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Chapter 1
Introduction

1.1 Data Mining and Machine Learning in Software Engi-

neering

The availability of large amounts of data from software development has created an

area of research called mining software repositories. Researchers mine data from software

repositories both to improve understanding of software development and evolution, and

to empirically validate novel ideas and techniques. The �rst approaches were proposed

by Ball et al. in 1997 to �nd clusters of �les frequently changed together [12], by Graves

et al. in 1998 to compute the e�ort necessary for developers to make changes [52] and

by Atkins et al. in 1998 to evaluate the impact of tools on software quality [11].

The large amount of data collected from software processes can then be leveraged

for machine learning applications. Indeed, machine learning can have a large impact in

software engineering, just like it has had in other �elds, supporting developers, and other

actors involved in the software development process, in automating or improving parts of

their work. The automation can not only make some phases of the development process

less tedious or cheaper, but also more e�cient (increasing the work throughput) and less

prone to errors. Moreover, employing machine learning can reduce the complexity of

di�cult problems, enabling engineers to focus on more interesting problems rather than

the basics of development. The possible avenues for usage of data mining and machine

learning techniques are many, e.g., they can be used to predict faults [53] or to detect

important crashes before release [72].

Our aim in this dissertation is to make another step towards the use of data mining

and machine learning for supporting software engineering processes, showing how the

1
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Bug
Mgmt

Development

Review

Bug Sources CI
Automated Testing Release

Figure 1.1. High-level overview of the development process.

development and the use of machine learning and data mining techniques can support

several software engineering phases, ranging from crash handling, to code review, to

patch uplifting, to software ecosystem management.

1.2 Thesis Statement

The thesis we aim to support is:

The development and the use of machine learning and data mining techniques

can support several software engineering phases, ranging from crash handling,

to code review, to patch uplifting, to software ecosystem management.

To validate our thesis we conducted several studies tackling di�erent problems in an

industrial open-source context, focusing on the case of Mozilla.

1.3 Software Development Process at Mozilla

The software development process at Mozilla [101] is composed of several phases,

where di�erent actors collaborate with each other to achieve the goal of releasing a new

version of the software. The main actors are (i) end users, (ii) volunteers, (iii) bug triagers

[100], (iv) QA, (v) developers, (vi) reviewers, (vii) managers, (viii) release managers

[104], (ix) tree sheri�s [109] . An overview of the phases of the development process can

be seen in Figure 1.1. The phases are not necessarily in order, but they are executed

simultaneously.

1.3.1 Bug sourcing and monitoring health

There are several possible ways in which Mozilla is able to know of problems in the

wild ("bug sources"):

End-user bug report An end-user could directly open a bug report in Mozilla's bug

tracking system.
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End-user web compatibility issue report An end-user could open a bug report in

a web compatibility issue tracking system.

QA A member of the Quality Assurance team could �nd bugs by performing manual

testing.

Support channels monitoring By monitoring support channels, Mozilla can notice

issues a�ecting multiple users.

External services monitoring By monitoring external services (such as forums, dig-

ital distribution services, etc.), Mozilla can notice issues a�ecting multiple users.

Telemetry By monitoring Telemetry data, Mozilla can detect changes to the worse

(e.g., performance regressions).

Automated crash report An end-user can report a crash through automated means.

Not only these are possible sources of bugs, but they can also be used to monitor

the health of the software, which can be measured via a set of metrics, such as number

of bugs reported, number of regressions, number of crashes, performance characteristics,

and so on).

1.3.2 Bug/Feature tracking and management

Once a bug is on �le in Mozilla's bug tracking system (Bugzilla), triagers (either

volunteers or the developers themselves) are in charge of a) requesting more information

about the bug if applicable and if needed; b) resolving potential duplicates; c) moving

the bug to the right component, so that it can be seen by the right team. The ultimate

responsibility about triaging in a speci�c component is due to triage owners [100]. The

priority of a given bug is usually decided by triage owners and developers and project

managers together, but the meaning of the priority �eld on Bugzilla is not consistent

between teams.

Bugzilla is also used to track feature work and enhancement requests (both enhance-

ments of the product for the end user and enhancements of the quality of the code).

Such bugs can be opened by users, by developers, or by project managers.

1.3.3 Code changes development and review

Once a bug has been triaged, developers might assign themselves or be assigned to

work on it. The developer will then submit a patch through one of Mozilla's review
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systems (at the time of writing either Phabricator [103] or Splinter [107], an interface

integrated directly into Bugzilla which Mozilla has been trying to deprecate for a while).

The developer will choose a reviewer for their patch, which should be a reviewer familiar

with the code changed (a module owner [102]). In some cases, the developer can choose

a group of reviewers, and the person who is available at the time will be the actual

reviewer.

1.3.4 Automated testing and continuous integration

Once a patch has been accepted for inclusion, it will be integrated in Mozilla's version

control system (Mercurial) and will go through a set of automated tests, plus static and

dynamic analysis. In the normal work�ow, the patch will land on an integration branch

�rst ("mozilla-inbound" or "autoland"), where it will undergo a set of automated tests

(a reduced set, using test selection techniques based on historical failures to reduce the

load [65]). If the patch does not cause breakages, it will be merged, together with

other patches, in the branch for the Nightly channel (called "mozilla-central"), where it

will undergo the full suite of automated tests. This work�ow ensures that the channel

from which Nightly builds are produced is most of the time in a good state, while also

reducing the load on integration branches (as opposed to running all possible tests on

every possible commit in isolation). Tree sheri�s [109] are in charge of the process, both

merging integration branches to release branches and ensuring the branches are always

in a good state by backing out breaking changes. They also, from time to time, have

to back�ll tests to �gure out which change is the culprit of a breakage (it is not always

clear, given that on the �rst integration branches only a subset of the full test suites is

run). For more details about landing code, the reader can refer to [108].

1.3.5 Release process

Mozilla's release process is organized around a development channel (Nightly), a set

of stabilization channels (Beta and Aurora, which has been recently deprecated in the

Dawn project [97]) and a main Release channel (each of the channels corresponds to a

di�erent branch in the version control system). Nightly is an unstable channel mainly

used by early adopters and/or volunteers; Beta is a mostly-stable channel used by users

which want to try features before they are released without incurring in the occasional

breakage; Release is the stable build which is shipped to the general population. Each

build has progressively more users than the previous, and changes in those branches are

thus progressively more risky. Normally, at scheduled intervals changes are imported
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from a less stable branch (e.g., Nightly) to a more stable one (e.g., Beta). Sometimes,

high value patches are allowed to be imported directly outside the normal scheduling.

Release managers are the gatekeepers of the process which allows changes to go directly

from one channel to another, which is called the "uplift" process.

The work developed in this dissertation focuses in particular on the phases of crash

handling, code review, patch uplift, and software ecosystem management, trying to study

and, if possible, improve them by using machine learning and data mining techniques.

1.4 Contributions

The main contributions from our work to the state of the art are summarized in the

following.

� In [23], we have provided documentation about some of Mozilla software engineer-

ing practices, collected during our PhD studies and our work at Mozilla.

� In [118], we conducted a study to obtain an empirical understanding of what makes

a code change easier to review.

� In [28], which we presented in Chapter 2, we applied data mining techniques to a

crash management problem, to automatically describe groups of crashes.

� In [7], which we presented in Chapter 3, we studied the relation between crashes

and code review practices.

� In [24], which we presented in Chapter 4, we examined the uplift process operations,

with the aim to characterize successful and unsuccessful uplifts. This study won a

IEEE TCSE Distinguished Paper Award.

� In [25], which we presented in Chapter 4, we expanded our study on the uplift

process, analyzing additional aspects of it (for example, the severity of the uplifts

compared to the regression caused by them).

� In an article currently under submission, which we presented in Chapter 5, we

analyzed the e�ects of DLL injection in the Firefox software ecosystem.

Other than software engineering, during my PhD studies I have also worked on a

remote sensing application:
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� In [27], we explored the use of convolutional neural networks for the semantic

classi�cation of remote sensing images, expanding our previous study [26] with the

usage of a new dataset.

1.5 Outline

In Chapter 2, presenting our work from [28], we devised an algorithm, inspired

by contrast-set mining algorithms such as STUCCO, to automatically �nd statistically

signi�cant properties (correlations) in crash groups. Many earlier works focused on im-

proving the clustering of crashes, but the problem of automatically describing properties

of a cluster of crashes is so far unexplored. This means developers currently spend a fair

amount of time analyzing the groups themselves, which in turn means that a) they are

not spending their time actually developing a �x for the crash; and b) they might miss

something in their exploration of the crash data (there is a large number of attributes

in crash reports and it is hard and error-prone to manually analyze everything). Our

algorithm helps developers and release managers understand crash reports more easily

and in an automated way, helping in pinpointing the root cause of the crash. The tool

implementing the algorithm has been deployed on Mozilla's crash reporting service.

In Chapter 3, presenting our work from [7], we studied the relation between crashes

and reviews, given that some high-impact defects, such as crash-related ones, can elude

the inspection of reviewers and escape to the �eld, a�ecting user satisfaction and in-

creasing maintenance overhead. We investigated the characteristics of crash-prone code,

observing that such code tends to have high complexity and depend on many other

classes. In the code review process, developers often spend a long time on and have

long discussions about crash-prone code. We manually classi�ed a sample of reviewed

crash-prone patches according to their purposes and root causes. We observed that most

crash-prone patches aim to improve performance, refactor code, add functionality, or �x

previous crashes. Memory and semantic errors are identi�ed as major root causes of the

crashes. Our results suggest that software organizations should apply more scrutiny to

these types of patches, and provide better support for reviewers to focus their inspection

e�ort by using static analysis tools.

In Chapter 4, presenting our work from [24] and [25], we analyzed the uplift pro-

cess. In rapid release development processes, patches that �x critical issues, or implement

high-value features are often promoted directly from the development channel to a sta-

bilization channel, potentially skipping one or more stabilization channels. This practice

is called patch uplift. Patch uplift is risky, because patches that are rushed through the
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stabilization phase can end up introducing regressions in the code. This chapter exam-

ines patch uplift operations at Mozilla, with the aim to identify the characteristics of the

uplifted patches that did not e�ectively �x the targeted problem and that introduced

regressions. Through statistical and manual analyses, we investigated a series of prob-

lems, including the reasons behind patch uplift decisions, the root causes of ine�ective

uplifts, the characteristics of uplifted patches that introduced regressions, and whether

these regressions can be prevented. Additionally, three Mozilla release managers were

interviewed to understand organizational factors that a�ect patch uplift decisions and

outcomes. Results show that most patches are uplifted because of a wrong functionality

or a crash. Certain uplifts did not e�ectively address their problems because they did

not completely �x the problems or lead to regressions. Uplifted patches that lead to

regressions tend to have larger patch size, and most of the faults are due to semantic or

memory errors in the patches. Also, release managers are more inclined to accept patch

uplift requests that concern certain speci�c components, and�or that are submitted by

certain speci�c developers. About 25% to 30% of the regressions due to Beta or Release

uplifts could have been prevented as they could be reproduced by developers and were

found in widely used feature/website/con�guration or via telemetry.

In Chapter 5, presenting our work from an article that is currently under submis-

sion, we studied the e�ects of DLL injection in the Firefox software ecosystem. DLL

injection is a technique used for executing code within the address space of another

process by forcing the load of a dynamic-link library. In a software ecosystem, the inter-

actions between the host and third-party software increase the maintenance challenges

of the system and may lead to bugs. We empirically investigated bugs that were caused

by third-party DLL injections into the Mozilla Firefox browser. Among the 103 studied

DLL injection bugs, we found that 93 bugs (90.3%) led to crashes and 57 bugs (55.3%)

were caused by antivirus software. Through a survey with third-party software vendors,

we observed that some vendors did not perform any QA with pre-release versions nor

intend to use a public API (WebExtensions) but insist on using DLL injection. To re-

duce DLL injection bugs, host software vendors may strengthen the collaboration with

third-party vendors, e.g., build a publicly accessible validation test framework. Host

software vendors may also use a whitelist approach to only allow vetted DLLs to inject.





Chapter 2
Automatically Analyzing Groups of

Crashes for Finding Correlations

Fixing crashes is one of the top priorities for software organizations, as they are one

of the main pain points for users and might lead them to leave. Even a single crash

can dramatically worsen how users perceive a software, especially if it causes the loss of

important data. Acting quickly is thus really important to avoid losing users and keep

a high quality software.

Several software organizations have deployed automated crash reporting systems,

such as Mozilla's Socorro [4] and Windows Error Reporting [50], which are used to

collect reports from users at the time of crash. A report received by Socorro comprises

typically more than a hundred attribute-value �elds. These reports are then analyzed by

dedicated personnel to �nd out �xes and improve software quality. It should be realized,

however, that these systems collect a huge number of crash reports daily, about three

hundred thousand reports/day for Socorro, which cannot be processed on an individual

basis. Therefore, the typical work�ow consists of two key phases

1. crash report clustering;

2. cluster featuring and analysis.

The goal of clustering is to group together similar reports, as they are likely originated

by multiple instances of the same software problem. Once the problem is �xed, all these

reports can be discarded at once from further analysis. Moreover, clustering allows one

to compute precious statistics on the cluster itself, enabling the second phase of the

work�ow. In fact, the typical features of interest in a cluster concern the frequency of

9
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occurrence of attribute-value pairs, which may provide useful hints for the solution of the

problem. As an example, assume that a perfect clustering process succeeds in grouping

together all crash reports originated by a given software bug, and assume that all such

reports are characterized by a distinctive feature which is never observed in reports of

other clusters. While not conclusive, this observation would provide a strong clue for

the analyst, and would probably allow a quick �x of the problem. This idealized process

is summarized graphically in Figure 2.1.

