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Abstract

This paper introduces the logic of evidence and truth LETF as an
extension of the Belnap-Dunn four-valued logic FDE. LETF is a slightly
modified version of the logic LETJ , presented in Carnielli and Rodrigues
(2017). While LETJ is equipped only with a classicality operator ○, LETF

is equipped with a non-classicality operator ● as well, dual to ○. Both
LETF and LETJ are logics of formal inconsistency and undeterminedness
in which the operator ○ recovers classical logic for propositions in its scope.
Evidence is a notion weaker than truth in the sense that there may be
evidence for a proposition α even if α is not true. As well as LETJ ,
LETF is able to express preservation of evidence and preservation of truth.
The primary aim of this paper is to propose a probabilistic semantics
for LETF where statements P (α) and P (○α) express, respectively, the
amount of evidence available for α and the degree to which the evidence
for α is expected to behave classically – or non-classically for P (●α).
A probabilistic scenario is paracomplete when P (α) + P (¬α) < 1, and
paraconsistent when P (α) + P (¬α) > 1, and in both cases, P (○α) < 1.
If P (○α) = 1, or P (●α) = 0, classical probability is recovered for α. The
proposition ○α ∨ ●α, a theorem of LETF , partitions what we call the
information space, and thus allows us to obtain some new versions of
known results of standard probability theory.

∗The authors acknowledge support from the National Council for Scientific and Techno-
logical Development (CNPq, Brazil) under research grants 311911/2018-8, 308077/2018-0,
and 307376/2018-4. The first author has also been supported by the CNPq fellowship grant
204479/2017-71 for a research stay at the University of Oxford, 2018. The authors owe a
great debt to the referees for the careful reading of an earlier version of this text, which lead
to relevant suggestions for improving it.
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1 Introduction1

In Carnielli and Rodrigues (2017) two paraconsistent and paracomplete formal2

systems were presented, the Basic Logic of Evidence (BLE) and the Logic of3

Evidence and Truth (LETJ). BLE ends up being equivalent to Nelson’s well-4

known logic N4 but has been conceived to express preservation of evidence5

instead of truth. Scenarios with conflicting evidence – that is, non-conclusive6

evidence for the truth and the falsity of α – as well as scenarios with no evi-7

dence at all about α are possible, so neither explosion nor excluded middle hold8

in BLE. LETJ is an extension of BLE equipped with a classicality operator9

○. When ○α holds, classical negation – and so full classical logic – for α is recov-10

ered. According to the intended interpretation, ○α in LETJ means that there11

is conclusive evidence for the truth or falsity of α, so the truth-value of α has12

been established as true or false.13

Let us call ⊢C and ⊢BLE , respectively, the relation of logical consequence in14

classical logic and in BLE. Classical consequence is defined in terms of preserva-15

tion of truth: Γ ⊢C α just in case there is no model M such that all propositions16

of Γ are true in M , but α is not true in M. The intended interpretation of17

BLE, on the other hand, is not based on preservation of truth, but rather on18

preservation of evidence: Γ ⊢BLE α means that the availability of evidence for19

the premises in Γ implies that there is also evidence available for α. Classical20

logic and BLE, therefore, express different properties of propositions: truth and21

availability of evidence. The logic LETJ , in its turn, is able to express preserva-22

tion of evidence and preservation of truth – it ‘combines’, in one and the same23

formal system, the relations ⊢C and ⊢BLE . The operator ○ works like a context24

switch that divides propositions into those that have a classical and those that25

have a non-classical behavior, and BLE is the underlying logic of the latter.26

Adequate valuation semantics and decision procedures for BLE and LETJ27

have been proposed. These semantics, however, are only able to express the fact28

that a given proposition α has or does not have evidence available by attributing,29

respectively, the semantic value 1 or 0 to α. Evidence, thus, is treated from a30

purely qualitative point of view. A question that presents itself is whether the31

amount of evidence available for a given proposition α could be quantified. Here32

we give a positive answer to this question.33

The aim of this paper is to propose a probabilistic semantics for a modified34

version of LETJ obtained by dropping the implication symbol → and adding a35

non-classicality operator ● dual to ○. While ○α implies that α behaves classicaly,36

a non-classical behavior of α implies ●α. The logic so obtained is an extension of37

the well-known logic of First-Degree Entailment (FDE), and we call it LETF ,38

the Logic of Evidence and Truth based on FDE. As well as LETJ , LETF is39

suitable to an intuitive reading in terms of evidence and truth.40

In order to capture this idea of preservation of degrees of evidence a non-41

classical notion of probability will be employed. The probabilistic semantics42

proposed here follows the ideas presented in Bueno-Soler and Carnielli (2016,43

2017). Let P (α) = ε mean that ε is the measure of evidence available for α.44

We call a probabilistic scenario paracomplete when P (α) + P (¬α) < 1, and45

2



paraconsistent when P (α) + P (¬α) > 1. These two cases can be explained,46

respectively, as ‘too little information’ and ‘too much information’ about α.1 In47

both cases, P (○α) < 1, which means that the probability measures of α and ¬α48

are not behaving classically. So, P (○α) < 1 means that the information available49

about α is not reliable, and something must be wrong. If P (○α) = 1, standard50

probability is recovered for α.51

With the purpose of understanding the probabilistic semantics proposed here52

better, we adopt a notion of information space instead of the standard notion53

of sample space. The intuitive idea is to collect all the relevant information54

about a proposition α (or about a set of propositions Γ) and the corresponding55

measures of evidence. So, roughly speaking, an information space is constituted56

by propositions that represent evidence that can be non-conclusive, contradic-57

tory or incomplete, more reliable or less reliable, and sometimes conclusive (we58

return to this point in Section 4.3 below). Such a notion of information space59

requires a generalization of the notion of a partition, and consequently allows60

us to obtain generalized versions of standard results of probability theory such61

as total probability theorem and Bayes’ rule.262

The remainder of this paper is organized in four sections. Section 2 is dedi-63

cated to the logic FDE. It is shown that FDE is suited to an interpretation in64

terms of preservation of evidence. We also present adequate valuation semantics65

and a decision procedure for FDE. In Section 3, FDE is extended to LETF ,66

and an adequate semantics, a decision procedure, and some relevant results are67

presented and discussed. In Section 4, a probabilistic semantics for LETF is68

defined, and paraconsistent and paracomplete versions of total probability the-69

orems and Bayes’ rule are also presented and discussed. Finally, in Section 5, we70

discuss some points related to the topics of this paper that could be developed71

further.72

2 FDE as a logic of preservation of evidence73

The inference rules of BLE were obtained by asking whether an inference rule74

preserves evidence. Since evidence can be incomplete (no evidence at all) and75

contradictory (conflicting evidence), explosion and excluded middle do not hold.76

In BLE, when α (resp. ¬α) holds, the intended meaning is that there is evidence77

for the truth (resp. falsity) of α. Evidence that α is true and evidence that α78

1The connections between the notions of evidence and information will be explained in
Section 2.2.1.

2Our approach differs from the so-called Dempster-Shafer (DS) theory of evidence, de-
veloped by Glenn Shafer in Shafer (1976) and based on earlier work of Arthur Dempster.
DS is focused on degrees of belief and degrees of plausibility. As Lofti Zadeh points out in
his review (Zadeh, 1984), the DS theory falls short as a useful tool for the management of
uncertainty (even for expert systems, for which it was designed). Our approach, as we try
to make clear throughout this paper, uses probabilistic semantics intended to quantify the
evidence attributed to a proposition and introduces a new logic with an intuitive reading in
terms of preservation of evidence and truth. That is the reason we cannot rely on the DS
‘mathematical’ theory of evidence: it is not so attractive as it seems to be at first glance, and
lacks the features we are interested in.
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is false are independent of each other, and are treated as such by the formal79

system. BLE can express the following four scenarios:80

1. Only evidence that α is true: α holds, ¬α does not hold.81

2. Only evidence that α is false: ¬α holds, α does not hold.82

3. No evidence at all: neither α nor ¬α hold.83

4. Conflicting evidence: both α and ¬α hold.384

Evidence for a proposition α is explained in Carnielli and Rodrigues (2017,85

Section 2) as reasons for believing in α, but these reasons may be non-conclusive86

or even wrong, and do not imply the truth of α, nor the belief in α. Thus,87

evidence is a notion weaker than truth in the sense that there may be evidence88

for a proposition α even if α is not true. Below, in Section 2.2.1, starting from89

the notion of information proposed by Dunn (2008), we explain evidence in90

terms of a (perhaps) non-conclusive justification added to a proposition α or, as91

Fitting (2016b) puts it, “justifications that might be wrong”.4 Notice that the92

notion of evidence encompasses non-conclusive as well as conclusive evidence,93

and the latter is evidence that establishes the truth-value of a proposition α.94

The logic of First-Degree Entailment (FDE) is a paraconsistent and para-95

complete propositional logic in a language with conjunction, disjunction, and96

negation, with no theorems nor bottom particles (cf. Anderson and Belnap,97

1963, 1975; Anderson et al., 1992; Belnap, 1977a,b; Dunn, 1976). FDE is a98

fragment of BLE/N4, obtained by dropping the implication symbol and the99

corresponding rules, and it can be interpreted in terms of preservation of evi-100

dence, as well as BLE – the four scenarios above clearly correspond to the four101

truth-values proposed by Belnap (1977a,b) (we return to this point in Section 2.2102

below).5103

Definition 1. The Logic of First-Degree Entailment (FDE)104

Let L1 be a language with a denumerable set of sentential letters {p1, p2, p3, ...},105

the set of connectives {¬,∧,∨}, and parentheses. The set of formulas of L1106

3The expression ‘α holds/does not hold’ here means that α holds/does not hold in BLE.
So, here, it does not mean that α is true/false.

4 Fitting (2016a) presents an embedding of BLE into the modal logic KX4, and an em-
bedding of the later into the justification logic JX4. The latter is equipped with justification
terms that stand for “justification, or evidence, which may be non-factual, uncertain, or con-
tradictory” (Fitting, 2016a, p. 1159). In JX4, ‘t ∶ α’ means that α is justified by reason t.
The notion of evidence expressed by KX4 (implicit evidence) and JX4 (explicit evidence) is
a “formal alternative” of the “informal” notion of evidence expressed by BLE.

