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Abstract
In the causal modelling literature, it is well known that “ill-defined” vari-
ables may give rise to “ambiguous manipulations” (Spirtes and Scheines,
2004). Here, we illustrate how ill-defined variables may also induce mis-
takes in causal inference when standard causal search methods are applied
(Spirtes et al., 2000; Pearl, 2009). To address the problem, we introduce a
representation framework, which exploits an independent component repre-
sentation of the data, and demonstrate its potential for detecting ill-defined
variables and avoiding mistaken causal inferences.

1 The problem of variable definition

Some choices of variables may lead to less informative, or even false, causal
claims. This problem was pointed out by, among others, Spirtes and Scheines
(2004), Eberhardt (2016), and Woodward (2016). Here is a classic example by
Spirtes and Scheines (2004). Consider the following hypothetical data generat-
ing process (Figure 1). Total cholesterol (TC) is a deterministic function (e.g.,
the sum) of two variables, viz. low-density lipoproteins (LDL) and high-density
lipoproteins (HDL), respectively known as “bad” and “good” cholesterol. The
two cholesterols, in fact, have different causal roles: LDL causes heart disease
(HD), while HDL prevents it. Moreover, assume that HDL and LDL cause,
respectively, a disease called “disease 1” (D1) and a disease called “disease 2”
(D2). Spirtes and Scheins point out that, if only TC, but neither HDL nor LDL

is observed, a manipulation of TC with respect to HD is “ambiguous”, because
it leaves underdetermined the values of TC’s underlying determinants, such that
the effect on HD is unpredictable.
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Figure 1: A structure where the manipulation on TC with respect to HD is
“ambiguous”.

More generally, in applied causal inference, often the variables under study
are, like TC, functions of other variables with heterogeneous causal roles. For
example, in macroeconomics a researcher deals with aggregate variables such as
gross domestic product, foreign sales, total imports, etc., which are sums or av-
erages of other variables, whose individual causal roles may be multifarious and
opaque to the researcher. Often, the researcher is unable to observe the underly-
ing micro-behaviours simply because statistical agencies provide aggregate data,
but do not reveal information on the single units. In other cases, collecting micro
data may be too complex or costly. Treating aggregate variables as if they had a
homogeneous causal role, however, may lead to less informative or false causal
claims, as shown by the TC example. We shall refer to an aggregate variable
incurring such problems as ill-defined. Notice, thus, that whether a variable is
ill-defined is relative to a variable set. That is, it may be ill-defined in a set but
well-defined in another.

The problem of variable definition is often underestimated by the wider pub-
lic. For instance, not sufficient attention has been paid to its consequences for
causal inference by constraint-based discovery methods (Spirtes et al., 2000;
Pearl, 2009). We shall return to this point in the next section, by showing how the
presence of TC in a variable set may lead to wrong causal inferences. To address
the problem, we introduce a representation framework—the “independent com-
ponent” representation—for modelling structures containing two kinds of depen-
dencies, namely traditional causal dependencies between well-defined variables,
and dependencies between ill-defined variables and their determinants (see, e.g.,
Figure 1). Next, we demonstrate the potential of this framework for identifying
ill-defined variables and reducing the risk of mistaken causal inferences.

2 Causal search with ill-defined variables

The last decades have witnessed the development and popularization of constraint-
based discovery methods for causal inference (Spirtes et al., 2000; Pearl, 2009).
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In this framework, a causal structure is represented as a triple 〈V, E ,Pr〉, where
〈V, E〉 is a directed acyclic graph (DAG) consisting of a set V of variables and
a set E of edges among them, and Pr is the probability distribution over V asso-
ciated to the DAG. Pr is assumed to comply with the Causal Markov Condition
(CMC) and, typically, the Causal Faithfulness Condition (CFC). CMC says that

(CMC) For any Vi ∈ V = {V1, . . . , Vn}, Vi⊥⊥Noni|Pari ,

where Pari denotes the set of parents (direct causes) of Vi, and Noni denotes
the set of non-descendants (non-effects) of Vi. In words, each variable is proba-
bilistically independent of its non-effects, conditional on its direct causes. CMC
presupposes that for every pair of variables in V, every common direct cause
of the pair is in V or has the same value for all units in the population (causal
sufficiency). CFC says:

(CFC) 〈V, E , Pr〉 is such that every conditional independence relation true in
Pr is entailed by CMC applied to the true DAG 〈V, E〉.

