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Abstract 

 

Emotion classification using features derived from electroencephalography (EEG) is currently one of 

the major research areas in big data. Although this area of research is not new, the current challenge 

is now to move from medical-grade EEG acquisition devices to consumer-grade EEG devices. The 

overwhelmingly large majority of reported studies that have achieved high success rates in such 

research uses equipment that is beyond the reach of the everyday consumer. Subsequently, EEG-

based emotion classification applications, though highly promising and worthwhile to research, 

largely remain as academic research and not as deployable solutions. In this study, we attempt to use 

consumer-grade EEG devices commonly referred to as wearable EEG devices that are very 

economical in cost but have a limited number of sensor electrodes as well as limited signal resolution. 

Hence, this greatly reduces the number and quality of available EEG signals that can be used as 

classification features. Additionally, we also attempt to classify into 4 distinct classes as opposed to 

the more common 2 or 3 class emotion classification task. Moreover, we also additionally attempt to 

conduct inter-subject classification rather than just intra-subject classification, which again the 

former is much more challenging than the latter. Using a test cohort of 31 users with stimuli 

presented via an immersive virtual reality environment, we present results that show that 

classification accuracies were able to be pushed to beyond 85% using ensemble classification 

methods in the form of Random Forest. 
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1. INTRODUCTION  

 

Emotion classification refers to the field of big data machine learning where brainwaves in the form 

of EEG signals are transformed into learning features that attempt to distinguish between a certain 

number of human emotions with reference to some particular model of emotions. One of the most 

commonly referenced models of emotion is known as Russell’s Circumplex Model (Russell, 1980) 

where emotions can be grouped into four quadrants (classes) according to the two dimensions of 

valence and arousal (REF). The large majority of existing studies, in particular those that report high 

classification accuracy rates typically only conduct classification along one dimension (REF) only 

resulting in a two-class problem (e.g. high vs. low arousal or positive vs. negative valence) or a three-

class problem (high, neutral, low arousal or positive, neutral, negative valence) (Alarcao & Fonseca, 

2019). Here we attempt the significantly harder problem of distinctly classifying the emotions into 

four classes using both dimensions of arousal and valence. 

 

Moreover, such training of the emotion classifier typically takes place for a particular user whereby 

the resulting emotion classifier is usable only by that particular user for previously unseen data 

(Alarcao & Fonseca, 2019). This method of emotion classification is known as intra-subject 

classification (REF). However, in this study, we attempt the more challenging emotion classification 

task of inter-subject classification whereby the trained emotion classifier can be used on users other 

than the user for which the training was conducted on. We further add on the challenge of conducting 

the classification using consumer-grade devices known as wearable EEG (Xu et al., 2017)) that cost 
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only USD199 with limited sensors and resolution as opposed to the large majority of successful 

studies that use medical-grade EEG BCI devices that typically cost upwards of USD10,000. 

The objectives of this paper is threefold: (1) to demonstrate the usability of consumer-grade wearable 

EEG headsets as cost-effective and affordable deployment devices for affective computing 

applications; (2) to demonstrate the applicability of such devices for performing four-class emotion 

classification; and (3) to demonstrate the applicability of such devices for performing inter-subject 

emotion classification. 

 

This paper is presented as follows: an overview of the research is presented in section 1, followed by 

section 2 which presents the background literature that motivates this study, section 3 presents the 

methods adopted in conducting this study, section 4 presents the results and analysis of the 

experiments conducted, and section concludes this study with the main findings and some future 

work. 

 

 

2. BACKGROUND 

 

Emotion classification studies have demonstrated the applicability of EEG-based sensing as a non-

invasive mode of affective computing, with highly promising successful reports from diverse 

application domains such as music, images, and videos. However, the large majority of these studies 

use so-called medical-grade BCI devices which are typically only available in hospitals and research 

laboratories, thereby severely limiting the possibility of deploying emotion classification solutions in 

the real world. There are two main entry barriers to the deployment of such devices: (1) the high cost 

involved in acquiring the EEG acquisition equipment, (2) the prolonged set-up time and practical 

inconvenience involved in actually prepping the end-user for EEG acquisition. The costs of some of 

the BCI equipment used in such reported studies typically cost anywhere from USD1000 to upwards 

of USD25000 (Farnsworth, 2019). Hence, the average consumer would almost certainly not be 

willing to add on another interfacing equipment just to enable affective computing in their 

applications on top of the costs of the application itself.  