5The move from BLE and LETJ to (respectively) FDE and LETF has been motivated by
some difficulties in interpreting the implication of BLE in probabilistic terms. The implication
of BLE is located somewhere in between classical and intuitionistic implication: it is not
classical because Peirce’s Law does not hold, and it is not intuitionistic because the equivalence
between ¬(α → β) and α ∧ ¬β holds. It is not clear what would be the intuitive meaning of
the attribution of a probabilistic measure to a formula α→ β of BLE, and how this measure
would relate to the probabilistic values of α and β. So we decided, at least in this paper, to
work with FDE, the implication-free fragment of BLE.
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is obtained recursively in the usual way. The logic FDE is defined over the107

language L1 by the following natural deduction rules:108

α β

α ∧ β ∧I α ∧ β
α ∧E

α ∧ β
β109

110

α
α ∨ β ∨I

β

α ∨ β
α ∨ β

[α]
....
γ

[β]
....
γ

γ ∨E
111

112

¬α
¬(α ∧ β) ¬ ∧ I

¬β
¬(α ∧ β)

¬(α ∧ β)

[¬α]
....
γ

[¬β]
....
γ

γ ¬ ∧E
113

114

¬α ¬β
¬(α ∨ β) ¬ ∨ I ¬(α ∨ β)

¬α ¬ ∨E
¬(α ∨ β)

¬β115

116
α

¬¬α DN
¬¬α
α117

A deduction of α from a set of premises Γ, Γ ⊢FDE α, is defined as follows:118

there is a derivation with conclusion α and all uncancelled hypotheses in Γ, and119

the definition of a derivation is the usual one for natural deduction systems (see120

e.g. van Dalen (2008, pp. 35-36)).121

Other deductive systems have already been presented for FDE (see Omori and122

Wansing, 2017, Section 2.2), but the natural deduction system proposed here123

makes the symmetry between positive and negative rules explicit: ∧I and ¬∨ I124

are symmetrical, ∨E and ¬ ∧ E are symmetrical, and so on. This mirrors the125

fact that positive and negative evidence are primitive and non-complementary126

notions, but have symmetric deductive behavior: the rule ∧I expresses the idea127

that when there is positive evidence available for both α and β, there is positive128

evidence for α∧β, while the rule ¬∨I means that when there is negative evidence129

available for both α and β, there is negative evidence for α ∨ β.130

Theorem 2.131

Reflexivity, monotonicity, transitivity, and compactness hold for FDE.132

Proof. These well-known properties of FDE can be easily proved by means of133

the natural deduction system above.134

2.1 Valuation semantics for FDE135

We now propose a non-deterministic valuation semantic for FDE.136

Definition 3. Valuation semantics for FDE137

A valuation semantics for FDE is a collection of FDE-valuations defined as fol-138

lows: A function v ∶ L1 → {0,1} is a FDE-valuation if it satisfies the following139

clauses:140
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v1. v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1,141

v2. v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1,142

v3. v(¬(α ∧ β)) = 1 iff v(¬α) = 1 or v(¬β) = 1,143

v4. v(¬(α ∨ β)) = 1 iff v(¬α) = 1 and v(¬β) = 1,144

v5. v(α) = 1 iff v(¬¬α) = 1.145

Definition 4. We say that a formula α is a semantical consequence of Γ,146

Γ ⊧FDE α, iff for every valuation v, if v(β) = 1 for all β ∈ Γ, then v(α) = 1.147

This semantics is sound and complete, and provides a decision procedure for148

FDE. From now on, in this section, when there is no risk of ambiguity, we will149

just write ⊢ and ⊧ in the place of ⊢FDE and ⊧FDE .150

Theorem 5. Soundness151

Let Γ be a set of formulas, and α a formula of FDE. So, Γ ⊢ α implies Γ ⊧ α.152

Proof. The proof is routine. It shows that assuming there are sound derivations153

for the premise(s), the derivation obtained by the application of a rule is sound.154

155

Theorem 6. Completeness156

Let Γ be a set of formulas, and α a formula of FDE. Then Γ ⊧ α implies Γ ⊢ α.157

Proof. Completeness can be proved by a Henkin-style proof. Given Γ and α158

such that Γ ⊬ α, a set ∆ maximal w.r.t α can be obtained in the usual way. So,159

the proof of the following propositions is straightforward:160

v1 ′. α ∧ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆;161

v2 ′. α ∨ β ∈ ∆ iff α ∈ ∆ or β ∈ ∆;162

v3 ′. ¬(α ∧ β) ∈ ∆ iff ¬α ∈ ∆ or ¬β ∈ ∆;163

v4 ′. ¬(α ∨ β) ∈ ∆ iff ¬α ∈ ∆ and ¬β ∈ ∆;164

v5 ′. α ∈ ∆ iff ¬¬α ∈ ∆.165

Let v be the mapping from the language L1 to {0,1} defined as follows: for166

every γ ∈ L1, v(γ) = 1 iff γ ∈ ∆. v is a valuation for FDE such that: for every167

β ∈ Γ, v(β) = 1, since Γ ⊆ ∆; but v(α) = 0, since α ∉ ∆ (∆ is maximal w.r.t. α).168

Therefore, Γ ⊭ α.169

170

The valuation semantics proposed in Definition 3 is non-deterministic in the171

sense that the semantic value of a formula ¬α is not a function of the value of172

6



α. The possible values a formula can receive are given by quasi-matrices.6 In173

Example 7 below, we illustrate how a quasi-matrix works.174

Example 7. In FDE:175

1. p,¬p ∨ q ⊭ q;176

2. p,¬(p ∧ q) ⊭ ¬q;177

3. ¬p ∧ ¬q â⊧ ¬(p ∨ q);178

4. ¬p ∨ ¬q â⊧ ¬(p ∧ q).179

Proof. Consider the following quasi-matrix:180

181

p 0 1
¬p 0 1 0 1
q 0 1 0 1 0 1 0 1
¬q 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

¬p ∨ q 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
¬(p ∧ q) 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
valuation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

182

The valuations 13 and 14 above show that 1 is invalid, and the valuations 13183

and 15 show that 2 is invalid. The remaining cases (De Morgan laws) are left184

to the reader.185

Remark 8. The first four rows of the quasi-matrix above display the semantic186

values of the propositional variables and the negations of propositional variables187

that occur in the formulas at stake. The 5th and 6th rows are given by clauses188

v2 and v3 of Definition 3. Note that the semantic value of ¬p is not determined189

by the value of p: the value of ¬p bifurcates into 0 and 1 below v(p) = 1 and190

also below v(p) = 0. So, being n the number of propositional variables of a given191

formula, the number of valuations is finite and bounded by 22n. It is intuitively192

clear that the valuation semantics provides a decision procedure for FDE. A193

detailed algorithm, however, will be presented elsewhere.194

2.1.1 Some facts about FDE195

Fact 9. Modus ponens and the deduction theorem do not hold in FDE for an196

implication α → β defined as ¬α ∨ β.197

Proof. That disjunctive syllogism does not hold in FDE is shown by the fol-198

lowing valuation: v(α) = 1, v(¬α) = 1, v(β) = 0. In order to show that the199

deduction theorem does not hold, suppose Γ, α ⊧ β implies Γ ⊧ ¬α∨β. So, from200

α ⊧ α we would get ⊧ ¬α ∨ α, but the latter is invalid in FDE.201

6A quasi-matrix is a non-deterministic matrix that represents non-deterministic valuation
semantics. The notion of quasi-matrix was introduced by da Costa and Alves in da Costa and
Alves (1977), where a valuation semantics was proposed for da Costa’s logic C1 (in da Costa
and Alves (1977, p. 624, Def. 11) a detailed explanation of how to construct a quasi-matrix
for C1 can be found). See also Loparic (1986, 2010); Loparic and Alves (1979), where decision
procedures based on quasi-matrices are provided for da Costa’s Cω and for intuitionistic logic.
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Fact 10. Grounding of contradictoriness202

A compound formula α is contradictory in a valuation v, i.e. v(α) = 1 and203

v(¬α) = 1, only if at least one propositional letter p that occurs in α is contra-204

dictory in v.205

Proof. Suppose there is a valuation v such that v(α) = v(¬α) = 1. We prove206

that there is at least one propositional letter p in α such that v(p) = v(¬p) = 1.207

If α = p, clearly, v(α) = v(¬α) = v(p) = v(¬p) = 1. The remaining cases are208

proved by induction on the complexity of α.209

Case 1. α = ¬¬β. I.H.: if v(β) = v(¬β) = 1, there is a p in β such that210

v(p) = v(¬p) = 1. Suppose v(¬¬β) = v(¬¬¬β) = 1. So, by Definition 3, v(β) =211

v(¬β) = 1. The result follows by the inductive hypothesis.212

Case 2. α = β ∧ γ. I.H.: if v(β) = v(¬β) = 1, there is a p in β such that213

v(p) = v(¬p) = 1; mutatis mutandis for γ. Suppose v(β ∧ γ) = v(¬(β ∧ γ)) = 1.214

So, by Definition 3, v(β) = v(γ) = 1, and either v(¬β) = 1 or v(¬γ) = 1. By the215

inductive hypothesis, there is a p either in β or in γ such that v(p) = v(¬p) = 1.216

The remaining cases are left to the reader.217

Fact 11. Grounding of incompleteness218

A compound formula α is incomplete in a valuation v, i.e. v(α) = 0 and219

v(¬α) = 0, only if at least one propositional letter p that occurs in α is incom-220

plete in v.221

Proof. Similar to the proof of Fact 10 above.222

It is to be noted that the converse of Facts 10 and 11 do not hold: there may223

be a contradictory (resp. incomplete) atom p in a formula α without α being224

contradictory (resp. incomplete). Let α be the formula p ∨ q and consider the225

valuation v such that v(p) = v(¬p) = 1, v(q) = 1 and v(¬q) = 0. In this case,226

p is a contradictory propositional letter, but p ∨ q is not contradictory. On the227

other hand, in the valuation v(p) = v(¬p) = 0, v(q) = 1 and v(¬q) = 0, p is a228

incomplete propositional letter, but p ∨ q is not incomplete. Both valuations229

make v(p ∨ q) = 1 and v(¬(p ∨ q)) = 0.230

2.2 Equivalence with Belnap’s four-valued and Dunn’s re-231

lational semantics232

The valuation semantics proposed above, as expected, is equivalent both to the233

two-valued relational semantics proposed by Dunn (1976) and to the four-valued234

semantics presented by Belnap (1977b).7235

Definition 12. Dunn’s relational semantics for FDE236

A Dunn-interpretation for FDE is a relation ρ between the set of formulas of237

FDE and the values T and F, ρ ⊆ L × {T,F}, satisfying the following clauses:238

7The literature has a variety of algorithmic procedures that provide translations between
finite-valued semantics and valuation semantics. One of them is given in Caleiro, Carnielli,
Coniglio, and Marcos (2005). For the ease of the reader, however, we give below a direct proof
of the equivalence between FDE -valuations, Dunn’s and Belnap’s semantics for FDE.
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1. ¬αρT iff αρF ,239