CFC ensures that there is no causal dependence without probabilistic dependence,
that is, all probabilistic independencies in the DAG correspond to causal indepen-
dencies.

Based on these assumptions, constraint-based discovery methods are designed
to recover the causal structure from data, by identifying conditional indepen-
dencies among variables and then causally connecting variables not found to be
independent. We shall now consider examples of simple data generating pro-
cesses including one ill-defined variable, TC, and show how using constraint-
based methods based on conditional independencies—whilst ignoring that TC is
ill-defined—may lead to mistakes. To anticipate, such mistakes involve apparent
violations of CMC or CFC, which the search methods presuppose. Notice, how-
ever, that our interest here is not in providing novel counterexamples to CMC and
CFC. These violations, in fact, could be avoided by choosing a “more suitable”
variable set for causal inference—in this case, one featuring HDL and LDL

instead of TC. And indeed, a formulation of CMC requiring that variables be
independent of their non-effects conditional on their well-defined direct causes
would not incur any violation. In this paper, however, we do not want to presup-
pose what counts as an ill-defined variable or a suitable variable set. Our goal is
to avoid mistaken causal inferences in virtue of detecting ill-defined variables.

Suppose that, in V = {X, Y, Z}, Y is the non-deterministic cause of both X

and Z, viz. the true structure is X ←− Y −→ Z. If all variables are well-defined,
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one can infer some properties of the causal structure by testing conditional in-
dependencies and applying a constraint-based discovery method. In particular,
the independence X ⊥⊥ Z |Y and CFC allow one to exclude X −→ Y ←− Z

from the set of possible structures. Now, let the set of observed variables be
V′ = {TC,D1, D2}. That is, suppose again that one does not observe or mea-
sure LDL and HDL, but only TC. In this case, too, the true structure is not a
collider. Assuming that the dependencies over V′ are causally interpretable, the
most plausible structure—the one we wish to rationalize in this paper—would be
a common cause, viz. D1←− TC −→ D2. However, since HDL and LDL are
independent, LDL⊥⊥HDL, it follows that D1 and D2 are independent, too, viz.
D1⊥⊥D2. If the true structure is a common cause, this contradicts CFC, which
would entail a dependence between the effects of the common cause. More-
over, being D1 and D2 dependent on (respectively) LDL and HDL, D1 and D2

become dependent upon conditioning on TC, viz. D1 ⊥⊥/ D2 |TC. For exam-
ple, suppose one knows that one patient’s total cholesterol has increased. Then,
knowing that disease 1 is absent gives one relevant information to predict that
disease 2 is present. If the true structure is a common cause, this conditional de-
pendence would violate CMC, which would entail the independence of D1 and
D2 given their common cause. Based on D1⊥⊥D2 and D1⊥⊥/ D2 |TC, as well
as TC 6⊥⊥ D1 and TC 6⊥⊥ D2, a constraint-based algorithm (e.g., PC, FCI; Spirtes
et al. 2000) will infer an unshielded collider on TC, viz. D1 −→ TC ←− D2. A
researcher applying the algorithm without knowing that TC is the sum of HDL

and LDL (which are causes of, respectively, D1 and D2) will thus infer the
wrong structure. The reason, ultimately, is that TC is ill-defined in V′.

Similarly, assume that all variables in V are well-defined, but now X causes
Y , and Y causes Z, viz. the true structure is X −→ Y −→ Z. Under CMC,
it holds Z ⊥⊥X |Y , and under CFC, it holds X ⊥⊥/ Z. Now, consider the set of
observed variables V′′ = {Da, TC,D1}, where Da (not represented in Figure
1), denoting dairies, is a cause of LDL but not of HDL. Again, suppose that
one observes TC but neither HDL nor LDL. Here, too, the true structure is not
a collider. The most plausible causal interpretation of the dependencies over V′′

is a directed path, viz. Da −→ TC −→ D1. However, since Da is a cause of
LDL, which is independent of the cause HDL of D1, it holds Da⊥⊥D1, which
violates CFC. Moreover, it holds Da 6⊥⊥ D1 |TC, which violates CMC. From
this, one may again wrongly infer a collider on TC, viz. Da −→ TC ←− D1.
Ultimately, the reason is that TC ill-defined in V′′.

