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Abstract

Models developed using machine learning (ML) are increasingly prevalent in 
scientific research. Because many of these models are opaque, techniques from 
Explainable AI (XAI) have been developed to render them transparent. But XAI is 
more than just the solution to the problems that opacity poses—it also plays an 
invaluable exploratory role. In this paper, we demonstrate that current XAI 
techniques can be used to (1) better understand what an ML model is a model of, 
(2) engage in causal inference over high-dimensional nonlinear systems, and (3) 
generate algorithmic-level hypotheses in cognitive science.
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1. Introduction

Models developed using machine learning (“ML models”) are increasingly prevalent
in scientific research. In neuroscience, ML-programmed classifiers are used to 
specify the representational contents of brain states and to predict human 
behavior from fMRI data (Ritchey et al. 2017). In astrophysics, classifiers trained on 
telescope imagery are used to determine the possible location of exoplanets 
(Datillo et al. 2019). In materials science, machine learning is used to discover 
stable materials and to predict their crystal structure (Schmidt et al. 2019).

Recent discussions have focused on the fact that many ML models are opaque 
(Humphreys 2009). Loosely speaking, a model is opaque when it is difficult to 
understand why it does what it does or to know how it works. Recent attempts to 
assess the impact of opacity generally agree that opacity prevents different 
stakeholders1 from achieving goals such as intervening on the system when it 
breaks down, or evaluating its behavior against ethical and legal norms (Burrell 
2016; Hohman et al. 2018; Zednik 2019).

In philosophy of science, the most important stakeholder is the scientific 
investigator. Scientific investigators are known to use ML models to achieve 
epistemic goals such as describing a phenomenon (e.g., distinguishing the fMRI 
signatures of fear and excitement), predicting new observations (e.g., determining 
the probable location of an exoplanet), and explaining observed data (e.g., 
identifying a causal link between smoking and lung cancer). Opacity can negatively 
impact scientific research by preventing investigators from using ML models to 
achieve some or all of these epistemic goals.

That said, little is known about the positive impact of recent attempts to overcome
opacity through Explainable Artificial Intelligence (XAI). This nascent research 
program aims to develop analytic techniques with which to render opaque models 
transparent by answering questions about why they do what they do or how they 
work.2 Whereas these techniques’ importance for industry and governance is 
becoming increasingly apparent (Doran et al. 2017; Wachter et al. 2018), their 
utility for scientific research remains uncertain.

This paper argues that Explainable AI can play an invaluable but hitherto 
unrecognized role in scientific exploration. Recent discussions of exploration 
distinguish at least four distinct but not mutually exclusive aspects (for discussion 
see e.g., Gelfert 2016): identifying a starting point for future inquiry; providing a 
proof-of-principle demonstration; providing a potential explanation of a specific 
(type of) phenomenon; and assessing the suitability of a particular target. Whereas 
previous contributions have considered the exploratory role of ML models in their 
own right (e.g., Cichy & Kaiser 2019), little is known about the unique exploratory 
utility of Explainable AI.

1 Tomsett et al. (2018) provide a helpful taxonomy of stakeholders in the ML ecosystem, 
distinguishing between creators, data-subjects, operators, executors, decision-subjects, and 
examiners.
2 Although Humphreys (2009) and several others claim that some ML models are essentially opaque,
the present discussion is agnostic with respect to this claim. That is, it only concerns models that 
can in fact be rendered transparent through Explainable AI, however numerous these may be. 
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The following discussion describes three ways in which Explainable AI facilitates 
scientific exploration. Section 2 shows that some XAI techniques are well-suited 
for determining what ML models are models of, and thus, for assessing a model’s 
suitability for a particular target. Section 3 shows that other XAI techniques can be 
used for causal inference, and thus, for specifying starting points for future inquiry 
into the causes of a particular event. Finally, section 4 shows how Explainable AI 
can be used to generate novel hypotheses about the algorithms that are 
implemented in biological brains, and thus, to provide potential explanations. 