2. ¬αρF iff αρT ,240

3. (α ∧ β)ρT iff αρT and βρT ,241

4. (α ∨ β)ρT iff αρT or βρT ,242

5. (α ∧ β)ρF iff αρF or βρF ,243

6. (α ∨ β)ρF iff αρF and βρF .244

Definition 13. A formula α is a Dunn semantic consequence of Γ, Γ ⊧D α, iff245

for all Dunn-interpretations ρ, if βρT for all β ∈ Γ, then αρT .246

Definition 14. Belnap’s four-valued semantics for FDE247

A four-valued interpretation for FDE is a function vB from the set of formulas248

of FDE to the semantic values {T,F,B,N} satisfying the following matrices:249

α ¬α
T F
F T
B B
N N

α ∧ β T F B N
T T F B N
F F F F F
B B F B F
N N F F N

α ∨ β T F B N
T T T T T
F T F B N
B T B B T
N T N T N

250

251

Definition 15. Let D = {T,B} be the set of designated values of Belnap’s252

four-valued semantics. A formula α is a four-valued semantic consequence of253

Γ, Γ ⊧B α, iff for all four-valued interpretations vB, if vB(β) ∈D for all β ∈ Γ,254

then vB(α) ∈D.255

The valuation semantics of Definition 3, Dunn’s relational semantics of Def-256

inition 12, and Belnap’s four-valued semantics of Definition 14 intend to repre-257

sent four scenarios. Belnap (1977b, p. 11) explains the semantic values T, F,258

N, and B with the notion of a computer ‘being told’, so, these values mean,259

respectively, ‘just told true’, ‘just told false’, ‘told neither true nor false’, and260

‘told both true and false’ (we return to this point in Section 2.2.1 below). Dunn261

(1976, p. 156) explains them in terms of subsets of {T,F}, so a proposition can262

be related to {T}, {F}, ∅, and {T,F}. In Section 2 above we explained these263

four scenarios in terms of availability of evidence.264

Although both the valuation semantics proposed here and Dunn’s relational265

semantics are bi-valued, and end up being equivalent, they have an essential266

difference: a valuation is a function from the set of formulas to {0,1}, while a267

Dunn interpretation is a relation between the set of formulas and {T,F}. In the268

latter, a formula can be related simultaneously to both T and F, when it is, in269

the Dunn-Belnap reading, both true and false, or not related to T nor F, when270

it is neither true nor false. But these three semantics, as expected, validate the271

same inferences, i.e. Γ ⊧FDE α iff Γ ⊧D α iff Γ ⊧B α.272
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Definition 16. (Dunn interpretation induced by an FDE-valuation)273

Given a FDE-valuation v, we define a Dunn-interpretation ρv, based on v, as274

follows:275

αρvT iff v(α) = 1276

α¬ρvT iff v(α) = 0277

αρvF iff v(¬α) = 1278

α¬ρvF iff v(¬α) = 0279

Definition 17. (FDE-valuation induced by a Dunn-interpretation)280

Given a Dunn-interpretation ρ, we define a FDE-valuation vρ, based on ρ, as281

follows:282

vρ(α) = 1 iff αρT283

vρ(α) = 0 iff α¬ρT284

vρ(¬α) = 1 iff αρF285

vρ(¬α) = 0 iff α¬ρF286

Lemma 18. Given an FDE-valuation v, then ρv is a Dunn-interpretation.287

Proof. We have to prove that ρv is a Dunn’s relational semantics as in Defini-288

tion 12.289

1. ¬αρvT iff v(¬α) = 1 iff αρvF290

2. ¬αρvF iff v(¬¬α) = 1 iff v(α) = 1 iff αρvT291

3. (α ∧ β)ρvT iff v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1 iff αρvT and βρvT292

4. (α ∨ β)ρvT iff v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1 iff αρvT or βρvT293

5. (α ∧ β)ρvF iff v(¬(α ∧ β)) = 1 iff v(¬α) = 1 or v(¬β) = 1 iff αρvF or βρvF294

6. (α ∨ β)ρvF iff v(¬(α ∨ β)) = 1 iff v(¬α) = 1 and v(¬β) = 1 iff αρvF and295

βρvF296

297

Lemma 19. Given a Dunn-intepretation ρ, then vρ is a FDE-valuation.298

Proof. We have to prove that vρ is a FDE-valuation as in Definition 3.299

1. vρ(α ∧ β) = 1 iff (α ∧ β)ρT iff αρT and βρT iff vρ(α) = 1 and vρ(β) = 1300

2. vρ(α ∨ β) = 1 iff (α ∨ β)ρT iff αρT or βρT iff vρ(α) = 1 or vρ(β) = 1301

3. vρ(¬(α ∧ β)) = 1 iff (α ∧ β)ρF iff αρF or βρF iff vρ(¬α) = 1 or vρ(¬β) = 1302
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4. vρ(¬(α∨β)) = 1 iff (α∨β)ρF iff αρF and βρF iff vρ(¬α) = 1 and vρ(¬β) = 1303

5. vρ(α) = 1 iff (α)ρT iff ¬αρF iff ¬¬αρT iff vρ(¬¬α) = 1304

305

Lemma 20.306

The valuation semantics (Definition 3) and Dunn-interpretation (Definition 12)307

are equivalent, that is, given a valuation semantics v there exists a Dunn-308

interpretation ρv such that309

vρ(α) = 1 iff αρT310

vρ(α) = 0 iff α¬ρT311

vρ(¬α) = 1 iff αρF312

vρ(¬α) = 0 iff α¬ρF313

for any proposition α; and vice-versa, given a Dunn-interpretation ρ, there exists314

a valuation vρ such that:315

αρvT iff v(α) = 1316

α¬ρvT iff v(α) = 0317

αρvF iff v(¬α) = 1318

α¬ρvF iff v(¬α) = 0319

for any proposition α.320

Proof. Immediate from Lemma 18 and Lemma 19 above.321

Lemma 21. The valuation semantics (Definition 3) and Belnap’s four-valued322

semantics for FDE (Definition 14) are equivalent.323

Proof. It follows from Lemma 20 and the well-known fact that Dunn’s and324

Belnap’s semantics are equivalent.325

Theorem 22. The valuation semantics, the Dunn interpretation and the Bel-326

nap interpretation define equivalent notions of logical consequence: Γ ⊧FDE α327

iff Γ ⊧B α iff Γ ⊧D α.328

Proof. It follows from Lemma 20 and Lemma 21.329

11



2.2.1 On paraconsistency, evidence, and information330

FDE is the well-known and widely studied ‘useful four-valued logic’ proposed by331

Belnap and Dunn as the underlying logic of an artificial information processor,332

i.e. a computer, capable of dealing with information received from different333

sources that are not entirely reliable (cf. Belnap, 1977a,b; Dunn, 1976). The334

semantic value Both is intended to represent the circumstance in which there is335

conflicting information about α, i.e. both α and ¬α hold, and None is intended336

to represent the circumstance in which there is no information at all about α,337

i.e. neither α nor ¬α holds.338

When Belnap explains these four values, he talks about a computer ‘being339

told’ that a proposition α is true, or false. The computer should be able to com-340

pute the values of complex propositions and draw inferences from the received341

information, but it “can only accept and report information without divesting342

itself of it” (Belnap, 1977b, p. 9). Of course, contradictory information stored343

in a database should not be taken as true, as Belnap (1977a, p. 47) remarks344

that345

these sentences have truth-values independently of what the com-346

puter has been told; but who can gainsay that the computer cannot347

use the actual truth-value of the sentences in which it is interested?348

All it can possibly use as a basis for inference is what it knows or349

believes, i.e., what it has been told.350

The computer, when asked, must provide information based only on what it351

has been told, otherwise “we would have no way of knowing that its data-base352

harbored contradictory information” (Belnap, 1977b, p. 9).8353

This notion of ‘a computer being told’ is clearly weaker than truth, since a354

computer may be told that α is true even if it is not the case. So, Belnap is not355

really talking about truth simpliciter. On the other hand, Dunn (1976, p. 157)356

seems not to be totally comfortable with the interpretation of FDE in terms of357

the simultaneous truth of α and ¬α:358

Do not get me wrong – I am not claiming that there are sentences359

which are in fact both true and false. I am merely pointing out360

that there are plenty of situations where we suppose, assert, believe,361

etc., contradictory sentences to be true, and we therefore need a362

semantics which expresses the truth conditions of contradictions in363

terms of the truth values that the ingredient sentences would have364

to take for the contradictions to be true.365

Indeed, we should consider Dunn’s relational semantics as a façon de parler,366

rather than a claim that true contradictions are possible. Obviously, the si-367

multaneous attribution of the semantic value True to a pair of propositions α368

8Belnap’s approach to the problem is akin to the idea, defended by us in a number of
places, that a contradiction α and ¬α can be ‘more informative’ than a single assertion of α,
or of ¬α, when neither α nor ¬α has been conclusively established. Indeed, in such cases, the
contradiction makes it explicit that something is wrong and must be further investigated.
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and ¬α is not to be understood as an acceptance of dialetheism. It is worth369

noting that at the time Belnap’s and Dunn’s papers were published, although370

there were already several paraconsistent formal systems available, the concep-371

tual discussion about the nature of contradictions accepted by paraconsistent372

logics was still in its beginnings. It was a ‘lateral issue’ that had not yet been373

brought to the center of debate.374

That the four values represented by Belnap-Dunn’s semantics correspond to375

the four scenarios of availability of evidence the logic BLE expresses has been376

shown in Section 2.2 above. The notions of evidence and information, indeed,377

are akin to each other, and both are well-suited to a non-dialetheist reading of378

paraconsistency. Let us take a closer look at these two notions.379

In Carnielli and Rodrigues (2017, Section 2) the notion of evidence for a380

proposition α was explained as ‘reasons for believing and/or accepting α’. Ev-381

idence, when conclusive, gives support to the truth (or falsity) of α, and thus382

it has to do with the justification of α (or ¬α). The idea behind the recovery383

operator ○, introduced in Section 3 below, is that if there is conclusive evidence384

for the truth, or falsity, of a proposition α, then α is subjected to classical logic.385

