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1. Introduction 

Many people are inclined to believe that the scientific method should be a reliable tool for reaching 

the aim of maximizing truth and minimizing falsity in a body of assertions. J. Neyman and E. 

Pearson’s (see e.g. Neyman 1952) conception of hypothesis testing (N-P hereafter) may appear to 

be designed to address this issue by demonstrating the reliability of research methods to reach the 

truth in the long perspective. This supposed reliability is captured by error probabilities that reflect 

how often, given iterated use of the method, the research process would end up with a false 

assertion. Nevertheless, the epistemic adequacy of their account is challenged by several 

philosophical-methodological problems raised by both philosophers (e.g. Sprenger 2013) and 

scientists (e.g. Ioannidis 2005). These problems undermine the possible attribution of truth-

conduciveness of N-P and by that its scientificness. Not without reason has the method been 

conceptually interpreted by its designers as a decision-theoretic tool (e.g. Neyman 1957) that draws 

practical conclusions from a mixture of epistemic and pragmatic premises. Nonetheless, as long as 

it remains to be used as an element of the scientific method, the expectation of epistemic merit may 

remain valid. Perhaps the existence of the explicitly present pragmatic preferences for avoiding one 

type of error more than another in the N-P testing procedure (pragmatic value-ladenness)
1
 makes N-

P a more socially responsive method but the question remains if it is worth the epistemic loss 

(which stems, for example, from some kind of pragmatically motivated bias). In this paper, we 

examine whether N-P can be seen as principally satisfying, in a minimal sense, some general 

epistemic standards and how pragmatic value-laden uneven setting of error probabilities can 

influence it. 

One may repel the problems of N-P’s questionable epistemic value by simply treating N-P 

as a decision-theoretic framework like Neyman himself vehemently did. Another means of defense 

would be to abstract from the pragmatic aspect of N-P and defend it as being truth-directed by 

                                                           
1
 The nature of this pragmatic value-ladenness is explicated in Section 2. 
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modifying it and granting it a special philosophical interpretation (see e.g. Mayo, Spanos 2010). A 

different approach to defending the epistemic viability of N-P might be to admit that the epistemic 

reliability (ER hereafter) of the method is not the same as the epistemic interpretation of its outcome 

(Rochefort-Maranda, 2013). Additionally, the ER of N-P can be analyzed in the context of the 

relation between the pragmatic and the epistemic aspects of N-P. A combination of the last two 

ways is the route we follow in this paper. 

A general reassessment of N-P’s epistemic credibility is partially motivated by the 

inadequacy of the existing epistemic evaluations of frequentist hypothesis testing when applied to 

N-P. This inadequacy may be caused by the fact that the most common procedure used for testing 

data nowadays is an amalgamation of N-P and Fisher’s procedures (see Peregonzales 2015). Let us 

consider the case of the greatly cited and one of the most general and basic analyses of ER of 

frequentist hypothesis testing conducted by John P.A. Ioannidis (2005). His evaluation counts 

mistakes only among rejected nulls and therefore is more asymmetric than the original N-P, which 

also justifies accepting nulls
2
. Moreover, Ioannidis evaluates the performance of hypothesis testing 

in the context of manifold biases that accompany a practical use of statistical methods, while these 

biases are not inherent elements of these methods, but are, for example, effects of the wrong use of 

the methods. Thirdly, he does not scrutinize the uneven importance of different types and sizes of 

errors from the epistemic perspective. Lastly, Ioannidis does not take into account the specific 

influence of pragmatic preferences on N-P’s reliability, which is an inherent element of the method 

in the case of N-P. 

The issues mentioned above indicate that there is an urgent need to re-examine the ER of N-

P, which would: (I) be based on the adequate criterion for measuring ER, (II) measure the nominal 

reliability of N-P without taking into account biases that are external to the method, (III) evaluate 

the original version of N-P, not a modified or misinterpreted one, and (IV) account for N-P’s 

pragmatic value-ladenness in the form of the unequal setting of error probabilities. Considering the 

fact that there is no such analysis in the literature, its outcome would provide a new—more basic 

and more complete—basis for discussions on the ER of N-P. We aim to conduct such an analysis of 

the credibility of N-P in tracking the truth that satisfies these four demands. 

                                                           
2
 In asymmetric approach a rejection (with known error risk) can go only in one direction—of rejecting  : no such 

thing as rejection of an alternative hypothesis and acceptance of   is validated. N-P also includesrejection of an 

alternative and acceptance of   with predefined error probability.. This aspect should not be conflated with the aspect 

of asymmetric avoidance of errors of different type. 
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The paper is structured as follows. First, we overview some rudimentary facts about N-P 

(Section 2). Then, we clarify the notion of ER and the intended scope of our assessment (Section 3). 

Next, we put forth methodological assumptions of our analysis (Section 4) and provide an analysis 

of the ER of N-P (Section 5). Subsequently, we discuss the problem of uneven pre-study odds of 

true alternative hypotheses to true hypotheses tested (Section 6) and analyze the dependence of ER 

of N-P on the pragmatic values implemented in the form of the asymmetric setting of error 

probabilities (Section 7). Section 8 concludes the paper and provides comments from a broader 

methodological-philosophical perspective. 

 

2. Neyman-Pearson Hypothesis Testing 

While we assume that the Reader is already familiar with the contents of N-P, we overview some 

rudimentary facts with an emphasis on the uneven pragmatic importance of two types of errors 

assumed by N-P. 

The application of a statistical test may result in four possible situations, two of which are 

unsatisfactory: (a)   is true whereas the action taken is  , or (b) its complement    is true, while 

the action is   (see Neyman 1950, 261) (Tab. 1). 