Real-world operations are very far from this simplistic case. On/o� features rarely

occur, and the analyst must focus on minor variations in the frequencies of occurrence

of attribute-value pairs across groups. Moreover, the most distinctive features concern

usually joint occurrences. If the number of elementary features is already large, the

number of features concerning more complex behaviors, possibly involving tuples of

attribute-value pairs, makes brute force analysis simply infeasible. It requires very skilled

analysts to navigate e�ectively through these data and extract useful clues. To further

complicate things, the preliminary clustering of crashes is itself far from perfect, which

may strongly a�ect the results of subsequent analyses. When a cluster includes reports

that have no relation with one another, the resulting features are averaged together and

hardly distinctive anymore. On the contrary, when there are too small groups, since

reports for the same crash are divided in multiple clusters, features become unstable,

leading to erroneous conclusions.

The above discussion underlines the need of e�ective automated tools that support

the analyst's work in both phases on the process to i) perform a reliable clustering of

crash reports, and ii) single out the most meaningful features. Many previous studies

in the literature have focused on the �rst problem, namely, proposing a number of com-

peting solutions to best cluster crashes in groups. Section 2.5 contains a more detailed

explanation of some of them. In this study, instead, we focus on the second problem,

and propose an automated tool to support group understanding after the clustering has

already taken place. Thus, the research question we aim to address in this study is the

following:

RQ: Could an automated tool to analyze crashes be useful for developers to diagnose or

help �x crashes?

We �nd that in 19 out of 41 (46.3%) manually analyzed cases, the tool's results

directly helped in �xing the crash. This result suggests that software organizations

can use these data mining techniques to speed up and simplify the resolution of

crashes and to reduce the amount of manual tedious work for developers.
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Figure 2.1. Idealized process: with perfect clustering, properties that de�ne the groups
are easily found.

The proposed tool �nds statistically signi�cant properties in crash groups, sorts them

by decreasing importance, and submits them to the analyst. Developers are therefore

freed from this tedious preliminary analysis, and can focus on �xing the crash. The

manual analysis, given the large number of attributes in crash reports, is not only tedious

but also error-prone (also due to the e�ects of fatigue). The proposed tool may happen to

�nd interesting properties that the analyst could miss. Automatically �nding properties

of crash groups also allows release managers to quickly act with temporary workarounds,

for example by blocking updates to a crashy version for a particular set of users.

Speci�cally, our approach is based on a data mining technique, contrast-set learning

[112], applied successfully to a number of other problems in software engineering [159]

and beyond (e.g., [75]). The approach we present in our study can also help with the

triage of crash groups, in fact release managers can decide on their importance, after
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Figure 2.2. Dialog window presented to users when they experience a crash.

understanding the possible causes and properties of a crash. We evaluate the system

using crash data collected from the Mozilla crash reporting system and bug tracking

system. Although a systematic analysis of performance in not feasible for practical

reasons, we collected evidence that the system may actually help understanding a group

of crashes and reduce the time needed to solve the problem.

The rest of this chapter is organized as follows. Section 2.1 provides background

information about Socorro, the Mozilla crash reporting system used in our study. Section

2.2 describes the proposed algorithm. Section 2.3 presents the validation of the results

of our algorithm, applied to real world cases for Mozilla Firefox crashes. Section 2.4

discusses threats to the validity of this study. Section 2.5 summarizes related works.

2.1 Socorro and Crash Reports

Mozilla's applications are shipped with a built-in automatic crash reporting tool [4].

When end users encounter a crash, they are presented with a dialog window that asks

them to submit a report (see Figure 2.2).

Crash reports include stack traces of the threads that were running at the time of

the crash and other information about the user's environment (e.g., operating system,

memory-related information, modules loaded in the process). A subset of the �elds

contained in a crash report is depicted in Table 2.1. The reader may refer to [92] for
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Table 2.1. A subset of the attributes present in a crash report.

Name Description

Platform The name of the Operating System.

Platform Version The detailed version of the Operating System (e.g., uname
-a on Linux).

Addons A list of the addons, with their version, installed in the Fire-
fox pro�le.

Modules A list of the modules (DLL �les on Windows, SO �les on
Linux, dylib �les on Mac), with their version, loaded in the
application's process.

User Comment A (usually brief) comment left by the user at the time of
crashing.

CPU Info Detailed information (vendor, family, model, stepping, num-
ber of cores) about the CPU of the user.

Adapter Vendor ID The vendor of the graphics card on the user's machine.
There are other related attributes such as Adapter Device
ID, Adapter Driver Version, etc.

Safe Mode A boolean variable that indicates whether Firefox was run-
ning in safe mode.

User Agent Locale The language of the user.

... ...

an up-to-date JSON schema of a crash report. Some of the information contained in

a crash report might be sensitive, which is why the submission of crash reports is not

silent, but requires the user to accept a prompt.

As can be seen from Figure 2.2, the user has a chance to enter a short comment at

the time of crash, to specify details about their crash report. For example, what they

were doing right before they experienced the crash. Crash reports are then sent to the

Socorro server [90], which:

1. assigns a unique ID to each report;

2. performs some post-processing on the reports;

3. groups the reports together using an extremely fast, but not very reliable, algo-

rithm, described below.
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Table 2.2. Example stack trace. The group name is in bold.

Frame Module Signature
0 xul.dll mozilla::storage::Service::getSingleton()
1 xul.dll mozilla::storage::ServiceConstructor
2 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
3 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
4 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
5 xul.dll nsCOMPtr<mozIStorageService>::nsCOMPtr<mozIStorageService>(nsGetServiceByContractID)
6 xul.dll nsPermissionManager::OpenDatabase(nsIFile*)
7 xul.dll nsPermissionManager::InitDB(bool)
8 xul.dll nsPermissionManager::Init()
9 xul.dll nsPermissionManager::GetXPCOMSingleton()
10 xul.dll nsIPermissionManagerConstructor
11 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
12 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
13 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
14 xul.dll nsCOMPtr<nsIPermissionManager>::nsCOMPtr<nsIPermissionManager>(nsGetServiceByContractID)
15 xul.dll mozilla::services::GetPermissionManager()
16 xul.dll mozilla::dom::Noti�cationTelemetryService::RecordPermissions()
17 xul.dll Noti�cationTelemetryServiceConstructor
18 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const*, nsISupports*, nsID const&, void**)
19 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const*, nsID const&, void**)
20 xul.dll nsCOMPtr_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)
21 xul.dll nsCOMPtr<nsISupports>::nsCOMPtr<nsISupports>(nsGetServiceByContractID)
22 xul.dll NS_CreateServicesFromCategory(char const*, nsISupports*, char const*, char16_t const*)
23 xul.dll nsXREDirProvider::DoStartup()
24 xul.dll XREMain::XRE_mainRun()
25 xul.dll XREMain::XRE_main(int, char** const, nsXREAppData const*)
26 xul.dll XRE_main
27 �refox.exe do_main
28 �refox.exe wmain
29 �refox.exe __scrt_common_main_seh
30 kernel32.dll BaseThreadInitThunk
31 ntdll.dll __RtlUserThreadStart
32 ntdll.dll _RtlUserThreadStart

See Figure 2.3 for an overview of the Socorro architecture.

The reports are clustered based on the top method signature of the stack trace of

the crashing thread (or another thread, if the crash is due to the application willingly

terminating itself after a hang). Table 2.2 shows an example of a stack trace, with the

group name it was assigned by the Socorro algorithm.

There are several rules that allow to skip some methods if they are deemed to be

useless for grouping purposes (e.g., a very generic function, a function from an external

driver, etc.). Some of the rules are general purpose (e.g., C++ standard library func-

tions), some are speci�c to the Mozilla applications (e.g., XPCOM [93] functions). This

large set of rules has been built over time, manually, by developers.

This algorithm is sometimes ine�ective, as two crashes that happen in the same

function might be completely di�erent from each other. This is noticeable with crashes

related to the JavaScript JIT compiler. However, processing speed is deemed more

important than accuracy in this context and new clustering methods should be also very

fast to qualify as a viable alternative.
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Figure 2.3. Overview of the crash reporting system.

2.2 Automatic Analysis of Crash Groups

The analysis method adopted here is a modi�ed version of the contrast set mining

algorithm STUCCO (Searching and Testing for Understandable Consistent COntrasts)

proposed originally by Bay and Pazzani [14, 15]. To illustrate the method we will refer to

a toy example, with the dataset partitioned in two clusters, or groups, with cardinalities

|G1| = 700 and |G2| = 300, and reports including only n = 2 attributes, platform (p),

and graphics card (g), which can take three and two values respectively, p ∈ {W,L,M}
(for Windows, Linux, and Mac) and g ∈ {N,A} (for NVIDIA, and AMD).

2.2.1 The Contrast Set Mining Problem

In the contrast set mining framework, the dataset is a set of n-dimensional vec-

tors, whose components are discrete values. The vectors are partitioned beforehand in

mutually exclusive groups, G1, G2, . . ., according to external criteria.

A contrast-set is de�ned as a set of attribute-value pairs. For example, cset1 =

{p=W} is a contrast set concerning a single attribute-value pair, while cset2 = {p=
W, g=N} concerns a couple of attribute-value pairs, and is actually a specialization of
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ROOT

p=W p=L p=M g=N g=A

p=W, g=N p=W, g=A p=L, g=N p=L, g=A p=M, g=N p=M, g=A

Figure 2.4. Root and all possible specializations.

the former. The support of a contrast-set in a group, S(cset,G), is the percentage of

vectors in the group for which the contrast-set is true. Contrast-set supports are the

features used to characterize groups. So, for example, having S(cset1, G1) = 0.7 and

S(cset1, G2) = 0.3, means that, in Group 1, 70% of crashes occurred on a Windows

platform, while in Group 2 the percentage was 30%. Such a large di�erence seems to

indicate that the platform is not irrelevant for these crashes. Accordingly, the goal of

contrast-set mining is to �nd contrast-sets, also called deviations, whose support di�ers

meaningfully across groups.

More formally, for a contrast set to be declared a deviation, it must be both large

and signi�cant. The �rst condition is expressed as

max
ij
|S(cset,Gi)− S(cset,Gj)| ≥ δ (2.1)

where δ is a constant (minimum support di�erence) de�ned by the user. Signi�cance,

instead, is declared based on the outcome of a statistical test of hypotheses,{
H0 : P (cset = true|Gi) = P (cset = true|Gj)

H1 : P (cset = true|Gi) 6= P (cset = true|Gj)
(2.2)

carried out for all couples of groups, Gi, Gj , with a user-de�ned false alarm level, α.

2.2.2 STUCCO

In STUCCO, contrast-set mining is cast as a tree search problem. The root node is an

empty contrast-set. Then, for each step of the algorithm, existing nodes are specialized

by appending new attribute-value pairs to existing ones. A canonical ordering of the

attributes is used to avoid visiting the same node twice. With reference to our toy

example, Figure 2.4 shows the search tree after two levels of specialization. Note that

the nodes g = N and g = A have no children, as g comes after p in our ordered attribute

list.

STUCCO performs a breadth-�rst level-wise search in the tree. We provide a very
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high-level description of the algorithm, going into more details in the following subsec-

tion. For each node at a given level, the number of occurrences for each group in the

dataset is counted. Based on such data, some heuristics are applied to decide on whether

the node should be pruned, become a terminal node, or generate new children. The tree

grows until no more child node can be generated, or a suitable stopping condition (ap-

plied to limit processing time) is met. After the whole tree is grown, each surviving node

corresponds to a valid candidate contrast-set. Contrast-sets that are found to be both

large and signi�cant (deviations), and also surprising, are eventually kept, and submit-

ted to the analyst as an ordered list, from largest to smallest. Algorithm 1 provides a

pseudo-code description of the process. Figure 2.5, instead, shows the �rst few steps of

the algorithm applied to our toy example. In particular:

1. all possible attribute-value pairs (�candidates�) are generated for each attribute in

a crash report (�gure 2.5a);

2. the number of occurrences for each candidate in each group is counted (�gure 2.5b);

3. some nodes are pruned based on suitable heuristics (�gure 2.5c);

4. new candidates are generated by merging previous ones which survived pruning,

for example {p =W} and {g = N} give rise to {p =W, g = N} (�gure 2.5d).

Steps 2-4 are repeated until there are no more candidates or a suitable stopping condition

is met, for example, the maximum number of iterations. Eventually, all nodes/contrast-

sets are tested, and only those that are large, signi�cant, and surprising are submitted

to the analyst.

The following subsections provide the necessary details for a full comprehension of

the algorithm, describing the tests on largeness, signi�cance, and surprise, as well as the

heuristic rules for tree pruning.

2.2.2.1 Selecting Large Contrast-Sets

This is a straightforward test: For a contrast-set to be large, its support must be

larger than the threshold, δ, de�ned by the user.