But evidence can be non-conclusive, and so there may be conflicting evidence386

for a proposition α. Besides being weaker than truth, evidence does not imply387

belief: there may be evidence for α, an agent may be aware of such evidence but388

still does not believe in α. If there is non-conclusive evidence for α, it means389

that there is some degree of justification for α that, however, is not conclusive390

and might be wrong.9391

Dunn (2008, p. 589) explains a ‘bare-boned’ notion of information as:392

what is left from knowledge when you subtract, justification, truth,393

belief, and any other ingredients such as reliability that relate to394

justification. Information is, as it were, a mere “idle thought.” Oh,395

one other thing, I want to subtract the thinker. (...) Anyone who396

has searched for information on the Web does not have to have this397

concept drummed home. So much of what we find on the Web has398

no truth or justification, and one would have to be a fool to believe399

it (...) [Information] is something like a Fregean “thought,” i.e., the400

“content” of a belief that is equally shared by a doubt, a concern, a401

wish, etc.402

Information, so understood, is what is expresses by a proposition, indeed similar403

to a Fregean thought but without its platonic ingredient. It is objective, does not404

imply belief, does not need to be true. The difference between this bare-boned405

notion of information and the notion of non-conclusive evidence is that the latter406

has an epistemic ingredient that is lacking by the former. So, we can characterize407

non-conclusive evidence as bare-boned information plus a justification that might408

be wrong. Indeed, situations in which we have something that may be or may be409

not a justification for some proposition α are quite common, and there is nothing410

9This notion of evidence is in line with the discussion carried out in Achinstein (2010a,b);
Kelly (2014).
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wrong in saying that evidence, conclusive or non-conclusive, is still information:411

a proposition α is information, as well as the claim that α has been established412

as true. The notion of information is thus more general than evidence. It is not413

surprising, therefore, that both BLE and FDE are suitable to a non-dialetheist414

interpretation in terms of evidence and information.415

3 Extending FDE to a logic of evidence and truth416

FDE will now be extended to the logic LETF , in a similar way to what was417

done with BLE obtaining LETJ in Carnielli and Rodrigues (2017). Both LETJ418

and LETF are Logics of Formal Inconsistency and Undeterminedness (LFIU s)419

(cf. Carnielli and Rodrigues, 2017; Carnielli, Coniglio, and Rodrigues, 2019;420

Marcos, 2005). In LFI s,421

α,¬α ⊬ β, while ○α,α,¬α ⊢ β,422

and in LFU s,423

⊬ α ∨ ¬α, while ○α ⊢ α ∨ ¬α.10424

When ○α holds, and so excluded middle and explosion are valid, we say that α425

is classical. For this reason, in LFIU s, like the logics LETJ and LETF , we say426

that ○ is a classicality operator.427

Like BLE, the logic FDE, interpreted from the viewpoint of preservation428

of evidence, is not able to express preservation of truth. Indeed, none of the429

semantics presented for FDE in Section 2.1 can distinguish a context (i) where430

there there is non-conclusive evidence for α, so α has not been established as431

true, but no evidence for ¬α. from another context (ii) where there is conclusive432

evidence for α and so α has been established as true, and ¬α does not hold.433

In both (i) and (ii), α and ¬α receive respectively the values 1 and 0 by the434

valuation semantics (Definition 3), or the values T and F by the Belnap’s four435

valued semantics (Definition 14), and so we cannot distinguish between (i) and436

(ii). The logic LETF , on the other hand, is able to distinguish these contexts.437

Definition 23. The Logic of Evidence and Truth based on FDE (LETF )438

Let L2 be a language with a denumerable set of sentential letters {p1, p2, p3, ...},439

the set of connectives {○, ●,¬,∧,∨,} and parentheses. The set of formulas of L2440

is obtained recursively in the usual way. The logic LETF is defined over the441

language L2 by adding the following rules to the natural deduction system of442

FDE (Definition 1):443

10Definitions of Logics of Formal Inconsistency and Undeterminedness can be found in
Carnielli, Coniglio, and Rodrigues (2019) (Defs. 9 and 11). Note that the notion of incom-
pleteness in the interpretation of FDE in terms of evidence/information (e.g. Fact 11) is
analogous to the notion of undeterminedness in LFU s. Actually, in our view, except for the
same acronym of LFI s, LFU s could well be called Logics of Formal Incompleteness. The
name LFU was established in Marcos (2005) and adopted in Carnielli and Rodrigues (2017)
and Carnielli, Coniglio, and Rodrigues (2019).
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○α ●α
β

Cons ○α ∨ ●α Comp
444

445 ○α α ¬α
β

EXP ○ ○α
α ∨ ¬α PEM○

446

A deduction of α from a set of premises Γ in LETF , Γ ⊢LETF
α, is defined as447

follows: there is a derivation with conclusion α and all uncancelled hypotheses in448

Γ. The definition of a derivation is the usual one for natural deduction systems449

(see e.g. van Dalen (2008, pp. 35-36)).450

Theorem 24. The following properties hold for LETF :451

1. Reflexivity: if α ∈ Γ, then Γ ⊢LETF
α;452

2. Monotonicity: if Γ ⊢LETF
β, then Γ, α ⊢LETF

β, for any α;453

3. Transitivity (cut): if ∆ ⊢LETF
α and Γ, α ⊢LETF

β, then ∆,Γ ⊢LETF
β;454

4. Compactness: if Γ ⊢LETF
α, then there is ∆ ⊆ Γ, ∆ finite such that455

∆ ⊢LETF
α.456

Proof. Straightforward, from the definition of a deduction of α from premises457

in Γ in LETF .458

Fact 25. The following rules hold in LETF :

α ¬α
●α ●R1 α ∨ ¬α ∨ ●α ●R2

Proof. We prove ●R1. The proof of ●R2 is left to the reader.

○α ∨ ●α Comp
[○α]1 α ¬α

●α EXP ○ [●α]1
●α 1,∨E

459

3.1 On the connectives ○ and ●460

The rules PEM○ and EXP ○ recover classical logic for propositions in the scope461

of ○ (this claim will be made precise by Fact 31 below). As well as LETJ , LETF462

is suitable to an intuitive reading in terms of different contexts concerned with463

preservation of evidence and preservation of truth. But unlike LETJ , LETF has464

a non-classicality operator ●, dual to the classicality operator ○. This duality is465

made clear by the rules above (Fact 25): R1 is the dual of EXP ○, and R2 is the466

dual of PEM○11. While ○α implies a classical behavior for α, a non-classical467

11Actually, different versions of LETF can be obtained by adding to FDE, besides Cons
and Comp, the following pair of rules: PEM○ and EXP ○; ●R1 and ●R2; PEM○ and ●R1;
EXP ○ and ●R2. Notice that the rules EXP ○ and ●R2 are dual, as well as PEM○ and ●R1
(cf. Carnielli et al., 2019).
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behavior of α implies ●α. Notice that: (i) ○α does not imply α, rather, it implies468

that one and at most one between α and ¬α holds; (ii) ●α does not imply that α469

and ¬α hold; indeed, according to R2, if both α and ¬α do not hold, ●α holds.470

Strictly speaking, ○α recovers classical logic for α. The intended interpreta-471

tion of ○α is that there is conclusive evidence for α or ¬α, and so the truth-value472

of α is conclusively established as true or false. On the other hand, if evidence473

for α is non-conclusive, or it is contradictory, or there is no evidence at all, then474

●α holds. The rule Cons prohibits the circumstance such that there is and there475

is not conclusive evidence for α, while Comp expresses the fact that either there476

is or there is not conclusive evidence for α.477

478

Since LETF distinguishes conclusive from non-conclusive evidence, it is able479

to express the following six scenarios:12480

When ●α holds, four scenarios of non-conclusive evidence can be expressed:481

1. Only evidence that α is true: α holds, ¬α does not hold.482

2. Only evidence that α is false: ¬α holds, α does not hold.483

3. No evidence at all: both α and ¬α do not hold.484

4. Conflicting evidence: both α and ¬α hold.485

When ○α holds, two scenarios can be expressed, tantamount to classical486

truth and falsity:487

5. Conclusive evidence for α: α is true (○α ∧ α holds).488

6. Conclusive evidence for ¬α: ¬α is true (○α ∧ ¬α holds).489

Of course, a scenario with conclusive evidence for both α and ¬α is not allowed,490

since it would imply that α is true and false simultaneously. Indeed, if classical491

logic holds for α, it cannot be that there is any residual conflicting evidence for492

α and ¬α.493

3.2 Valuation semantics for LETF494

Definition 26. A valuation semantics for LETF is obtained by adding the495

following clauses to the valuation semantics of FDE (Definition 3):496

v6. v(●α) = 1 iff v(○α) = 0,497

v7. If v(○α) = 1, then v(α) = 1 if and only if v(¬α) = 0.498

12 In classical logic, ‘α holds’ means that α is true, while in FDE, according to the intended
interpretation in terms of evidence, ‘α holds’ means that there is evidence available for α. In
LETF , the meaning of ‘α holds’ depends on the context: if the context is classical, it means
that α is true. This is precisely the point of the classicality operator ○. So, two additional
scenarios can be expressed, besides the four scenarios of FDE.
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Definition 27. We say that a formula α is a semantical consequence of Γ,499

Γ ⊧LETF
α iff for every valuation v, if v(β) = 1 for all β ∈ Γ, then v(α) = 1.500