 

True Hypothesis      

Action taken Description of the situation 

 : accept   Satisfactory Error 

 : reject   Error Satisfactory 

 

Tab. 1. Four possible outcomes of a statistical test 
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Table 1 shows that there are two kinds of random errors associated with the two types of 

unsatisfactory situations
3
: 

(a) error of the I
st
 type    (        |         ), and 

(b) error of the II
nd

 type    (        |          )4 

where   is a simple hypothesis being a particular instance of   or being equivalent to   (simple 

hypothesis    being a particular instance of    or identical with it), and     is the probability 

that, given   5, the sample point will fall in the rejection region specified for  6. This means the 

probability that the test will detect the falsehood of   (reject it) when the true hypothesis is   —is 

what Neyman called the power of a test (Neyman 1952a, 55; Neyman 1950, 267-268)
7
. Power, as a 

function of the possible point hypothesis, is the essential category used for assessing which test to 

choose. 

It is important to distinguish statistical hypotheses, which are mathematical models, from 

physical hypotheses, which are propositions belonging to some field of science. The physical 

hypothesis is a statement about physical reality as seen from the perspective of definite scientific 

discipline (and its language) within which testing is performed
8
. The statistical hypothesis is a 

statement expressed in statistical terms that are assumed to represent mathematically the physical 

hypothesis in question. An example would be the statement that the die one plays with is fair as 

compared to the statement that the model of sampling probability distribution under experimental 

design used to verify the statement has such and such parameter(s) value(s). The latter is meant to 

represent the former, but the same statistical hypothesis—definite model of probability (density) 

distribution—may stand for different physical hypotheses belonging to different fields of science
,9

. 

                                                           
3
 The verdict on taking a particular action is random because it depends on the random variable(s) determining the 

position of the sample point. Due to this, there is no inconsistency in considering the probability of the verdict having a 

certain property, such as being erroneous (Neyman 1950, 56-57). 
4
 Today it is standard to use “ ” to represent the probability of making an error of the II

nd
 type but in N-P’s original 

notation “   ” was used to denote it while “ ” denoted power. We use contemporary notation to enhance readability 

and ease-of-comparison with other work in the area.  
5
 Symbols   and    refer to sets of values (of sampling distribution model’s parameter(s)),    and     to particular 

values of it. Keep in mind that the meaning of   and of   is not limited the so-called “no effect” hypothesis, although, 

dependent on the case, they may denote this type of statement. 
6
 The presented concept of errors is the most general approach that covers various test cases (e.g. with different 

distributions) and interval estimation. It does not cover errors of different nature, like measurement instrument’s errors, 

biases, or model assumption errors (like false normality or independence assumption). 
7
 The value of power refers to departure from   that is today understood also as the “expected minimum effect size” 

(Peregonzales 2015). 
8
 In the literature, it is also called “scientific hypothesis” (Hurlbert, Lombardi 2009, 313)  

9
 Whether we speak of the statistical hypothesis, or the physical hypothesis (assumed to be represented by an adequate 

statistical hypothesis) should be clear from the context. 
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Still, definite probability (density) distribution has the same mathematical properties regardless of 

what it denotes in the physical world. This means that they can be analyzed regardless of their 

semantic interpretations related to the physical context of a particular test. The same holds for the 

particular types of error: statistical laws can be applied to this error setting regardless of physical 

contexts of particular testing situations to which errors apply. These two facts are important for our 

analyses. 

Keeping the first type of error at the desired nominal level is unproblematic, as the 

researcher decides before the research under what significance level   a test procedure will be 

executed. The   nominal error probability depends in turn on a fixed instance of the alternative, the 

distribution of a test statistic—which is determined by values of sample size and population 

variance—and obviously on the chosen value of   that determines the rejection region. One 

important consequence of the above is, at least in N-P, that an increase of   results in a decrease of 

  for any particular parameter value belonging to   . 

The issue that arises is that these two types of error probabilities will not necessarily have 

equal values and the difference will reflect pragmatic discrimination of the importance of each of 

the two types of error. Neyman considered this fact as consistent with the realm of application, 

where the importance of avoiding these two types of error is strikingly unequal: 

“The adoption of hypothesis   when it is false is an error qualitatively different from the error 

consisting of rejecting   when it is true. This distinction is very important because, with rare 

exceptions, the importance of the two errors is different, and this difference must be taken into 

consideration when selecting the appropriate test” (Neyman 1950, 261). 

 

3. The explication of the epistemic goal and clarification of the intended scope of our 

assessment 

Our understanding of the goal of attaining the truth is quite general: we want to speak of it as the 

end-point of the epistemic process of scientific cognition. Admittedly, such a goal may be an 

unattainable ideal (see e.g. Rescher 1999); nevertheless, many philosophers would still agree that 

scientific claims are rational because a method of scientific justification is a reliable way of getting 

us closer to an ideal situation. The goal of attaining the truth (we abbreviate it to truth goal) as cast 

in terms of the ER of a test procedure, and measured by the frequency of true acceptances/ 

rejections, would thus mean that: 
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For all  s considered by S (individual scientist or a community) during a definite sequence of 

situations of research in which N-P is used to perform a test, if   is true, then S accepts that 

 , and S accepts that   only if   is true.
10

 

N-P’s characteristics may not be sufficient to secure that the actual error probabilities are 

satisfactorily close to the expected outcomes of a reliable method—the extent to which this 

reliability is close to the ideal of the above-defined truth goal. This means, for example, that a small 

rate of error of the I
st
 type may not yield an actual small error probability, if some other strong 

disturbing biases from outside the method (like for example a bias of the measurement tool) are 

present. That is why we think of N-P’s error probabilities as nominal error probabilities. In this 

paper, we concentrate on the investigation of the nominal ER. We assume that intuitive, absolutely 

minimal nominal epistemic requirement for a method of statistical inference would be that it will 

not lead to false assertions more often than to true ones, as well as that its ER will not remain at the 

level of a random guess. The difference between actual and nominal ER reveals that the critical 

examination of the ER of N-P can fall into one of the following general categories. First, (i) it can 

be an investigation of the epistemic adequacy of N-P procedures as such (e.g. Jaynes 1995). (ii) It 

may focus on phenomena and/or circumstances that affect the use of the method, for instance, the 

effect of the publication bias (e.g. Dickersin 1990) or researchers’ ignorance of the method and/or 

its (mis-)application (e.g. Gigerenzer, Merewski 2015). In general, this kind of analysis examines 

socio-psychological factors that are a non-inherent part of the N-P itself. (iii) Such an examination 

can concern the methodological insufficiency of the N-P. It may include, for example, issues of the 

need for complementary statistical tools that address the emerging new specific research 

circumstances, the need for some additional tools for amalgamating outcomes, or the issue of 

formulating the semantic content (physical denotation/interpretation) of considered statistical 

hypotheses, for which individual disciplines are responsible. We wish to stress that in our 

examination we do not intend to touch upon the problems related to (ii) and (iii)—we believe the 

topic we undertake here is more rudimentary and can be investigated independently from (ii) and 