Importantly, in each one of these ways, XAI techniques’ exploratory contributions 
can be distinguished from the contributions of the ML models to which these 
techniques are applied. Thus, more than just being a solution to the problem that 
opacity poses, Explainable AI enhances the overall exploratory potential of 
machine learning and data-driven scientific inquiry.

2. Determining What a Model is a Model Of

In a recent commentary, Emily Sullivan (2019) examines the use of ML models in 
scientific research. Although she denies that opacity negatively impacts these 
models’ scientific utility, Sullivan argues that their link uncertainty does. Sullivan 
defines link uncertainty as “a lack of scientific and empirical evidence supporting 
the link that connects the model to the target phenomenon” (Sullivan 2019: 1). In 
other words, link uncertainty arises when it is unclear what a model is a model of. 
As an illustrative example, Sullivan considers Deep Patient: a DNN that learns to 
map patients’ features onto likely diseases (Miotto et al. 2016). Her point is to 
argue that, although the network issues reliable diagnostic predictions, the 
understanding that medical scientists can acquire from this model is limited. This is
because it is unclear whether the model tracks genuinely causal relationships 
between patient features and likely diseases, or whether it is merely exploiting 
spurious correlations grounded in (for example) the fact that patients with certain 
features are tested more frequently than others.

Although Sullivan distinguishes link uncertainty from opacity, it is more 
appropriate to consider link uncertainty a special kind of opacity. Recall that a 
model is opaque when it is unclear why the model does what it does or how it 
works. Sullivan’s discussion only concerns a lack of knowledge about how a model 
works. In particular, it is concerned with a lack of knowledge about a model’s 
implementation in some particular programming language—an epistemic state 
that is all but guaranteed by the software-engineering practice of encapsulation 
(Mitchell 2002). This “implementation opacity” is problematic for expert creators 
(e.g., software developers) tasked with intervening on a model to improve its 
performance or to fix a bug. However, it is unproblematic for non-expert decision-
subjects (e.g., medical patients) and examiners (e.g., governmental regulators), 
neither of which would know what to do with knowledge of a model’s 
implementation even if they had it.

That said, stakeholders such as decision-subjects and examiners are also affected 
by opacity, albeit one that centers on questions about why a model does what it 
does, rather than on questions about how it works. Questions of this kind are 
answered not by specifying details of the model’s implementation, but by 

3



justifying the model’s behavior through reasons (Zerilli et al. 2018). Unlike a 
model’s implementation details, which concern the syntactic structures specified in
a computer program, reasons in this context are individuated semantically, by 
reference to the environmental features and regularities that the model has 
learned to track (Zednik 2019). Thus, the reason why Deep Patient predicts that 
type-2 diabetes is likely to develop in a particular patient may be that the patient is
overweight (a good reason), or that she is of advanced age (a bad reason). When 
Sullivan writes about link uncertainty, she is referring to a particular kind of 
opacity: an inability to understand the reasons for an ML model’s predictions.

Given this analysis, Sullivan’s claim that “implementation opacity” does not 
negatively impact scientific research is unsurprising: Scientific investigators are 
more like examiners than creators. They do not generally require knowledge of 
how a model works. Rather, they are interested in understanding why it does what 
it does. For this reason, although a lack of implementation knowledge is no 
obstacle to scientific research, link uncertainty is.

But of course, exposing link uncertainty as a special kind of opacity is little more 
than a verbal clarification. Far more important is the question of whether (and if so
how) this particular kind of opacity might eventually be overcome. Can Explainable 
AI help scientific investigators determine what a model is a model of? Moreover, to
what extent does overcoming this kind of opacity contribute to scientific 
exploration?

Many XAI techniques specialize in providing semantically-individuated reasons for 
a particular model’s outputs. Most notably, these include techniques for 
identifying the input elements—be they pixels in an image or values in a table—
that bear a high responsibility for a particular output. For example, visualization 
techniques such as Prediction Difference Analysis (PDA, Zintgraf et al. 2017) allow 
investigators to understand the regularity that is being tracked by visually 
inspecting a heatmap. Do the highlighted pixel regions for a model of cancerous 
melanoma generally look like the features that are actually characteristic of 
cancerous melanoma, or do they look more like irrelevant (but nevertheless 
correlated) features such as freckles? Moreover, do the highlighted pixel regions of
the model look like features that are already known to be indicators of cancerous 
melanoma, or do they depict hitherto unknown (but causally relevant) indicators?