These simple examples show how conditional independencies are sensitive to
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the presence of ill-defined variables in fork and chain structures1 but ill-defined
variables are undetectable from conditional independencies only. This may lead
to mistaken inferences (viz. the inference of colliders) if one unreflectively ap-
plies constraint-based algorithms.

3 A novel representation framework

We now introduce a series of definitions, which will allow us to precisely define
the notion of ill-defined variable. First, we introduce a class of data generating
mechanisms inducing the problem of ill-defined variables. We call them “aug-
mented” structural causal models, by which we extend the traditional notion of
structural causal models (Pearl, 2009; Peters et al., 2017) to structures including
deterministic assignments.

Augmented structural causal model An augmented structural causal model
C := (AW ,AI ,Pr) consists of a collection AW of m assignments, a collection
AI of k assignments, and a probability distribution Pr such that:

(i) the collection of AW consists of assignments

Wi := fi(Pari, Si), for i = 1, . . . ,m,

where Pari ⊆ W\{Wi} are called the parents of Wi, and Si are called
noises, or shocks;

(ii) Pr over S = {S1, . . . , Sm} is such that the shocks are mutually indepen-
dent, viz. Pr(S) = Pr(S1) · . . . · Pr(Sm); hence, the Si are also called
independent components;

(iii) the collection of AI consists of assignments

Ii := fi(Deti), for i = 1, . . . , k,

where Deti ⊂ V are called determinants of Ii.

C is defined over a set of variables V = W ∪ I with cardinality n = m + k. We
associate to C a graph GV (see, e.g. the graph in Figure 1, where TC is the only
variable with a deterministic assignment). GV is obtained by creating a node for

1By contrast, no mistake occurs if TC is truly a collider. For instance, the inferred structure
over V′′′ = {Da, TC,Ol}, where Ol (olive oil) causes HDL but not LDL, is Da −→ TC ←−
Ol, as it should be.
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Figure 2: GICV corresponding to the DAG GV in Figure 1.

each element of V, and by drawing a directed edge−→ from each parent in Pari
(if not empty) to Wi, and a modified directed edge =⇒ from each determinant
in Deti to Ii. Henceforth, we restrict our attention to acyclic structures, such
that GV is a modified DAG, to cases where Deti has at least two elements, and to
assignments AW in which the shocks are additive. For simplicity, we also assume
that no pair of variables Ii, Ij in I, Ii 6= Ij , are linked in GV by a bidirected
modified “active” (i.e., without colliders) path Ii ⇐= · · · =⇒ Ij .

By replacing all modified directed edges =⇒ with standard edges −→, GV
becomes a standard DAG, labelled G̃V . By removing from GV the nodes in I and
the edges connecting I to W, we obtain a subgraph of GV , which we denote GW .

Let us now introduce a particular graph associated with C, which we call in-
dependent component (IC) representation, or GIC . GIC contains edges between
shocks and endogenous variables but not among endogenous variables them-
selves. Despite this apparent limitation, the information in GIC shall be key to
the purpose of our paper. Although here we are not concerned with how GIC is
recovered, we should mention that there exist powerful statistical learning tech-
niques, such as Independent Component Analysis (ICA) (Hyvärinen et al., 2001),
which under certain assumptions (viz., non-Gaussianity) infer the dependence
coefficients, and thus identify the absence of dependencies, between shocks and
endogenous variables in C, and thereby recover the edges in GIC .

IC representation Consider C := (AW ,AI ,Pr) , with V = W∪I, card(V) =

n = m+k. An IC representation of C is a DAG GICV = 〈V∪S, EIC〉 such that EIC

consists of the following edges: (i) Si −→ Wi, for any i = 1, . . . ,m; (ii) Si −→
Wj , for any i 6= j such that there is a directed standard path Wi −→ · · · −→ Wj

in GV ; (iii) Si −→ Ih, for any Si ∈ S and any Ih ∈ I such that there is a directed
modified path Wi =⇒ · · · =⇒ Ih in GV ; (iv) Si −→ Ih, for any Si ∈ S and any
Ih ∈ I such that from Wi to Ih in GV there is a directed standard path followed
by a directed modified path with the same orientation, Wi −→ · · · =⇒ Ih.

