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Abstract. In large-scale problems, classical Newton’s method requires solving a 

large linear system of equations resulting from determining the Newton direction. 

This process often related as a very complicated process, and it requires a lot of 

computation (either in time calculation or memory requirement per iteration). 

Thus to avoid this problem, we proposed an improved way to calculate the 

Newton direction using an Accelerated Overrelaxation (AOR) point iterative 

method with two different parameters. To check the performance of our proposed 

Newton’s direction, we used the Newton method with AOR iteration for solving 

unconstrained optimization problems with its Hessian is in arrowhead form and 

compared it with a combination of the Newton method with Gauss-Seidel (GS) 

iteration and the Newton method with Successive Over Relaxation (SOR) 

iteration. Finally, comparison results show that our proposed technique is 

significantly more efficient and more reliable than reference methods. 
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1 Introduction 

We consider large-scale unconstrained minimization problem 

𝑚𝑖𝑛
𝒙∈ℝ𝑛

𝑓(𝒙)                                                           (1) 

where the objective function 𝑓 :ℝ𝑛 →ℝ is smooth with at least twice continuously 

differentiable and n  is large. These problems appear in a wide range of applications, 

including electric power systems for the nonlinear large mesh-interconnected system 

[1], discrete-time optimal control [2], the DNA reproduction process [3] or even in the 

sign recurrent neural network [4]. Therefore, developing an efficient method to solve 

problems (1) is a significant and vigorous scientifically research area.  
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There are various methods listed in [5] to solve unconstrained minimization, and 

Newton’s method is listed as one of the best-known methods that possess the fast 

quadratic rate of convergence with excellent performance when the initial point is 

chosen correctly. However, if it involves a large-scale problem, computation and 

storage of the Hessian for the classical Newton method are too costly to be practical. 

For that reason, many researchers have modified this classical Newton's method to 

overcome its disadvantages, such as in [6-10]. 

Shen et al. [6] presented a new regularized Newton method for solving unconstrained 

minimization problems by using the modified Cholesky factorization algorithm to re-

place the objective function’s Hessian. On top of that, they used a first-order method to 

find the first-order stationary point and only mention that the algorithms can be ex-

tended to second-order algorithms by the help of negative curvature. Grapsa [7] pro-

posed modification on Newton’s direction for solving unconstrained optimization using 

the gradient vector modification at each iteration, while Tahera et al. [8] combined two 

types of descent direction to propose a new algorithm for solving unconstrained opti-

mization problems. Recently, Abiodun and Adelabu [9] investigated the performance 

of the Newton method and compared it with two iterative modification of Newton’s 

method for solving unconstrained minimization problems. However, they concluded 

that the computational numerical result obtained was depend on the nature of the ob-

jective function.  

Thus, we modified the classical Newton method via its Newton’s direction, and this 

modification is different from the existing combination of Newton’s method with other 

methods, as stated in the previous paragraphs. This Newton’s direction is obtained by 

solving a linear system that involves the Hessian matrix and the gradient. Therefore, 

solving it using the direct method for large-scale problems is not a smart choice. On the 

other hand, we used the AOR point iteration. This AOR iteration has been introduced 

by Hadjidimos in [11] using a two-parameter generalization of the SOR method and 

classified as one of the most straightforward and powerful techniques for solving any 

linear systems. 

As a result, in this paper, motivated by the advantages of the classical Newton 

method, we proposed the AOR point iteration to find the Newton direction and then 

solve problem (1) using Newton’s method. We called this method as Newton-AOR 

method. This improvement is a new contribution to the large-scale unconstrained opti-

mization problem where the Hessian is in the arrowhead matrix form. To verify the 

performance of the improved Newton direction, we used a combination of Newton’s 

method with Gauss-Seidel iteration and a combination of Newton’s method with SOR 

iteration as reference methods, and they are called as Newton-GS method and Newton-

SOR method respectively. 

The rest of this paper is organized as follows. In the next section, we described the 

Newton scheme with an arrowhead Hessian matrix, while in section 3, we formulated 

the AOR iteration for computing Newton’s direction. In section 4, we presented our 

numerical experiment and result. Lastly, the conclusion is stated in section 5. 
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