2.2.2.2 Selecting Signi�cant Contrast-Sets

To evaluate whether a contrast-set is signi�cant, we rely on the test of hypotheses

of Eq.2.2. The null hypothesis is that the support of the contrast-set is equal across all
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Algorithm 1: STUCCO algorithm

Set of candidates C ← {};
Set of deviations D ← {};
Set of pruned candidates P ← {};
Let prune(c) return True if c should be pruned;
while C is not empty do

scan data and count support ∀c ∈ C;
foreach c ∈ C do

if significant(c) ∧ large(c) then
D ← D ∪ c

end
if prune(c) = True then

P ← P ∪ c
else

Cnew ← Cnew ∪GenChildren(c, P )
end

end
C ← Cnew

end
Dsurprising ← FindSurprising(D)

Table 2.3. Example contingency table.

p =W p 6=W group size
Group 1 600 (85%) 100 (15%) 700
Group 2 295 (98%) 5 ( 2%) 300
Overall 895 (90%) 105 (10%) 1000

groups or, di�erently said, it is independent of group membership. To this end, we build

a contingency table like that shown in Table 2.3 reporting the occurrences of a contrast

set across groups and the corresponding supports, our features of interest, that is, the

frequencies of occurrence in the group.

In our example we analyze cset1, namely, platform=Windows. If group and the

platform were independent variables, the proportion of crash reports with the Windows

platform should be about the same across all groups. This is not the case in our example.

However, the supports may di�er just because of random �uctuations, and the di�erence

may not be statistically signi�cant. Hence, we need to determine whether such di�erences

are the e�ect of a true dependency between the variables or if it can be attributed to

randomness, which is why we need a statistical test. The standard test for independence
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(b) Count of the occurrences for all candi-
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(d) Generation of a new level of candidates.

Figure 2.5. Sample run of the algorithm in the context of crash reports.

of variables in contingency tables is the chi-square test:

χ2 =

r∑
i=1

c∑
j=1

(oij − eij)2

eij
(2.3)

where oij is the observed frequency in cell ij and eij is the frequency expected under

the hypothesis of independence between row and column variables. We then compare

the resulting value against the χ2 distribution under the null hypothesis, selecting level

of signi�cance α, which represents the probability of rejecting the null hypothesis when

it holds (false alarm).

For a single test, a level α = 0.05, implying a false alarm probability of 5%, could

be considered acceptable for our application. However, since a large number of contrast

sets are typically tested for signi�cance, the overall number of false alarms may be

disturbingly large. For example, if we ran 100 tests at α = 0.05, and the null hypothesis

were always true, we would detect on the average 5 signi�cant di�erences that are not

actually there. To keep the false alarm rate within acceptable limits, STUCCO reduces

α according to the Bonferroni correction: given H1, H2, . . . ,Hk hypotheses, and their

corresponding p-values p1, p2, . . . , pk, the hypothesis Hi is rejected if pi < α/k. The

Bonferroni correction controls the familywise error rate (FWER), which is the probability
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of incorrectly rejecting at least one true hypothesis Hi, at <= α.

FWER = P

{
ktrue⋃
i=1

(
pi ≤

α

k

)}
(2.4)

≤
ktrue∑
i=1

{
P
(
pi ≤

α

k

)}
≤ ktrue

α

k
≤ α

This holds no matter how many of the null hypotheses are true and even with dependent

tests [130].

There are two problems in the application of the Bonferroni correction in the context

of STUCCO: �rst of all, if we report results in a level-wise fashion (shorter �rst, then

longer), we cannot know how many tests we will perform in total, which makes it impos-

sible to know the exact value of k. Moreover, as α gets smaller, the statistical power of

the tests decreases, increasing the probability of producing false negatives. This cannot

be avoided, since we want to reduce the probability of false positives. However, we can

use di�erent values of α for tests concerning di�erent levels of the tree, ensuring a high

power for tests at higher levels (which are more general and easier to understand) and

accepting a lower power for tests more down the tree. Since the Bonferroni method holds

as long as
∑

i αi ≤ α, STUCCO adopts level-dependent values

αl = min
(α
2l
/ |Cl| , αl−1

)
(2.5)

where αl is the cuto� for level l, and |Cl| is the number of candidates at level l. This

way we assign 1
2 of the total α risk to tests at level 1, 1

4 to tests at level 2, etc. The min

rule ensures that, as we move to deeper levels, the α cuto� can only decrease, making

the tests more likely not to reject the null hypothesis.

2.2.2.3 Selecting Surprising Contrast-Sets

As already said, contrast-sets are shown in a level-wise fashion given higher priority

to higher levels (e.g., level 1, with a single attribute-value pair) as they are easier to

interpret. Further specializations are then included only if they are �surprising�, namely,

when the observed frequencies depart signi�cantly from the expected frequencies. For

example, if for all Gi's, S(p = W, g = N |Gi) ' S(p = W |Gi) × (g = N |Gi), that is

the support of the specialization can be derived based on an independence conjecture,

than the specialization itself does not add information (is not surprising) and thus can

be discarded even when it is a deviation according to the de�nition.
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2.2.2.4 Pruning the Search Space

When building the contrast-set tree, a number of heuristics can be applied to limit

its size and hence reduce the computational burden.

Minimum deviation size. When a contrast-set has support less than δ for every

node, it can be pruned. In fact, if the support is smaller than δ for any given group, the

di�erence between any two supports cannot be larger than δ.

Expected cell frequencies. The validity of a test depends on the size of the available

sample, becoming scarcely reliable when only a small number of items are available. A

typical lower bound for the χ2 test is 5 [44]. Therefore, when we reach a contrast-set

with a number of occurrences smaller than 5, we can safely prune it, since any further

specialization can only further reduce the number of occurrences.

χ2 bounds. Bay and Pazzani showed that it is possible to de�ne an upper bound on

the χ2 statistic. This can be used to prune nodes, when we know that the corresponding

statistic will not exceed the α cuto�.

Identical support. Specializations with the same support as the parent might be

not interesting and can be discarded. They target the same set of dataset entries as

the parent and often represent �ndings that are common knowledge (e.g., the support

of {platform_detail = Debian Wheezy} will obviously be the same as the support of

{platform = Linux, platform_detail = Debian Wheezy}: the addition of {platform =

Linux} provides no information).

Fixed relations. Often a group has larger support for a given contrast-set than any

other group and specializing the contrast-set with additional attribute-value pairs does

not change the situation. In those cases, the node can be pruned.

2.2.3 Domain-Speci�c Variations

The implementation of the algorithm must take into account the large number of

items to deal with in our real-world application. At the time of writing, around 500000

crash reports per week are generated for a single Firefox version1. Moreover, each

report contains a large number of attributes (more than 200) spanning di�erent possible

values. This means that the number of possible candidates explodes very rapidly as

soon as contrast-sets are specialized beyond level 1. Testing candidates for each couple

of groups is clearly infeasible. Therefore, in our implementation, we test each group

against the rest of the dataset, that is, we look for features that present anomalies w.r.t.

1 https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%

3D2017-02-14&date=<2017-02-21#crash-reports

https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%3D2017-02-14&date=<2017-02-21#crash-reports
https://crash-stats.mozilla.com/search/?product=Firefox&version=51.0.1&date=>%3D2017-02-14&date=<2017-02-21#crash-reports
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platform
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Figure 2.6. Detail of the dependency graph.

the average behavior over the whole dataset. In addition, for performance reasons, we

have implemented the tool using Apache Spark [160].

Another speci�c feature of our application is the existence of strong dependencies

among groups of attributes. For example, the presence of a given DLL might be directly

linked to a particular version of Windows; the CPU microcode version is directly linked

to the CPU vendor; etc. We modi�ed STUCCO to take into account such information by

means of a graph of dependencies (see Figure 2.6 for a detail of the dependency graph).

When a dependency is found, the percentage of occurrence is recalculated restricting

the group to the reports where the dependency holds true. For example, in a group

we studied, the module �bcryptPrimitives.dll� was present in 83.9% of crash reports vs.

33.91% overall, qualifying for a likely deviation. However, if we take into account the

operating system (Windows 10), the percentages change to 100% vs 98.44%, and hence

this rule could be ignored.

One of the �elds of the crash reports is a small text area where the user who experi-

ences the crash can write a short comment. Most users do not provide useful information

but express only their frustration, which makes the comments �eld widely di�erent from

usual bug reports. Nonetheless, in our manual inspections, we have found comments to

be sometimes useful, even if just as hints.

With the aim to extract some useful information from the comments �eld, we em-

ployed a well known information retrieval technique, term frequency and inverse docu-

ment frequency (TF-IDF) [66], which highlights the words most frequently used in the

comments for a given crash group vs. other groups. This allows developers to quickly

glance if there is something wrong with a particular setting. For example, in one par-

ticular instance, many users were mentioning �playing�, and the crash turned out to be

due to a resource exhaustion due to videogames running in the background.
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2.3 Validation of Results

To validate the results, we have selected a set of bug reports where we knew developers

used our tool and we have veri�ed whether the tool

� helped in the resolution of the bug,

� gave compatible clues but did not help solving the bug,

� gave some misleading clues.

The tool has been integrated in Socorro, but we do not know when the developers

use it for their investigations. Some developers, when using the tool, copied the results

of the tool in the bug report they are working on. This allows us to select a set of real

world cases that we can analyze, given that developers have �xed them already, so we

can evaluate if the results of the tool have been useful for �xing the bug.

We considered about 800 crash bug reports (approximately 400 closed) generated

from September 2016, when our tool has been put in production, to February 2017,

mostly from Mozilla developers. For 90 of these reports (41 closed) we have de�nitive

evidence that our tool was used. We have used regular expressions based on the output

format of our tool to extract these 90 bugs out of the original 800. We have manually

analyzed this set of bug reports and the code changes that are attached to them, �nding

19 cases where the tool has been really useful (that is, the results of the tool directly

helped the developers in �xing the bug, as they used the results to understand the root

cause); 19 cases where the tool generated results that were compatible with the resolution

of the bug, but did not help solving it (that is, the information provided by the tool

was not useful for developers to understand the root cause); 3 cases where the tool has

produced misleading results (that is, the results of the tool did not help solving the bug

and were not compatible with the resolution of the bug). These results are summarized

in Table 2.4.

In some of the cases where the tool has been useful, we believe the bug would not

have been solved if not with very large investigative e�ort. Out of the three cases

where the tool has been misleading, we believe that, by improving the initial clustering

algorithm, two misleading results would have been avoided. These are analyzed in more

detail in section 4 and 5. As already said in the Introduction, the quality of clustering

can strongly a�ect the results of the algorithm, polluting group statistics with unrelated

reports, or generating groups too small to provide meaningful statistics at all.

When the clustering algorithm fails by generating groups that are too large (cluster-

ing together crashes that have no relation with each other), it is harder for the correlation
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Table 2.4. Summary of the results of the validation.

Type Number of bugs

Very useful � results that directly helped �xing the bug. 19

Compatible � results that were compatible with the resolu-
tion of the bug, but were not useful for �xing the bug.

19

Misleading � results not compatible with the resolution of
the bug.

3

tool to �nd interesting properties. Indeed, as many crashes which are actually really dif-

ferent from each other get clustered together, it gets more di�cult to analyze them (both

manually and automatically).

When the clustering algorithm fails by generating groups that are too small (allo-

cating reports for the same crash to di�erent groups), the correlation tool, and manual

analysis, is more prone to �nd spurious correlations.

The clusters' dimensions can vary wildly between thousands of reports (the most

crowded cluster contains around 20000 crashes) and a very small number of reports

(even a single one). We only apply the tool to the largest 200 clusters, as they are the

most important ones (after the 200th cluster, we only have clusters with less than 100

reports). These top clusters account for around 55% of all reports, but there is a very

long tail of clusters with very few reports.

2.3.1 Deployment on Socorro

We tested the tool on crash groups which we already analyzed in the past, to assess its

validity, and we put it in production for new crash groups. In this section, we summarize

a few interesting results that we obtained during our analysis.

1. AMD CPU Bug: A group of crashes was found to be correlated with a par-

ticular family of AMD CPUs. We later found that the particular family of AMD

CPUs that was involved in the crash group was a�ected by a hardware bug, and

developers were able to �nd a workaround for it.

2. Antivirus-Related Crash: A group of crashes was found to be correlated with

a version of an addon of an antivirus suite. In cases like this, the tool allows us to

act quickly and simply block the addons (or modules) that cause problems, while

we talk with the vendors to solve the problem in the long term.
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3. Crash Without AdBlock: The tool also generates results that are quite open

to interpretation. For example, there was a crash group that was more common

to users without ad-blocking addons. It was a crash happening often with a very

famous Flash game. We believe the crash was caused by some ad network serv-

ing particular advertisement that would cause the browser to crash. The crash

disappeared quickly on its own, which supports that hypothesis.

4. Misleading Result Caused by Clustering Failure (Too Few Clusters):

Crashes related to the JIT compiler for JavaScript are a clear example of how crash

clustering can a�ect the results of the tool. The clustering algorithm employed by

Socorro does not work well for those kind of crashes, often lumping unrelated

crashes together. The correlation tool is only able to tell that the group of crashes

is related to the JIT, but cannot say much more.

5. Misleading Result Caused by Clustering Failure (Too Many Clusters):

There was a crash, which was later diagnosed to be due to concurrency issues, which

was happening in di�erent functions according to CPU brand or graphics card.

This caused the clustering algorithm used by Socorro to generate a new cluster

for each CPU brand / graphics card, making each cluster obviously correlated to

those. Clearly, the correlations were spurious.

6. Analyzing Crash Reports Before/After a Change: The algorithm is really

useful when analyzing a crash group generated by Socorro, but can be used for

generic groups as well. For example, to analyze the di�erences in the properties of

crash reports before/after a change, e.g., to assess the e�ectiveness of the change

and as another means to ensure that it did not cause regressions.

