, denoted by $\Gamma_{G}^{c o m m}$, is the graph whose vertex set is $G-Z(G)$ and whose edges are pairs $\{h, g\} \subseteq G-Z(G)$, such that $h \neq g$ and $[h, g] \in Z(G)$.

Definition 1.6 [9] Non-commuting Graph

Let G be a finite group. The non-commuting graph of G, denoted by $\Gamma_{G}^{n c}$, is the graph of vertex set $G-Z(G)$ and two distinct vertices x and y are joined by an edge whenever $x y \neq y x$.

Definition 1.7 [10] Conjugate Graph

A nonabelian group G with vertex set $G \backslash Z(G)$ such that two distinct vertices are joined by an edge if they are conjugate is said to be a conjugate graph, denoted by $\Gamma_{G}^{c o n j}$.

The conjugate graph, denoted by, $\Gamma_{G}^{\text {conj }}$, has been introduced by Erfanian and Toule [10] in 2012.

Definition 1.8 [11] Conjugacy Class Graph

Let G be a finite group. A conjugacy class graph, denoted as $\Gamma_{G}^{C C}$, is a graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ represented by the non-central conjugacy classes of G. Two vertices v_{1} and v_{2} are connected if $\left|v_{1}\right|$ and $\left|v_{2}\right|$ have a common prime divisor.

The main idea to compute the energy of graph is by calculating the eigenvalues of the adjacency matrix. Hence, the characteristic polynomial need to be obtained first in order to find the eigenvalues.

Definition 1.9 [5] Adjacency Matrix

The adjacency matrix is also called a connection matrix of a graph of group G, Γ_{G} with n vertices and no parallel edges which is defined as the following :

$$
A\left(\Gamma_{G}\right)= \begin{cases}x_{i j}=1, & \text { if } V_{i} \rightarrow V_{j} \\ x_{i j}=0, & \text { otherwise }\end{cases}
$$

where $\quad V_{i} \rightarrow V_{j}$ represents the edge between $i^{t h}$ and $j^{t h}$ vertices.
Definition 1.10 [12] The Characteristic Polynomial
The equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A where A is the adjacency matrix, λ is a scalar and I is the identity matrix. If $f(\lambda)=\operatorname{det}(\lambda I-A)$, then f is called a characteristic polynomial of A.

Definition 1.11 [1] Energy of Graph

The energy of a graph of a group G, Γ_{G}, denoted by $\varepsilon=\varepsilon\left(\Gamma_{G}\right)$ is the sum of absolute values of all eigenvalues of a graph, written as

$$
\varepsilon\left(\Gamma_{G}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where λ_{i} are the eigenvalues of the graph which $i=1, \ldots, n$.
In 2005, Beuerle [13] separated the classification of metacyclic p groups into two parts, namely for the non-abelian metacyclic p-groups of class two and class three. Based on [13], the metacyclic p-groups of nilpotency class two are then partitioned into two families of nonisomorphic p-groups stated as follows :

1. $G \cong<a, b: a^{2^{\alpha}}=1, b^{2^{\beta}}=1,[a, b]=a^{2^{\alpha-\lambda}}>$, where $\alpha, \beta, \lambda \in \mathbb{N}, \alpha \geq 2 \lambda, \beta \geq \lambda \geq 1$.
2. $G \cong<a, b: a^{4}=1, b^{2}=[a, b]=a^{-2}>$, a quaternion group of order $8, Q_{8}$.

The research considers all groups in the above classification up to order 32 in which $p=2$, which gives the following:
$G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}>$, the dihedral group of order 8 .
$G_{2} \cong<a, b: a^{4}=1, b^{2}=[b, a]=a^{-2}>$, the quaternion group of order 8 .
$G_{3} \cong<a, b: a^{8}=b^{2}=[a, b]=a^{4}>$, modular-16.
$G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}>$, modular-32.
Now, some works related to commuting graph, non-commuting graph, conjugate graph and conjugacy class graph are stated.

