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1 Introduction

Data scientists take large quantities of noisy measurements and transform
them into tractable, qualitative descriptions of the phenomena being mea-
sured. While this frequently involves statistical methods, the burgeoning
field of data science distinguishes itself from statistics by branching out to
a wider range of methods from mathematics and computer science. One
such distinctly non-statistical method of growing popularity is topological
data analysis (TDA). Topology is the study of the properties of shapes that
are invariant under continuous deformations, such as stretching, twisting,
bending, or re-scaling, but not tearing or gluing. TDA aims to identify the
essential “structure” of a data set as it “appears” in an abstract space of
measurement outcomes. This paper is an attempt to reconstruct the reason-
ing given by data scientists as to why and how the resulting analysis should
be understood as reflecting significant features of the systems that generated
the data.

In section 2 I describe TDA in detail. Section 3 discusses what I take to be
the central feature of the success of TDA, and section 4 examines the role of
spatial reasoning in TDA, and how it can give us insight into the connections
between the data scientists’ and philosophers’ notions of “structure.”

2 Topological data analysis

The phrase “topological data analysis” is used to refer to a variety of data
science practices that use tools from algebraic topology to make inferences
about the “shape” of data clouds as they appear in the “space” of possible
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observations. For now, the term data refers to a set of real vectors cor-
responding to a series of observations. This is an adequate definition for
capturing natural language use of the term, but one might object that it
does not necessarily capture what data is. One of the goals of TDA is to
circumvent some of the arbitrariness involved in presenting data as real vec-
tors. A data cloud can thus be thought of as a visual representation of this
set of vectors as “points” in a (high dimensional generalization of) space.
But in what space? The abstract “space” where data lives is generally some
form of metric space, or set X of points (including at least the data points)
together with a notion of “distance” d( , ) between the points. For example,
I may have data about the weights of each of a large number of potatoes.
The distance between these data points would just be the pairwise difference
in weight between two potatoes according to a fixed unit, such as pounds.

A characteristic problem of analyzing large data sets is deciding how to
combine many different types of measurements into a shared metric space. I
can also add information about the length, color, number of eyes, etc. for each
potato, creating an n-dimensional space, where n is the number of potato
attributes. The “distance” between two data points is now some combination
of the distances given by weights, lengths, color, etc. But how should the
notions of distance given by each variable combine into “distance” in the
total space of possible variable values? The “standard” way of aggregating
one-dimensional metrics into a shared metric space is to imagine each metric
as an axis in an n-dimensional Cartesian grid, with distance given by the
Cartesian distance as follows. Let x = (x1, ..., xn) and y = (y1, ..., yn) be two
sets of potato measurements. Then d(x, y) =

√
(x1 − y1)2 + ...+ (xn − yn)2.

Setting aside the fact that there are other viable options for constructing
distances from these values, notice that this expression does not include
units. Should weight be presented in pounds or tons? Of course we know
how to translate between these two units, and we consider the choice more of
notational convenience than theoretically meaningful. But if we are looking
to the “shape” of data for information about the system being measured, the
data cloud will look much more “flat” if we use tons rather than pounds. It
is thus desirable to consider properties of the data cloud that do not depend
on the particular choice of metric space or unit, but which are shared by a
variety of plausible modeling choices.

Such considerations motivate the use of topological, as opposed to geomet-
ric methods. Topology is the mathematical field that studies properties of
shapes that remain constant under stretching, twisting, or otherwise deform-
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ing. Topologists attend to more general features of metric spaces that would
be present under different modeling assumptions, called topological invari-
ants. Since data sets are finite, although they may suggest some underlying
shape, they likely will not do so uniquely. This is the standard curve-fitting
problem in higher dimensions: for any discrete set of points, there are an in-
finite number of continuous curves (or shapes) that contain (or approximate)
the locations of those points. As with the curve-fitting problem, external
considerations guide the choice of continuous object, rather than just the
bare, uninterpreted set of data points. One may have a priori reasons to
expect that the “right” curve is quadratic, for example, or that the modeling
goal should be to minimize mean-squared error.