We employed the tool to analyze the di�erences between the crashes before/after

a change that relaxed the blocklist for graphics acceleration on NVIDIA graphics

cards. We found that the change improved the stability with a particular version

of the NVIDIA drivers (one where hardware acceleration was previously blocked

and unblocked by the change), probably because hardware acceleration is a more

common and thoroughly tested code path.

2.3.2 Feedback from Developers

Developers and people triaging crash bugs generally expressed favourable opinions

about the tool (e.g., posts on one of Mozilla's mailing lists [46]). We collected sugges-

tions from them since the deployment to Socorro. Developers and triagers were able
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to provide suggestions and requests by �ling bugs on Mozilla's bug tracking system, or

by contacting the author directly. Most of the suggestions were requests of addition of

new possible �elds to the analysis (sometimes meta-information dynamically generated

from already existing �elds, e.g., https://bugzilla.mozilla.org/show_bug.cgi?id=

1506012). Some of the suggestions were instead related to the way results are shown,

which is actually a pretty important aspect. Indeed, we empirically noticed that, if

the information presented to the user is too crowded (e.g., too many useless attributes,

too much information), the user is more likely to complain or overlook something. In

the remainder of this section, we present some of the more speci�c suggestions that we

received from developers.

1. Employing the Correlation Results Themselves to Improve Clustering:

The correlation analysis itself might be useful to improve the clustering algorithm.

For example, two groups which present similar correlations might be clustered to-

gether. Groups which do not have any interesting correlation, might be candidates

to be split.

We observed that this operation was done manually by developers in the results

validation. Concerning two bugs where the correlations were very similar, the

developers noticed that the two groups were actually a single one (and closed a

bug as a duplicate of the other).

2. Extract Information from Unstructured Crash Report Fields: The algo-

rithm we presented only works with discrete �elds, but crash reports often contain

unstructured information too. The user comment is a clear example. The TF-IDF

solution works for simple cases and it could be greatly improved. For example, if

several users mention the same thing in di�erent ways, TF-IDF will not notice it.

Using a more powerful text mining algorithm might improve the results, although

it is still not clear to us how much information is actually contained in the users'

comments. We noticed some cases where it turned out to be useful, but devolving

time and resources for this might not be too valuable.

3. Driving Automated Tests Con�guration: At Mozilla, we developed a tool

which automatically tries to reproduce crashes with di�erent settings and under

di�erent con�gurations, called BugHunter [91]. The correlation results could help

in driving the tool to directly test under a con�guration that is more likely to

reproduce the crash, both saving running time (e.g., if a crash is only happening

with a speci�c graphics card vendor and a speci�c driver, there is no point in

https://bugzilla.mozilla.org/show_bug.cgi?id=1506012
https://bugzilla.mozilla.org/show_bug.cgi?id=1506012
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trying to reproduce it with a graphics card from a di�erent vendor) and making

reproducibility easier.

4. Predicting Volume of a Crash in a Release Channel from Pre-release

Channels: By linking the data generated by the correlation tool with data about

the user population distribution, we can estimate how a crash that is a�ecting a

pre-release version will a�ect the release version. The reader can refer to the work

by Khomh et al. [71] for an explanation of the Firefox pipelined release model.

This has been attempted in the past using machine learning techniques: in Kim et

al. [72] it was used to predict which crash stack is more probable to become a �top

crash� and should be �xed �rst. For example, Firefox Beta users are predominantly

from the United States. The percentage of those users is fairly lower in Firefox

Release. This means that crashes that are easily reproducible on a website that

is not in the English language, are very likely to go unnoticed during the Beta

cycle and explode when Firefox is released. If we had a way to re-rank the crashes

considering the attributes to whom they are correlated and the incidence of those

attributes in di�erent channels, then those crashes would less likely go unnoticed.

2.4 Threats to Validity

Internal validity threats concern factors that may a�ect a dependent variable and

were not considered in the study. We evaluated our tool on 41 closed bugs, which might

not be a representative dataset. We have chosen to evaluate the results on the �xed

bugs as we needed to check if the �x was compatible with the �ndings of the tool. We

have manually analyzed the cases where the tool was used, thus reducing false positives

from our regular expression search, but our search might not be complete (there could

be bugs where the tool was used but where developers did not leave any evidence of it).

External validity threats are concerned with the generalizability of our results. In

this study, we only evaluated the results of the tool applied to Mozilla Firefox crashes,

because Mozilla has an automated crash reporting system and its crash data, bug reports

and source code are publicly available. Our �ndings may not be generalizable to other

systems.

Conclusion validity threats concern the relationship between the treatments and the

outcome. We only analyzed bugs for which we were sure the tool was used, thus our

conclusions on the usefulness of the tool on those bugs should be correct. Our conclusions

on the rates of usefulness instead might su�er from the uncertainty about other crash
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bugs, which we could not analyze because we had no way to tell whether the tool was

used or not for all of them.

Reliability validity threats are concerned with the replicability of the study. To aid in

future replication studies, we share the source code of our tool: https://github.com/

marco-c/crashcorrelations and https://github.com/mozilla-services/socorro.

2.5 Related Work

Bird et al. [19] studied the e�ect of extrinsic factors on software reliability. In our

experience we found evidence that corroborates their �ndings: there are several crashes

that are due to external software badly interacting with Firefox. In our case though we

often noticed security applications being the root cause of the crashes.

2.5.1 Automatic Crash Reporting Systems

Several past studies have shown how a crash reporting system, such as Socorro, can

be very valuable for discovering and �xing crashes. For example, Glerum et al. [50]

presented their experience with WER (Windows Error Reporting). Ahmed et al. [4]

studied the Mozilla crash reporting system. One of the problems presented in [4] is the

overwhelming amount of data that is made available through a crash reporting system.

Our work tries to solve this problem by using data mining techniques to handle the

complexity of the data and provide a way to automatically understand it.

2.5.2 Crash Clustering

The crash clustering problem has been studied extensively in the literature and is

closely related to the technique presented in our work. Indeed, a good clustering tech-

nique is needed in order to avoid false positives or false negatives. Lohman et al. [81]

and Modani et al. [88] adapted stop-word removal to call stacks, removing recursive

calls, and using similarity measures like edit distance, longest common subsequence, and

pre�x matching. Bartz et al. [13] used edit distance, proposing seven types of edits

assigned with di�erent weights. Dhaliwal et al. [42] proposed a two-level grouping of

crash reports, using Levenshtein distance [125] to evaluate the similarity between stack

traces. Dang et al. [41] presented ReBucket, an algorithm for clustering crashes based

on a custom method (called PDM, Position Dependent Model) that uses the position of

a function in the stack trace and the o�set between matched functions for calculating

https://github.com/marco-c/crashcorrelations
https://github.com/marco-c/crashcorrelations
https://github.com/mozilla-services/socorro
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the similarity between stack traces. Lerch et al. [77] proposed using a well known in-

formation retrieval technique, term frequency and inverse document frequency, to rate

stack traces. Campbell et al. [22] presented an overview of several clustering algorithms,

including the one presented by Lerch et al., evaluating their results in the same set-

ting (Ubuntu Apport crashes). They found traditional information retrieval techniques

to outperform techniques speci�cally designed for crash clustering. The proposed algo-

rithm is strongly related to crash clustering, as it operates on clusters of crashes. Thus,

its performance is directly a�ected by the quality of the clustering algorithm employed.

2.5.3 Visualization of Crash Reports

Another related area of research is the visualization of crash reports to aid in the

understanding by developers. For example, Kim et al. [73] proposed an approach based

on an aggregated graph view of multiple crashes. They also presented a way to use

the crash graphs for clustering. Chan et al. [29] presented three types of graphs to

analyze �eld testing results under three di�erent perspectives. The above approaches

could be combined with our proposed approach to improve understanding of group of

crash reports.

2.5.4 Triaging of Crash Reports

Kim et al. [72] presented a machine learning technique to predict which crash stacks

are more probable to become �top crashers� and should be �xed �rst. Khomh et al. [70]

proposed an entropy evaluation approach, taking into account volume of crash groups

and distribution among users, to rank the crash clusters by importance. The above ap-

proaches focused on prioritizing the groups of crash reports for bug �xing. Our approach

instead identi�es generic properties of the groups, which can be later used by develop-

ers and managers, not only for prioritization, but also to directly understand possible

causes.

2.6 Conclusion

Crashes are one of the main pain points for users of a software. Fixing them promptly

can improve the users' perception of the quality of a software. We found that analyzing

crash reports in an automated manner can help developers in �xing crashes, by removing

manual analysis burden from developers, or by �nding properties that would have been

really di�cult to �nd with manual analysis, or can give clues in the characterization of
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crashes. Software organizations can use these data mining techniques to speed up and

simplify the resolution of crashes and to reduce the amount of manual tedious work for

developers.

2.6.1 Future Work

We identi�ed two interesting directions for future work. First, as discussed in the

Validation section (section 2.3), with examples in section 4 and 5, the results of the crash

clustering can greatly a�ect the results of our tool. Thus, improvements to the clustering

algorithm used by Socorro, other than being useful by themselves, would bene�t our

results as well. Second, it could be useful to have a dashboard to simplify �nding

reproducible crashes. At Mozilla, we are often helped by volunteers in reproducing

crashes that are speci�c to some con�guration that we do not have readily available.

The correlation results might be useful to create a way for volunteers to automatically

�nd the crashes that they might be able to reproduce, by showing them the crash groups

that are related to their hardware or software (e.g., installed addons, antivirus, etc.)

con�guration.



Chapter 3
Why Did This Reviewed Code Crash?

An Empirical Study of Mozilla Firefox

A software crash refers to an unexpected interruption of software functionality in an

end user environment. Crashes may cause data loss and frustration for users. Frequent

crashes can decrease user satisfaction and cause them to leave. Practitioners need an

e�cient approach to identify crash-prone code early on, in order to mitigate the impact

of crashes on end users. Nowadays, software organizations like Microsoft, Google, and

Mozilla are using crash collection systems to automatically gather �eld crash reports,

group similar crash reports into crash-types, and �le the most frequently occurring crash-

types as bug reports.

Code review is an important quality assurance activity where other team members

critique changes to a software system. Among other goals, code review aims to identify

defects at early stages of development [1]. Since reviewed code is expected to have better

quality, one might expect that reviewed code would tend to cause few severe defects,

such as crashes. However, despite being reviewed, many changes still introduce defects,

including crashes. For example, Kononenko et al. [74] �nd that 54% of reviewed code

changes still introduce defects in Mozilla projects.

In this study, we intend to understand the reasons why reviewed code still led to

crashes. To achieve these goals, we mine the crash collection, version control, issue

tracking, and code reviewing systems of the Mozilla Firefox project. More speci�cally,

we address the following two research questions:

RQ1: What are the characteristics of reviewed code that is implicated in a crash?

31
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We �nd that crash-prone reviewed patches often contain complex code, and classes

with many other classes depending on them. Crash-prone patches tend to take a

longer time and generate longer discussion threads than non-crash-prone patches.

This result suggests that reviewers need to focus their e�ort on the patches with

high complexity and on the classes with a complex relationship with other classes.

RQ2: Why did reviewed patches crash?

To further investigate why some reviewed code crashes, we perform a manual classi-

�cation on the purposes and root causes of a sample of reviewed patches. We observe

that the reviewed patches that crash are often used to improve performance, refactor

code, address prior crashes, and implement new features. These �ndings suggest that

software organizations should impose a stricter inspection on these types of patches.

Moreover, most of the crashes are due to memory (especially null pointer dereference)

and semantic errors. Software organizations can perform static code analysis prior

to the review process, in order to catch these memory and semantic errors before

crashes escape to the �eld.

The rest of the chapter is organized as follows. Section 3.1 provides background

information on Mozilla crash collection system and code review process. Section 3.2

describes how we identify reviewed code that leads to crashes. Section 3.3 describes

our data collection and analysis approaches. Section 3.4 discusses the results of the

two research questions. Section 3.5 discloses the threats to the validity of our study.

Section 3.6 discusses related work.

3.1 The Mozilla Crash Collecting System and Code Re-

view Process

In this section, we describe approaches of Mozilla on crash report collection and code

review.

3.1.1 The Mozilla Crash Collection System

Mozilla integrates the Mozilla Crash Reporter, a crash report collection tool, into

its software applications. Once a Mozilla application, such as the Firefox browser, un-

expectedly halts, the Mozilla Crash Reporter will generate a detailed crash report and

send it to the Socorro crash report server [90]. Each crash report includes a stack trace
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Figure 3.1. An example of crash report in Socorro.

of the failing thread and the details of the execution environment of the user. Figure 3.1

shows an example Socorro crash report. These crash reports are a rich source of infor-

mation, which provide developers and quality assurance personnel with information that

can help them to reproduce the crash in a testing environment.

The Socorro server automatically clusters the collected crash reports into crash-types

according to the similarity of the top method invocations of their stack traces. Figure 3.2

shows an example Mozilla crash-type. The Socorro server ranks crash-types according to

their frequency, e.g., Socorro publishes a daily top 50 crash-types, i.e., the crash-types

with the maximum number of crash reports, for each of the recent releases of Firefox.

Socorro operators �le top-ranked crash-types as issue reports in the Bugzilla issue

tracking system. Quality assurance teams use Socorro to triage these crash-related issue

reports and assign severity levels to them [9]. For traceability purposes, Socorro crash

reports provide a list of the identi�ers of the issues that have been �led for each crash-

type. This link is initiated from Bugzilla. If a bug is opened from a Socorro crash, it

is automatically linked. Otherwise, developers can add Socorro signatures to the bug

reports. By using these traceability links, software practitioners can directly navigate

to the corresponding issues (in Bugzilla) from the summary of a crash-type in the web

interface of Socorro. Note that di�erent crash-types can be linked to the same issue,

while di�erent issues can also be linked to the same crash-type [70].
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Figure 3.2. An example of crash-type in Socorro.