The valuation semantics given above in Definition 26 is sound, complete, and501

provides a decision procedure for LETF . From now on, when there is no risk of502

ambiguity, we will just write ⊢ and ⊧ in the place of ⊢LETF
and ⊧LETF

.503

Theorem 28. Soundness and completeness of LETF w.r.t. the valuation se-504

mantics: Γ ⊧ α iff Γ ⊢ α.505

Proof. In order to prove completeness, the proof of Theorem 6 has to be ex-506

tended to include clauses 6′ and 7′ below:507

v6 ′. ○α ∈ ∆ iff ●α ∉ ∆,508

v7 ′. ○α ∈ ∆ implies ¬α ∈ ∆ iff α ∉ ∆.509

For soundness, it can be shown that rules Cons, Comp, EXP ○, and PEM○ are510

sound with respect to clauses 6 and 7 of Definition 26 above. Details are left to511

the reader.512

513

The quasi-matrix below displays the behavior of the connectives ○ and ● in514

LETF .515

p 0 1

¬p 0 1 0 1

○p 0 1 0 1 0 0

●p 1 0 1 0 1 1

valuation 1 2 3 4 5 6

516

The first two lines display the possible values of p and ¬p. The connectives ○517

and ● are primitive and unary, but the semantic values of ○p and ●p depend518

(non-deterministically) on the semantic values of p and ¬p. When v(p) = 1 and519

v(¬p) = 0, v(p) = 0 and v(¬p) = 1, the value of ○p and ●p bifurcates into 0 and520

1. This expresses the fact that ○p is undetermined in LETF when v(p) ≠ v(¬p),521

as explained in page 14 above. In terms of evidence, valuations v1 and v6 show,522

respectively, that no evidence at all, as well as conflicting evidence, implies523

v(●p) = 1 and v(○p) = 0. But if only one holds among p and ¬p (valuations v2 to524

v5), then v(●p) and v(○p) are left undetermined. The rationale of this is that in525

order to say that p is true, or false, only the information that there is evidence526

for the truth, or for the falsity, of p is not enough. Something else is needed,527

namely, the information that such evidence is conclusive.13528

In Example 29 below we illustrate how quasi-matrices work in LETF .529

13Note that valuations express evidence available from a purely qualitative point of view.
An analogy with analytical chemistry at this point may be illuminating. Qualitative analysis
is concerned with whether or not some sample contains a given substance, while quantitative
analysis asks how much of a substance is contained in a sample. Analogously, the valuation
semantics represents only that there is or there is not positive and negative evidence available
for α, while the probabilistic semantics, presented in Section 4 below, intends to express the
amount of such evidence.
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Example 29. In LETF :530

1. p ∨ ¬p ⊭ ○p531

2. ●p ⊭ p ∧ ¬p532

3. ○p, p,¬p ∨ q ⊧ q;533

4. ○p, p,¬(p ∧ q) ⊧ ¬q;534

Proof. Consider the following quasi-matrix (divided into two parts):535

p 0

¬p 0 1

q 0 1 0 1

¬q 0 1 0 1 0 1 0 1

¬p ∨ q 0 0 1 1 1 1 1 1

¬(p ∧ q) 0 1 0 1 1 1 1 1

○p 0 0 0 0 0 1 0 1 0 1 0 1

●p 1 1 1 1 1 0 1 0 1 0 1 0

valuation 1 2 3 4 5 6 7 8 9 10 11 12

536

p 1

¬p 0 1

q 0 1 0 1

¬q 0 1 0 1 0 1 0 1

¬p ∨ q 0 0 1 1 1 1 1 1

¬(p ∧ q) 0 1 0 1 1 1 1 1

○p 0 1 0 1 0 1 0 1 0 0 0 0

●p 1 0 1 0 1 0 1 0 1 1 1 1

valuation 13 14 15 16 17 18 19 20 21 22 23 24

537

Item 1: since v24(p) = v24(¬p) = 1, v24(p ∨ ¬p) = 1, but v24(○p) = 0. Item 2:538

v1(●p) = 1, but v1(p ∧ ¬p) = 0, since v1(p) = v1(¬p) = 0. For items 3 and 4, it539

is easy to check that there is no valuation v such that the premises receive the540

value 1 but the conclusion receives 0 in v (compare with items 1 and 2 of Fact541

7).542

Remark 30. The 7th row of the quasi-matrix above is given by clause v7 and543

the 8th by clause v6 of Definition 26. A quasi-matrix for LETF is finite, and544

similarly to FDE (see Remark 8), it is intuitively clear that the valuation se-545

mantics provides a decision procedure for LETF . A detailed algorithm will be546

presented elsewhere.547

3.3 Some facts about LETF548

Fact 31 below shows how the operator ○ recovers classical logic in LETF .549
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Fact 31. Recovering classical logic in LETF550

Suppose ○¬n1α1, ○¬n2α2, . . . , ○¬nmαm hold, for ni ≥ 0 (where, ¬ni , ni ≥ 0, rep-551

resents ni iterations of negations of the formula αi). Then, for any formula β552

formed with α1, α2, . . . , αm over {∧,∨,¬}, β behaves classically.553

Proof.554

First, we show that for any value of ni ≥ 0, ○¬niαi ⊢ αi ∨ ¬αi and ○¬niαi, αi ∧555

¬αi ⊢ γ, for any γ – i.e. excluded middle and explosion hold for αi.556

Suppose ○¬niαi holds. So, ¬niαi ∨ ¬¬niαi and ¬niαi ∧ ¬¬niαi ⊢ γ hold. If ni557

is even, ¬niαi ⊣⊢ αi, and if ni is odd, ¬niαi ⊣⊢ ¬αi. So, it is easily proved558

that ¬niαi ∨¬¬niαi ⊢ αi ∨¬αi. Since we have that ○¬niαi ⊢ ¬niαi ∨¬¬niαi, by559

transitivity, we get ○¬niαi ⊢ αi ∨ ¬αi. In order to recover explosion, it can be560

easily proved that αi∧¬αi ⊢ ¬niαi∧¬¬niαi. Since we have that ○¬niαi,¬niαi∧561

¬¬niαi ⊢ γ, by transitivity, we get ○¬niαi, αi ∧ ¬αi ⊢ γ.562

Remember that full classical logic can be obtained by adding explosion and563

excluded middle to the introduction and elimination rules of ∧ and ∨, α1 → α2564

being defined as ¬α1 ∨ α2. Now, in order to prove the result, it is enough565

to show that for any formula β formed with α1, α2, . . . , αm over {∧,∨,¬}, if566

○¬n1α1, ○¬n2α2, . . . , ○¬nmαm hold, then ⊢ β ∨ ¬β and β,¬β ⊢ γ hold.567

Let Γ = {○¬n1α1, ○¬n2α2, . . . , ○¬nmαm}.568

If β = αi, it has been proved above. The remaining cases are proved by induction569

on the complexity of β.570

Case 1. β = ¬δ. I.H. Γ, δ,¬δ ⊢ γ and Γ ⊢ δ ∨ ¬δ. It can be easily proved that571

Γ,¬δ,¬¬δ ⊢ γ and Γ ⊢ ¬δ ∨ ¬¬δ.572

Case 2. β = δ1 ∧ δ2. I.H. Γ, δ1,¬δ1 ⊢ γ and Γ ⊢ δ1 ∨ ¬δ1, mutatis mutandis for573

δ2. It can be proved that Γ, δ1 ∧ δ2,¬(δ1 ∧ δ2) ⊢ γ and Γ ⊢ (δ1 ∧ δ2) ∨ ¬(δ1 ∧ δ2)574

The remaining cases are left to the reader.575

We have seen in Fact 9 that for an implication α → β defined in FDE576

as ¬α ∨ β, modus ponens and the deduction theorem do not hold. Both are577

recovered for the defined implication in LETF for classical propositions.578

Fact 32.579

1. In LETF , for classical propositions, modus ponens holds: ○α,α,¬α ∨ β ⊢ β.580

Proof.

¬α ∨ β
○α α [¬α]1

β
EXP ○

[β]1

β
1,∨E

581

2. In LETF , the following form of the deduction theorem holds: ○α,α ⊢ β582

implies ○α ⊢ ¬α ∨ β.583
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Proof.

○α
α ∨ ¬α PEM○

○α, [α]1
....
β

¬α ∨ β
∨I

[¬α]1

¬α ∨ β
∨I

¬α ∨ β
1,∨E

584

Definition 33. Supplementing and complementing negations (Carnielli et al.,585

2007, pp. 12ff)586

1. We say that a unary connective ∗ in a logic L is a supplementing nega-587

tion if: (i) for some formula α, ∗α is not a bottom particle, and (ii) for588

any Γ, α and β: Γ, α,∗α ⊢L β.589

2. We say that a unary connective ∗ in a logic L is a complementing nega-590

tion if: (i) for some formula α, ∗α is not a top particle;591

(ii) for any Γ, α and β: Γ, α ⊢L β and Γ,∗α ⊢L β implies Γ ⊢L β.592

If ∗ is a complementing negation, for any α, at least one between α and ∗α hold,593

and if ∗ is a complementing negation, it cannot be that both α and ∗α hold.594

Each one expresses one half of classical negation, the former excluded middle,595

the latter explosion. If a logic L has a (primitive or defined) negation connective596

that is both supplementing and complementing, then L has a classical negation.597

A complementing negation and a supplementing negation can be defined in598

LETF .599

Definition 34. The following unary connectives can be defined in LETF :600

1. The connective truth: ⊕α def= ○α ∧ α;601

2. The connective falsity: ∼α def= ○α ∧ ¬α;602

3. The connective falsity-excluding: ⊖α def= ●α ∨ α;603

4. The connective truth-excluding: ≈α def= ●α ∨ ¬α.604

The tables are the following:605

α 0 1
¬α 0 1 0 1
○α 0 0 1 0 1 0
●α 1 1 0 1 0 1
⊕α 0 0 0 0 1 0
∼α 0 0 1 0 0 0
⊖α 1 1 0 1 1 1
≈ α 1 1 1 1 0 1

606
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These connectives have been named for the following reasons. According to the607

proposed interpretation: (1) ○α ∧ α means that there is conclusive evidence for608

α, and so α is true (⊕α); (2) ○α ∧ ¬α means that there is conclusive evidence609

for the falsity of α, and so α is false (∼α); (3) ●α ∨ α means that there is no610

conclusive evidence for α, or α holds, and so it excludes the falsity of α (⊖α); (4)611

●α∨¬α means that there is no conclusive evidence for α, or ¬α holds, and so it612

excludes the truth of α (≈α). It is also clear from the table above and Definition613

33 that ∼α is a supplementing negation (if v(α) = 1, v(∼α) = 0, they cannot614

be both 1), while ≈α is a complementing negation (if v(α) = 0, v(≈α) = 1, they615

cannot be both 0).14 We conjecture that no classical negation can be defined in616

LETF .15617

These four connectives enjoy some interesting logical relations w.r.t. each618

other that can be displayed by a square of oppositions:619

⊕α ∼α

⊖α ≈α

Contradictory

Contrary

Subcontrary

D
u

al
D

u
al

620

∼α and ⊕α are contrary propositions (i.e., they can both be false, but they621

cannot both be simultaneously true); ≈α and ⊖α are subcontrary propositions622

(i.e., they can both be true, but they cannot both be simultaneously false); ⊕α623

(resp. ∼α) is the dual of ⊖α (resp. ≈α); ⊕α (resp. ∼α) is the contradictory624

of ≈α (resp. ⊖). Notice that in LETF , ○ is the dual of ●, and ¬ is the dual625

of itself (on duality between non-deterministic connectives in Logics of Formal626

Inconsistency and Undeterminedness, see Carnielli et al. (2019)).627

Fact 35.628

1. ○α∧α∧¬α, ○α∧ ●α, ⊕α∧ ∼α, ⊕α∧ ≈α, and ⊖α∧ ∼α are bottom particles629

in LETF .630

14Although ∼ is explosive, it is not a classical negation, since α ∨ ∼α does not hold, which
is shown by the valuation v(α) = v(¬α) = v(○α) = 0, and although α ∨ ≈α holds, ≈ is also
not a classical negation, since α,≈α ⊢ β does not hold, which is shown by the valuation
v(α) = v(¬α) = v(●α) = 1.