2.1 Clusters

The simplest example of TDA, and the one most broadly used by data scien-
tists generally, is cluster analysis. The idea behind cluster analysis is to ask:
do my data points naturally divide into sub-categories of data points more
similar to one another than the overall space? Such a situation indicates
that there is some non-trivial structure underlying the data associated with
such groupings, which one may interpret as “natural kinds” in the space.
Cluster analysis is in this way closely related to regression analysis—clusters
point towards a correlation among variables, one of the main “signals” data
scientists hope to read off of large data sets.

Sometimes, external considerations about the type of data under consid-
eration can influence how one chooses to carve a data set into clusters. Even
in the absence of such guidance, natural clusters may be easily “seen” when
the data is graphed. With larger and higher dimensional data sets to analyze,
these heuristics are less useful, and data scientists would prefer a principled
algorithmic approach to clustering. This would amount to a function that
takes metric spaces (X, d)—here understood as data sets X = {x1, ..., xn}
with a notion of “distance” d(xi, xj)—as inputs, and outputs partitions of
that data into clusters of data points that are “close together.”

2.2 Constructing Shapes

The most common method to construct a shape from a data cloud is roughly
as follows. Enclose each data point in a “ball” of radius ε centered on that
point. As ε gets larger, the cloud will cease to look like isolated points and
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start to gain shape. Once it gets too large, though, we are left with a single
shapeless blob. We use this idea to construct a simplicial complex, beginning
with the data points as vertices.1 Where 2 balls intersect, we add an edge
between them. When 3 balls intersect, we add a face enclosed by the three
edges. This process continues, creating higher dimensional n-faces where
n+ 1 balls intersect. The result is called a C̆ech complex.2

Figure 1: Constructing a C̆ech complex as ε increases, from Bubenik (2015).

This is an intuitively plausible way to construct a discrete shape from
a data cloud. A clustering can be read off of a C̆ech complex by grouping
data points according to whether they are connected in a single component
of the complex. This may be complicated by the presence of noise—a single
anomalous data point might connect otherwise robustly distinct clusters.
This can be side-stepped by either looking at only regions that are highly
connected, or avoided altogether by filtering and “cleaning” the data prior
to analysis.

1See Hatcher (2002) section 2.1 for a precise definition of a simplicial complex.
2In practice, TDA employs a more computationally tractable approximation thereof,

called a witness complex. See Carlsson (2009) section 2 for details.
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2.3 Holes and voids

Identifying the clusters of a simplicial complex appears is a special case of a
more general phenomenon of homology. Homology is a method of classifying
shapes by looking at how many “holes” the shape has. No matter how much
you stretch and twist it, a circle will always have a “hole” in it, a sphere will
always have a void or cavity, an innertube will always have the “donut hole”
as well as a void in the interior that inflates.

In looking at the connected components of a C̆ech complex, we are con-
sidering the H0-homology of the complex (considered as a topological space).
We can similarly attend to the H1-homology of the complex by looking for
“holes,” or the H2-homology by looking at “cells,” and so on to higher di-
mensions with less intuitive interpretations.

Example 1 (Cosmology). van de Weygaert et al. (2011) study the homol-
ogy of density level sets of an ensemble of randomly generated cosmic mass
distributions. They analyze the evolution of H1, H2, and H3-homology over
time in n-body simulations, revealing characteristic patterns of different dark
energy models. They show how homology can track cosmological structures
of independent interest to physicists, such as matter power spectra and non-
Gaussianity in the primordial density field.