3.1.2 The Mozilla Code Review Process

Mozilla manages its code review process using issue reports in Bugzilla. After writing

a patch for an issue, the developer can request peer reviews by setting the review? �ag

on the patch. At Mozilla, the reviewers are often chosen by the patch author herself [58].

If the patch author does not know who should review her patch, they can consult a

list of module owners and peers. Senior developers can also often recommend good

reviewers. The designated reviewers need to inspect a patch from various aspects [120],

such as correctness, style, security, performance, and compatibility. Once a developer has

reviewed the patch, they can record comments with a review �ag, which also indicates

their vote, i.e., in support of (+) or in opposition to (-) the patch. Mozilla applies

a two-tiered code review process, i.e., review and superreview. A review is performed

by the owner of the module or peer who has expertise in a speci�c aspect of the code

of the module [35]; while a superreview is required for certain types of changes, such

as signi�cant architectural refactoring, API or pseudo-API changes, or changes that

a�ect the interactions of modules [139]. Therefore, to evaluate patches, there are four

possible voting combinations on a reviewed patch: review+, review-, superreview+,

and superreview-.

A code review may have several iterations. Unless the patch receives only positive

review �ags (review+ or superreview+), it cannot be integrated into the VCS of Mozilla.

In this case, the patch author needs to provide a revised patch for reviewers to consider.

Some Mozilla issues are resolved by a series of patches. Since the patches are used
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to address the same issue, reviewers need to inspect the entire series of patches before

providing a review decision. In the trial review platform of Mozilla, ReviewBoard, the

patches of an issue are automatically grouped together [119]. Thus, in this study, we

examine the review characteristics at the issue level. Finally, the Tree Sheri�s [109] (i.e.,

engineers who support developers in committing patches, ensuring that the automated

tests are not broken after commits, and monitoring intermittent failures, and reverting

problematic patches) or the patch authors themselves will commit the reviewed patches

to the VCS.

3.2 Identifying Reviewed Code that Crashes

In this section, we describe our approach to identify reviewed code that is implicated

in a crash report. Our approach consists of three steps: identifying crash-related issues,

identifying commits that are implicated in future crash-related issues, and linking code

reviews to commits. Below, we elaborate on each of these steps.

3.2.1 Identifying Crash-related Issues

Mozilla receives 2.5 million crash reports on the peak day of each week. In other

words, the Socorro server needs to process around 50GB of data every day [135]. For

storage capacity and privacy reasons, Socorro only retains those crash reports that oc-

curred within the last six months. Historical crash reports are stored in a crash analysis

archive1. We mine this archive to extract the issue list, which contains issues that are

linked to a crash, from each crash event. These issues are referred as to crash-related

issues in the rest of this chapter.

3.2.2 Identifying Commits that are Implicated in Future Crash-related

Issues

We apply the SZZ algorithm [134] to identify commits that introduce crash-related

issues. First of all, we use Fischer et al.'s heuristic [47] to �nd commits that �xed a

crash-related issue I by using regular expressions to identify issue IDs from commit

messages. Then, we extract the modi�ed �les of each crash-�xing commit with the

following Mercurial command:

hg log --template {node},{file_mods}

1 https://crash-stats.mozilla.com/api/

https://crash-stats.mozilla.com/api/
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By using the CLOC tool [34], we �nd that 51% of the Firefox codebase is written in

C/C++. Although JavaScript and HTML (accounts for respectively 20% and 14% in

the code base) are the second and third most used languages. Code implemented by

these languages cannot directly cause crashes because it does not have direct hardware

access. Crash-prone Javascript/HTML changes are often due to the fault of parsers,

which are written in C/C++. Therefore, in this study, we focus our analysis on C/C++

code. Given a �le F of a crash-�xing commit C, we extract C's parent commit C ′,

and use the diff command of Mercurial to extract F 's deleted line numbers in C ′,

henceforth referred to as rm_lines. Next, we use the annotate command of Mercurial

to identify the commits that introduced the rm_lines of F ′. We �lter these potential

crash-introducing candidates by removing those commits that were submitted after I's

�rst crash report. The remaining commits are referred to as crash-inducing commits.

As mentioned in Section 3.1.2, Mozilla reviewers and release managers consider all

patches together in an issue report during the review process. If an issue contains mul-

tiple patches, we bundle its patches together. Among the studied issues whose patches

have been approved by reviewers, we identify those containing committed patches that

induce crashes. We refer to those issues as crash-inducing issues.

3.3 Case Study Design

In this section, we present the selection of our studied system, the collection of data,

and the analysis approaches that we use to address our research questions.

3.3.1 Studied System

We use Mozilla Firefox as the subject system because at the time of this study, only

the Mozilla Foundation has opened its crash data to the public [148]. It is also the reason

why in most previous empirical studies of software crashes (e.g., [72, 70]), researchers

analyzed data from the Mozilla Socorro crash reporting system [90]. Though Wang

et al. [148] studied another system, Eclipse, they could obtain crash information from

the issue reports (instead of crash reports). However, the exact crash date cannot be

obtained from the issue reports, which hampers our ability to apply the SZZ algorithm.

Dang et al. [41] proposed a method, ReBucket, to improve the current crash report

clustering technique based on call stack matching. The studied collection of crash reports

from the Microsoft Windows Error Reporting (WER) system is not accessible for the

public.
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Figure 3.3. Number of crash-inducing commits during each three months from March 2007
to September 2015. Periods with low number of crash-inducing commits are removed.

3.3.2 Data Collection

We analyze the Mozilla crash report archive. We collect crash reports that occurred

between February 2010 (the �rst crash recorded date) until September 2015. We collect

issue reports that were created during the same period. We only take closed issues into

account. We �lter out the issues that do not contain any successfully reviewed patch

(i.e., patch with a review �ag review+ or superreview+). To select an appropriate

study period, we analyze the rate of crash-inducing commits throughout the collected

timeframe (March 2007 until September 2015). Figure 3.3 shows the rate of crash-

inducing commits over time. In this �gure, each time point represents one quarter (three

months) of data. We observe that the rate of crash-inducing commits increases from

January 2007 to April 2010 before stabilizing between April 2010 and April 2015. After

April 2015, the rate suddenly drops. Since the last issue report is collected in September

2015, there is not enough related information to identify crash-inducing commits during

the last months. Using Figure 3.3, we select the periods between April 2010 and April

2015 as our study period and focus our analysis on the crash reports, commits, and issue

reports during this period. In total, we analyze 9,761,248 crash-types (from which 11,421

issue IDs are identi�ed), 41,890 issue reports, and 97,840 commits. By applying the SZZ

algorithm from Section 3.2.2, we �nd 1,202 (2.9%) issue reports containing reviewed

patches that are implicated in crashes.
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Figure 3.4. Overview of our approach to identify and analyze reviewed code that crashed
in the �eld.

3.3.3 Data Extraction

We compute metrics for reviewed patches and the source code of the studied system.

Figure 3.4 provides an overview of our data extraction steps. To aid in the replication

of our study, our data and scripts are available online.2

3.3.3.1 Review Metrics

For each reviewed patch, we extract the names of the author and reviewer(s), as

well as its creation date, reviewed date, patch size, and the votes from each of the

review activities. We also extract the list of modi�ed �les from the content of the

patch. Although main review activities of Mozilla are organized in Bugzilla attachments,

we can also extract additional review-related information from Bugzilla comments and

transaction logs. If a comment is concerned with an attachment like a patch, Bugzilla

provides a link to the attachment in the comment. We can use this to measure the

review discussion length of a patch. Bugzilla attachments only contain votes on review

decisions, such as review+ and review-. To obtain the date when a review request for

a patch was created, we search for the review? activity date in the issue discussion

history. As we consider all of the patches of an issue together, we use the mean to

aggregate patch-speci�c values to the issue-level. Unlike other systems, such as Qt [142],

Mozilla does not allow self-review, i.e., the author of a patch cannot act as a reviewer of

that patch. However, Mozilla patch authors may set the review+ score themselves, from

time to time, when reviewers are generally satis�ed with the patch with the exception

of minor changes. Thus in this study, we remove the patch author from the reviewer

2 https://github.com/swatlab/crash_review

https://github.com/swatlab/crash_review
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list of each of the studied issues. More details on our review metrics are provided in

Section 3.4.

3.3.3.2 Code Complexity Metrics

To analyze whether reviewed code that crashed in the �eld is correlated with code

complexity, we compute code complexity metrics using the Understand static code anal-

ysis tool [126]. We wrote a script to compute �ve code complexity metrics for each

C/C++ �le using Understand, i.e., Lines Of Code (LOC), average cyclomatic complex-

ity, number of functions, maximum nesting level, and the proportion of comment lines

in a �le. More details on our complexity metrics are provided in Section 3.4.

3.3.3.3 Social Network Analysis Metrics

To measure the relationship among classes, we apply Social Network Analysis (SNA)

[54] to measure the centrality [127] of each C/C++ class, i.e., the degree to which other

classes depend on a certain class. A high centrality value indicates that a class is impor-

tant to a large portion of the system, and any change to the class may impact a large

amount of functionality. We compute centrality using the class-to-class dependencies

that are provided by Understand. We combine each .c or .cpp �le with its related

.h �le into a class node. We use a pair of vertices to represent the dependency rela-

tionship between any two mutually exclusive class nodes. Then, we build an adjacency

matrix [17] with these vertex pairs. By using the igraph network analysis tool [39],

we convert the adjacency matrix into a call graph, based on which we compute the

PageRank, betweenness, closeness, indegree, and outdegree SNA metrics.

3.4 Case Study Results

In this section, we present the results of our case study. For each research question,

we present the motivation, our data processing and analysis approaches, and the results.

RQ1: What are the characteristics of reviewed code that is implicated

in a crash?

Motivation. We intend to compare the characteristics of the reviewed patches that

lead to crashes (Crash) with those that did not lead to crashes (Clean). Particularly,

we want to know whether patch complexity, centrality, and developer participation in

the code review process are correlated with the crash proneness of a reviewed patch.
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Table 3.1. Code complexity metrics used to compare the characteristics of crash-inducing
patches and clean patches..

Metric Description Rationale

Patch size Mean number of lines of the patch(s)
of an issue. We include context lines
and comment lines because reviewers
need to read all these lines to inspect
a patch.

The larger the code changes, the easier
it is for reviewers to miss defects [74].

Changed �le
number

Mean number of changed C/C++ �les
in the issue �xing commit(s).

If a change spreads across multiple
�les, it is di�cult for reviewers to de-
tect defects [74].

LOC Mean number of the lines of code in
the changed classes to �x an issue.

Large classes are more likely to
crash [72].

McCabe Mean value of McCabe cyclomatic
complexity [83] in all classes of the is-
sue �xing commit(s).

Classes with high cyclomatic com-
plexity are more likely to lead to
crashes [72].

Function num-
ber

Mean number of functions in all classes
in the issue �xing commit(s).

High number of functions indicates
high code complexity [18], which
makes it di�cult for reviewers to no-
tice defects.

Maximum
nesting

Mean of maximum level of nested func-
tions in all classes in the issue �xing
commit(s).

Code with deep nesting level is more
likely to cause crashes [72].

Comment ratio Mean ratio of the lines of comments
over the lines of code in all classes of
the issue �xing commit(s)

Reviewers may have di�culty to un-
derstand code with low ratio of com-
ment [59], thus miss crash-prone code.

The result of this research question can help software organizations improve their code

review strategy; focusing review e�orts on the most crash-prone code.

Approach. We extract information from the source code to compute code complexity

and SNA metrics and from issue reports to compute review metrics. Tables 3.1 to 3.3

provide descriptions of each of the studied metrics.

We assume that changes to complex classes are likely to lead to crashes because

complex classes are usually more di�cult to maintain. Inappropriate changes to complex

classes may result in defects or even crashes. The SNA metrics are used to estimate the

degree of centrality (see Section 3.3.3.3) of a class. Inappropriate changes to a class

with high centrality may impact dependent classes; thus causing defects or even crashes.

For each SNA metric, we compute the mean of all class values for the commits that

�x an issue. Regarding the review metrics, we assume that patches with longer review

duration and more review comments have higher risk of crash proneness. Since these

patches may be more di�cult to understand, although developers may have spent more

time and e�ort to review and comment on them. We use the review activity metrics that

were proposed by Thongtanunam et al. [142]. In addition, we also take obsolete patches
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Table 3.2. Social network analysis (SNA) metrics used to compare the characteristics of
crash-inducing patches and clean patches. We compute the mean of each metric across the
classes of the �xing patch(es) within an issue. Rationale: An inappropriate change to a
class with high centrality value [127] can lead to malfunctions in the dependent classes; even
cause crashes [72]..

Metric Description

PageRank Time fraction spent to �visit� a class in a random
walk in the call graph. If an SNA metric of a
class is high, this class may be triggered through
multiple paths.

Betweenness Number of classes passing through a class among
all shortest paths.

Closeness Sum of lengths of the shortest call paths between
a class and all other classes.

Indegree Numbers of callers of a class.

Outdegree Numbers of callees of a class.

into account because these patches were not approved by reviewers. The percentage of

the obsolete patches that �x an issue can help to estimate the quality and the di�culty

of the patches on an issue, as well as developer participation.