Analogous non-visual techniques may be required for models trained over tabular 
data. For example, Shapley Additive Explanation (SHAP, Lundberg & Lee 2017) ranks
a model’s input variables by their relative importance for producing specific 
outputs. Do Deep Patient’s predictions of type-2 diabetes depend more on 
(causally relevant) factors such as a patient’s weight and family background, or on 
(spuriously correlated) factors such as age? Moreover, do the predictions depend 
on factors whose relevance for type-2 diabetes is already known, or do they 
depend on factors whose relevance has thus far gone unrecognized? Notably, 
because the model’s input elements (e.g., pixel regions and table values) 
correspond to features of its environment (e.g., skin discoloration and patient 
features), they can be viewed as semantically-individuated reasons for the model’s 
outputs. Insofar as techniques such as PDA and SHAP let investigators understand 
these reasons, they allow them to understand what an ML model is a model of. In 
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this sense, these techniques can be used to combat link uncertainty.

Notably, Sullivan herself mentions some of these techniques in passing. 
Nevertheless, she stops short of recognizing their full significance for scientific 
exploration. In particular, although Sullivan argues that heatmaps are useful for 
“determining the suitability of the model” (Sullivan 2019: 25) because they can 
allow investigators to determine which regularity it has learned to track, she does 
not recognize that these techniques can also be used to identify such regularities 
in the first place. Indeed, ML models are renowned for their ability to uncover 
subtle and unintuitive regularities that would be difficult to uncover otherwise. By 
using techniques such as PDA and SHAP to better understand what ML models are 
models of—that is, to identify the regularities they have learned to track—
scientific investigators can discover previously unknown regularities in the 
environment.

3. Enabling Causal Inference

The examples of link uncertainty mentioned by Sullivan are ones in which it is 
unclear whether the model has learned to track causal relationships as opposed to 
spurious correlations. But although XAI techniques such as PDA and SHAP allow 
investigators to determine which particular regularity is being tracked, they do not 
help determine whether any particular regularity is in fact a causal regularity. Put 
differently, these techniques do not enable causal inference.

Other XAI techniques can be used for exactly this purpose. Consider techniques 
that provide what Wachter et al. (2018) call counterfactual explanations. 
Counterfactual explanations specify possible worlds in which variations in a 
model’s input yield non-actual (and possibly, desirable) outputs. A recent software 
tool for providing counterfactual explanations is the Counterfactory.3 Given a 
model and input, this tool generates counterfactuals of arbitrary closeness 
(distance to actual input values) and complexity (number of input variables) to 
produce a desired but non-actual output. Thus for example, given a bank’s credit-
scoring model, the Counterfactory might generate counterfactuals for achieving 
an improved credit score: increasing income, decreasing monthly expenses, or 
some combination of both.

XAI techniques for counterfactual explanation can be used for causal inference, 
that is, for inferring the cause(s) of a particular effect. To understand how, it is 
worth briefly reviewing the close connection between counterfactual reasoning 
and causal inference. Consider an actual scenario in which event C (e.g. the striking 
of a match) precedes event E (e.g. the match catching fire), over an arbitrary 
number of background conditions B (e.g. the surrounding temperature being 19°C, 
there being oxygen in the air, etc.). Assuming that all B remain constant, one can 
infer that C is causally relevant for E if and only if a counterfactual change in C co-
occurs with a change in E.

Causal inference can serve the purposes of many different stakeholders. Decision-
subjects can assume a degree of control over model-driven decisions if they can 

3 Proprietary technology currently being developed by the neurocat GmbH: 
https://www.neurocat.ai/ (retrieved August 18th, 2020).