2.4 Persistence

The motivating idea behind the construction of a C̆ech complex is that we can
imagine data as being uniformly sampled (with noise) from some underlying
“shape” in the metric state space, and we can use these data points to infer
the global structure of the “object” we are sampling from. The more samples
we look at, the more accurate our picture of the shape will be. For sufficiently
small ε-balls, the complex will not have any more structure than the bare
data set. Similarly, when the balls get too large, there is nothing more to
look at than a giant blob. The “right” choice of ε is at some intermediate
size, but how should it be chosen? If we chose an ε that is too small, we will
get a shape with a lot more holes, disconnected components, etc., than we
think are meaningful. In other words, we retain some of the noisy features
of the data cloud that we were trying to eliminate. But we risk going to far,
and making ε large enough to obscure both noise and meaningful information
from the data.
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A natural way to solve this problem is to look at many different choices of
ε, and use external considerations to decide which gives the best resolution
of the data shape. Two more problems arise when we do this, though. For
one, the whole point of data analysis is to simplify and compress information
about a system, and having a variety of different models we can choose
from does not simplify matters. Second, there may be different features that
arise at different resolutions that are equally significant, and this multi-level
picture can get lost if we have to choose a single model among the many
possibilities. For example, data may be dense in some regions but sparse in
others, where relevant shapes require larger ε-balls to be “seen”.

The key insight that unlocked the power of TDA was the idea of “topolog-
ical persistence,” introduced to data analysis in (Edelsbrunner et al., 2002).
Briefly: instead of picking a particular resolution to look at, we look at them
all, but take advantage of a trick from algebraic topology to connect com-
plexes at different scales in a sophisticated and efficient way The result is the
association of a data cloud with a persistence module that encodes how the
cloud changes structurally as ε increases. Homology is then computed for
these modules, and the result is typically expressed as a homological barcode,
as in figure 2. The “bars” begin when a feature is “born” and end when it
“dies.” Short intervals in barcodes are often attributed to either measurement
noise or inadequate sampling, whereas long, “persistent” bars are thought to
reveal real geometric features of the space being sampled from.

Figure 2: Example of a homological barcode, from Ghrist (2008).
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This construction is enabled by a structure theorem of Crawley-Boevey
(2015), demonstrating that persistent modules can be uniquely represented
as a direct sum of interval modules. Not only is this decomposition more
computationally tractable to analyze than (sets of) complexes, but the bar-
code itself provides a visual summary of behavior as ε increases. When the
number of features is large, data analysts will also sometime use persistence
diagrams instead of barcodes. These diagrams plot features on a birth-death
axis. See figure 3 for a diagram of voids—H2-homological features—in a cos-
mological model from example 1. Dots on the diagonal indicate voids that
die quickly after birth, and those farther away are more persistent.

Figure 3: Birth-death diagram of voids in a cosmological model (van de
Weygaert et al., 2011).

2.5 Stability

One way to interpret ε is as a modeling parameter, corresponding to the
resolution or scale we use to construct a shape from the data cloud. The per-
sistent features of a C̆ech complex are those that are stable, or robust under
perturbations of the parameter value. Longer bars in barcodes represent fea-
tures that appear for a wider range of ε values, indicating that these features
are robust and unlikely to constitute mere noise. Cohen-Steiner et al. (2007)
made this precise by proving that for a large class of constructions (including
C̆ech complexes), persistence diagrams are stable, meaning that small per-
turbations of the initial data set result in correspondingly small changes in
the resulting persistence diagram.

We can use this same method to consider stability across other indexing
parameters as well at fixed resolution, as in the following example.
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Example 2 (Arteries). Bendich et al. (2016) employ topological data anal-
ysis to study the structure of arteries in the human brain. They uniformly
sample a large number of points from a blood vessel diagram (weighted by
thickness of vessel), and construct a C̆ech complex from this data cloud, an-
alyzing the H0 and H1 persistence diagrams over the growing size of ε-balls
in the C̆ech complex. They look at persistent H0 over a stack of “horizontal
slices” of the artery diagram.

Figure 4: Horizontal slices of the artery diagram, from Bendich et al. (2016).

The authors found significant correlation between certain features of these
homological barcodes and the age and sex of the subjects, with the age
correlation a significant improvement over previous attempts at analyzing
similar data. For example, older brains tended to have the longest bars in
the latter barcodes.

We can thus understand persistence modules as assembling a sequence of
(n− 1)-dimensional models in a sequence indexed by an nth parameter, such
as resolution or time. Dimensionality reduction is a common feature of data
analysis techniques. Data often comes in the form of large vectors, and the
goal is often to compress them—express as much of the original information
as possible with in as few dimensions as possible. This amounts to selecting
features or parameters of interest and suppressing the rest in order to high-
light general patterns. Reducing data models to 2-3 dimensions also makes
them more visualizable, making them more useful to researchers to observe
patterns, as well as easier to communicate to the public. Persistence mod-
ules provide the benefits of low dimensional visualizability without throwing
away the information in the extra dimensions.