In 2016, the conjugacy classes, conjugate graph and conjugacy class graph of G_{2}, G_{3} and G_{4} have been determined by Bilhikmah et al. in [14]. Recently, Alimon et al. [15] have extended the findings by determining the adjacency matrices of the conjugate graph for some
metacyclic 2 -groups in 2017. The following are some related theorems and the proofs can be found in [14].

Theorem 2.1 [14] Let G_{2} be the quaternion group of order $8, G_{2} \cong<$ $a, b: a^{4}=1, b^{2}=[b, a]=a^{-2}>$. Then, the conjugate graph of G_{2} is $\Gamma_{G_{2}}^{c o n j}=\bigcup_{i=1}^{3} K_{2}$, i.e the union of three complete components K_{2} and the conjugacy class graph of G_{2} is $\Gamma_{G_{2}}^{C C}=K_{3}$.

Theorem 2.2 [14] Let G_{3} be a metacyclic 2-group of order $16, G_{3} \cong$ $<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}>$. Then, the conjugate graph of G_{3} is $\Gamma_{G_{3}}^{c o n j}=\bigcup_{i=1}^{6} K_{2}$ while the conjugacy class graph of G_{3} is $\Gamma_{G_{3}}^{C C}=K_{6}$.

Theorem 2.3 [14] Let G_{4} be a metacyclic 2-group of order 32, $G_{4} \cong$ $<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}>$. Then, the conjugate graph of G_{4} is $\Gamma_{G_{4}}^{c o n j}=\bigcup_{i=1}^{12} K_{2}$ and the conjugacy class graph of G_{4} is $\Gamma_{G_{3}}^{C C}=$ K_{12}.

In 2010, Bapat has shown that if the energy of a graph is a rational number, then it must be an even integer [16].

RESULTS AND DISCUSSION

In this section, the adjacency matrices of the commuting graphs, non-commuting graphs, conjugate graphs and conjugacy class graphs of dihedral group of order $8, G_{1}$, quaternion group of order $8, G_{2}$, a metacyclic 2-group of order 16 and 32 i.e G_{3} and G_{4}, respectively, are given. Then, the energy of the commuting graphs, non-commuting graphs, conjugate graphs, and conjugacy class graphs of G_{1}, G_{2}, G_{3}, and G_{4}, respectively are determined.

The adjacency matrices of commuting graphs of four non-abelian metacyclic 2-groups are given in the following lemmas.

Lemma 3.1 Let $G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}>$. Then, the adjacency matrix of the commuting graph of G_{1} is stated as follows:

$$
A\left(\Gamma_{G_{1}}^{c o m m}\right)=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Proof The dihedral group of order eight, G_{1} has eight elements where it has two central elements. Thus, the number of vertices of G_{1} is 6 and by Definition 1.5, the commuting graph of $G_{1}, \Gamma_{G_{1}}^{c o m m}$ consists of three components of K_{2}, as represented in Figure 3.1.

Figure 3.1 The commuting graph of G_{1}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.2 Let $G_{2} \cong<a, b: a^{4}=1, b^{2}=[a, b]=a^{-2}>$. Then, the adjacency matrix of the commuting graph of G_{2} is stated as follows:

$$
A\left(\Gamma_{G_{2}}^{c o m m}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Proof The quaternion group of order eight, G_{2} has eight elements where it has two central elements. Thus, the number of vertices of G_{2} is 6 and by Definition 1.5, the commuting graph of $G_{2}, \Gamma_{G_{2}}^{c o m m}$ consists of three components of K_{2}, as represented in Figure 3.2.

Figure 3.2 The commuting graph of G_{2}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.3 Let $\left.G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}\right\rangle$. Then, the adjacency matrix of the commuting graph of G_{3} is stated as follows:
$A\left(\Gamma_{G_{3}}^{c o m m}\right)=\left[\begin{array}{llllllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Proof The metacyclic 2-group of order 16, G_{3} has 16 elements where it has four central elements. Thus, the number of vertices of G_{3} is 12 and by Definition 1.5, the commuting graph of $G_{3}, \Gamma_{G_{3}}^{c o m m}$ consists of three components of K_{4}, as represented in Figure 3.3.