5

https://www.neurocat.ai/


infer the changes to make so as to effect a different model output (e.g., whether 
they need to earn more to improve their credit score). Examiners can assess a 
model’s compliance with ethical or legal norms if they can determine the causal 
relevance of certain key variables (e.g., whether credit scoring causally depends on 
gender or ethnicity). More relevant in the present context, scientific investigators 
can engage in causal inference to determine whether the regularity being tracked 
by a model is in fact a causal regularity. If a software tool can generate 
counterfactuals in which a change in E is predicted from a change in C, 
investigators might infer (assuming all B remain equal) that the learned 
relationship between C and E is genuinely causal as opposed to merely correlative.

Of course, the differences between the industrial and scientific contexts are 
significant. In industry, what matters is (typically) the model itself. In such contexts,
XAI techniques for counterfactual explanation are perfect guides to causal 
inference: If the Counterfactory generates a counterfactual in which a higher 
income yields an improved credit score, then a higher income will actually yield an 
improved credit score. In science, by contrast, what matters is (typically) the 
domain that the model is a model of. Accordingly, in these contexts, XAI 
techniques for counterfactual explanation are imperfect guides to causal 
inference: If the Counterfactory generates a counterfactual in which losing weight 
yields a reduced probability of type 2-diabetes, then it is still possible that losing 
weight does not actually reduce the probability of type-2 diabetes. Because 
scientific models can be false, the causal inferences grounded on these models are 
insecure.

That said, the insecurity of XAI-driven causal inference does not render it useless 
for scientific research. On the contrary, it can serve an invaluable exploratory 
purpose. In particular, XAI techniques for counterfactual explanation can be used 
to refine extant causal hypotheses as well as to generate new ones. Consider the 
hypothesis that excessive weight is causally relevant for type 2-diabetes. This is a 
well-confirmed hypothesis, despite the fact that many overweight people never 
actually become diabetic (Wu et al. 2014). Nevertheless, it may be desirable to 
subsume the exceptions under a more-refined hypothesis. Indeed, applying the 
Counterfactory to Deep Patient might suggest suitable refinements. For example, 
counterfactuals generated for a desired outcome of less-probable diabetes might 
combine weight-loss with an additional factor, such as an absence of sleep apnea. 
Motivated by these counterfactuals, scientists might conduct further experiments, 
and if necessary, refine the original hypothesis so that excessive weight is only 
deemed causally relevant when it co-occurs with sleep apnea. In this (admittedly 
hypothetical) scenario, XAI-driven causal inference identified a starting point for 
scientific inquiry: generating new hypotheses, devising potential explanations, and 
inspiring new experiments.

Notably, XAI-driven causal inferences can perform this exploratory function in 
almost any scientific domain in which ML models have been developed for 
predictive purposes. In synthetic biology, for example, investigators may deploy 
such inferences to identify and test genetic modifications that are likely to yield 
desirable phenotypic traits (Ma et al. 2018). Analogously, in chemistry they might 
use XAI techniques for counterfactual explanation to discover new compounds 
with desirable (e.g., pharmaceutical) properties (Zhavoronkov 2018). Given the 
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increasingly important role that machine learning plays in many different scientific 
domains, the exploratory promise of XAI-driven causal inference is tantalizing.

Before moving on, it is worth dwelling briefly on the kinds of domains for which 
XAI-driven causal inference might be particularly useful. Software tools such as the
Counterfactory are remarkably efficient even for high-dimensional nonlinear 
DNNs, can be applied to any model-type and a wide variety of use-cases, and can 
generate counterfactuals even for intrinsically high-dimensional data-types such as
naturalistic images. Given that ML models are capable of tracking high-dimensional
and nonlinear regularities in complex systems such as the brain or the climate, such
tools (assuming the relevant model is approximately true) might facilitate causal 
inference even for systems of such high levels of complexity. If true, this would be 
a significant achievement indeed: high-dimensionality and nonlinearity are among 
the biggest obstacles for traditional causal inference methods, which tend to work 
well only when the variables are few and the relationships are linear (Bühlmann 
2013). Insofar as ML models can be trained to replicate the behavior of ever larger 
and more complex systems, and insofar as XAI techniques can be used to 
counterfactually explain the behavior of these models, Explainable AI is poised to 
significantly extend the limits of causal inference.