Summary

The general procedure for determining persistent homology is as follows.
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1. Generate a sequence of shapes (CW-complexes) from the data cloud.

2. Transform the sequence into a persistence module indexed by a param-
eter such as resolution or time.

3. Construct a visual summary of the persistence module as a barcode or
diagram.

1 and 3 are straightforwardly motivated—1 from the intuitive geometric
interpretation of data as (noisily) sampled from some underlying shape, and
3 from the Crawley-Boevey structure theorem.

3 Functoriality in TDA

Whichever method we use to give shape to our data cloud, the result is a
topological space. More specifically, it is a (finitely generated) CW-complex :
a particularly “well-behaved” topological space that is constructed by “glu-
ing” n-disks along their boundary (n− 1)-spheres. C̆ech complexes are CW-
complexes, as are all of the other constructions of figures from data clouds
that we will consider here.

Homology is a general way of associating, to each of these shapes X built
from a data cloud, a (finitely generated) Abelian homology group Hn(X). For
each group, Hn(X) essentially characterizes how many “holes” are present
in each dimension. H0(X) tracks the connected components, H1(X) tracks
holes, H2(X) tracks cells, or the number of valves that would be required “in-
flate” the hollows of the shape. This extends to higher dimensions, but most
TDA applications only look at these three, as these are the most spatially
intuitive.

In order for persistence analysis to work, we need to be able to track
shapes as they appear and disappear when ε increases. Homology is not
merely an assignment of a group to each complex that provides information
about its shape. Homology is functorial in the sense that it comes equipped
with a notion of how to translate maps between complexes into maps between
groups while preserving all relevant topological information.3 The functorial-
ity of homology enables us to do three important things, which are essential

3This functoriality is inherited from the homology functor from the category of CW-
complexes CW to the category of abelian groups Ab that lies at the heart of algebraic
topology.
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to its utility in analyzing data: identify local structures, connect complexes as
parameters vary, and compare complexes constructed from different samples.

The homology group Hn(C) of a complex C tells us how many “holes” it
has, but it does not tell us where the holes are, or how big they are. This is to
be expected—recall that while these complexes “live” in metric spaces, TDA
looks at more general, topological rather than geometric features of them,
which are preserved when the space is stretched or rotated. Nonetheless,
topological spaces still have a (albeit weaker) notion of “nearness” associated
with them. We can cover our topological space with “neighborhoods,” and
ask, relative to a particular cover, whether a “hole” is contained in a single
neighborhood.

So, if there is a feature of interest, we can locate it in a neighborhood
U ⊆ C and think of this neighborhood as its own complex. We can then
look at the inclusion map ι : U → X that just acts as the identity on that
neighborhood. Since homology is functorial, this induces a corresponding
map ι∗ : Hn(U) → Hn(C), allowing us to track the n-dimensional “hole” in
the group Hn(C) as the image ι∗(Hn(U)) ⊆ Hn(C). (See Zomorodian, Afra
and Carlsson, Gunnar (2008) for details on this localization method).

We can thus refer to a particular hole as it appears in the homology group,
rather than referring to it spatially. But even more importantly, given a map
f : C → D that identifies two complexes via their underlying metric space,
we can ask whether the hole contained in U persists under the transformation
f by seeing whether f∗(ι∗(Hn(U))) vanishes. This is what enables the use
of homological barcodes to encode information about when holes form and
disappear as a complex is constructed in stages by increasing ε. Each bar
corresponds to a different hole, understood locally in this way.

Most practitioners will admit that the interpretation of homology in data
is unclear. While increasing in popularity of late, TDA is still relatively
niche. It is often reserved for situations in which traditional data analysis
tools have failed to bear fruit, and TDA is one of many attempts to gain
insight into the data—its more of a trial and error situation.