We apply the two-tailed Mann-Whitney U test [57] to compare the di�erences in

metric values between crash-inducing patches and clean patches. We choose to use the

Mann-Whitney U test because it is non-parametric, i.e., it does not assume that metrics

must follow a normal distribution. For the statistical test of each metric, we use a

95% con�dence level (i.e., α = 0.05) to decide whether there is a signi�cant di�erence

among the two categories of patches. Since we will investigate characteristics on multiple

metrics, we use the Bonferroni correction [43] to control the familywise error rate of the

tests. In this study, we compute the adjusted p-value, which is multiplied by the number

of comparisons.

For the metrics that have a signi�cant di�erence between the crash-inducing and clean

patches, we estimate the magnitude of the di�erence using Cli�'s Delta [33]. E�ect size

measures report on the magnitude of the di�erence while controlling for the confounding

factor of sample size [36].

To further understand the relationship between crash proneness and reviewer origin,

we calculate the percentage of crash-inducing patches that were reviewed by Mozilla

developers, external developers, and by both Mozilla and external developers. Previous

work, such as [114], used the su�x of an email address to determine the a�liation

of a developer. However, many Mozilla employees use an email address other than
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Table 3.3. Review metrics used to compare the characteristics of crash-inducing patches
and clean patches. We compute the mean metric value across the patches within an issue..

Metric Description Rationale

Review itera-
tions

Number of review �ags on a reviewed
patch.

Multiple rounds of review may help to
better identify defective code than a
single review round [142].

Number of
comments

Number of comments related with a re-
viewed patch.

Review with a long discussion may
help developers to discover more
defects [142].

Comment
words

Number of words in the message of a
reviewed patch.

Number of
reviewers

Number of unique reviewers involved
for a patch.

Patches inspected by multiple review-
ers are less likely to cause defects [121].

Proportion of
reviewers writ-
ing comments

Number of reviewers writing comments
over all reviewers.

Reviews without comments have
higher likelihood of defect prone-
ness [142, 84].

Negative re-
view rate

Number of disagreement review �ags
over all review �ags.

High negative review rate may indicate
a low quality of a patch.

Response delay Time period in days from the review
request to the �rst review �ag.

Patches that are promptly reviewed af-
ter their submission are less likely to
cause defects [121].

Review dura-
tion

Time period in days from the review
request until the review approval.

Long review duration may indicate the
complexity of a patch and the uncer-
tainty of reviewers on it, which may
result in a crash-prone patch.

Obsolete patch
rate

Number of obsolete patches over all
patches in an issue.

High proportion of obsolete patch indi-
cates the di�culty to address an issue,
and may imply a high crash proneness
for the landed patch.

Amount of
feedback

Quantity of feedback given from devel-
opers. When a developer does not have
enough con�dence on the resolution of
a patch, she would request for feedback
prior to the code review.

The higher the amount of feedback, the
higher the uncertainty of the patch au-
thor, which can imply a higher crash
proneness.

Negative feed-
back rate

Quantity of negative feedback over all
feedback.

High negative feedback rate may imply
high crash proneness for a patch.

mozilla.com in Bugzilla, when they review code. To make our results more accurate,

we used a private API to examine whether a reviewer is a Mozilla employee.

Results. Table 3.4 compares the reviewed patches that lead to crash (Crash) to those

that do not crash (Clean). Statistically signi�cant p-values and non-negligible e�ect size

values are shown in bold. Figure 3.5 visually compares crash-inducing and clean patches

on the metrics (after removing outliers because they can bury the median values), where

there is a statistically signi�cant di�erence and the e�ect size is not negligible. In this

�gure, the red bold line indicates the median value on the crash-inducing patches (or
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Table 3.4. Median metric value of crash-inducing patches (Crash) and clean (Clean)
patches, adjusted p-value of Mann-Whitney U test, and Cli�'s Delta e�ect size.

Metric Crash Clean p-value e�ect size

Code complexity metrics

Patch size 406 111 <0.001 0.53 (large)

Changed �les 4.8 2.0 <0.001 0.49 (large)

LOC 1259.3 1124.5 0.2 �

McCabe 3.0 3.0 0.5 �

Function number 45.8 43.0 0.3 �

Maximum nesting 3.0 3.0 1 �

Comment ratio 0.3 0.2 <0.001 0.24 (small)

Social network analysis metrics

PageRank 4.4 3.2 <0.001 0.17 (small)

Betweenness 50,743.5 22,011.3 <0.001 0.16 (small)

Closeness 2.2 2.1 <0.001 0.12 (negligible)

Indegree 12.0 7.5 <0.001 0.15 (small)

Outdegree 27.3 26.0 0.02 0.05 (negligible)

Review metrics

Review iterations 1.0 1.0 0.001 0.03 (negligible)

Number of comments 0.5 0 <0.001 0.15 (small)

Comment words 2.5 0 <0.001 0.16 (small)

Number of reviewers 1.0 1.0 1 �

Proportion of reviewers
writing comments

1 1 <0.001 0.10 (negligible)

Negative review rate 0 0 0.03 0.01 (negligible)

Response delay 14.2 8.1 <0.001 0.14 (negligible)

Review duration 15.2 8.2 <0.001 0.15 (small)

Obsolete patch rate 0 0 1 �

Amount of feedback 0 0 0.03 0.02 (negligible)

Negative feedback rate 0 0 1 �

clean patches) for a metric. The dashed line indicates the overall median value of a

metric. The width variation in each plot shows the variation of the data density.

For the code complexity metrics, crash-inducing patches have a signi�cantly larger

patch size, higher number of changed �les, and higher comment ratio than clean patches.

The magnitude of the di�erences on patch size and changed �les is large; while the

magnitude of the di�erences on comment ratio is small. This result implies that the

related �les of the reviewed patches that crash tend to contain complex code. These
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Table 3.5. Origin of the developers who reviewed clean patches and crash-inducing patches.

Origin Total Crash Crash rate

Mozilla 38,481 1,094 2.8%

External 2,512 55 2.2%

Both 897 53 5.9%

Total 41,890 1,202 2.9%

�les have higher comment ratio because developers may have to leave more comments

to describe a complicated or di�cult problem. Our �nding suggests that reviewers

need to double check the patches that change complex classes before approving them.

Investigators also need to carefully approve patches with intensive discussions because

developers may not be certain about the potential impact of these patches.

In addition, crash-inducing patches have signi�cantly higher centrality values than

clean patches on all of the social network analysis metrics. The magnitude of closeness

and outdegree is negligible; while the magnitude of PageRank, betweenness, and indegree

is small. This result suggests that the reviewed patches that have many other classes

depending on them are more likely to lead to crashes. Reviewers need to carefully inspect

the patches with high centrality.

Regarding the review metrics, compared to clean patches, crash-inducing patches

have signi�cantly higher number of comments and comment words. This �nding is in

line with the results in [74], where the authors also found that the number of comments

have a negative impact on code review quality. The response time and review duration on

crash-inducing patches tend to be longer than clean patches. These results are expected

because we assume that crash-inducing patches are harder to understand. Although

developers spend a longer time and comment more on them, these patches are still more

prone to crashes. In terms of the magnitude of the statistical di�erences, crash-inducing

and clean patches that have been reviewed only have a small e�ect size on number of

comments, comment words, and review duration; while the e�ect sizes of other statistical

di�erences are negligible.

Table 3.5 shows the percentage of the patches that were reviewed by Mozilla de-

velopers, external developers, and by both Mozilla and external developers. Regarding

the crash-inducing rate of the studied patches, the patches reviewed by both Mozilla

and external developers lead to the highest rate of crashes (5.9%). On the one hand,
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there are few patches that were reviewed by both Mozilla and external developers, this

result may not be representative. One the other hand, Mozilla internal members and

external community members do not have the same familiarity on a speci�c problem,

such collaborations may miss some crash-prone changes. We suggest patch authors to

choose reviewers with the same level of familiarity on the changed module(s) and the

whole system. In the future, we plan to further investigate the relationship between

crash proneness and the institution that the reviewers represent.

Reviewed patches that crash tend to be related

with large patch size and high centrality. These

patches often take a long time to be reviewed and

are involved with many rounds of review discus-

sions. More review e�ort should be invested on the

patches with high complexity and centrality values.

RQ2: Why did reviewed patches crash?

Motivation. In RQ1, we compared the characteristics of reviewed code that crashes

with reviewed code that does not crash. To more deeply understand why reviewed

patches can still lead to crashes, we perform a qualitative analysis on the purposes of

the reviewed patches that crash and the root causes of their induced crashes.

Approach. To understand why developers missed the crash-inducing patches, we ran-

domly sample 100 out of the 1,202 issues that contain reviewed patches that crash. If we

use a con�dence level of 95%, our sample size corresponds to a con�dence interval of 9%.

Inspired by Tan et al.'s work [140], we classify the purposes of patches (patch reasons)

into 13 categories based on their (potential) impact on users and detected fault types.

The �incorrect functionality� category de�ned by Tan et al. is too broad, so we break

it into more detailed patch reasons: �incorrect rendering�, �(other) wrong functionality�,

and �incompatibility�. In addition, since we do not only study defect-related issues as

Tan et al., we add more categories about the reason of patches, such as �refactoring�,

�improvement�, and �test-only problem�. Table 3.6 shows the patch reasons used in our

classi�cation. We conduct a card sorting on the sampled issues with the following steps:

1) examine the issue report (the title, description, keywords, comments of developers,

and the patches). Two researchers individually classi�ed each issue into one or more
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Table 3.6. Patch reasons and descriptions (abbreviation are shown in parentheses).

Reason Description

Security Security vulnerability exists in the code.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.

Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong functional-
ity (func)

Incorrect functionalities besides rendering issues.

Incompatibility
(incompt)

Program does not work correctly for a major website or for a
major add-on/plug-in due to incompatible APIs or libraries,
or a functionality, which was removed on purpose, but is still
used in the wild.

Compile Compilation errors.

Feature Introduce or remove features.

Refactoring (refac-
tor)

Non-functional improvement by restructuring existing code
without changing its external behaviour.

Improvement (im-
prove)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other patch reasons, e.g., data corruption and adding logging.

categories; 2) created an online document to compare categories and resolved con�icts

through discussions; 3) discussed each con�ict until a consensus was reached.

Then, from the results of the SZZ algorithm, we �nd the crash-related issues caused

by the patches of the sampled issues. Following the same card sorting steps, we clas-

sify the root causes of these crash-related issues into �ve categories, as shown in Table 3.7.

Results. Figure 3.6 shows the distribution of patch reasons obtained from our man-

ual classi�cation. Among the reviewed patches that lead to crashes, we �nd that most

patches are used for improving Firefox' performance, refactoring code, �xing previous

crashes, and implementing new features. These results imply that: 1) improving per-

formance is the most important purpose of the reviewed patches that crash; 2) some

�seemingly simple� changes, such as refactoring, may lead to crashes; 3) �xing crash-

related issues can introduce new crashes; 4) many crashes were caused by new feature

implementations. The classi�cation suggests that reviewers need to scrutinize patches

due to the above reasons, and software managers can ask a super review inspection for

these types of patches.
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Table 3.7. Crash root causes and descriptions.

Reason Description

Memory Memory errors, including memory leak, over�ow,
null pointer dereference, dangling pointer, dou-
ble free, uninitialized memory read, and incorrect
memory allocation.

Semantic Semantic errors, including incorrect control �ow,
missing functionality, missing cases of a functional-
ity, missing feature, incorrect exception handling,
and incorrect processing of equations and expres-
sions.

Third-party Errors due to incompatibility of drivers, plug-ins
or add-ons.

Concurrency Synchronization problems between multiple
threads or processes, e.g., incorrect mutex usage.

Figure 3.7 shows the distribution of our manually classi�ed root causes. According to

the results, most crashes are due to memory and semantic errors. To further understand

the detailed causes of the memory errors, we found that 61% of these errors are as a

result of null pointer dereferences. By studying the issue reports of the null pointer

crashes, we found that most of them were eventually �xed by adding check for NULL

values, e.g., the issue #1121661.3 This �nding is interesting because some memory

faults can be avoided by static analysis. Mozilla has planned to use static analysis

tools, such as Coverity [37] and Clang-tidy [31], to enhance its quality assurance. We

suggest that software organizations can perform static analysis on a series of memory

faults, such as null pointer dereference and memory leaks, prior to their code review

process. Our results suggest that static code analysis can not only help to mitigate

crashes but also certain security faults. Even though the accuracy of the static analysis

cannot reach 100%, it can help reviewers to focus their inspection e�orts on suspicious

patches. In addition, semantic errors are also an important root cause of crashes. Many

of these crashes are eventually resolved by modifying the if conditions of the faulty code.

Semantic errors are relatively hidden in the code, we suggest reviewers to focus their

inspections on changes of control �ow, corner cases, and exception handling to prevent

potential crashes. Software organizations should also enhance their testing e�ort on

semantic code changes.

3 https://bugzilla.mozilla.org/show_bug.cgi?id=1121661#c1

https://bugzilla.mozilla.org/show_bug.cgi?id=1121661#c1
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Figure 3.6. Distribution of the purposes of the reviewed issues that lead to crashes.

Reviewers should focus their e�ort on patches that

are used to improve the performance of the soft-

ware, refactor source code, �x crashes, and intro-

duce new features, since these types of patches are

more likely to lead to crashes. If possible, a su-

per review or inspection from additional review-

ers should be conducted for these patches. Mem-

ory and semantic errors are major causes of the

crashes; suggesting that static analysis tools and

additional scrutiny should be applied to semantic

changes.