(iii). Obviously, the epistemic plausibility of N-P at its basic level is a necessary, but not sufficient, 

condition for a successful realization of the epistemic goal—several other conditions belonging to 

(ii) and (iii) must be met as well, but they should not be treated as stemming directly from the 

inherent features of the method as such. By concentrating on (i) we do not intend, for example, to 

                                                           
10

 Obviously, this statement is of categorical character while statistical inference always has uncertain, probabilistic 

element, but what was just said, the truth goal is an ideal situation, to which closeness can be assessed in the case of 

measuring a statistical method’s efficacy. See also David (2001). 
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go one level up where problems of the amalgamation of outcomes emerge—like the ones related, 

for instance, to the socio-psychological file drawer effect (cf. Rosenthal 1979), which is a type of 

bias where “negative outcomes” (nulls) are not taken into account to be communicated (published). 

We also do not aim at finding solutions to problems of formulating the semantic content of 

hypotheses (within this or that discipline) which would be consistent with the physical theory in 

force (issue of type iii). Certainly, the influence of pragmatic values, in general, also embraces the 

issue of the influence on the semantic content of hypotheses/theories. One of the most striking 

examples is how Lysenkoism impeded the development of biological disciplines in the Soviet 

Union (see e.g. Soyfer 1994). This and similar circumstances seem to suggest that social values may 

interfere with scientific research promoting false hypotheses and false theories. Yet, the indicated 

cases of societal influences apply to the semantic content of admissible, or accepted, hypotheses—

they refer to the empirical interpretation of mathematical statements. On the contrary, the type of 

influence considered by us is the influence of values on the epistemic performance of a procedure as 

captured by error probabilities linked to different types of error, and not on any semantic content of 

the hypotheses or theories. 

 No less an important clarification of our goal is to specify what kind of examination of (i)-

type (evaluation of epistemic adequacy of N-P as such) we follow in this paper and which we do not 

follow, and to narrow down the scope of the possible (i)-type topics that we concentrate on. We do 

not intend to evaluate N-P on particular evidence as N-P is essentially concentrated on pre-trial 

reliability (see Graves 1978, 6-7). This does not mean such an evaluative perspective could not be 

adopted as an important perspective and has not been adopted. For example, Spielman (1973) 

defines reliability indexes as the posterior probability of a correct action given a definite outcome. 

A more recent, classic example of such an epistemic interpretation of the single outcome of the N-P 

procedure is exposed by Deborah Mayo (1996) accompanied by Aris Spanos (e.g. Mayo, Spanos 

2006), who presented the most current (see Mayo 2018) epistemic reading of N-P and philosophical 

defense of the frequentist statistical paradigm. Following the argumentation of Guillaume 

Rochefort-Maranda (2013), we would like to stress that the goal of providing the epistemic 

interpretation of N-P’s single outcome (a measure of evidential support for a particular case of 

application) differs from providing an assessment of the epistemic credibility of the procedure. The 

strength of evidence for or against a particular hypothesis is a result of the quality of the test and its 

output. According to Rochefort-Maranda, “One way to distinguish both concepts (level of 

evidential support and level of its credibility) is to realize that the credibility of the support does not 

depend on the actual output of the instrument whereas the degree of support does” (Rochefort-
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Maranda 2013, 11). We do not intend to solve what could be a post-experimental epistemic 

interpretation of a particular outcome, but to analyze N-P’s general epistemic credibility, therefore 

our analysis is not related to Mayo and Spanos’ proposal of epistemic reading of N-P. 

As of narrowing down the scope of our analysis, we would like to clarify that we do not 

intend to examine or solve any of the existing (i)-type issues relating to a comparative analysis of 

N-P and other frequentist approaches, like Fisher’s (1956) asymmetric frequentism, or Bayesian 

approaches in statistics that are discussed in the literature (see Romeijn 2017). We intend to take a 

closer look at N-P itself, without deciding which of the approaches is better in any respect. 

 

4. Methodological assumptions of the analysis 

Given Neyman’s view on N-P as a theory of how one should make decisions and not a theory of 

how one should change beliefs (see e.g. Neyman 1957) the issue of ER of N-P may seem irrelevant. 

Pragmatic evaluation is based on pragmatic purposes and the methodology of N-P testing itself: a 

well-defined N-P test has determinate error probabilities, and the question of whether a given N-P 

test is sufficiently useful for a given pragmatic purpose should be easily answered by consulting its 

error probabilities and comparing them to the criteria of sufficiency that the purpose at hand 

warrants. 

Still, the epistemic evaluation of N-P’s performance is viable. It would require the 

perspective from outside, not inside, the method. A classic example of such an evaluation of the ER 

of frequentist hypothesis testing
11

 from an outside perspective is John P. A. Ioannidis’ (2005) 

assessment. He took into account—undefined within the frequentist framework—the pre-study 

probability of the hypothesis being true and used the concepts of positive predictive value and pre-

study bias to assess the performance of the testing procedure. At the outset we use the same 

criterion for the analysis of the epistemic performance of N-P as Ioannidis, namely the probability 

that the alternative hypothesis would turn out to be true once it has been accepted with statistical 

significance; this is called its “positive predictive value”
12

 (   ) (2005, 696): 

      (  |        )  (   ) ((   )   )⁄ . (1) 