 

Secondly, the large majority of such medical-grade BCI equipment utilizes a wet-electrode approach 

to signal acquisition, where a wet gel is required to be applied to the electrode before attaching to the 

user’s scalp. This is usually a process which requires a significant amount of time to set up and 

additionally, later on for the user to clean their hair and scalp of the wet electrode gel after the usage 

of the BCI device. Clearly, this time-inefficient and inconvenient approach does not allow for a 

practical application of EEG-based sensing to the average home consumer in terms of practicable 

affective computing solutions. Consequently, a more cost-effective and practical solution to deploying 

EEG-based affective computing BCI hardware is in order to make these emotion classification 

solutions desirable for consumption by the general public. In this respect, consumer-grade EEG BCI 

devices that cost than USD200 and uses dry electrode technology are highly desirable and they are 

now commonly available in the form of wearable EEG headset or headbands (REF). However, their 

applications are largely reserved for meditation purposes (Brinson, 2017). 

 

Emotion classification research has also largely been skewed towards two-class classification within 

the dimensions of arousal or valence exclusively. Only more recent studies have begun to report 

results beyond the simple two-class classification problem. Existing literature has also clearly 

indicated that the more successful results come from training and testing the emotions classified from 

within the same participant, which is known as intra-subject or within-subject emotion classification. 

When training is done on a participant and later tested on another participant, known as inter-subject 

or cross-subject emotion classification, the results are almost always inferior to the former, and the 

differences are significant. From the very few studies that have conducted both types of emotion 

classification and compared between both approaches within the same study, inter-subject 

classification accuracy rates were always lower than intra-subject classification accuracy rates where 

the difference was typically between 15-25% (Alarcao, 2019). Although inter-subject classification is 

clearly more challenging than intra-subject emotion classification, again for real-world deployment to 
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everyday consumers of affective computing application, EEG-based emotion classification solutions 

need to be able to achieve reasonably high accuracy rates in inter-subject classification since no new 

retrainings of existing classification models need to be carried prior to its use. 

 

The large majority of emotion classification studies focus on individual classifiers such as support 

vector machines, k-nearest neighbour, neural networks and deep learning approaches. There have 

been significantly less emotion classification studies that have attempted to use ensemble classifiers 

such as Random Forest. Some studies have used Random Forest to successfully classify emotion from 

speech (Badshah et al., 2016), music lyrics (Rachman et al., 2018), facial recognition (Jayalekshmi & 

Mathew, 2017), and tweets (Vora et al., 2017). Essentially Random Forest is a collection of individual 

decision trees that perform together as an ensemble (Liaw & Wiener, 2002). Its output is the majority 

decision obtained from the collection of individual decision trees. 

 

3. METHODS 

 

This section presents the methods adopted to conduct the investigations as explained in Section 1. 

 

3.1 Emotional Stimuli 

  

As the objective of this study is to classify the emotional response into four distinct quadrants 

according to Russell’s Circumplex Model of Emotions, YouTube 360 videos were carefully selected 

to evoke participants’ stimuli from each of the four quadrants according to the presentation protocol 

illustrated in Fig. 1: 

 

(i) Quadrant 1 (Top right): High Arousal, Positive Valence (HA/PV) -> HAPPY 

(ii) Quadrant 2 (Top left): High Arousal, Negative Valence (HA/NV) -> UPSET 

(iii) Quadrant 3 (Bottom left): Low Arousal, Negative Valence (LA/NV) -> BORED 

(iv) Quadrant 4 (Bottom right): Low Arousal, Positive Valence (LA/PV) -> RELAXED 

  

 
Fig. 1. Presentation of VR stimuli to participants 

 

3.2 Brain-Computer Interfacing 

 

Using EEG to capture the participants’ brainwaves as they are stimulated by and reacting to the VR 

content emotionally, a BCI device called Muse (Krigolson, 2017) was chosen for this purpose as 

shown in Fig. 2. This version utilizes the Bluetooth Low Energy (BLE) 4.0 communication protocol 

and is required for pairing the connection to a smartphone for transmission and acquisition of the EEG 

signals from Muse wirelessly. 
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Fig. 2. Muse EEG Headset 

 

The Muse headset is worn around the front of the head similar to a conventional headband. It has one 

reference electrode at the Fpz and four recording electrodes positioned at AF7, AF8, TP9, and TP10 

according to the international 10-20 positioning system (Herwig et al., 2003). An accompanying app 

provides the functionality of pre-processing the raw EEG data such as using the notch filter at 60Hz 

for removal of artifacts as well as obtaining the absolute band powers for the five frequency bands 

commonly used in the literature for the study of human brain activity (Buzsaki, 2006), namely the: 

 

(i) Delta (0Hz to 4Hz); 

(ii) Theta (4Hz to 8Hz); 

(iii) Alpha (8Hz to 13Hz); 

(iv) Beta (13Hz to 30Hz); and  

(v) Gamma (30Hz to 44Hz) bands.  