15One possibility for proving that classical negation is not definable in LETF is to adapt the
methods of Lahav, Marcos, and Zohar (2016), although they are devoted to non-classical nega-
tions from a modal viewpoint. We have been unable however, to find a convincing argument
in this direction.
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2. ∼ is a supplementing negation in LETF .631

3. ≈ is a complementing negation in LETF .632

Proof. In a few steps from the rules Cons, EXP ○ and ●R2.633

Theorem 36. The following propositions are theorems of LETF :634

1. ○α ∨ ●α635

2. α ∨ ¬α ∨ ●α636

3. (●α ∧ α) ∨ (●α ∧ ¬α) ∨ ●α ∨ (●α ∧ α ∧ ¬α) ∨ (○α ∧ α) ∨ (○α ∧ ¬α)637

4. α ∨ ¬α ∨ ⊖α638

5. α ∨ ¬α ∨ ≈α639

6. ⊕α ∨ ∼α ∨ ●α640

Proof. Items 1 and 2 follow from the rules Comp and R2. To prove 3, from641

○α ⊢ α ∨ ¬α, we obtain ○α ⊢ (○α ∧ α) ∨ (○α ∧ ¬α), and so ○α ⊢ (●α ∧ α) ∨642

(●α ∧ ¬α) ∨ ●α ∨ (●α ∧ α ∧ ¬α) ∨ (○α ∧ α) ∨ (○α ∧ ¬α). On the other hand,643

●α ⊢ (●α∧α)∨ (●α∧¬α)∨●α∨ (●α∧α∧¬α)∨ (○α∧α)∨ (○α∧¬α) holds. Now,644

use 1 and ∨E. The proofs of 4, 5, and 6 are left to the reader. Notice that item645

3 corresponds to the six scenarios presented in Section 3.1.646

4 Probabilistic semantics for LETF647

We now present a probabilistic semantics for LETF and FDE.648

Definition 37. Given a logic L, with a derivability relation ⊢ and a language649

L, a probability distribution for L is a real-valued function P ∶ L→ R satisfying650

the following conditions:651

1. Non-negativity: 0 ≤ P (α) ≤ 1 for all α ∈ L;652

2. Tautologicity: If ⊢ α, then P (α) = 1;653

3. Anti-Tautologicity: If α = �, then P (α) = 0;654

4. Comparison: If α ⊢ β, then P (α) ≤ P (β);655

5. Finite additivity: P (α ∨ β) = P (α) + P (β) − P (α ∧ β).656

The clauses above can be regarded as meta-axioms that define probability func-657

tions for an appropriate logic L just by taking ⊢ as the derivability relation of658

L, and so the notion of probability can be regarded as logic-dependent. These659

clauses define probability functions for both FDE and LETF just by employing660
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respectively ⊢FDE and ⊢LETF
.16 From now on, we will concentrate on LETF ,661

but it should be clear that the meta-axioms 1, 4 and 5 above define probability662

distributions for FDE as well.663

Definition 38. LETF -probability distribution664

Let Σ = {α1,⋯, αn,⋯} be a (finite or infinite) collection of propositions in the665

language L2 of LETF . A LETF -probability distribution over Σ is an assign-666

ment of probability values P to the elements of Σ that can be extended to a full667

probability function P ∶ L2 → R according to Definition 37.668

It is a common view that the classical truth-values true (1) and false (0)669

can be identified with the endpoints of probabilities in the unit interval [0,1].670

On the other hand, interpretations v ∶ L → {0,1} of a formal language L can671

be regarded as degenerate probability functions P ∶ L → [0,1]. The class of672

logics that make possible such an identification can be seen as a special case of673

probability logic. The standard view, however, is rather the opposite: it claims674

that probability logic presupposes, and so it depends on, classical logic.17 But675

the connection between logic and probability theory is far from being restricted676

to classical logic. The fact that probability distributions can be defined based on677

a non-classical consequence relation, in our view, makes clear that the relation678

between logic and probability goes beyond the realm of classical logic.679

4.1 Conditional probability680

The notion of conditional probability of α given β is defined as usual, for P (β) ≠ 0:681

P (α/β) =
P (α ∧ β)
P (β)682

In terms of evidence, a statement P (α/β) is to be read as a measure of how683

much the evidence available for β affects the evidence for α.684

685

Some useful theorems of conditional probability of LETF -distributions are686

the following, with the caveat that P (β) ≠ 0 in all cases where P (α/β) is men-687

tioned:688

16Probability functions have been defined in this way for classical logic, for intuitionistic
logic without implication in Weatherson (2003), and for the paraconsistent logics Ci and Cie
in Bueno-Soler and Carnielli (2016, 2017).

17In a recent article, Demey et al. (2013) claim that “probability theory presupposes and
extends classical logic”, and leave aside all the attempts to combine probability theory with
non-classical logics. These attempts, however, not only do exist, but have also been successful
in combining probability theory with non-classical approaches to logical consequence. We
think Demey et al. are mistaken, not only because they ignore non-classical approaches to
probability logic, but also because they underestimate the view according to which classical
and some non-classical logics can be seen as special cases of probability logic. It is worth
noting that attempts to put together probability theory and non-classical logics can be traced
back to  Lukasiewicz (1913) and Tarski (1935).
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Theorem 39.689

The following properties hold when the probabilities in the denominators are690

different from 0.691

1. P (α1 ∧ ... ∧ αn) = P (α1/α2 ∧ ... ∧ αn)...P (αn−1/αn)P (αn) (Chain Rule).692

2. P (α/β ∧ γ) = P (α/γ)⋅P (β/α∧γ)
P (β/γ)

.693

3. P (α ∧ β/γ) = P (α/γ) ⋅ P (β/α ∧ γ) = P (β/γ) ⋅ P (α/β ∧ γ).694

4. P (α ∨ β/γ) = P (α/γ) + P (β/γ) − P (α ∧ β/γ).695

5. P (α ∨ β/γ) = P (α/γ) + P (β/γ) if α and β are logically incompatible, i.e.,696

α ∧ β act as a � (see Section 4.2).697

6. P (α/β) + P (¬α/β) − P (●α/β) ≤ P (α ∨ ¬α/β).698

7. If P (○α) = 1, or equivalently P (●α) = 0, then P (α ∨ ¬α) = 1 and P (α ∧699

¬α) = 0.700

8. P (α/β) + P (¬α/β) = 1, if P (○α) = 1.701

9. P (β/○β) + P (¬β/○β) = 1.702

Proof.703

Items 1 to 4 are quite elementary properties coming from the general704

definition of conditional probability: P (α/β) = P (α∧β)
P (β)

, which gives the705

alternative product rule P (α ∧ β) = P (α/β) ⋅ P (β). The chain rule (item706

1) is derived by successive applications of product rule. Items 2 to 4 are707

easy consequences of the definition of conditional probability and clause 5708

of Definition 37.709

Item 5: since α∧β is a bottom particle in this case, P (α∧β) = 0, and the710

result follows from 4.711

Item 6 is a consequence of Fact 25 (α ∧ ¬α ⊢ ●α), Comparison and ele-712

mentary inequalities, plus the definition of conditional probability.713

Item 7: Easy consequence of Definition 22, R1 (Fact 24) and Comparison714

(Definition 35).715

Item 8: If P (○α) = 1, then by 9 P (α∨¬α) = 1, and by Lemma 40 (below)716

we have P ((α ∨ ¬α) ∧ β) = P (β) = P ((α ∧ β) ∨ (¬α ∧ β)) = P (α ∧ β) +717

P (¬α ∧ β) − P (α ∧ ¬α ∧ β). Since P (α ∧ ¬α ∧ β) = 0 (P (○α) = 1 implies718

P (α ∧ ¬α) = 0), we obtain P (β) = P (α ∧ β) + P (¬α ∧ β). Dividing both719

sides by P (β) obtains the result, in view of the definition of conditional720

probability.721
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Item 9: In LETF , ⊢ ○β ↔ ○β∧(β∨¬β)↔ (○β∧β)∨(○β∧¬β) (proof left to722

the reader). Thus P (○β) = P ((○β∧β)∨(○β∧¬β)) = P (○β∧β)+P (○β∧¬β)723

by Finite Additivity, since ○β ∧ β ∧ ¬β is a bottom particle (Fact 33).724

Dividing both sides by P (○β) yields the result.725

726

4.2 Independence and incompatibility727

Intuitively, two propositions are independent if the fact that one holds does728

not have any effect on whether or not the other holds, and vice-versa. Two729

propositions α and β, are said to be independent w.r.t. a distribution P if730

P (α ∧ β) = P (α) ⋅ P (β). Two propositions can be independent relative to731

one probability distribution and dependent relative to another. Alternatively,732

independence can be defined as follows: α is independent of β if P (α/β) = P (α)733

(or equivalently, P (β/α) = P (β)).18 Classically, α and ¬α are never independent734