                                                           
11

 Although not exactly of N-P, as was noted in the Introduction. 
12

 Instead of using the term “alternative” Ioannidis spoke of the hypothesis of the existence of an effect as being in 

opposition to the hypothesis of no effect, which is colloquially called the “null” hypothesis. 
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    is a concept used in medical statistics and its counterpart is the concept of “negative predictive 

value” (   ), i.e. the probability that the tested hypothesis would turn out to be true once it has 

been accepted with statistical significance (see Altman, Bland 1994): 

      ( |        )  (   ) ((   )    )⁄ . (2) 

    and     are dependent on the values of both types of error, as well as on the ratio   of 

alternative hypotheses that are true to the alternative ones which are false among those investigated 

in the respective field of science. The pre-study probability that the alternative is true ( (  )) is 

therefore  (   )⁄  (see Ioannidis 2005, 0696). While Ioannidis used only    , we are going to 

use jointly     and     because of the symmetry of N-P in accepting hypotheses.
13

 

We assess N-P’s credibility from the perspective of     and    , assuming Neyman and 

Pearson’s important requirement that 

(A1) a test should be at least unbiased. 

A test is unbiased when its power against any alternative point hypothesis is at least as high as type 

I error (see Neyman, Pearson 1936, 210-211). The basic rationale of the unbiased test is that it 

avoids cases where the probability of accepting   when it is false (and the true hypothesis is   ) 

would be higher than the probability of accepting it when it is true (see Neyman, Pearson 1936, 

210-211). 

The case of       can be plausibly identified as a value corresponding to the cases of 

an infinitely small departure from the truth. Power (   ) is the probability of obtaining an 

outcome that falls under the   rejection interval under the assumption that the unknown quantity 

has one definite value belonging to the admissible hypothesis’ parameter space. In the case of an 

unbiased test the closer this true value is to   the lower the probability of observing an outcome that 

falls under the   interval with this probability being lowest, when equal to  , which is the case if 

the true value is identical to the value of   for which   rejection interval was set, or if the departure 

of the value of   (for which   rejection interval was set) from the truth is infinitely small. In 

conclusion, considering possible situations of a value of power to detect the discrepancy of accepted 

  from the true value that is an instance of   , the case of the lowest possible power (equal to  ) 

can be plausibly understood as standing for an infinitely small error of false acceptance of  . Now 

                                                           
13

 See footnote 2. 
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we argue why it is not meaningful epistemically to consider this case in the evaluation of the ER of 

N-P. 

By setting very stringent standards for avoiding errors Daniel Steel (2010) promotes the 

truth goal, but at the same time blocks it on a more fundamental level: very exacting standards 

suspend conclusions; devoting more and more resources to make the judgment more and more 

accurate not only suspends making that judgment but also deprives the researcher of potential 

cognitive resources to be used for other research questions. Because our cognitive resources are 

limited, a trade-off arises between the need to avoid mistakes and the need to be able to effectively 

scrutinize hypotheses in finite time by limited resources. Setting the threshold for being wrong but 

acceptably close to the truth allows the researcher to continue the efforts in testing other 

hypotheses; differentiated error probabilities reflect such a trade-off between the stringency of a test 

and the need to test the hypothesis in a finite time and concerning available resources in a given 

research context. For different research contexts, this balance can be different due to the differences 

in limiting resources connected to pragmatic contexts of particular research (see Steel 2010, 27-28). 

The conclusion from the above argument is that minimizing errors exaggeratedly in a given test is 

epistemically unfavorable; in particular, making an effort to minimize errors to an infinitely small 

level to secure infinitely high accuracy of conclusions, which would simply mean to secure 

perfectly errorless/accurate conclusions, is epistemically irrational. Therefore, taking into account 

the possible cases of infinitely small errors of the first type is meaningless when the ER of N-P is 

evaluated
14

. This type of error occurs when     is equal to  , thus 

(C1) taking into account the case of       in the valuation of N-P’s ER is meaningless. 

Cases of infinitely small errors can be treated as not meaningful epistemically. The minimal 

reliability does not need to be achieved in these cases—    and     values for them can be ruled 

out as being epistemically irrelevant. Therefore, epistemically relevant cases to be investigated are 

those when      . 

 

                                                           
14

 Additionally, in the simplest case where the sampling distributions of   and an alternative hypothesis are of the same 

type and have common variance, the test is uninformative as there is no separation between sampling distributions (they 

coincide) when      . 
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Before the analysis is done, we wish to address two emerging issues concerning the use of 

    and     as indicators of N-P’s ER. The first problem is the use—after Ioannidis
15

—of the 

concept of prior probability in our assessment of     and    . The use of prior probabilities is not 

an element of N-P, but to measure the ER of a method one does not have to stick to the tools and 

concepts that are part of the method itself; likewise, the measurement of the noisiness of a rocket 

engine does not have to be (and even cannot be) made by the engine itself. The use of priors in the 

assessment of ER of N-P does not assume the use of priors in the N-P inferential procedures itself, 

so frequentist arguments for N-P as such should have no force as a potential critique of our 

approach, which is taken from an outside perspective. Perhaps for orthodox frequentists, like 

Neyman himself, our analysis may appear irrelevant or uninteresting due to their decision-theoretic 

interpretation of the goal of N-P and thus their sole interest in decision-theoretic, not epistemic, 

reliability of it. But since an assessment of N-P from an epistemic, outside perspective is still 

possible, its outcome may be interesting for unorthodox philosophers of science and statisticians, as 

well as for Bayesians. The perspective adopted by us is a Bayesian-like for the reason of reference 

to the pre-study probability of a hypothesis and it is not Bayesian for two reasons. Firstly, from the 

Bayesian perspective, the hypothesis’ probability could be different from case to case, provided one 

employs more specific information that allows assessing the prior probability of the hypothesis in a 

particular case. In our analysis, likewise in Ioannidis’, the general method’s performance is 

analyzed, while making precise assumptions concerning the prior probability that refer to the 

context of individual research would only allow us to infer ceteris paribus conclusions for particular 

research cases. A minimal assumption about  —whether it is equal to, greater or smaller than  —

allows us to make sufficiently general statements about N-P’s reliability and at the same time to 

distinguish types of cases that are relevant from the perspective of the goal of analyzing the 

influence of pragmatic value-ladenness. Therefore, for our analysis, we assume that the only—but 

also sufficient and adequate for our purposes—knowledge at hand is that   for the type (e.g. 