 

The absolute band power for a given frequency range is calculated as the logarithm of the sum of the 

Power Spectral Density (PSD) of the EEG data over a particular frequency range of the specified 

band. They are provided for each of the four to six channels/electrode sites on Muse. A Fast Fourier 

Transform (FFT), which is an algorithm which computes the Discrete Fourier Transform (DFT) of a 

given sequence, is used to compute the PSD of the EEG data with a window size of 256 samples with 

an overlap of 90% which is sampled at 220Hz providing a frequency resolution of 220/256 ≈ 

0.86Hz/bin. Muse also provides the functionality of recording the raw EEG signals and well as 

supplementary sensor readings from its accelerometer and gyroscope. In this study, only the raw and 

discrete-time FFT was used in the classification tasks. 

 

3.3 Machine Learning Environment and Classification Algorithms 

 

Deep learning (LeCun et al., 2015), Naïve Bayes (Rish, 2001), and Random Forest (Liaw & Wiener, 

2002) classification algorithms were used for the emotion recognition learning task. The R 

programming language environment is used to perform the machine learning tasks required in this 

investigation. It was also used for the evaluation of the experimental results to facilitate the analysis of 

the data collected from the participants. The main application programming interface (API) library 

used in R for this machine learning investigation was the “h2o” library, which implements Deep 

Learning (DL) classifiers and where the R h2o library represents interfacing code with the original 

Java codes in which the h2o deep learning library was written. Using the “caret” machine learning 

library in R, the Naïve Bayes (NB) and Random Forest (RF) approaches were also investigated for 

classification. These classifiers were run using the default settings found in the “caret” library. For 

Random Forest, the “ntree” parameter was kept at the default setting of 500 and the “mtry” parameter 

is automatically calculated by the algorithm based on the number of input features. 

 

3.4 Deep Learning Parameters 

 

In order to determine the suitable parameters to use for the deep neural network architectures to be 

used in the actual experimental runs, a preliminary test was conducted. The deep neural networks used 

for classification in this preliminary test yielded architectures that performed best when there were set 
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to two hidden layers with 200 hidden nodes within each layer. As mentioned before, 10-fold cross-

validation was used for each of the deep neural networks tested and these were individually run each 

time using for 10 epochs in each experiment. The uniform adaptive method was used to initialize the 

weights of the deep neural networks while the cross-entropy error function was used to assess the 

deep neural networks during training and testing phases. The Rectified linear unit (ReLU) transfer 

function was implemented as the deep neural network’s activation function and its dropout ratio 

parameter was set at 50%. An adaptive learning rate was also implemented for all the hidden layer 

nodes while the output layer was implemented with a softmax transfer function. 

 

4. RESULTS AND DISCUSSION 

 

This section presents the results obtained from the experiments conducted. All results are presented 

for inter-subject classification for four-class emotion classification. The results are presented as 

follows: (1) 10-fold cross-validation average classification results by channels and sensors; (2) 

graphical comparison of classification accuracy between the different frequency bands used as input 

features to the classifiers; and (3) distribution of inertial sensor data against emotional stimuli 

quadrant. 

 

4.1 Channel and Sensor Analysis 

 

Table 1. 10-fold Cross-Validation Average Classification Accuracies by Channel and Sensor. 