Since persistent homology has these nice properties, data scientists will
often shoe-horn questions about data into the shape of a homology problem
in order to make it tractable. For example, they might add extra edges to a
C̆ech complex to turn open chains into closed loops. Or they might chose a
particular dimensional reduction in which loops arise, as in Perea and Harer
(2015). A fun example is the study of “tendrils”, another geometric property
of data clouds that is of potential interest. See image below—n tendrils
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emanating from a central cluster. By supplementing TDA with a procedure
for identifying such clusters, these can be removed, and the tendrils can be
tracked via the persistent H0-homology of the resulting data cloud. Nicolau
et al. (2011) use this technique to classify breast cancer types.

Figure 5: Visualization of data that features “tendrils”, from Lesnick (2013).

Data scientists study persistent homology, not because they think of
“counting holes” as the right way to characterize data, but rather because
it is has really desirable features summarized by its functoriality. While the
recent proliferation of these methods might be dismissed as mere hammer-
nailing, it should rather be said that since we have very few tools to work
with, we had better hope this problem can become nail-shaped.

4 TDA and spatial inference

4.1 Geometric understanding

Though there is disagreement about the nature and pervasiveness of its in-
fluence, visual, spatial, and aesthetic intuitions unarguably play a role in
science. Rather than sidelining it, topological data analysts explicitly em-
brace the role of visual intuitions in their scientific work. Again, TDA is
a second-line resource for data that is particularly intractable to analyze,
which puts creativity at the center of its application.

The goal of data analysis is to identify patterns in data that provide con-
cise, comprehensible summaries of the system that point towards features
of significance in broad classes of systems. Such recognition of patterns of
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sufficient generality without overfitting is the holy grail of artificial intelli-
gence and machine learning research. In the mean-time, scientists still rely
heavily on the je ne sais quoi features acquired through visual intuition to
guide inquiry. To aid the evocations of these intuitions, data scientists will
play around with parameters and data filtering. Since spatial intuitions exist
at lower dimensions, the ability to use persistence modules to reduce dimen-
sionality without losing information makes it especially useful.

While subjective visual judgments clearly dominate the earlier stages of
inquiry, data analysts still return to more traditional empirical methods for
post hoc justification. Even if a topological feature is robust under TDA
analysis, the real measure of a successful analysis is whether it corresponds
to a feature of the system of independent interest to scientists. Patterns found
through random applications of TDA might lead scientists to look for such
an independently interesting feature of a system, but if one cannot be found,
the shapes identified in the data remain merely curiosities. In example 2, if
barcodes did not track gender and age but some other feature that we do not
independently classify as a natural kind, researchers would likely not have
identified it. Even if they had stumbled upon a barcode pattern by chance,
it would not have mattered if they could not tell a compelling story about
what characteristic the pattern characterizes.

So spatial intuitions play a central role in the context of discovery, while
their influence is fortified by the introduction of external empirical consider-
ations at the stage of justification. But they reappear when the results are
communicated to others, in the visual summary provided by a homological
barcode or diagram. This allows data scientists to again invoke visual intu-
itions in evaluating the results of the analysis, which now contain all of the
information about the persistence of shapes in an easily consumable, two-
dimensional aid. The functoriality of TDA carries the visual information
in CW-complexes through various reformulations until it finally reappears
again in yet another visual format in its presentation.

4.2 Diagrammatic reasoning

Returning from our detour into the cognitive realm, we might wonder how all
of this can be incorporated into a formal epistemic story about the structure
of topological data models. Here, we can learn much from the vast literature
on diagrammatic reasoning in Euclidean geometry. Critics of the rigor of
reasoning from diagrams in geometric ‘proofs’ point to the fact that such
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proofs use a particular illustration to make an inference about all possible
illustrations. However, philosophers of mathematical practice have recently
come to appreciate the role of diagrams in generating and communicating
geometric knowledge. Manders (2008) argues that ancient geometers were
careful to rely on diagrams only for demonstrations about what he calls co-
exact features—those that are relatively insensitive to the range of variation
in possible visual representations, such as part-whole and boundary-interior
relationships (and of course, homology). Mumma (2010) takes this a step
further and develops a formal account of Euclidean proofs that includes both
sentential and diagrammatic components.