discipline) for which the research belongs is equal, greater or smaller than  . In the light of this type 

of scarce information the only thing that can be said, and is adequate from the perspective of the 

purpose of our analysis, is that the pre-study probability of the hypothesis tested during the research 

of the given type is equal to, smaller or greater than    . Ioannidis considered cases of   smaller, or 

bigger than   dependent on scientific discipline considered, which is covered by our analysis. One 

may also want to consider N-P’s reliability in the broadest possible sense—as applied in manifold 

research situations. Let us assume, following Ioannidis, that for some branches, or types of studies 

                                                           
15

 What we already signalled, Ioannidis derived pre-study probability that the alternative is true from  . 
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  is smaller, and for some other, greater, than  . The reference class of disciplines in such a case is 

so broad that one has no reason to think that most of all the possible hypotheses tested are true, nor 

that most of them are false. We assume, that in such a case the most plausible move would be to 

refer to the principle of indifference and assume that the pre-study odds equal to  , which is the 

third case covered by our analysis. 

The second difference with Bayesian approach is that in our analysis we do not refer to the 

concept of probability of the hypothesis given definite evidence:     and     do not inform about 

the probability of a hypothesis being true given the evidence obtained but given the fact of 

acceptance of the hypothesis. Following the interpretative assumptions as described above we will 

use   and  ( ) as admissibly equivalent measures of testing conditions. 

The second problem concerning the use of     and     as indicators of N-P’s ER is the 

following. A definite value of    , for example, always refers to a point hypothesis that 

corresponds to definite values of error probabilities of   and   so that the alternative hypothesis, to 

which     refers, is not composite, but is a point alternative hypothesis that corresponds to the 

value of   and is of a definite distance from the point hypothesis that corresponds to the value of  . 

That is why, strictly speaking, the probabilities used to calculate     and     only refer to those 

two particular possible values of point hypotheses that are the instances of   and   . For our 

analysis, we assume that the prior probabilities on which we operate when talking about definite 

predictive values refer not only to parameter values for which values of   and   stand but to them 

taken jointly with more extreme parameter values, that is to those values that are farther from the 

hypothetical falsely accepted value in the case of a given type of error. Owing to this, the situation 

is as follows. When speaking of the value of     one claims something about the predictive value 

under the assumption that a true value of the parameter is within the bounds of a range that 

corresponds to error probability equal to   or error probabilities smaller than  . Similarly, in case of 

speaking of the value of     we speak of the true value of the parameter being the one that 

corresponds to an error probability that equals   or to smaller error probabilities. Additionally, we 

assume that for all the more extreme values error probabilities corresponding to them are equal to   

and  , respectively
16

, that is to error probabilities forming the basis for calculating     and    . 

Error probabilities for these more extreme parameter values are, by standard, smaller, but for 

computational simplicity and for the purposes of our analysis and argumentation, such a simplifying 

                                                           
16

 This is similar to Ioannidis’ simplifying assumption of equal power to find all the true effects existing in the field of 

study. 
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assumption may suffice. Under this assumption, particular values of   and   are the upper bounds 

of nominal error probabilities so the predictive values (    and    ) calculated from those stated 

error probabilities and some stated value of   are the lower bounds for the predictive values given 

for the possible range of true values of the unknown parameter, assumed under the stated values of 

error probabilities. 

 

5. The epistemic reliability of N-P 

Ioannidis was particularly worried about the low value of     in the case of some disciplines that 

are, according to him, characterized by a low   and underpowered study designs. Consider   

    , very low power          (N-P’s unbiasedness condition is satisfied), and very small pre-

study odds       . In such a case         , so it is indeed very low, but at the same time 

        , which is very high. As a consequence, if such a testing condition is present in an 

iterated use of N-P, one will not commit errors very often. The fraction of true acceptances among 

all the acceptances will be approximately equal to     , hence quite satisfactory despite the very 

low    . If power was higher, the overall error rate could only be smaller. 

Cases like the ones above cannot be properly captured in an epistemic evaluation when as 

indicators of epistemic credibility one separately uses     and    . To be able to grasp the 

described case and thus evaluate the reliability of N-P itself, rather than a hybrid of N-P with the 

Fisherian approach, one has to consider     and     jointly
17

. It is possible by looking at the 

value of the total probability of accepting a true statement (  ). It equals the sum of the probabilities 

of two mutually exclusive events. first, the case of   being true and   being accepted, and, second, 

the case of    being true and    being accepted. This concept, considering the assumptions we 

made at the beginning of this section, by the definition of conditional probability, (1) and (2), yields 

     (        )     (         )   18. (3) 

By the definition of the conditional probability    can be restated as 

    (   ) ( )  (   ) (  ). (4) 

                                                           
17

 It is consistent with the symmetric approach of N-P to treat both rejection and acceptance of   as a research outcome. 
18

 The Reader may keep in mind that     and     do not inform about the probability of a hypothesis given the 

evidence obtained, but given the acceptance of the hypothesis. 
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Considering the fact of N-P’s symmetry    appears to be the most intuitive, simple, and adequate 

measure of ER of N-P that is anchored in standard     and     measures. Its usage can be 

illustrated by a simple example. Imagine the situation of tests of hypotheses with        wherein 

half of the cases the hypothesis tested is false ( ( )     ) and true values are at some distance 

from the hypothesis tested not smaller than a certain value that marks     as, say,    . Then    

will be equal to      , which means that, for example, if 1000 hypotheses were tested, the 

nominally expected number of true research findings would be at least 525. 