Let us illustrate this definition relative to Figure 2, where W = {HDL,LDL,D1,

D2, HD} and I = {TC}. (i) There is a shock for each variable in W. Some
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shocks (e.g., SD1) only hit one variable (D1). Other are common to multiple
variables. (ii) For any variable (e.g., HDL), its shock (SHDL) also hits all of its
descendants, if any (D1, HD). (iii) Any shock to a determinant of a variable Ii in
I (e.g., SHDL) also hits Ii (TC). (iv) If V contained a cause of a determinant of
Ii (e.g., dairies, Da, which causes LDL), its shock (SDa) would also hit Ii (TC).

One may also define GIC relative to any subset O of variables in V, namely
GICO = 〈O ∪ SO, EICO 〉. SO is obtained by removing from S those shocks, which
C assigns to variables in W that are not in O, and by adding those shocks, which
C assigns to variables in W that are determinants of variables in I ∩ O. EICO is
obtained by removing from EIC all of those edges, whose tails are not in SO. For
any variable set O, we call “idiosyncratic” a shock to a variable X in GICO that is
a parent of X and of no other variable. We may now define ill- and well-defined
variables:

Ill- and well-defined variables Let C over V = W∪ I contain the assignment
I := f(DetI), card(DetI) ≥ 2. Let DesI denote the set of all descendants of
determinants of I in GV .2 Assume I ∈ O ⊆ V. Then, I is ill-defined in O if and
only if, for some Desj ∈ DesI , there exists a variable Y such that (i) Y ∈ O,
(ii) Y 6= I , (iii) Y belongs to a (possibly empty) active path from Deti to Desj
in GV (viz. Deti −→ · · · −→ Desj or Deti −→ · · · =⇒ Desj), and (iv) GIC{I,Y }
contains no shock SY common to I, Y , for which SY ⊥⊥ Y |I in C. Any variable
in O that is not ill-defined in O is well-defined in O.

For instance, TC is well-defined in {Da, TC} because Da is neither a determi-
nant of TC nor a descendant of a determinant of TC, and vice versa. By contrast,
TC is ill-defined in {HDL, TC} because HDL is a determinant of TC, and
SHDL⊥⊥/ HDL|TC; also, TC is ill-defined in {TC,D1} and {TC,HD} because
D1 and HD are effects of determinants of TC, and (respectively) SD1⊥⊥/ D1|TC
and SHD⊥⊥/ HD|TC. More generally, a variable I is ill-defined in O if and only
if O also contains a variable Y among I’s determinants or their descendants, and
GIC{I,Y } contains no shock SY on I, Y , such that I screens off SY from Y in C.
This lack of screening off intuitively captures the idea that a manipulation of I
with respect to Y is ambiguous. In turn, to explain the lack of screening off, we
need the following Proposition (proof in Appendix):

Proposition 1 Let C over V = W ∪ I contain the assignment I := f(DetI),
card(DetI) ≥ 2. Assume CMC and CFC in GW . Then, for any Deti, Desi, Anci,

2Notice that DetI ⊆ DesI by definition of “descendant”.
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where Desi is a descendant of Deti, and Anci is an ancestor of Deti, it holds
Anci 6⊥⊥Desi|I , except for a parameter set Θ (characterising the assignments in
C) that violates CFC in G̃V .3

We can also define a graph GO = 〈O, EO〉 representing the structure over O,
where EO consists of the following edges. First, GO has a modified edge X =⇒ Y

if and only if there is a directed path X =⇒ · · · =⇒ Y in GV , and no variable
between X and Y is in O. Next, let the tail♦ of the arrow X ♦−→ Y indicate that
X is ill-defined in {X, Y }. Then, GO has an edge X ♦−→ Y for any 〈X, Y, Z〉
for which X, Y ∈ O, Z ∈ V, Z /∈ O, and GV features a path X ⇐= Z −→ Y ,
unless GICO has a shock S common to X, Y for which S ⊥⊥ Y |X in C, in which
case X −→ Y is in GO. Furthermore, GO has a standard edge X −→ Y if GV has
a directed path from X to Y featuring standard edges −→ and/or modified edges
=⇒, and no variable between X and Y is in O. Finally, GO has a bidirected edge
X ←→ Y if and only if GV has an active path X ←− · · · ←− Z −→ · · · −→ Y

featuring standard or modified edges, and only X, Y on that path are in O. No
further edges are in GO.