Channels/Sensors Used Accuracy 

DL NB RF 

Raw EEG Frontal 25.14% 27.62% 26.93% 

Raw EEG Temporal-Parietal 26.03% 28.61% 26.93% 

Raw Frontal + Temporal-Parietal 26.77% 29.85% 29.57% 

Full FFT Spectrum Frontal 36.06% 40.65% 73.04% 

Full FFT Spectrum Temporal-Parietal 35.66% 38.51% 86.18% 

Full FFT Spectrum Frontal + Temporal-Parietal 42.55% 44.33% 86.20% 

Raw EEG + Full FFT Spectrum Frontal 33.06% 33.90% 72.01% 

Raw EEG + Full FFT Spectrum Temporal-Parietal 34.29% 38.84% 73.40% 

Raw EEG + Full FFT Spectrum Frontal + Temporal-

Parietal 

39.09% 44.49% 84.26% 

Accelerometer 39.64% 41.09% 43.36% 

Gyroscope 29.05% 27.85% 29.53% 

Accelerometer + Gyroscope 40.32% 41.08% 47.05% 

 

Table 4.1 presents the average accuracy from ten-fold cross-validation of the four-class emotion 

classification task for an inter-subject classification approach. The best result of 86.20% was obtained 

using Random Forest with features comprising the full FFT spectrum of all five frequency bands that 

were obtained from both the frontal and temporal-parietal lobe sensors. This was followed closely by 

the results obtained also from Random Forest at 86.16% when using the full FFT spectrum of all five 

frequency bands that were obtained but only from the temporal-parietal lobe sensors. The next best 

results came from the addition of the raw EEG to the first results of the full FFT spectrum of all five 

frequency bands from both frontal and temporal-parietal lobe sensors at 84.26%. These are highly 

encouraging results that clearly prove that consumer-grade wearable EEG devices such as Muse with 

only four electrode sensors and with lower signal resolution compared to medical-grade EEG devices 

are able to produce very promising emotion classification accuracies of more than 80% using a variety 

of classification features for the highly challenging task of four-class, intra-subjection emotion 

classification. 

 

4.2 Frequency Band Analysis 
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Fig. 3. Comparison of Classification Accuracy by EEG Frequency Bands 

 

Next, the analysis from using individual frequency bands, namely the delta, theta, alpha, beta, and 

gamma frequency bands, obtained from the Discrete-time Fourier Transform is presented in Fig. 3. 

Clearly, again the Random Forest classifier provided the best classification across all frequency 

bands. The best results were obtained from the gamma band at 65.53%, followed by the alpha band at 

64.80% and then the beta band at 63.08%. The classification accuracy obtained from the delta and 

theta bands was the lowest at just above 58%. This finding is in line with a number of recent studies 

that have indicated promising emotion classification results obtained from the higher frequency bands, 

in particular from the gamma band. 

 

4.3 Inertial Sensing Analysis 

 

Fig. 4. Distribution of inertial sensor data against stimuli quadrant 
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The raw coordinate in the x, y, and z planes are plotted by emotional stimuli quadrants in Fig. 4 above 

for both inertial sensing modalities acquired from the accelerometer and gyroscope sensors on the 

Muse device. Although the prediction accuracies presented earlier for these two sensor modalities do 

not provide as high a classification rate as the EEG sensors, there still appears to be some variation in 

head movements depending on the stimuli presented. It was interesting to observe that the gyroscope 

readings in the x-axis for the “bored” quadrant (labelled as quadrant no. 3) were had a less variable 

reading compared to the other quadrants indicating that there was less movement of the head about 

the x-axis.  

 

Of more interest would be the accelerometer sensor readings which clearly show a clear pattern in 

terms of the magnitude of movements that were uniformly observed across all stimuli quadrants. 

Movements on the x-axis were the most significant compared to the y-axis, which comes next in 

terms of magnitude, followed lastly by the z-axis which had very minimal readings except for a few 

data points that were captured during the third quadrant stimuli presentations. This indicates that 

movements along the x-axis are noticeably large and provides an added modality for emotion 

detection applications. 

 

5. CONCLUSION AND FUTURE WORK 

 

The main objective of this study was to classify emotions triggered by virtual stimuli into four 

separate classes according to the arousal and valence dimensions of emotions using an inter-subject 

training and testing approach paired with a consumer-grade wearable EEG BCI device. Using an 

ensemble classifier approach in the form of Random Forest, the highest classification accuracy 

achieved for this set up was 86.20% with input features coming from all five frequency bands of both 

the frontal and parietal-temporal sensor electrodes. The results obtained using Random Forest 

outperformed Naïve Bayes and Deep Learning. For future work, eye-tracking technology is proposed 

to be used to augment the current EEG and inertial-sensing-based approach since in a virtual 

environment, eye gaze and stimuli localization could play an as yet unknown yet important role in VR 

emotion classification. 
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