As postulated in Section 3, the minimal epistemic requirement for a method of statistical 

inference is that it will not lead to false assertions more often than to true ones, as well as that its ER 

will not remain at the level of a random guess. Therefore, the condition of minimal ER is that 

        for any testing situation under the assumption of (A1) and condition (C1) (5) 

Given (A1) and (C1) the condition of minimal epistemic reliability (5) holds for any test 

when     ( ( )     ). That is because if (   )    then {(   )  (   )}  ⁄  is greater 

than   ⁄ . The condition (5) is not satisfied when     ( ( )     ). For example, if  ( )  

    ,        and         , then        . In this example, the probability of error of the I
st
 

type is greater than    , but the maximal admissible level of   was not stipulated by Neyman and 

Pearson. Moreover, Neyman claimed that it may in some cases be treated as the less important type 

of error (Neyman 1971, 4)
19

. The condition (5) is not satisfied when     ( ( )     ). For 

example, if  ( )      ,        and       20, then        . The conclusion is that the 

condition (5) of minimal epistemic reliability holds only for     ( ( )     ). 

 

6. Asymmetry of errors, hypothesis’ probability, and epistemic reliability 

Securing the desired level of the I
st
 type of error is arbitrary, easier than securing the level of the II

nd
 

type of error
21

. Therefore, in practice     is greater than    , and then the greater  ( ) is, the 

greater is also   . It then appears that it would be better epistemically to test a hypothesis that is 

                                                           
19

 What one might arguably assert as the principle that stipulates lower bound for   in such a case is unbiasedness 

applied in a reversed form, namely     must be at least as high as  ; such condition is fulfilled by the given example. 
20

 Note that this example represents the case of an underpowered test, but is, still, consistent with (A1) and (C1). 
21

 For example,     is dependent on the variance of the studied quantity in the population. 
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deemed to be true rather than false
22

. It turns out that the supplementation of N-P with a pre-

experimental assumption about the likeliness of the tested hypothesis is supported by Neyman and 

Pearson’s suggestion expressed in one of the N-P’s foundational papers (see Neyman, Pearson 

1928, 186-187). The suggestion they made there is that a researcher usually has reasons for 

believing the tested hypothesis is true or that the true value differs from the point hypothesis stated 

“in certain directions only”, which would mean the belief that definite composite hypothesis is true. 

The suggestion can be expressed as: 

(A2) A researcher usually has a priori grounds to believe that point or composite hypothesis 

being tested is true 

This can be understood as a contextual assumption about the prior degree of belief
23

 in the 

hypothesis being tested and can be translated into a probabilistic statement—that  ( ) is higher 

than  (  ). N-P does not operate on prior or posterior probability of a hypothesis, but although the 

assumption is not implemented in the statistical inference scheme itself, it can be understood as a 

precondition under which the method is being used. Making such an assumption about the research 

condition does not fall into inconsistency with N-P. That is because the assumption (A2) does not 

entail the technical application of its probabilistic statement in the method’s procedures itself. The 

assumption (A2) can be used to evaluate the epistemic performance of the method as used in the 

assumed research conditions; not used to undergo a test with N-P procedures. Additionally, an 

evaluation that ignores the pre-assumed proper context of use would, for instance, resemble an 

assessment of the performance of binoculars at night, while it is known that they are presumed to be 

used in the presence of light. Hence, evaluation in the context of (A2) seems more adequate in the 

sense of taking into account Neyman and Pearson’s concept as a whole, thus as a proposal of certain 

methods working under a certain assumed condition. In any case, even if such an assumption was 

not stated as a normative circumstance that must be met if one wants to use the method, it can be 

assumed to be conceived by Neyman and Pearson as the inherent part of the usual research practice. 

                                                           
22

 In scientific practice the tested hypothesis   is often associated with the “null” hypothesis, of which parameter is 

equal to  , but, when scientists perform regression analyses, for example, they usually believe that the parameters are 

not equal to  . In such cases, it is possible to perform data transformation so that the hypothesis they suspect to be true 

becomes the “null” hypothesis. For example, there are usually maximal and minimal values possible to be observed 

within a given experimental scheme. One can mathematically reverse these values. This will change the way particular 

outcomes are labeled by values of the random variable and therefore change the way the tested statistical hypothesis is 

defined, but will not change the physical meaning of the redefined statistical hypothesis. 
23

 “It is true that in practice when asking whether   [a sample] can have come from   [sampling distribution 

corresponding to the hypothesis tested] we have usually certain   priori grounds for believing that this may be true” 

(Neyman, Pearson, 1928, 186). 



16 

 

 The question of whether this assumption is representative of what happens in practice falls 

into the already distinguished set (ii) (phenomena and/or circumstances that affect the use of the 

method
24

) of issues that we do not intend to fully address here, but let us briefly undertake this 

question. From an intuitive perspective, it seems fairly natural to admit that in general, when one 

comes up with a physical hypothesis to be investigated, one suspects that the state of affairs 

postulated might be true rather than false. This can realize in two ways: either the hypothesis is a 

consequence of a theory that has been accepted so far as the most compelling, therefore rather true 

than false, or the researcher’s background knowledge prompts them to suspect that some 

epistemically interesting fact might be the case, which pushes them toward formulating a new 

hypothesis. Some scientists might then make the effort to transform variables so that the intuitively 

true hypothesis becomes the alternative hypothesis: because the hypothesis tested then becomes—

so to speak—counterfactual in the researcher’s eyes, there is a greater hope that the observation will 

yield a substantial result. If, on the other hand, the researcher expected the tested hypothesis to be 

true, they would expect the observation to speak in favor of the tested hypothesis, which would 

mean she would expect a result difficult to be published (see Rosenthal 1979); this, of course, 

assumes an asymmetric approach, which is not the case in N-P. 

Regardless of whether it can be affirmed that assumption (A2) is met in practice, (A2) can 

be regarded as a normative requirement that specifies the basic state of affairs that constitutes the 

presumption about the typical context of the application of N-P. This presumption is possible to be 

satisfied while using N-P. Firstly, because a researcher or a research community can indicate, 

before the research, whether the hypothesis they intend to investigate is expected to be rather true or 

rather false
25

, without providing a more a precise probability statement and thus without including it 

in the statistical inference as such because of imprecise nature of this statement. Secondly, because 

even if the alternative is more probable, it is not impossible in principle to mathematically redefine 

the alternative as the hypothesis to be tested through a transformation of the test or data, and 

without any loss of empirical adequacy; in particular, it should be especially easy to do that in the 

case of directional tests of composite hypothesis. Nevertheless, in the case of a test of point 

hypothesis, when the set of admissible hypotheses is continuous, the only reasonable precondition 

appears to be    : to assume that prior probability of   is greater than the prior probability of its 

complement seems mathematically incorrect in such a case. 