Figure 3.3 The commuting graph of G_{3}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.4 Let $\left.G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}\right\rangle$. Then, the adjacency matrix of the commuting graph of $G_{4}, A\left(\Gamma_{G_{4}}^{c o m m}\right)$ is stated as follows:

Proof The metacyclic 2-group of order 32, G_{4} has 32 elements where it has eight central elements. Thus, the number of vertices of G_{3} is 24 and by Definition 1.5, the commuting graph of $G_{4}, \Gamma_{G_{4}}^{c o m m}$ consists of three components of K_{8}, as represented in Figure 3.4.

Figure 3.4 The commuting graph of G_{4}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Next, the adjacency matrices of non-commuting graphs of G_{1}, G_{2}, G_{3}, and G_{4} are stated in the following lemmas.

Lemma 3.5 Let $G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}>$. Then, the adjacency matrix of the non-commuting graph of G_{1} is stated as follows:

$$
A\left(\Gamma_{G_{1}}^{n c}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Proof Since the non-commuting graph is a complement of commuitng graph, then the non-commuting graph of G_{1} is illustrated in Figure 3.5 .

Figure 3.5 The non-commuting graph of G_{1}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.6 Let $G_{2} \cong<a, b: a^{4}=1, b^{2}=[a, b]=a^{-2}>$. Then, the adjacency matrix of the non-commuting graph of G_{2} is stated as follows:

$$
A\left(\Gamma_{G_{2}}^{n c}\right)=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right],
$$

Proof Since the non-commuting graph is a complement of commuitng graph, then the non-commuting graph of G_{2} is illustrated in Figure 3.6.

Figure 3.6 The non-commuting graph of G_{2}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.7 Let $G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}>$. Then, the adjacency matrix of the non-commuting graph of $G_{3}, A\left(\Gamma_{G_{3}}^{n c}\right)$ is stated as follows:
$A\left(\Gamma_{G_{3}}^{n c}\right)=\left[\begin{array}{llllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0\end{array}\right]$

Proof Since the non-commuting graph is a complement of commuitng graph, then the non-commuting graph of G_{3} is illustrated in Figure 3.7.

Figure 3.7 The non-commuting graph of G_{3}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.8 Let $G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}$. Then, the adjacency matrix of the non-commuting graph of $G_{4}, A\left(\Gamma_{G_{4}}^{n c}\right)$ is stated as follows:
$\boldsymbol{A}\left(\Gamma_{G_{4}}^{n c}\right)=\left[\begin{array}{lllllllllllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right)$

Proof Since the non-commuting graph is a complement of commuitng graph, then the non-commuting graph of G_{4} is illustrated in Figure 3.8.

Figure 3.8 The non-commuting graph of G_{4}

In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Next, the adjacency matrices of the conjugate graph of G_{1} is given in the following lemma while the adjacency matrices of the conjugate graphs of G_{2}, G_{3} and G_{4} have been determined in [14].

Lemma 3.9 Let $\left.G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$. Then, the adjacency matrix of the conjugate graph of G_{1} is stated as follows:

$$
A\left(\Gamma_{G_{1}}^{c o n j}\right)=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Proof In [17], Sarmin et al. determined the conjugacy classes of G_{1} which are $c l(e)=\{e\}, \operatorname{cl}(a)=\left\{a, a^{3}\right\}, \operatorname{cl}(b)=\left\{b, a^{2} b\right\}, c l\left(a^{2}\right)=$ $\left\{a^{2}\right\}$ and $c l\left(a^{3} b\right)=\left\{a b, a^{3} b\right\}$. Then, by Definition 1.7, the vertex set of the conjugate graph of G_{1} is the set $V\left(\Gamma_{G_{1}}^{\text {conj }}\right)=$ $\left\{a, a^{3}, b, a^{2} b, a b, a^{3} b\right\}$, while the edge set is the set of pairs of elements that conjugate to each other in G_{1} which is $E\left(\left(\Gamma_{G_{1}}^{\text {conj }}\right)=\right.$ $\left\{\left\{a, a^{3}\right\},\left\{b, a^{2} b\right\},\left\{a b, a^{3} b\right\}\right\} . \quad$ Therefore, $\quad \Gamma_{G_{1}}^{c o n j}=U_{i=1}^{3} K_{2}, \quad$ as illustrated in Figure 3.9.

Figure 3.9 The conjugate graph of G_{1}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Then, the adjacency matrices of the conjugacy class graphs of all four metacyclic 2-groups are given in the following lemmas.

Lemma 3.10 Let $\left.G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$. Then, the adjacency matrix of the conjugacy class graph of G_{1} is stated as follows:

$$
A\left(\Gamma_{G_{1}}^{C C}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

Proof In [17], Sarmin et al. determined the conjugacy classes of G_{1} which are $\operatorname{cl}(e)=\{e\}, \operatorname{cl}(a)=\left\{a, a^{3}\right\}, \operatorname{cl}(b)=\left\{b, a^{2} b\right\}, \operatorname{cl}\left(a^{2}\right)=$ $\left\{a^{2}\right\}$ and $c l\left(a^{3} b\right)=\left\{a b, a^{3} b\right\}$. By Definition 1.8, the two vertices are connected if they have a common prime divisor. Hence, the vertex set is $V\left(\Gamma_{G_{1}}^{C C}\right)=\left\{c l(a), c l(b), c l\left(a^{3} b\right)\right\}$ and the edge set is $E\left(\Gamma_{G_{1}}^{C C}\right)=$ $\left\{\{c l(a), c l(b)\},\left\{c l(a), c l\left(a^{3} b\right)\right\},\left\{c l(b), c l\left(a^{3} b\right)\right\}\right\}$. The conjugacy class graph of G_{1} is $\Gamma_{G_{1}}^{C C}=K_{3}$, as illustrated in Figure 3.10.

Figure 3.10 The conjugacy class graph of G_{1}
In the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.11 Let $G_{2} \cong\left\langle a, b: a^{4}=1, b^{2}=[a, b]=a^{-2}\right\rangle$. Then, the adjacency matrix of the conjugacy class graph of G_{2} is stated as follows:

$$
A\left(\Gamma_{G_{2}}^{C C}\right)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Proof In [14], Bilhikmah et al. determined the conjugacy class graph of G_{2} as stated in Theorem 2.1 which given in Figure 3.11.

Figure 3.11 The conjugacy class graph of G_{2}
By Definition 1.9, in the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.12 Let $\left.G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}\right\rangle$. Then, the adjacency matrix of the conjugacy class graph of G_{3} is stated as follows:

$$
A\left(\Gamma_{G_{3}}^{C C}\right)=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Proof In [14], Bilhikmah et al. determined the conjugacy class graph of G_{3} as stated in Theorem 2.2 which given in Figure 3.12.

Figure 3.12 The conjugacy class graph of G_{3}
By Definition 1.9, in the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Lemma 3.13 Let $\left.G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}\right\rangle$. Then, the adjacency matrix of the conjugacy class graph of G_{4} is stated as follows:
$A\left(\Gamma_{G_{4}}^{C C}\right)=\left[\begin{array}{llllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right]$

Proof In [14], Bilhikmah et al. determinde the conjugacy class graph of G_{4} as stated in Theorem 2.3 which given in Figure 3.13.

Figure 3.13 The conjugacy class graph of G_{4}
By Definition 1.9, in the adjacency matrix, the connected vertices are represented as 1 and 0 , otherwise.

Now, the energy of commuting graphs of all four groups are presented in the following theorems.