4. Generating Algorithmic-Level Hypotheses

Techniques from Explainable AI can perform at least one more exploratory role: 
generating algorithmic-level hypotheses that serve as potential explanations. The 
notion of an algorithmic-level hypothesis requires elaboration. Some physical 
systems—most notably biological brains—are computational systems insofar as 
they perform computational tasks in their surrounding environments (Shagrir 
2006). Although these systems can be described at a physical level of analysis, by 
specifying the spatiotemporal structures and processes that underlie their 
behavior, it is often more insightful to describe them at an algorithmic level of 
analysis, by specifying the algorithms they execute in the service of the task (Marr 
1982). Indeed, cognitive science is to a large extent in the business of formulating 
testable hypotheses about the structure, efficiency, and representational content 
of algorithms that biological organisms use to accomplish cognitive tasks such as 
perception, categorization, memory-formation, and language-learning. Notably, 
although many such hypotheses have been articulated and evaluated in the past, 
there is no general agreement about the way in which new algorithmic-level 
hypotheses should be developed in the future. To a certain extent, cognitive 
modeling remains an inscrutable “dark art”.

Explainable AI may help transform this “dark art” into a semi-autonomous 
exploratory process. Specifically, XAI techniques can facilitate the specification of 
algorithms to test as possible explanatory hypotheses. Indeed, given that many ML
models are trained to perform tasks that closely resemble the ones that are 
performed by biological cognizers, and given that these models are often trained 
on naturalistic datasets that mirror the real-world environments in which those 
cognizers develop and learn, it is at least not wholly unreasonable to assume that 
ML models might implement algorithms that bear at least some similarity to the 
algorithms that are implemented in biological brains (see also Zednik 2018). 
Insofar as XAI techniques allow cognitive scientists to understand and describe the 
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algorithms that are learned by a particular model, they can also be used to 
articulate new and hitherto unconsidered hypotheses about the algorithms that 
are learned by biological brains.

At this point, it may be necessary to clarify why XAI should be necessary at all, 
within the context of understanding the algorithms that are learned by ML-
programmed models. Although human programmers typically decide on a model’s 
learning algorithm, they have limited influence on the structure and function of 
what might be called the learned algorithm. For example, although they might 
train a DNN using some variant of the backpropagation algorithm, they do not 
determine the values that this algorithm (when applied to a particular learning 
environment) eventually assigns to individual network parameters (e.g., 
connection weights). Since it is these parameters that govern the model’s output 
for any particular input, they implement a learned algorithm for computing a 
particular function. But what exactly this algorithm is, and how it might be 
characterized in a concise, understandable (and potentially modifiable) way, is 
obscured by the fact that the number of network parameters is high and their 
interdependencies are nonlinear. 

Notably, whereas the XAI techniques considered in previous sections serve to 
answer questions about why an ML model does what it does by specifying reasons, 
the techniques to be considered here answer questions about how such a model 
works by uncovering algorithms. One way of uncovering algorithms is by using any 
one of a diverse family of surrogate modeling techniques. These techniques specify 
(relatively) simple algorithms to replicate (to an arbitrary degree of precision) an 
opaque model’s overt behavior and internal processing. In particular, rule-
extraction methods (e.g., Zilke et al. 2016) produce rule lists that approximate the 
input-output behavior of any high-dimensional DNN. Similarly tree-extraction 
methods (e.g., Wu et al. 2018) produce decision-trees that replicate the internal 
decision-structure of complex and (even recurrent) neural networks.

Intriguingly, these surrogate models bear a structural resemblance to classic 
“symbolic” models that were used widely in cognitive science throughout the 
1960s, 70s and 80s. Because some of these models remain in use today, it is not 
unreasonable to suppose that surrogate models for explaining the behavior of 
trained ML models might be advanced as candidate hypotheses for explaining the 
behavior of biological cognizers. That said, many areas of cognitive science have by
now moved on to “subsymbolic” methods that more closely resemble the methods 
commonly used by neuroscientists. Indeed, some of these methods may even serve
double-duty, simultaneously explaining the behavior of biological brains and of 
artificial neural networks.