                                                           
24

 See Section 3. 
25

 This is what happens in scientific practice. Usually, some formerly justified theory existing within a discipline, or an 

expert’s intuition, foresee some hypotheses to be true, and the role of testing is to check whether the suspected state of 

affairs is indeed the case. 
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7. The pragmatic factor and epistemic reliability 

From what we just have discussed it follows that pragmatically driven asymmetry of probabilities of 

two types of error might seem naturally epistemically beneficial under the basic condition (A2) 

assumed by Neyman and Pearson. It seems that from an epistemic perspective it would be better to 

select for testing a hypothesis deemed to be rather true. But at the same time, pragmatic asymmetry 

in avoiding the two types of error, along with the fact of the relative ease of controlling   as 

compared to   justifies N-P’s recommendation to design the tested hypothesis as one of the possible 

alternatives of which erroneous rejection would be pragmatically worse. That is why “In an 

example of testing a medical risk, Neyman says he places ‘a risk exists’ as the test hypothesis since 

it is worse (for the consumer) to erroneously infer risk absence” (Mayo 2018, 341). This means that 

from the epistemic perspective it would be better if this pragmatically driven decision on which of 

the alternatives to place as the hypothesis tested coincided with the hypothesis that is regarded the 

more probable as compared to the alternative. Or, more generally, it would be better if the more 

probable physical hypothesis is at the same time the one of which false rejection should be more 

avoided than the false rejection of an alternative considered. The crucial question is then if this 

coincidence naturally occurs or can be stipulated. Below we argue that such coincidence is not 

sufficient for an increase of    and that such coincidence is haphazard and cannot be stipulated. 

In some cases, pragmatic value-laden asymmetric error risk setting can directly improve the 

ER of N-P. Assuming (4), (A1) and (A2), one might expect that, with resources fixed,  an increase 

of    , at the cost of a decrease of    , should improve the ER of N-P.    increases if the 

modulus of the magnitude of the increase of    , multiplied by  ( ), is greater than the modulus 

of the magnitude of the decrease of    , multiplied by  (  ), but such a case is not a rule. 

Holding sample size fixed the rise of    would be guaranteed only if the loss of power was at most 

as big as the gain of    , but this will not typically be the case. For example, if the distribution of 

a sampling statistic is close to the normal distribution and the     integral gets larger, it does so at 

a lower rate than the power integral diminishes. Because of that, for    to rise P( ) would have to 

be sufficiently high so that the modulus of the magnitude of the increase of    , multiplied by 

 ( ), is greater than the modulus of the magnitude of the decrease of     multiplied by  (  ). 

Therefore, the discussed coincidence is not sufficient for    to rise. This means that the promotion 

of avoidance of erroneous rejections of a more probable hypothesis by a pragmatically driven 
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asymmetry in error probability does not suffice to improve ER of N-P:  ( ) would have to be 

sufficiently high for the improvement to take place. 

 

Even if the probability of a more probable hypothesis would be sufficiently high, there remains 

the earlier mentioned problem of lack of (the possibility of stipulating) the discussed convergence. 

Even if the more probable physical hypothesis is mathematically defined as the one that is tested 

( ) it will not necessarily coincide with it being the one of which false rejection should be more 

avoided than the false rejection of the alternative, from a pragmatic perspective. First of all, the 

concept of a more important error as such is not uniquely connected to errors of the first kind. 

Whether it will be the more probable hypothesis of which wrong rejection will be more important to 

avoid depends on the context of research. There may be cases for which one will prefer to avoid an 

error of the II
nd

 type (Neyman 1971), while the hypothesis tested will be believed to be rather true. 

Neyman’s simple example of a research context for which a II
nd

 type of error would be more 

important was an investigation of quality control: 

“Practical situation of this sort may be illustrated by the case of production in a factory. As 

long as the process of manufacture is characterized by the mean value      of a certain 

characteristic   of the product, the situation is satisfactory and no changes are necessary. 

On the other hand, if the mean value of   becomes     , it is imperative to stop the 

process and to readjust the machines” (Neyman 1971, 4). 

Suppose that the characteristic of interest is, for example, tolerance of a resistor (its departure from 

nominal values of resistance). Imagine   to be the statement that the tolerance of resistors produced 

by a particular line does not, on average, exceed   . The manufacturer is expected to produce 

resistors of the given maximal tolerance as a part of a contract with a large company that needs 

them to produce laboratory devices in which precision is crucial. The contract specifies that   must 

be satisfied. Otherwise, a very high fine is anticipated, which jointly with the loss of the market’s 

trust in the manufacturer would almost surely ruin their whole business. If the manufacturer 

suspects   to be false, they may withdraw the batch of resistors and readjust the machines, which is 

assumed to generate a reasonably low economic loss compared to selling a product that did not 

meet the standard. In such circumstances, the more important error to avoid is the error of falsely 

asserting   when it is not the case. Having in mind that this error is the additive complement of the 

power to detect the falsity of   (for a given   ), “(…) the desirable property of the test of   is as 
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high a power as practicable, perhaps with some neglect of the probability of rejecting   when true” 

(Neyman 1971, 4). 

At the same time, it seems that under the above type of research context the default 

assumption here is that   is rather true. Otherwise, the manufacturer would not sustain the 

production of probably useless resistors in the first place. The idea of such research is that although 

the production process is in principle expected to yield usable resistors there is always a minor risk 

of something going wrong with it and because of this risk that iterative control is needed. Even if 

one made the alternative hypothesis to be the tested one and by that error of the first type to be more 

important, the redefined tested hypothesis could not be any more regarded as the more probable 

one. 