Theorem 3.1 Let $\left.G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$. Then, the energy of the commuting graph of $G_{1}, \varepsilon\left(\Gamma_{G_{1}}^{c o m m}\right)=6$.

Proof Based on Lemma 3.1, the eigenvalues of the adjacency matrix of the commuting graph of G_{1} are $\lambda_{1}=\lambda_{3}=\lambda_{5}=1$ and $\lambda_{2}=\lambda_{4}=\lambda_{6}$ $=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{1}}^{\text {comm }}\right)=3|1|+3|-1|=6 .
$$

Theorem 3.2 Let $G_{2} \cong\left\langle a, b: a^{4}=1, b^{2}=[a, b]=a^{-2}\right\rangle$. Then, the energy of the commuting graph of $G_{2}, \varepsilon\left(\Gamma_{G_{2}}^{c o m m}\right)=6$.

Proof Based on Lemma 3.2, the eigenvalues of the adjacency matrix of the commuting graph of G_{2} are $\lambda_{1}=\lambda_{3}=\lambda_{5}=1$ and $\lambda_{2}=\lambda_{4}=$ $\lambda_{6}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{2}}^{\text {comm }}\right)=3|1|+3|-1|=6
$$

Theorem 3.3 Let $G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}>$. Then, the energy of the commuting graph of $G_{3}, \varepsilon\left(\Gamma_{G_{3}}^{c o m m}\right)=6$.

Proof Based on Lemma 3.3, the eigenvalues of the adjacency matrix of the commuting graph of G_{3} are $\lambda_{1}=\lambda_{2}=\lambda_{3}=3$ and $\lambda_{4}=\lambda_{5}=$ $\ldots=\lambda_{12}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{3}}^{\text {comm }}\right)=3|3|+9|-1|=18
$$

Theorem 3.4 Let $G_{4} \cong\left\langle a, b: a^{16}=b^{2}=1,[a, b]=a^{8}\right\rangle$. Then, the energy of the commuting graph of $G_{4}, \varepsilon\left(\Gamma_{G_{4}}^{c o m m}\right)=42$.

Proof Based on Lemma 3.4, the eigenvalues of the adjacency matrix of the commuting graph of G_{4} are $\lambda_{1}=\lambda_{2}=\lambda_{3}=7$ and $\lambda_{4}=\lambda_{5}=$ $\cdots=\lambda_{24}=-1$. Then, using Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{4}}^{c o m m}\right)=3|7|+21|-1|=42
$$

It is shown that the energies of the commuting graphs of the metacyclic 2-groups are even integer.

Next, the energy of non-commuting graphs of all four groups are presented in the following.

Theorem 3.5 Let $G_{1} \cong<a, b: a^{4}=b^{2}=1, b a b=a^{-1}>$. Then, the energy of the non-commuting graph of $G_{1}, \varepsilon\left(\Gamma_{G_{1}}^{n c}\right)=8$.

Proof Based on Lemma 3.5, the eigenvalues of the adjacency matrix of the non-commuting graph of G_{1} are $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=-2$ and $\lambda_{4}=\lambda_{5}=\lambda_{6}=0$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{1}}^{n c}\right)=|4|+2|-2|+3|0|=8
$$

Theorem 3.6 Let $G_{2} \cong\left\langle a, b: a^{4}=1, b^{2}=[b, a]=a^{-2}\right\rangle$. Then, the energy of the non-commuting graph of $G_{2}, \varepsilon\left(\Gamma_{G_{2}}^{n c}\right)=8$.

Proof Based on Lemma 3.6, the eigenvalues of the adjacency matrix of the non-commuting graph of G_{2} are $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=-2$ and $\lambda_{4}=\lambda_{5}=\lambda_{6}=0$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{2}}^{n c}\right)=|4|+2|-2|+3|0|=8
$$

Theorem 3.7 Let $\left.G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}\right\rangle$. Then, the energy of the non-commuting graph of $G_{3}, \varepsilon\left(\Gamma_{G_{3}}^{n c}\right)=16$.