(unless one of them has probability zero). In view of item 4 of Theorem 42735

below, P (α ∧ ¬α) ≤ P (●α), hence when P (α) ⋅ P (¬α) > P (●α), α and ¬α are736

not independent. In this way, P (●α) can be regarded as a bound on the ‘degree737

of independence’ between α and ¬α.738

Intuitively, two propositions α and β are logically incompatible if α cannot739

hold when β holds, and vice-versa. Two propositions α and β, are said to740

be logically incompatible if α,β ⊢ γ, for any γ, or equivalently, if α ∧ β is a741

bottom particle. Logically incompatible propositions α and β with non-zero742

probabilities are always dependent since 0 = P (α ∧ β) ≠ P (α) ⋅P (β). Again, for743

non-zero probabilities, classically α and ¬α are incompatible, and so dependent.744

In LETF , however, they are neither necessarily incompatible nor necessarily745

dependent, when P (○α) < 1. We saw in Fact 35 item 1 that α ∧¬α ∧ ○α as well746

as ○α∧●α defines a bottom particle in LETF . From clause 3 of Definition 37, it747

follows that for any probability distribution P , P (α ∧ ¬α ∧ ○α) = 0 and P (○α ∧748

●α) = 0. So, in LETF α and ∼α are always logically incompatible and hence749

dependent, while α and ¬α can be independent.750

An interesting property concerning the behavior of probability measures in751

LETF , related to independence in ‘extreme cases’, occurs when P (α) = 1. In752

such cases α is independent from the probability measure of any other distinct753

proposition β. This kind of property contributes to the dynamics of evidence, in754

the sense of the interpretation of preservation of conclusive and non-conclusive755

evidence in LETF , in such a way that the increasing of conclusive evidence756

tends to truth.757

Lemma 40. Independence of propositions with maximal probability758

If P (α) = 1 then P (α ∧ β) = P (α) ⋅ P (β), for β ≠ α759

18Although mathematically equivalent to the former, this characterization of independence
by means of conditional probability is debatable, as shown in Fitelson and Hájek (2017),
where it is argued that the more general Popperian theory of conditional probability should
be adopted, leading to a revision of conventional insights about probabilistic independence.
The traditional notions are employed here for mathematical convenience.
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Proof. If P (α) = 1 then P (α ∨ β) = 1 from Comparison, since α ⊢ α ∨ β. By760

Finite Additivity 1 = P (α∨β) = P (α)+P (β)−P (α∧β). As P (α) = 1, it follows761

that P (α ∧ β) = P (β).762

The restriction α ≠ β in the above lemma intends to avoid the problematic cases763

of ‘self-independence’ of extreme events. As mentioned before, two events α764

and β are considered to be independent if P (α ∧ β) = P (α) ⋅ P (β), for some765

probability distribution P . This leads to a puzzling situation concerning events766

α such that P (α) = 0 or P (α) = 1. In such cases, P (α) = P (α∧α) = P (α) ⋅P (α)767

in both cases. In this way, extreme probabilities can be regarded as independent768

of themselves, an uncomfortable situation, as recognized in Fitelson and Hájek769

(2017).770

Lemma 40 leads immediately to the independence of consistent and incon-771

sistent propositions in extreme cases:772

1. If P (○α) = 1 then P (○α ∧ β) = P (β), for β ≠ ○α773

2. If P (●α) = 1 then P (●α ∧ β) = P (β), for β ≠ ●α774

3. If P (β) = 1 then P (○α ∧ β) = P (○α), for β ≠ ○α775

4. If P (β) = 1 then P (●α ∧ β) = P (●α), for β ≠ ●α776

Evidence can be increasing or decreasing in an historical series, leading to a dy-777

namic of evidence. This can be expressed in mathematical terms by elementary778

series. Let limi→∞Pi(α) = λmean that the sequence of values P1(α), P2(α),⋯, Pi(α)⋯779

is strictly monotonous and converges to λ ∈ [0,1].780

Lemma 41. The dynamics of evidence781

1. If limi→∞Pi(○α) = 1 or limi→∞Pi(●α) = 0, then limi→∞Pi(α ∨ ¬α) = 1782

and limi→∞Pi(α ∧ ¬α) = 0.783

2. If limi→∞Pi(○α) = 1 or limi→∞Pi(●α) = 0, then limi→∞(Pi(α)+Pi(¬α)) =784

1.785

Proof. Suppose limi→∞ Pi(○α) = 1; by PEM○ and Comparison, Pi(○α) ≤ Pi(α∨786

¬α) ≤ 1. By the Squeeze Theorem of elementary calculus for series (aka the787

Sandwich Theorem) limi→∞Pi(α∨¬α) = 1. All other limits are proved in similar788

ways.789

The meaning of Lemma 41 is precisely that the values of Pi(○α) can be in-790

terpreted as degrees of classicality, in the sense that greater values of Pi(○α)791

indicate that the situation is approaching classicality and, conversely, the val-792

ues of Pi(●α) can be interpreted as degrees of anticlassicality, in the sense that793

smaller values of Pi(●α) indicate that the situation is approaching classicality.794

795

Some useful (though almost all immediate) properties of LETF -distributions796

are the following:797
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Theorem 42.798

1. If α ⊣⊢ β, then P (α) = P (β).799

2. P (α ∨ β) = P (α) + P (β), if α and β are logically incompatible.800

3. P (α∨β∨γ) = P (α)+P (β)+P (γ)−P (α∧β)−P (α∧γ)−P (β∧γ)+P (α∧β∧γ).801

4. P (α ∧ ¬α) ≤ P (●α).802

5. P (○α) ≤ P (α ∨ ¬α).803

6. P (○α) = 1 − P (●α).804

7. P (⊕α ∧ ¬α) = 0, P (∼α ∧ α) = 0.805

8. P (○α ∨ ●α) = 1, P (α ∨ ¬α ∨ ●α) = 1806

9. P (○α ∨ (α ∧ ¬α)) ≤ P (α ∨ ¬α)807

10. 1 + P ((α ∨ ¬α) ∧ ●α) = P (α ∨ ¬α) + P (●α)808

11. 1 + P ((α ∧ ¬α) ∨ ○α) = P (α ∧ ¬α) + P (○α)809

12. If P (○α) = 1 (or equivalently P (●α) = 0), then P (¬α) = 1 − P (α)810

13. If P (○α) = 1 (or equivalently P (●α) = 0), then P (α ∨ ¬α) = 1 and P (α ∧811

¬α) = 0.812

Proof. Routine, from the axioms of probability and the derivability relation of813

LETF . We just sketch the proof of items 12 and 13. For 12, suppose P (○α) = 1;814

by items 4 and 5 above, PEM○, and Comparison, 1 = P (○α) ≤ P (α∨¬α), and815

P (α ∧ ¬α) ≤ P (●α) = 0, hence by Finite Additivity P (α ∨ ¬α) + P (α ∧ ¬α) =816

1 + 0 = P (α) + P (¬α). Hence P (¬α) = 1 − P (α). For 13 a similar reasoning as817

of 12 is obtained.818

Items 1 and 2 are usual results in probabilistic logic, and 3 is a particular819

case of the Inclusion-Exclusion property for finite probability, easily adapted820

for propositions, that hold for arbitrary finite disjunctions (see Grinstead and821

Snell (1997)). Items 4 and 5 establish constraints on the values of P (○α),822

P (α) and P (¬α). Item 7 concerns bottom particles, and 8, theorems of LETF823

essential for proving total probability theorems (Section 4.3 below). Items 12824

and 13 show the classical behavior of probabilities when P (○α) = 1.825
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4.3 Total probability theorems for LETF826

In the classical approach to probability, total probability theorems compute
the probability of an event β in a sample space partitioned into exclusive and
exhaustive events. Typically, for a partition in two pieces, a total probability
theorem that reflects excluded middle assumes the following form:

P (β) = P (β ∧ α) + P (β ∧ ¬α).

Here, however, we are not really talking about sample spaces, about events827

themselves, but rather about the information related to such events, that we call828

an information space. In the standard approach to probability theory, we start829

from a group of events, say, the two outcomes of tossing a coin, and attribute830

probabilities to these events, whose sum is always equal to 1. Let α express that831

the toss of a coin comes up heads. The sample space is thus divided into two832

parts, α and ¬α, corresponding respectively to heads and tails (not heads). If833

the coin behaves as expected, their probability are the same.834

On the other hand, we consider here a language that is able to express in-835

formation about some event – for example, the result of a referendum – that836

comes from different sources and may be unreliable. Such information is consti-837

tuted by evidence for ‘yes’ and for ‘no’ that can be non-conclusive, incomplete,838

contradictory, more reliable or less reliable, and perhaps even conclusive. Let839

α express the result ‘yes’, and ¬α the result ‘no’. In this case, the propositions840

we are concerned with are α,¬α, ○α, ●α, as well as other propositions of the841

language of LETF formed from them, for example, ●α ∨ α, α ∧ ¬α, ○α ∧ α, etc.842

A LETF -probability distribution attributes values to these propositions. The843

information space is thus constituted by such propositions and the measures844

of probabilities attributed to them by a LETF -probability distribution P. Note845

that, contrary to the classical case, P (α) + P (¬α) can be greater or less than846

1 precisely because α and ¬α do not establish a partition of the information847

space.848

Now, the question is: since we cannot rely on the classical, mutually exclusive849

partitions of the sample space, how can total probability theorems be stated? In850

order to provide such theorems for LETF , we have to rely on the connectives ○,851

●, and on the connectives defined in Fact 34. We also need a bit of terminology.852

Definition 43. (Cleavage)853

Let us call a cleavage a (finite) family of propositions {α1, α2, ..., αn}. A cleavage854

is said to be exhaustive if α1∨α2∨ ...∨αn is a tautology, and so it covers all the855

information space, possibly with intersections. A cleavage is said to be exclusive856

when α1 ∨ α2 ∨ ... ∨ αn are pairwise logically incompatible. In this case, it does857

not yield intersection of information (in the sense that αi ∧ αj for i ≠ j is a858

bottom particle), and possibly does not cover the whole space. An exhaustive859

and exclusive cleavage is a partition.860

Items 2 to 5 of Theorem 36 cleave the information space exhaustively but not861

exclusively. Items 1 and 6, on the other hand, cleave the information space862

in parts that are exhaustive and exclusive, and so they are partitions. Notice863
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that item 3 of Theorem 36 corresponds to the six scenarios of conclusive and864

non-conclusive evidence that we have seen in Section 3.1. These scenarios can865

be graphically represented as follows:866

●α ∧ α ●α ∧ ¬α ●α ●α ∧ (α ∧ ¬α) ○α ∧ α ○α ∧ ¬α
1 2 3 4 5 6

867

Item 1 of Theorem 36 above emphasizes the division between non-conclusive868

evidence (scenarios 1 to 4) and conclusive evidence (scenarios 5 and 6), while869

item 6, in addition, splits the conclusive evidence into truth (5) and falsity870