A possible lack of the required correspondence can also occur in research cases different from 

quality control. For example consider the test of whether a newly created, improved version of a 

drug is non-toxic. In this type of research, the II
nd

 type of error may be regarded as more important 

from the perspective of the role of outcomes of medical research for society. Simultaneously, if the 

previous version of the drug was confirmed non-toxic, the drug to be tested might be regarded as 

rather non-toxic too. Moreover, researchers would not create a version of an old drug that they 

would expect to be rather toxic but seek for such an improvement of an old one that yields, based on 

their prior knowledge, a non-toxic version. Therefore, again, there is a lack of convergence of 

higher pre-study probability of the hypothesis tested and the greater importance to avoid the error of 

falsely rejecting it. This pre-study belief that the physical hypothesis that the drug is non-toxic is 

rather true would remain valid even if one reformulated it as the alternative statistical hypothesis 

(and place the hypothesis of toxicity as the tested one). In such a case the more probable hypothesis 

would be the alternative, but then the importance of the II
nd

 type of error would also change: it 

would become the error that is less important to avoid. 

 The negative influence of the above discussed lack of convergence on    can be numerically 

illustrated as follows. Assume, for example, that  ( )     ,        and      , then    equals 

    . Now, should   be recognized as more important to avoid at the cost of an increase of  , for 

example,        and      , then    would equal     . The symmetric situation will take place 

when  ( ) is lower than one half and the error of the I
st 

type becomes more important to be 

avoided. The high discrepancy between  ( ) and the importance of error of falsely rejecting it (e.g. 

low probability of the hypothesis and high importance of   compared to  ) can make N-P 

unreliable epistemically. The example discussed in Section 5 suffices to show this: if  ( )       
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and the more important error is  , say,        and       26, then    would equal      and in 

such a case, N-P’s reliability will fail to meet the minimal level, hence the method would incline a 

researcher to a false assertion. The test would be at least minimally reliable only if  ( ) was 

sufficiently high under the assumption of the above-given error probabilities, or if the error of the 

II
nd

 type was not that much less important compared to the error of the I
st
 type (under the 

assumption of the above-given hypothesis’ probability). 

 

7. Conclusions and final remarks 

With the use of the concept of the predictive value, we checked whether N-P is at least minimally 

epistemically reliable for any possible and epistemically relevant situations of  ,   and ratio   

( ( ) alternatively), and we analyzed how pragmatic value-laden, unequal setting of error 

probabilities can influence this reliability and whether this influence can be controlled to have a 

non-negative impact. We found that N-P is incapable of securing minimal epistemic reliability in 

general, except for the case of     ( ( )     ). The (positive or negative) direction of the 

influence of pragmatic value-laden asymmetry in magnitudes of error rates on the ER of N-P is 

accidental and impossible to be stipulated as principally positive. 

The first finding of our study—certainty of at least minimal ER of N-P in every possible and 

epistemically relevant case only under the assumption of     is a potentially interesting 

philosophical problem for those who would expect a method of formulating scientific conclusions 

to lead more often to the truth than to falsehood by default. Nevertheless, for users of N-P, this 

problem is not insurmountable because the method does not hinder the improvement of reliability 

by taking care of other aspects beyond the method itself. The level of    depends especially on an 

experimental scheme (sample size) and the character of the studied phenomenon (its variance). A 

satisfactory reliability level is achievable by the use of the proper experimental scheme with 

sufficient data compared to the researcher’s epistemic expectations. 

The second finding of our study regarding the impact of pragmatic value-ladenness on N-P’s 

ER has both potential philosophical and methodological consequences. It contributes to the topic of 

the role of values in science (see e.g. Elliott, Richards 2017). N-P captures the cognitive and non-

cognitive factors that contribute to the research process, which has become the central topic of 

                                                           
26

 Note that this represents the case of an underpowered, but, still, unbiased test. 
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interest in post-Kuhnian theories of science. Within this approach, trends are developing that 

emphasize the fact that cognitive and social dynamics are inseparable elements of the cognitive act 

and the dynamics of scientific knowledge development (see Collins, Evans 2002; Kawalec 2020). 

An important example of such a direction is the so-called Mode 2 science paradigm, which 

emphasizes social and economic factors in the formation of knowledge, in contrast with Mode 1, in 

which the formulation of scientific knowledge is motivated by the cognitive context alone (see e.g.  

Nowotny et al. 2001). N-P captures pragmatic factors as an element of the research process and by 

that, it is a classic example of how the general philosophical stance may be applied in precise 

methodological solutions. 

We have shown how these pragmatic factors implemented in the form of the unequal setting 

of error probabilities may have a neutral, positive, or negative impact on the ER of N-P depending 

on the case of the physical hypothesis tested and the assumption about  . More importantly, we 

have shown that in the case of negative impact no methodological adjustment is available to 

neutralize it so in such cases the discussed pragmatic value-ladenness of N-P inevitably 

compromises the truth goal. 

If epistemic and pragmatic aspects are assumed to be inseparable in the formation of 

knowledge and are implemented in statistical methodology in this type of tight relation, then a 

researcher has to challenge the fact that they inevitably are in mutual tension in some cases. 

Awareness of it is vital if a researcher wants to assess whether she wants to compromise or to give a 

higher rank to one of the two types of aspects and to communicate it to the society. 

Even if a researcher intends to use N-P as a decision-theoretic tool and the general epistemic 

reliability indicator is not of primary concern, the outcomes of our study remain valid. In a decision-

theoretic interpretation, they could be seen as an analysis of how often the method will, in the most 

general sense, lead to an erroneous decision, thus pragmatically not satisfactory in some way. Such 

an indication is certainly simplified, as it discerns no difference between the two types of pragmatic 

burden of an erroneous decision, but from what we have argued it follows that in N-P avoiding 

making extremely wrong decisions is in some cases inevitably conflicting with avoiding wrong 

decisions in general. This fact might, for example, serve as a justification of interpreting N-P as a 

type of minimax decision rule and by that to repel some doubts of whether N-P is a decision theory 

(see e.g. Szaniawski 1998) that rest on impossibility of calculating expectation of pragmatic loss. 
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