Proof Based on Lemma 3.7, the eigenvalues of the adjacency matrix of the non-commuting graph of G_{3} are $\lambda_{1}=8, \lambda_{2}=\lambda_{3}=-4$ and $\lambda_{4}=\cdots=\lambda_{12}=0$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{3}}^{n c}\right)=|8|+2|-4|=16
$$

Theorem 3.8 Let $G_{4} \cong\left\langle a, b: a^{16}=b^{2}=1,[a, b]=a^{8}\right\rangle$. Then, the energy of the non-commuting graph of $G_{4}, \varepsilon\left(\Gamma_{G_{4}}^{n c}\right)=32$.

Proof Based on Lemma 3.8, the eigenvalues of the adjacency matrix of the non-commuting graph of G_{4} are $\lambda_{1}=16, \lambda_{2}=\lambda_{3}=-8$, and $\lambda_{4}=\lambda_{5}=\cdots=\lambda_{24}=0$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{4}}^{n c}\right)=|16|+2|-8|+0=32
$$

It is found that the energies of non-commuting graphs of the metacyclic 2-groups are even integer.

In the following theorems, the energy of the conjugate graphs of all four groups considered in this paper are presented.

Theorem 3.9 Let $G_{1} \cong\left\langle a, b: a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$. Then, the energy of the conjugate graph of $G_{1}, \varepsilon\left(\Gamma_{G_{1}}^{c o n j}\right)=6$.

Proof Based on Lemma 3.9, the eigenvalues of the adjacency matrix of the conjugate graph of G_{1} are $\lambda_{1}=\lambda_{3}=\lambda_{5}=1$ and $\lambda_{2}=\lambda_{4}=$ $\lambda_{6}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{1}}^{c o n j}\right)=3|1|+3|-1|=6 .
$$

Theorem 3.10 Let $G_{2} \cong\left\langle a, b: a^{4}=1, b^{2}=[b, a]=a^{-2}\right\rangle$. Then, the energy of the conjugate graph of $G_{2}, \varepsilon\left(\Gamma_{G_{2}}^{c o n j}\right)=6$.

Proof Based on Theorem 2.1, $\Gamma_{G_{2}}^{c o n j}=\bigcup_{i=1}^{3} K_{2}$. Then, based on the adjacency matrix of $\Gamma_{G_{2}}^{c o n j}$ found in [14], the eigenvalues of the adjacency matrix of the conjugate graph of G_{2} are $\lambda_{1}=\lambda_{3}=\lambda_{5}=1$ and $\lambda_{2}=\lambda_{4}=\lambda_{6}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{2}}^{c o n j}\right)=3|1|+3|-1|=6
$$

Theorem 3.11 Let $G_{3} \cong\left\langle a, b: a^{8}=b^{2}=1,[a, b]=a^{4}\right\rangle$. Then, the energy of the conjugate graph of $G_{3}, \varepsilon\left(\Gamma_{G_{3}}^{c o n j}\right)=12$.

Proof Based on Theorem 2.2, the conjugate graph of G_{3} is $\Gamma_{G_{3}}^{c o n j}=$ $\mathrm{U}_{i=1}^{6} K_{2}$. Then, based on the adjacency matrix of $\Gamma_{G_{3}}^{c o n j}=\bigcup_{i=1}^{6} K_{2}$ found in [14], the eigenvalues of the adjacency matrix of the conjugate graph of G_{3} are $\lambda_{1}=\lambda_{3}=\cdots=\lambda_{9}=\lambda_{11}=1$, and $\lambda_{2}=\lambda_{4}=\cdots=\lambda_{12}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{3}}^{\text {conj }}\right)=6|1|+6|-1|=12
$$

Theorem 3.12 Let $G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}>$. Then, the energy of the conjugate graph of $G_{4}, \varepsilon\left(\Gamma_{G_{4}}^{c o n j}\right)=24$.