(6). These propositions can be understood as expressing different ways we can871

look at the information space. The following total probability theorems can be872

obtained depending upon certain cleavages, based on Theorem 36.873

Theorem 44. Total probability theorems874

1. P (β) = P (β ∧ ○α) + P (β ∧ ●α), w.r.t. the cleavage {○α, ●α}.875

2. P (β) = P (β ∧α)+P (β ∧¬α)+P (β ∧●α)−P (β ∧α∧●α)−P (β ∧¬α∧●α),876

w.r.t. the cleavage {α,¬α, ●α}.877

3. P (β) = P (β ∧ ○α ∧ α) + P (β ∧ ○α ∧ ¬α) + P (β ∧ ●α) − P (β ∧ ●α ∧ α ∧ ¬α),878

w.r.t. cleavage {●α ∧ α, ●α ∧ ¬α, ●α, ●α ∧ α ∧ ¬α, ○α ∧ α, ○α ∧ ¬α}.879

4. P (β) = P (β∧α)+P (β∧¬α)+P (β∧⊖α)−P (β∧α∧⊖α)−P (β∧¬α∧⊖α),880

w.r.t. the cleavage {α,¬α,⊖α}.881

5. P (β) = P (β ∧α)+P (β ∧¬α)+P (β ∧≈α)−P (β ∧α∧≈α)−P (β ∧¬α∧≈α),882

w.r.t. the cleavage {α,¬α,≈α}.883

6. P (β) = P (β∧⊕α)+P (β∧∼α)+P (β∧●α), w.r.t. the cleavage {⊕α,∼α, ●α}.884

Proof. 1. β ⊣⊢ (β ∧ ○α) ∨ (β ∧ ●α). So, P (β) = P ((β ∧ ○α) ∨ (β ∧ ●α)) =885

P (β ∧○α)+P (β ∧●α)−P (β ∧○α∧●α) = P (β ∧○α)+P (β ∧●α). The remaining886

proofs are left to the reader. In view of Definition 3.1 (connectives ⊕, ∼, ⊖, ≈),887

some of these cleavages are equivalent.888

889

4.4 Bayes’ rule890

As is well-known, Bayes’ rule, or Bayes’ theorem, computes the probability of891

an event based on previous information related to that event. The standard892

Bayes’ rule proves that, for P (β) ≠ 0:893

P (α/β) =
P (β/α) ⋅ P (α)

P (β)894

In the equation above, interpreted in terms of measures of evidence rather than895

standard probabilities, P (α) denotes the evidence available for α without taking896
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into consideration any evidence for β. The latter is supposed to affect someway897

the evidence for α, and so P (α/β) is the measure of the evidence for α after898

β is taken into account. P (β/α), usually called the ‘likelihood’ in probability899

theory, is the evidence for β when α is considered as given, and P (β), usually900

called the ‘marginal likelihood’, is the total evidence available for β, that takes901

into account all the possible cases where β may occur. In what follows, we902

define some relevant versions of Bayes’ rule. Differently from the classical case,903

these versions are not equivalent. They show how the notion of classicality can904

modify Bayesian probability updating.905

Theorem 45. Bayes’ Conditionalization Rules906

907

1.

P (α/β) =
P (β/α) ⋅ P (α)

P (β/○α) ⋅ P (○α) + P (β/●α) ⋅ P (●α)
908

for P (β) ≠ 0, P (○α) ≠ 0, and P (●α) ≠ 0.909

Proof. From the definition of conditional probability and Theorem 44,910

item 1.911

2.912

P (α/β) =

P (β/α) ⋅ P (α)

P (β/α) ⋅ P (α) + P (β/¬α) ⋅ P (¬α) + P (β/●α) ⋅ P (●α)−
P (β/α ∧ ●α) ⋅ P (α ∧ ●α) − P (β/¬α ∧ ●α) ⋅ P (¬α ∧ ●α)

913

for P (β) ≠ 0, P (α ∧ ●α) ≠ 0, and P (¬α ∧ ●α) ≠ 0.914

Proof. From the definition of conditional probability and Theorem 44,915

item 2.916

3.917

P (α/β) =
P (β/α) ⋅ P (α)

P (β/⊕α) ⋅ P (⊕α) + P (β/∼α) ⋅ P (∼α) + P (β/●α) ⋅ P (●α)
918

for P (β) ≠ 0, P (●α) ≠ 0, P (⊕α) ≠ 0, and P (⊖α) ≠ 0.919

Proof. From the definition of conditional probability and Theorem 44,920

item 6.921

It should be clear that the process of limit can be easily established for the above922

formulations of Bayes’ rules. If lim Pi(○α) = 1 (or equivalently lim Pi(●α) = 0)923

then item 1 above reduces to P (○α/β) = 1. Analogously, if lim Pi(●α) = 0 (or924

equivalently lim Pi(○α) = 1), then items 2 and 3 above reduce to the standard925

form of Bayes’ rule.926
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5 Final remarks927

This paper has been conceived to be a further development of the approach928

to paraconsistency as preservation of evidence presented in Carnielli and Ro-929

drigues (2017, 2019), where an interpretation of contradictions in terms of non-930

conclusive evidence was proposed. The underlying assumption is that there are931

no true contradictions, but rather argumentative contexts in which conflicting932

evidence, as well as the absence of any evidence, may occur. The valuation933

semantics is able to express only that there is or there is not evidence for a934

proposition α, while the probabilistic semantics presented here intends to ex-935

press the degree of evidence enjoyed by a given proposition. The acceptance of936

scenarios in which P (α) + P (¬α) > 1, however, does not mean that there may937

be something like ‘contradictory sample spaces’, or ‘contradictory probabilistic938

spaces’. The latter would be the probabilistic counterpart of contradictions in939

reality, a view on paraconsistency not endorsed by us. In our view, it is the940

information available about some collection of events that can be contradictory.941

So, instead of talking about sample spaces, the concept of an information space942

has been introduced here.943

Both LETJ and LETF are Logics of Formal Inconsistency and Undeter-944

minedness suitable for an intuitive interpretation in terms of preservation of945

evidence and truth. The intuition regarding ○ and ● as ‘classically contradic-946

tory’ w.r.t. each other had already been presented in Carnielli, Coniglio, and947

Rodrigues (2019, Section 4.4). LETF , however, as far as we know, is the first948

formal system where these connectives are both primitive and have the deduc-949

tive behavior given by rules Cons and Comp, that are in some sense analogous950

to explosion and excluded middle. The connective ●, and the fact that ○α ∨ ●α951

and α∨¬α∨●α are theorems of LETF , are essential for proving total probability952

theorems and Bayes’ rules (Theorems 44 and 45).953

The probabilistic semantics of LETF has been axiomatically stated in defi-954

nitions 37 and 38. Accordingly, P (α)+P (¬α) can be greater or less than 1, and955

this is interpreted as scenarios, respectively, of conflicting evidence, and little956

or no evidence. When P (○α) = 1, the classical behavior of P (α) and P (¬α) is957

restored, and this is interpreted as saying that the evidence available for α and958

¬α is subjected to the laws of standard probability theory. But P (○α) may be959

less than 1, and in this case, according to the axioms, it expresses the degree to960

which P (α) and P (¬α) are expected to behave classically (the value of P (○α)961

establishes constraints on the values of P (α∨¬α) and P (α∧¬α), cf. Lemma 41).962

Accordingly, P (○α) < 1 can be intuitively interpreted as expressing the reliabil-963

ity of the available evidence for α and ¬α: greater reliability corresponds to a964

greater degree of classicality.965

Our treatment here does not intend to express degrees of belief by means966

of probability measures. The notion of evidence for α, as explained in Section967

2.2.1, does not imply belief in α. So, the degree of evidence for α measured968

by a statement P (α) = ε is not a measure of the belief of an agent in α. How-969

ever, nothing a fortiori prevents the formal system proposed here, together with970

its probabilistic semantics, of being interpreted, or used, as a tool to measure971
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degrees of belief, uncertainty, or some other relation between agents and propo-972

sitions. Similar remarks apply to the connective ○. In P (○α) = ε, the value973

of ε expresses the degree to which it is expected that P (α) behaves classically.974

Indeed, ε can also be interpreted as the degree of reliability of evidence for975

α, coherence with previous data or with a historical series of measures of evi-976

dence for α, or even with a subjective ingredient, for example, as the degree of977

trustfulness of the belief in α, or certainty/uncertainty of α.978

The rules for ○ and ●, due to their dual character, show a symmetry that979

deserves to be further investigated from the proof-theoretic point of view. There980

are some extensions of LETJ and LETF that also deserve to be studied. The981

operator ● and the rules Cons and Comp can be added to LETJ , obtaining982

a logic that differs from LETF only in the implication for the non-classical983

propositions. Two intuitively appealing equivalences are the following:984

1. ○α ⊣⊢ ○○α985

2. ○α ⊣⊢ ○¬α986

It was shown in Carnielli and Rodrigues (2017, Fact 17) that LETJ has no987

theorems of the form ○α (the same result also holds for LETF ), and it was988

argued that LETJ (and so LETF ) was conceived in such a way that ○ has to be989

introduced from outside the formal system. This is in line with the idea that990

information about conclusive evidence for a proposition α comes from outside991

the formal system. But it is also very reasonable to suppose that once the truth992

value of a proposition α has been established, and so ○α holds and α has classical993

behavior, then ○α, ○○α, and so on, also have classical behavior. Conversely, it is994

also reasonable to conclude ○α from ○○α, and so on. These ideas are expressed995

by 1 above. The equivalence 2 above makes explicit inside the system the first996

part of the result achieved by Fact 31 (to wit: once ○¬nα is proved, and so it997

follows that ¬nα is subjected to classical logic, for any formula ¬mα, m ≥ 0,998

¬mα is also subjected to classical logic). Valuation semantics for these rules999

are straightforward, and adding these rules would produce a decidable formal1000

system.1001

We believe that the probabilistic semantic relation presented in Section 41002

will succeed as a tool for dealing with real argumentative contexts, including in-1003

vestigative scenarios and databases concerned with different degrees of evidence1004

attributed to propositions. But this claim needs to be further investigated.1005
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