3.5 Threats to Validity

Internal validity threats are concerned with factors that may a�ect a dependent variable

and were not considered in the study. We choose steady periods for the studied commits

by analyzing the distribution of crash-inducing commit numbers. We eliminate the

periods where the numbers of crash-inducing commits are relatively low because some

crash-inducing code has not been �led into issues at the beginning and at the end of our

collected data.
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Figure 3.7. Distribution of the root causes of the reviewed issues that lead to crashes.

The SZZ algorithm is a heuristic to identify commits that induce subsequent �xes.

To mitigate the noise introduced by this heuristic, we removed all candidates of crash-

introducing commits that only change comments or whitespace. We validate the accu-

racy of the algorithm by comparing changed �les of a crash-inducing commit with the

information in its corresponding crash-related issue report. As a result, 68.1% of our

detected crash-inducing commits changed at least one �le mentioned in the crashing

stack trace or comments of their corresponding issues. The remaining commits might

change a dependent class of the code in the stack trace, or developers do not provide

any stack trace in their corresponding issue reports. Therefore, we believe that the SZZ

algorithm can provide a reasonable starting point for identifying crash-prone changes.

Finally, in RQ1, we use some time-related metrics (e.g., review duration), which

measures the period since a review for a patch was requested until the patch was ap-

proved. Although a review duration of two months does not mean that developers really

spent two months to review a patch, it can re�ect the treatment time of a development

team (including pending time, understanding time, and evaluation time) to the patch.

For example, when the review queue of a reviewer is long, her assigned patches may be

pending for a long time before she begins to inspect them [136].

Conclusion validity threats are concerned with the relationship between the treatment

and the outcome. We paid attention not to violate the assumptions of our statistical
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analyses. In RQ1, we apply the non-parametric test, the Mann-Whitney U test, which

does not require that our data be normally distributed.

In our manual classi�cations of root causes of the reviewed patches that crashes, we

randomly sampled 100 reviewed issues and the crashes that were induced. Though a

larger sample size might yield more nuanced results, our results clearly show the most

crash-prone types of patches, and the major root causes of the reviewed patches that

crash.

Reliability validity threats are concerned with the replicability of the study. To aid

in future replication studies, we share our analytic data and scripts online: https:

//github.com/swatlab/crash_review.

External validity threats are concerned with the generalizability of our results. In this

work, we study only one subject system, mainly due to the lack of available crash reports

and code review data. Thus, our �ndings may not generalize beyond this studied system.

However, the goal of this study is not to build a theory that applies to all systems,

but rather to empirically study the relationship between review activities and crash

proneness. Nonetheless, additional replication studies are needed to arrive at more

general conclusions.

3.6 Related Work

In this section, we discuss the related research on crash analysis and code review

analysis.

3.6.1 Crash Analysis

Crashes can unexpectedly terminate a software system, resulting in data loss and

user frustration. To evaluate the importance of crashes in real time, many software or-

ganizations have implemented automatic crash collection systems to collect �eld crashes

from end users.

Previous studies analyze the crash data from these systems to propose debugging

and bug �xing approaches on crash-related defects. Podgurski et al. [115] introduced an

automated failure clustering approach to classify crash reports. This approach enables

the prioritization and diagnosis of the root causes of crashes. Khomh et al. [70] proposed

an entropy-based approach to identify crash-types that frequently occurred and a�ect

a large number of users. Kim et al. [72] mined crash reports and the related source

code in Firefox and Thunderbird to predict top crashes for a future release of a software

https://github.com/swatlab/crash_review
https://github.com/swatlab/crash_review
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system. To reduce the e�orts of debugging crashing code, Wu et al. [156] proposed a

framework, ChangeLocator, which can automatically locate crash-inducing changes from

a given bucket of crash reports.

In this work, we leverage crash data from the Mozilla Socorro system to quantitatively

and qualitatively investigate the reasons why reviewed code still led to crashes, and make

suggestions to improve the code review process.

3.6.2 Code Review & Software Quality

One important goal of code review is to identify defective code at early stages of

development before it a�ects end users. Software organizations expect that this process

can improve the quality of their systems.

Previous studies have investigated the relationship between code review quality and

software quality. McIntosh et al. [84, 85] found that low code review coverage, partic-

ipation, and expertise share a signi�cant link with the post-release defect proneness of

components in the Qt, VTK, and ITK projects. Similarly, Morales et al. [89] found

that code review activity shares a relationship with design quality in the same stud-

ied systems. Thongtanunam et al. [142] found that lax code reviews tend to happen

in defect-prone components both before and after defects were found, suggesting that

developers are not aware of problematic components. Kononenko et al. [74] observed

that 54% of the reviewed changes are still implicated in subsequent bug �xes in Mozilla

projects. Moreover, their statistical analysis suggests that both personal and review par-

ticipation metrics are associated with code review quality. In a recent work, Sadowski

et al. [124] conducted a qualitative study on the code review practices at Google. They

observed that problem solving is not the only focus for Google reviewers and only a few

developers said that code review have helped them catch bugs.

The results of [84, 85, 142, 74, 124] suggest that despite being reviewed, many changes

still introduce defects. Therefore, in this study, we investigate the relationship between

the rigour of the code review that a code change undergoes and its likelihood of inducing

a software crash � a type of defect with severe implications. We draw inspiration from

these prior studies to design our set of metrics [142, 67]. We also draw inspiration from

Tan et al.'s work [140] to conduct a qualitative study by identifying the root causes of

the reviewed patches that induce crashes and the purpose of these patches.
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3.7 Conclusion

The code review process helps software organizations to improve their code quality,

reduce post-release defects, and collaborate more e�ectively. However, some high-impact

defects, such as crash-related defects, can still pass through this process and negatively

a�ect end users. In this chapter, we compare the characteristics of reviewed code that

induces crashes and clean reviewed code in Mozilla Firefox. We observed that crash-

prone reviewed code often has higher complexity and centrality, i.e., the code has many

other classes depending on it. Compared to clean code, developers tend to spend a

longer time on and have longer discussions about the crash-prone code; suggesting that

developers may be uncertain about such patches (RQ1). Through a qualitative analysis,

we found that the crash-prone reviewed code is often used to improve performance of

a system, refactor source code, �x previous crashes, and introduce new functionalities.

Moreover, the root causes of the crashes are mainly due to memory and semantic errors.

Some of the memory errors, such as null pointer dereferences, could be likely prevented

by adopting a stricter organizational policy with respect to static code analysis (RQ2).

In the future, we plan to investigate to which extent static analysis can help to mitigate

software crashes. We are also contacting other software organizations in order to study

their crash reports to validate the results obtained in this work.
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Chapter 4
An Empirical Study of Patch Uplift in

Rapid Release Development Pipelines

The advent of continuous delivery and rapid release practices have signi�cantly re-

duced the amount of stabilization time available for new features, forcing companies to

resort to innovative techniques to ensure that important features are released to the pub-

lic, in a timely manner and with a good quality. To cope with short release cycles, Mozilla

has re-organized its release process around four channels: a development channel named

Nightly, two stabilization channels (Aurora and Beta), and a main Release channel. Fea-

tures corresponding to a new release are developed on the Nightly channel over a period

of six weeks. After that, the code is transferred to Aurora, where it is tested by Mozilla

developers and contributors, for a period of six weeks, and then to Beta where it is tested

by a selected group of external users. Finally, mature Beta features are imported into the

main Release channel and delivered to end users. This pipelined process allows Mozilla

to avoid mixing the development of new features with the stabilization process, which

is particularly important given that integration operations are unpredictable [133], and

can signi�cantly delay a release process, if not enough time is allowed for stabilization.

However, this well organized release process is frequently subverted by urgent patches,

implementing high-value features or critical �xes, that cannot wait for the next release

train. These features and �xes are directly promoted from the development channel to

stable channels (i.e., Aurora, Beta, and main Release), a practice called patch uplift.

Patch uplift is risky because the time allowed for the stabilization of uplifted patches is

reduced by six weeks for each skipped channel. Therefore, it is important to carefully

pick the patches that are uplifted and ensure that developers scrutinize them properly,

55
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to reduce the risk of regressions. There are a set of rules in place at Mozilla to govern

this uplift process. One of these rules is that patches uplifted to the Beta channel should

be (1) ideally reproducible by the QA team, so that they can be veri�ed; (2) should have

been veri�ed on Aurora/Nightly �rst; and (3) should not contain string changes (i.e.,

changes in the text which is visible to users). However, despite these rules, multiple

uplifted patches still introduce regressions in the code. Hence, it is unclear if�and�how

the rules are enforced at Mozilla and why certain uplifted patches introduce post-release

bugs.

In this chapter, we conduct a series of quantitative and qualitative analyses to un-

derstand the decision making process of patch uplift at Mozilla and the characteristics

of uplifted patches that introduce regressions. Overall, we analyze 33,664 issue reports

(corresponding to 7,267 uplift requests) in 17 versions of Firefox over a period of two

years and answer the following research questions:

RQ1: What are the characteristics of patches that are uplifted?

We observed that most patches are uplifted to resolve wrong functionalities or crashes.

Rejected uplift requests required longer decision time than accepted requests. We at-

tribute this di�erence to the high complexity of these rejected patches (since complex

patches require longer time for risk assessment). Last but not least, release man-

agers tend to trust patches that concern certain speci�c components, and�or that are

submitted by certain speci�c developers.

RQ2: How e�ective are uplift operations?

4% of the subject uplifts did not e�ectively address the problems but were later

reopened, duplicate or cloned into another issue, or required additional uplifts to �x

the issue. Two major root causes were observed from the ine�ective uplifts: the uplifts

only partially �xed the issues or caused regressions. Higher proportion of ine�ective

uplifts were detected from the Release channel than from Aurora and Beta.

RQ3: What are the characteristics of uplifted patches that introduced faults in the sys-

tem?

From our analysis, we observed that uplifted patches that lead to faults tend to have

larger patch size; suggesting that developers and release managers need to carefully

review patch candidates for uplift with a large amount of changes, before allowing

for their uplift. Most faulty uplifts are due to semantic or memory-related errors.
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We also observed that patches related to certain components and�or submitted by

certain developers are more likely to cause faults.

RQ4: Are regressions caused by uplift more severe than the bugs that were �xed with

the uplift?

Through a manual analysis, we observed that 37.5% of the Beta fault-inducing up-

lifts caused a �more severe regression�, i.e., regression that is more severe than the

problems they aimed to address. No �more severe regression� was found from the

examined Release uplifts, perhaps due to a more strict uplift policy and code review

process on this channel.

RQ5: Could some of the regressions have been prevented through more extensive testing

on the channels?

We considered regressions to be possibly preventable if they were reproducible not

only by the issue reporter and were found either on a widely used feature/website/con-

�guration or via Mozilla's telemetry. We manually examined a sample of regressions

due to Beta and Release uplifts, and found that 25% of the regressions due to Beta

uplifts and 30% of the regressions due to Release uplifts could have been possibly

prevented.

The remainder of this chapter is organized as follows. Section 4.1 provides

background information about patch uplift. Section 4.2 describes the design of our case

study. Section 4.3 presents the results of the case study. Section 4.4 discusses threats to

the validity of this study. Section 4.5 summarizes related works.

4.1 Mozilla Patch Uplift Process

This section describes the Mozilla patch uplift process and the rules governing this

process.

Firefox follows a pipelined release process [71], with four release channels (Nightly,

Aurora, Beta, and Release). New feature work is done on the Nightly channel, while

Aurora and Beta serve as stabilization channels, and the Release channel is used to

deliver the software to end users. Every six weeks, there is a merge day, when the

code from a less stable channel �ows into a more stable one (e.g., the Nightly code is

moved in the Aurora repository). Most of the development work is performed in the

Nightly channel, where patches can be committed after a normal review process. For
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the stabilization channels, a di�erent process for committing patches has been put in

place (i.e., patch uplift), to keep the channels as stable as possible (as code committed

to Aurora and Beta is closer to be released to users). Patches with important features

or severe fault �xes that cannot wait for the entire process are promoted directly from

the development channel to one of the stable channels, skipping the stabilization phase

on one or more channels.

The lifecycle of an uplifted patch can be summarized as follows: developers write

a patch, which gets reviewed by one or more reviewers. After a successful review, the

patch is committed to the Nightly channel. If developers (or other stakeholders) believe

that the patch is particularly important (e.g., it �xes a frequent crash, or a performance

issue), they can ask for approval to uplift the patch to one (or more) of the stable

channels, i.e., Aurora, Beta, or Release.

Release managers (who are independent and di�erent from reviewers) are responsible

for deciding which patches can be uplifted. They can either accept or reject the patch

uplift request, after a careful consideration of the risks involved.

The more a channel is stable, the higher is the bar for approval of uplift requests.

Below we present an excerpt of the rules in place at Mozilla on the di�erent channels.

� Aurora: Uplifts to the Aurora channel are less critical, as they still have consider-

able time for stabilization. The rules are not strict in this case: no new features are

accepted; no disruptive refactorings; no massive code changes; no string changes,

unless the localization team is aware and has approved; they must be accompanied,

if possible, by automated tests.

� Beta: Uplifts to the Beta channel are more critical, as they have less time for

stabilization. In addition to the rules outlined for Aurora, the changes uplifted to

the Beta channel should be (1) ideally reproducible by QA, so that they can be

veri�ed; (2) they should have been veri�ed on Aurora/Nightly �rst; and should not

contain (3) changes to the user-visible strings in the application (as those require

a very high e�ort and time to be localized, since Mozilla relies on volunteer con-

tributors). The uplifted changes can be proven performance improvements, �xes

to important crashes, �xes for recent regressions. The closer to the release date,

the stricter the release managers should be in enforcing the rules.