How does this bear on TDA? Earlier, I noted that data analysts are con-
cerned with ensuring that inferences about data rely only on real structural
features of observations, rather than incidental features of how data is em-
bedded in a metric space. At issue is the level of generality one can adopt
when making inferences from a single visual representation of data, picked
somewhat arbitrarily from an ensemble of possible alternative, equally valid
representations. TDA resolves this issue by requiring that the analyzed fea-
tures of data models be functorial with respect to maps that preserve what
they take to be the relevant structural features of models, and persistent
across parameters when the “right” value is not known.

4.3 Structure

The forgoing discussion about TDA hints at a new way to understand the
relationship between the following two conceptions of “structure” in models
of scientific theories:

1. The relevant causal and explanatory features of a system, abstracted
from the noise present in any observation of the system; and

2. The content of a description of a physical system, abstracted from the
particular language and formalism used to present it.

The relationship between these two notions at first appears relatively super-
ficial. Yes, they are both ways of getting at what is really there in a physical
system, but they seem to refer to completely different stages of scientific
representation. The first comes in at the stage of observation and experi-
mentation, referring to the structure of a particular physical system under
observation. The second relates to extracting information from an idealized

13



model (perhaps constructed out of “cleaned” data from the previous stage).
The structure here consists of the components of the model that are actually
doing the representational work, rather than merely scaffolding this content
in language and symbols.

Scientific practice is a holistic process, and measurement cannot and
should not be wholly separated from formal representation. Among other
connections, observations inform how systems should be represented, and
representations indicate directions for further research and measurement. Of
course, no one would say these two senses of structure are mere homonyms, as
they are clearly relying on similar intuitions about how structure is supposed
go beyond particulars of an instance to something more essential. However,
they seem to operate in different realms—structure1 in the physical world
and structure2 in Platonic heaven—and thus they surely must be orthogonal
to one another.

Nonetheless, I think TDA indicates how these two notions of structure
are much closer than one might initially suspect. The first clue to this comes
upon noticing that more than being intertwined with one another, particular
acts of structural refinement by scientists may exist between realms. For
example, suppose I collect demographic data that includes the hair color of
participants, and include hair color as a feature of my initial abstract repre-
sentation of this population, recorded as an RGB hex code. I then decide that
precise hair color is not a relevant consideration for the theoretical purpose at
hand, so I switch to presenting hair color information more coarsely as either
light, medium, or dark. I can think of this “throwing away”, “rounding off”
or “smoothing out” as an act of cleaning data, obscuring noise at the obser-
vation level, and perhaps fundamentally changing the type of data I collect.
Alternatively, I can think of it as refining my model—obscuring noise at the
representational level. It amounts to the same act, viewed through different
lenses. The moral is that the boundary between data and formalism is not
completely clear.

5 Discussion

Data scientists sometimes claim that the functoriality of homology is critical
to TDA’s utility in revealing and interpreting structural features of data
sets. This paper offers an account of how and why this is this case. There are
various reasons to suspect that topological features correspond to meaningful
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signals in a data set. Moreover, topological features are accessible to visual
cognition to aid in scientific interpretation. Since homology is functorial
relative to the category (CW) that delineates the relevant structures, it
is ensured that the reasons we had for thinking topological features were
meaningful are preserved in the translation from data cloud to homological
barcode.

Requiring functoriality constrains the tools that are available to us to
analyze data, and homology is particularly well understood mathematically.
Data scientists thus often try to apply persistent homology even if it is not
immediately obvious why topological features of the data should be impor-
tant. But by identifying that functoriality is operative in enabling robust
inferences in TDA, we can use category theoretic tools to express the general
features of any data analysis that might be epistemically sufficient. Bubenik
and Scott (2014) provide the mathematical tools, and this paper supple-
ments them by demonstrating how to construct an inferential narrative to
justify their epistemic value. An obvious next step would be to explore new
functorial data analysis methods (or functorializing old methods).
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