Illustrated in relation to Figure 1, G{HDL,TC,LDL} is HDL =⇒ TC ⇐=

LDL, and G{HDL,LDL,HD} is HDL −→ HD ←− LDL. The two problematic
structures with ill-defined variables from §2, namely G{TC,D1,D2} and G{Da,TC,D1},
are represented as, respectively, D1 ←−♦TC ♦−→ D2 and Da −→ TC ♦−→
D1. Finally, let us define the notions of ill- and well-defined causes:

Ill- and well-defined causes For any X, Y ∈ O, X is an ill-defined cause of Y
in O if and only if G{X,Y } contains the edge X ♦−→ Y . For any X, Y ∈ O, X
is a well-defined cause of Y in O if and only if Y is well-defined in {X, Y }, and
G{X,Y } contains the edge X −→ Y .

For instance, HDL is a well-defined cause of HD in {HDL,HD}.4 By contrast,
TC is an ill-defined cause of HD in {TC,HD}.

4 Identification

We now illustrate the applicability of our framework to detecting ill-defined vari-
ables and improving causal inference. We begin with a condition, under which

3Notice that we do not assume CFC in G̃V . For such a Θ, I counts as well-defined in our
framework, as the manipulation of I with respect to Desi is not ambiguous.

4At the same time, HDL is not a (well-defined) cause of TC in {HDL, TC}, because TC is
not well-defined in that set.
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one may unambiguously identify ill-defined variables.

Proposition 2: Sufficient condition for ill-definedness Consider C over V,
and O = {X, Y, Z} ⊆ V. Assume CMC and CFC in GW . Also assume (i)
X ⊥⊥ Z, (ii) X ⊥⊥/ Y , Y ⊥⊥/ Z, X ⊥⊥/ Z|Y , and (iii) GICO has no idiosyncratic
shock on Y . Then, Y is ill-defined in O with two determinants in V, and GO is
X ←−♦Y ♦−→ Z.

For instance, applied to V′ = {TC,D1, D2}, this condition establishes that TC
is an ill-defined common cause of D1 and D2, viz. D1 ←−♦TC ♦−→ D2, since
D1 ⊥⊥ D2, D1⊥⊥/ TC, TC ⊥⊥/ D2, D1⊥⊥/ D2|TC, and GICV ′ has no idiosyncratic
shock to TC. Proposition 2 is easily generalizable to cases with more than two
determinants.

If one observes no effects of independent determinants of the ill-defined vari-
able, for instance in V′′ = {Da, TC,D1}, the above condition is not applica-
ble. Nonetheless, one may still reduce the ambiguity concerning ill-defined vari-
ables and partially recover the causal structure. To this end, let us assume that
determinism induces dependencies (DD):

(DD) For any I and any Deti ∈ DetI in C, it holds I⊥⊥/ Deti.

In words, there are probabilistic dependencies between variables with determinis-
tic assignments and their determinants. This assumption is only violated by can-
celling paths from determinants to determined variables. Its satisfaction requires
(similarly to CFC) the absence of special parameterizations. For simplicity, we
also assume that O contains no determinants of variables in O, such that EO con-
tains no modified edges =⇒.5 Then, one may identify well-defined variables:

Proposition 3: Sufficient condition for well-definedness Consider C over V,
and O ⊆ V. Assume DD. Assume CMC and CFC in GW . Assume that no
determinant of ill-defined variables in O is in O. Then, a variable X is well-
defined in O if for any Y in O, X 6= Y , one of (i)–(iv) holds: (i) X ⊥⊥ Y ; (ii)
in GIC{X,Y } X is not a child of an idiosyncratic shock, and X, Y are children of a
common shock S, such that S ⊥⊥ Y |X; (iii) in GIC{X,Y } X is the only child of an
idiosyncratic shock; (iv) in GIC{X,Y }, X, Y are children of idiosyncratic shocks, and
there is Z ⊂ O such that X⊥⊥Y |Z and no Zi ∈ Z is the child of an idiosyncratic
shock in GIC{X,Zi}.