Proof Based on Theorem 2.3, the conjugate graph of G_{4} is $\Gamma_{G_{4}}^{c o n j}=$ $\bigcup_{i=1}^{12} K_{2}$. Then, based on the adjacency matrix of $\Gamma_{G_{4}}^{c o n j}=\bigcup_{i=1}^{12} K_{2}$ found in [14], the eigenvalues of the adjacency matrix of the conjugate graph of G_{4} are $\lambda_{1}=\lambda_{3}=\cdots=\lambda_{21}=\lambda_{23}=1$, and $\lambda_{2}=\lambda_{4}=\cdots=\lambda_{24}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{4}}^{\text {conj }}\right)=12|1|+12|-1|=24
$$

We can see that the energies of the conjugate graphs of the nonabelian metacyclic 2-groups are even integer.

The energy of conjugacy class graphs of all four groups are presented in theorems below.

Theorem 3.13 Let $G_{1} \cong\left\langle a, b: a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$. Then, the energy of the conjugacy class graph of $G_{1}, \varepsilon\left(\Gamma_{G_{1}}^{C C}\right)=4$.

Proof Based on Lemma 3.10, the eigenvalues of the adjacency matrix of the conjugacy class graph of G_{1} are $\lambda_{1}=2$ and $\lambda_{2}=\lambda_{3}=-1$. Then,by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{1}}^{C C}\right)=|2|+2|-1|=4
$$

Theorem 3.14 Let $G_{2} \cong\left\langle a, b: a^{4}=1, b^{2}=[b, a]=a^{-2}\right\rangle$. Then, the energy of the conjugacy class graph of $G_{2}, \varepsilon\left(\Gamma_{G_{2}}^{C C}\right)=4$.

Proof Based on Theorem 2.1, the conjugacy class graph of G_{2} is $\Gamma_{G_{2}}^{C C}=K_{3}$. Then, based on the adjacency matrix of $\Gamma_{G_{2}}^{C C}$ in Lemma 3.11, the eigenvalues of the adjacency matrix of the conjugacy class graph of G_{2} are $\lambda_{1}=2$ and $\lambda_{2}=\lambda_{3}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{2}}^{C C}\right)=|2|+2|-1|=4
$$

Theorem 3.15 Let $G_{3} \cong<a, b: a^{8}=b^{2}=1,[a, b]=a^{4}>$. Then, the energy of the conjugacy class graph of $G_{3}, \varepsilon\left(\Gamma_{G_{3}}^{C C}\right)=10$.

Proof Based on Theorem 2.2, the conjugacy class graph of G_{3} is $\Gamma_{G_{3}}^{C C}=K_{6}$. Based on the adjacency matrix of $\Gamma_{G_{3}}^{C C}$ in Lemma 3.12, the eigenvalues of the adjacency matrix of the conjugacy class graph of G_{3} are $\lambda_{1}=5$, and $\lambda_{2}=\cdots=\lambda_{6}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{3}}^{C C}\right)=|5|+5|-1|=10
$$

Theorem 3.16 Let $G_{4} \cong<a, b: a^{16}=b^{2}=1,[a, b]=a^{8}>$. Then, the energy of the conjugacy class graph of $G_{4}, \varepsilon\left(\Gamma_{G_{4}}^{C C}\right)=22$.

Proof Based on Theorem 2.3, the conjugacy class graph of G_{4} is $\Gamma_{G_{4}}^{C C}=K_{12}$. Then, based on the adjacency matrix of $\Gamma_{G_{4}}^{C C}$ in Lemma 3.13, the eigenvalues of the adjacency matrix of the conjugacy class graph of G_{4} are $\lambda_{1}=11$, and $\lambda_{2}=\cdots=\lambda_{12}=-1$. Then, by Definition 1.11,

$$
\varepsilon\left(\Gamma_{G_{4}}^{C C}\right)=|11|+11|-1|=22
$$

It is shown that the energies of the conjugacy class graphs of the non-abelian metacyclic 2 -groups are even integer.