Consider, for example, representational similarity analysis (RSA, Kriegeskorte & 
Kievit 2013; Kriegeskorte et al. 2008). RSA is an integrative technique for data-
analysis that lets neuroscientists relate multi-channel brain-activity data to each 
other, to behavioral data, to data produced by conceptual and computational 
models, and to stimulus descriptions by comparing (representational) dissimilarity 
matrices (RDMs). Cichy et al. (2016) have recently deployed this technique to 
compare temporal and spatial brain representations with representations in a 
deep feed-forward neural network trained for object categorization. That is, they 
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aim to use RSA to identify a DNN’s learned representations for object-recognition, 
and to determine whether these representations bear a structural similarity to the 
brain’s representations in an analogous task.

How exactly is this aim achieved? First, for each signal space (DNN, fMRI, and MEG) 
Cichy et al. estimate the representational activity patterns associated with 118 
experimental stimuli (images of natural objects over real-world backgrounds). 
Second, for each signal space of every pair of experimental stimuli, they compute 
the activity pattern dissimilarity. This yields 118-by-118 RDMs (each one of which 
contains the dissimilarity values for all experimental stimuli-pairs) for every DNN 
layer, every fMRI region-of-interest or searchlight, and every millisecond in the 
MEG signal. Third, DNN RDMs are directly compared to fMRI or MEG RDMs by 
calculating the Spearman rank correlation coefficients between them, yielding a 
relatively easy measure of brain-DNN representational similarity. In this way, RSA 
permits a specification of the representations that are used by both the DNN and 
the brain, and a subsequent comparison of these representations at the level of 
RDMs.

Indeed, the comparison reveals that “the DNN captured the stages of human visual
processing in both time and space from early visual areas towards the dorsal and 
ventral streams” (ibid.: 1). Moreover, a close analysis of the representational 
structures in the DNN supports a series of specific empirical predictions:

“Our results demonstrate the explanatory and discovery power of the brain-
DNN comparison approach to understand the spatio-temporal neural 
dynamics underlying object recognition. They provide novel evidence for a 
role of parietal cortex in visual object categorization, and give rise to the 
idea that the organization of the visual cortex may be influenced by 
processing constraints imposed by visual categorization the same way that 
DNN representations were influenced by object categorization tasks.” (ibid.: 
9)

Overall, although (or perhaps because) RSA was originally developed by 
neuroscientists to investigate representations in the brain, this technique may not 
only be used to explain the behavior of trained neural networks, but also to 
generate and test algorithmic-level hypotheses about biological brains. Notably, in 
this particular case, the generated hypothesis seems likely to be confirmed, 
suggesting that XAI may not only facilitate exploration, but also explanation.

5. Conclusion

Models developed using Machine Learning are assuming an increasingly prominent
place in scientific research. Many recent discussions recognize the problem that 
opacity poses to the use of such models, and some of these discussions have 
begun to reflect on the possibility of solving this problem through the use of 
Explainable AI. However, Explainable AI appears to be more than just a solution to 
a problem. This paper has sought to show that XAI techniques can serve an 
invaluable exploratory role in their own right, over and above the ML models to 
which these techniques are applied.
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In particular, tools such as PDA and SHAP have been shown to answer questions 
about why a model does what it does. Thus, they allow scientific investigators to 
better understand what a model is a model of, and to assess its suitability for a 
particular target. Moreover, XAI techniques for counterfactual explanation have 
been shown to enable causal inference—perhaps even over domains that are at 
once high-dimensional and nonlinear. In this way, these techniques reveal new 
starting points for scientific inquiry: new hypotheses to test, and new experiments 
to conduct. Finally, surrogate modeling techniques and analytic techniques such as 
RSA can be used to better understand the algorithms and representations that are 
learned by models to accomplish particular tasks. Insofar as there is reason to 
believe that these algorithms might also be implemented in biological brains, they 
can be advanced as potential explanations in cognitive science. For all of these 
reasons and more, Explainable AI is a promising new tool for scientific exploration.
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