5Of course, there is no a priori guarantee that O contains no determinants. Although one
could easily relax this assumption, and thereby obtain a more general result, this would require a
lengthier proof. For reasons of space, here we prioritize simplicity over generality.
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For instance, Da (which, to recall, causes LDL but not HDL) is well-defined in
V′′, since (i) Da⊥⊥D1, and (ii) GIC{Da,TC} contains a shock S common to Da, TC,
such that S ⊥⊥ TC|Da, and no idiosyncratic shock to Da, from which one may
infer Da −→ TC. Next, one can identify putative ill-defined variables:

Proposition 4: Necessary condition for ill-definedness Consider C over V

and its associated graph GV . Assume DD. Assume CMC and CFC in GW . Let X
be ill-defined in O = {X, Y } with DetX ∩O = ∅, O ⊆ V. Then: (i) X 6⊥⊥Y ;
(ii) in GICO X, Y are children of a common shock; (iii.a) in GICO X is child of an
idiosyncratic shock, or (iii.b) in GICO X is not a child of an idiosyncratic shock
and there is a set of shocks S on X such that X⊥⊥Y |S.

For instance, TC and D1 are such that (i) TC 6⊥⊥ D1. Moreover, in GIC{TC,D1}
they are (ii) children of a common shock and (iii.a) children of idiosyncratic
shocks. Therefore, TC and D1 qualify as putatively ill-defined. Assuming the
absence of bidirected modified paths, G{TC,D1} cannot be TC ⇐= · · · =⇒ D1.
Therefore, only three structures are possible, namely TC ♦−→ D1, TC ←−
♦D1, and TC ←→ D1. The ambiguity may be resolved by enlarging V′′ until
a sufficient set Z of common causes of TC,D1 is found that screens them off,
or (given Z) the dependence between TC and D1 is oriented such that one is
a well-defined cause of the other, viz. TC −→ D1 or TC ←− D1, or enough
effects of determinants of TC or D1 are observed as to remove the idiosyncratic
shock on TC or D1, such that either TC ♦−→ D1 or TC ←−♦D1 holds.

5 Conclusion

The problem of variable definition is known to be responsible for ambiguous
manipulations. Furthermore, we showed that it can lead to mistakes in causal
inference by standard constraint-based causal search methods. To address the
problem, we introduced a novel representation framework suitable for structures
including ill-defined variables, viz. the independent component (IC) representa-
tion. We argued that recovering the IC representation can unambiguously identify
ill-defined variables, under certain assumptions, or at least exclude that certain
variables are ill-defined, and consequently reduce the risk of mistaken causal in-
ferences. Given recent advances in statistical techniques (e.g., Independent Com-
ponenent Analysis) by which one may recover the IC representation, our proposal
holds great promise. Therefore, we strongly invite further research on the subject.
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Appendix

Proof of Proposition 1. Assume per absurdum that there exist Anci, Desi of Deti,
such that Anci⊥⊥Desi|I for any set of parameters Θ in C. This is possible only
if one of (A)–(C) holds: (A) Deti suffices to determine I , such that I renders
Deti irrelevant to Anci, Desi. This requires card(DetI) = 1, contradicting
card(DetI) ≥ 2. (B) card(DetI) ≥ 2 and for some Detj ∈ DetI , there is
no directed path Detj −→ · · · −→ Desi. Then, Detj would act as an ex-
ogenous noise on I , such that the edge Deti =⇒ I would be observationally
indistinguishable from a standard edge Deti −→ I . Holding CFC in W, and
since I behaves like a child of Deti, we would have Anci⊥⊥/ Desi|I , contradict-
ing our starting hypothesis. (C) card(DetI) ≥ 2 and for any Detj ∈ DetI ,
there is a directed path Detj −→ · · · −→ Desi. Then, there exists a parameter
set Θ such that Anci ⊥⊥ Desi|I and, necessarily, for any Deti, Detj ∈ DetI ,
PΘ(I,Desi|Deti) = PΘ(I,Desi|Detj). For instance, assume card(DetI) = 2