CONCLUSION

In this paper, the commuting and non-commuting graphs of four metacyclic 2 -groups are determined by using their definitions. Then, the adjacency matrices of all four types of graphs including the conjugate graph and conjugacy class graph of four metacyclic 2groups are formed and their eigenvalues are found. Next, the energies of the graphs are computed based on the eigenvalues. It has been shown in this paper that the energies of these graphs of the groups must are even integer.

ACKNOWLEDGEMENT

The authors would like to express their appreciation for the support of sponsor; Ministry of Higher Education (MOHE) Malaysia and Research Management Centre (RMC), Universiti Teknologi Malaysia (UTM) Johor Bahru for the financial funding through the Research University Grant (GUP) Vote No. 13H79 and Vote No. 13J82. The first author is also indebted to Universiti Teknologi Malaysia (UTM) for her Endowment Scholarship.

REFERENCES

[1] Gutman, I. 2001. The energy of a graph: old and new results. In Betten, A. et al. (Ed.) Algebraic Combinatorics and Applications. Springer. 196211.
[2] Rose, H. E. A. 2009. Course on Finite Groups. Springer.
[3] Humphries, S. P. and Skabelund, D. C. 2015. Character tables of metacyclic groups. Glasgow Mathematical Journal. 57(02):387-400.
[4] Dummit, D. S. and Richard M. F. 2004. Abstract Algebra, $3^{\text {rd }}$ Ed. John Wiley and Sons Inc.
[5] Goodman, F. M. 2003. Algebra: Abstract and Concrete (Stressing Symmetry), $2^{\text {nd }}$ edition. Prentice Hall.
[6] Schenkman, E. 1965. Group Theory. Vain Nostrand Reinhold Company.
[7] Woods, C. 2013. My favourite application using graph eigenvalues: Graph energy. 17(04): 535-538. Available online: https://pdfs.semanticscholar.org/1469/46acc67db5cd321f5dcc835ad1dff2 db9dd9.pdf?_ga=2.109005826.1486195669.15154238961751645176.1504695930
[8] Segev, Y. and Seitz, G. M. 2002. Anisotropic groups of type an and the commuting graph of finite simple groups. Pacific Journal of Mathematics. 202(1): 125-225.
[9] Raza, Z. and Faizi, S. 2013. Non-commuting graph of finitely presented group. Science International. 25: 883-885.
[10] Erfanian, A. and Tolue, B. 2012. Conjugate graphs of finite groups. Discrete Mathematics, Algorithms and Applications. 4(2): 35-43.
[11] Bertram, E. A., Herzog, M. and Mann, A. 1990. On a graph related to conjugacy classes of groups. Bulletin of the London Mathematical Society. 22(6): 569-575.
[12] Friedberg, S., Insel, A. and Spence, L. 1997. Linear Algebra. Prentice Hall.
[13] Beuerle, J. R. 2005. An elementary Classification of Finite Metacyclic pgroups of class at least Three. Algebra Colloquium. 12(4): 553-562.
[14] Bilhikmah, N. H., Sarmin, N. H., Omer, S. M. S. and Mohd Noor, A. H 2016. The conjugacy classes, conjugate graph and conjugacy class graph of some finite metacyclic 2-groups. Discovery Mathematics. 38(01):1-12.
[15] Alimon, N. I., Sarmin, N. H., and Ahmad Fadzil, A. F. 2017. The adjacency matrix of the conjugate graph of some metacyclic 2-groups. Malaysian Journal of Fundamental and Applied Sciences. 13(2):79-81.
[16] Bapat, R. B. 2010. Graphs and Matrices, Vol. 27. Springer.
[17] Sarmin, N. H., Gambo, I. and Omer, S. M. S. 2015. The conjugacy classes of metabelian groups of order at most 24. Jurnal Teknologi. 77:1:139-143.