and a generalized additive model such that I = f(Deti) + g(Detj) and D =

f ′(Deti) + g′(Detj) + SD. Then, A⊥⊥D|I holds only if f(Deti) + f ′(Deti) =

g(Deti) + g′(Deti). This point generalizes to larger cardinalities. Finally, since
I is a parent of neither Anci nor Desi in G̃V , any parameter set Θ such that
Anci⊥⊥Desi|I necessarily violates CFC in G̃V .

Proof of Proposition 2. Let ∗−→ denote one among −→, ←→, and ♦−→. As-
sume per absurdum that (i)–(iii) are true but Y is well-defined. CMC and (ii)
entail that GV contains paths linking X, Y and Y, Z. CFC and (i) entail that
GV contains no path linking X,Z. Then, GO contains only two edges, one con-
necting X, Y , and one connecting Y, Z. Among the possible structures in GO,
X∗−→ Y −→ Z, X ←− Y ←−∗Z, X ←−∗Y −→ Z, and X ←− Y ∗−→ Z

contradict (i), and X∗−→ Y ←−∗Z contradicts (iii). In all other structures, viz.
X ←−♦Y ♦−→ Z, X∗−→ Y ♦−→ Z, and X ←−♦Y ←−∗Z, Y is ill-defined.
The latter two contradict (iii). Thus, GO is X ←−♦Y ♦−→ Z, and DetY has
precisely two elements in V (one causing X and one causing Z); otherwise GICO
would contain an idiosyncratic shock on Y associated to its extra determinant(s),
violating (iii). As a corollary, GICO contains idiosyncratic shocks on X and Z.

Proof of Proposition 3. (i) From the definition of ill-defined variable, for any I ∈
V, GV contains a directed path from some Deti ∈ DetI to some descendant Desj
of Deti. Under CFC and DD, I is ill-defined only if O contains some Y on that
path, such that I ⊥⊥/ Y . Hence, if O = {X, Y } and X ⊥⊥ Y , then X is well-
defined. (ii) In GIC{X,Y }, X is ill-defined and not a child of an idiosyncratic shock
only if GV contains directed paths from each Deti ∈ DetX to Y . Then, GIC{X,Y }
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contains no shock S common to X, Y , such that S⊥⊥Y |X . Since this contradicts
(ii), X cannot be ill-defined. (iii) If X is the only child of an idiosyncratic shock
in GIC{X,Y }, then GIC{X,Y } contains a shock common to X, Y . Then, X is ill-defined
in GIC{X,Y } only if O contains a node Deti ∈ DetX , which is not a child of an
idiosyncratic shock. This contradicts the assumption that DetX ∩O = ∅. Hence,
X is well-defined. (iv) Suppose per absurdum that X is ill-defined, entailing a
directed path Deti −→ · · · −→ Y in GV . Since X⊥⊥Y |Z, some Zi ∈ Z ⊂ O is
on that path. Then, Zi is a child of an idiosyncratic shock in GIC{X,Zi}, contradicting
(iv). Hence, X is well-defined.

Proof of Proposition 4. Preamble: From the definition of ill-defined variable, and
from DetX ∩ O = ∅, it follows that G{X,Y } is X ♦−→ Y . (i) Under CFC and
DD, the preamble implies X⊥⊥/ Y . (ii) By definition of IC representation, GIC{X,Y }
contains at least one common shock to X, Y due to a latent determinant of X . (iii)
If GV contains a determinant of X not linked to Y by a directed path, then X is
a child of an idiosyncratic shock (iii.a). If, on the contrary, all determinants of X
are linked to Y by directed paths in GV , then X is not a child of an idiosyncratic
shock. Additionally, given X⊥⊥Y |DetX , it follows that there is a set S of shocks
on X’s determinants, such that X⊥⊥Y |S (iii.b).
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