� Release: Uplifts to the Release channel are generally discouraged, as they require
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a new version to be built and released to users. Possible uplifts are �xes for major

top crashes, security issues, functional regressions with a very broad impact.

Once a patch is accepted for uplift, Tree Sheri�s [109] (i.e., engineers responsible

for supporting developers in committing patches and ensuring that the automated tests

are not broken after commits, monitoring intermittent failures and backing out patches

in case of test failures) or the developers themselves can commit it to the stabilization

channel(s) for which the patch was approved.

4.2 Case Study Design

In this section, we describe the data collection and analysis approaches that we used

to answer our �ve research questions.

4.2.1 Data Collection

We collected, from the Mozilla issue tracking system (Bugzilla), all issues marked as

resolved or veri�ed in the Firefox and Core products between July 2014 (release date of

Firefox 31.0) and August 2016 (release date of Firefox 48.0). In total, there are 35,826

issue reports in our dataset.

Mozilla developers use customized Bugzilla �ags to request for patch uplifts. These

�ags have the form approval-mozilla-CHANNEL, where CHANNEL can be Aurora, Beta,

or Release. The post�x of the �ag is set to a question mark (?) when a developer asks

for an uplift, to a minus sign (-) if the release manager rejects the uplift, and to a plus

sign (+) if the release manager approves the uplift. We relied on these �ags to identify

uplifted patches. At Mozilla, release managers usually inspect all patches in an issue

report before deciding whether they can be uplifted together. Thus, in this work, we

considered uplift characteristics at the issue level. If an issue contains multiple patches,

we bundled the patches together. To study the patch uplift process, we need to consider

a period of time during which the practice was well established at Mozilla. To decide

on this period, we computed the amount of patches that were uplifted each month, over

our initial period of July 2014 to August 2016. Figure 4.1 shows the distribution of

the number of uplifts in three Firefox's release channels during this period. We did not

consider uplifts that concern the �Pocket� component, as the inclusion of Pocket (which

is a third-party add-on) in Firefox, a one-time event, might introduce noise in our data.

In Figure 4.1, each time point represents a period of one month (we can see that the

Release channel did not receive any uplift in May and November 2015). Figure 4.1 shows
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Figure 4.2. Overview of our data processing approach.

that the number of uplifted patches increased from July 2014 to August 2014 and then

became stable from September 2014 to August 2016. Based on this distribution, we

selected the period between September 2014 and August 2016, for our study. In other

words, we limited our dataset to only issue reports and commits that occurred within

this period. Between September 2014 and August 2016, we study in total 33,664 issue

reports, in which there are 7,267 uplift requests: 285 to Release, 2,614 to Beta, and 4,368

to Aurora.

4.2.2 Data processing

Figure 4.2 shows a general overview of our approach. We describe each step of the

approach below. The corresponding data and scripts are available online at: https:

//github.com/swatlab/uplift-analysis.

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis
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4.2.2.1 Identi�cation of Fault-related Issues

Mozilla uses Bugzilla to manage and track its issues. All types of issues, whether

they are faults or new features, are managed in this system. Unlike JIRA [147], which

o�ers the possibility to distinguish between issues using a tag, Bugzilla does not provide

issue type information. Therefore, our �rst processing task is to di�erentiate issues that

are related to faults, from new feature requests or improvements. To automatically

identify fault-related issues, we used a keyword-based heuristic to search information in

the title, description, �ags, and user comments of each issue report. Our list of keywords

includes: crash, regression, failure, leak, steps to reproduce (STR), and hang. The full

list is available at: https://github.com/swatlab/uplift-analysis.

To ensure the accuracy of our detection on fault-related issues, we manually vali-

dated a sample of our results. From a total of 33,664 issue reports, we randomly selected

a sample of 380 issue reports, which corresponds to a con�dence level of 95% and a

con�dence interval of 5%. Two researchers read each of the 380 issue reports indepen-

dently and classi�ed them into fault-related and other categories. We then compared

their classi�cation results and observed that 41 issue reports were classi�ed into di�erent

categories by the two researchers. To resolve these discrepancies, we created an online

document for the 41 issues; allowing all of the researchers to comment and discuss the

issues. After this round, a consensus was reached for 35 out of the 41 issues. For the

remaining 6 issues, we organized a meeting and discussed the classi�cation of each of

them until a consensus was found. The result of our manual classi�cation shows that

our keyword-based heuristic achieves a precision of 87.3% and a recall of 78.2%, when

classifying issues into fault-related (the true class) and other (the false class) categories.

4.2.2.2 Identi�cation of Fault-inducing Patches

We used the SZZ algorithm [134] to identify patches (these patches could be fault-

�xing patches or patches related to features or improvements) that introduced faults in

the system. First, we used Fischer et al.'s heuristics [47] to map each studied issue to

its corresponding patch(es) (i.e., commits). This heuristic consists in looking for issue

IDs in commit messages using regular expressions. Next, for each fault-related issue, we

used the following Mercurial command to extract the list of �les that were changed to

�x the issue:

hg log �template {commit},{file_mods},{file_dels}

In this step, we only considered modi�ed and deleted lines, since added lines could not

have been changed by prior commits. We denoted an issue's fault-�xing �le by Ffix.

https://github.com/swatlab/uplift-analysis
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Then, for each changed �le ffix | ffix ∈ Ffix, we used Mercurial's annotate command

as follow to check which prior commits changed the lines that were modi�ed by the

fault-�xing commits. The SZZ algorithm assumes that the fault is located in these lines.

hg annotate commit� -r f_fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates. Finally, we examined

whether a fault-inducing candidate was submitted before the creation date of its cor-

responding fault-related issue report. If so, we considered the candidate to be a fault-

inducing commit, and its related issue to be a fault-inducing issue.

4.2.2.3 Identi�cation of Duplicate Issues

There has not been an approach that can identify duplicate issues1 with 100% ac-

curacy. Two general threads of approaches were proposed in previous works. The �rst

thread of approaches ranks the similarity between one given issue and other issues in

a dataset, such as [123, 138, 149]. The other thread predicts whether two given issue

reports are duplicate or not, such as [62, 137, 143]. Inspired by these works, we designed

the following approach, which is customized for our dataset.

1. For each subject issue report, we extracted its short description (i.e., title) and

long description (i.e., �rst comment). We performed stemming and stop word

removal against these raw texts.

2. As [137, 143], we used Okapi BM25 algorithm [154] (referred as BM25 in the rest of

the chapter) to rank of the similarity between any pair of issues: {(issuei, issuej) |
i 6= j, issuei ∈ uplift bugs, issuej ∈ all bugs}. In a given pair of (issuei, issuej),

we respectively calculated the similarity between their titles and their descriptions.

As there are in total 33,664 studied issues and 4,958 unique uplifted issues2, we

should perform (33664 − 4958) × 4958 + 4958 × (4958 − 1) ≈ 167M comparisons

(for titles and descriptions respectively). In each of these comparisons, the BM25

algorithm yields a score of similarity, the higher the score the closer the two pieces

of information (i.e., titles or descriptions).

3. We ranked the BM25 scores for all pairs of issues by descending order. We removed

the pairs where the BM25 scores is 0. The rest of the results were considered as du-

plicate issue candidates. We intended to manually examine the correctness of each

1 In this study, �duplicate� issues indicate di�erent issues that aim to address the same problem,

rather than DUPLICATE in the Bugzilla sense, which means identical issues.
2 There are in total 7,267 studied uplift requests, but some requests are across multiple channels.
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title (respectively description) pair by carefully analyzing the whole issue reports.

There are 8.1 million pairs of duplicate issues candidates, our manual validation

cannot cover all these but can only focus on the most likely candidates. First,

we narrowed down our manual analysis scope to the top 1,000 candidates because

correct duplicate cases can hardly be observed beyond the top 1,000 candidates

(in which the highest BM25 value is 97.5, and the lowest value is 29.1) through

a preliminary analysis. Second, we designed a heuristic to further �lter out the

pairs in which the two issue reports are not linked to each other: if Issue A is

never mentioned in Issue B (either in one of the comments, or in the �Blocking�,

�Depends On�, �See Also� �elds), we considered the two issues to be �not linked�

(meaning that, in practice, developers did not notice any relationship between the

issues). To calculate the false positive rate of this heuristic, we manually examined

the top 50 and 100 other randomly selected candidates, and found that only two

correct duplicate pairs were misclassi�ed by the �unlinked� heuristic. As a result,

137 candidates survived this step. Our manual validation was then performed on

these candidates.

4. Since we separately performed Steps 2 and 3 on the issue titles and descriptions,

we combined the results and removed redundancies. We also removed the pairs

where an issue is a clone of another one. From the obtained results, we only keep

the duplicate pairs where the duplicate issue were opened or resolved after the

original patch had been uplifted.

Compared to any fully automated approach, our approach can achieve a very high

precision because all of the reported duplicate issue pairs have been carefully examined

by (by understanding the whole context of the issue reports). Although we cannot

guarantee a 100% recall, we believe that our reported results covers all possible cases

where the titles (respectively descriptions) of a pair of issues are textually similar to

each other. In fact, text processing is the base of most aforementioned approaches.

BM25 is considered as an advanced measure of ranking similarities, which has a higher

performance than the traditional TF-IDF algorithm [143]. Some approaches, such as

[137, 143], used additional information (e.g., priority, product, and version �elds from

the analyzed issue reports), but such information cannot help to retrieve more possible

candidate (i.e., it cannot increase the recall). In this work, we only ignored the issue

pairs where the titles or descriptions have no relevance (i.e., BM25 value is 0) or have

little relevance (i.e., the two issues are not linked and the BM25 value is weak).
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Table 4.1. Developer experience and participation metrics (m1 - m5).

Metric mi Description Type and range

Developer
experience

1 Number of previous commits of the patch
developer.

Integer, from 0 to
43639.

Reviewer
experience

2 Number of previous commits of the patch
reviewer.

Integer, from 0 to
43691.

Number of
comments

3 Number of comments in the issue report. Integer, from 3 to
1359.

Comment
words

4 Average number of words in the com-
ments to an issue.

Integer, from 0 to
2199.

Review dura-
tion

5 Time period (in days) from a patch's sub-
mission until its approval.

Float, from 0.0 to
around 406.67.

Table 4.2. Uplift process metrics (m6 - m8).

Metric mi Description Type and range

Landing
delta

6 Time elapsed (in days) between when the
patch was applied to the Nightly ver-
sion and when the developer asked for
approval of an uplift. The value can
be negative, as sometimes developers re-
quest uplift before their patch is applied
to Nightly.

Float, from -41.59
to around 153.73.

Response
delta

7 Time elapsed (in days) between when the
developer asked for approval for the uplift
and when the release manager decided
(approved or rejected).

Float, from 0.0 to
around 31.23.

Release delta 8 Time elapsed (in days) between when the
developer asked for approval for the uplift
and the date of the following release.

Float, from 0.0 to
around 42.76.

4.2.2.4 Mining Issue Reports

We mined several kinds of metrics from Bugzilla issue reports: information about the

review process (e.g., how long a review took, how many reviewers inspected a patch),

information about the uplift process (e.g., whether an uplift was accepted, how long

before a release manager decided to accept or reject an uplift request), the developer

assigned to an issue, and the component(s) a�ected by an issue.

4.2.2.5 Computing Metrics

To capture the characteristics of patches that were uplifted, we computed the 22

metrics described in Tables 4.1 to 4.5. These metrics correspond to the following �ve

dimensions:

1. Developer experience and participation metricsOur rationale for computing
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Table 4.3. Sentiment metrics (m9 - m10).

Metric mi Description Type and range

Developer
sentiment

9 The highest negative sentiment score in
the developers' comments on an issue.

Integer, from -5 to
0.

Owner senti-
ment

10 The highest negative sentiment score in
module owners' comments on an issue.

Integer, from -5 to
0.

Table 4.4. Code complexity metrics (m11 - m19).

Metric mi Description Type and range

Patch size 11 Number of lines in a patch (excluding test
patches).

Integer, from 0 to
301114.

Test patch
size

12 Number of lines in a test patch. Integer, from 0 to
127155.

Prior
changed
times

13 Number of previous commits that modi-
�ed the same �les that the patch is mod-
ifying.

Integer, from 0 to
114051.

LOC 14 Average lines of code in all �les in a patch. Integer, from 0 to
27727.

Average cy-
clomatic

15 Average cyclomatic complexity of the
functions in a �le.

Integer, from 0 to
128.

Number of
functions

16 Average number of �les' functions in a
patch.

Integer, from 0 to
3878.

Maximum
nesting

17 Average maximum level of nested func-
tions in all �les in a patch.

Integer, from 0 to
13.

Comment
ratio

18 Average ratio of the lines of comments
over the total lines of code in all �les in
a patch.

Integer, from 0 to
99.

Module num-
ber

19 Number of modules (as de�ned by
Mozilla in [102]) involved by a patch.

Integer, from 0 to
76.

these metrics is that patches written or reviewed by experienced developers may

have a higher chance to be accepted for uplift, and may be less fault-prone. Long

comments and long review durations may indicate the complexity of an issue and

developers' uncertainty about it, which may explain its rejection or fault-proneness.

2. Uplift process metricsWe computed metrics capturing the uplift process for the

following reasons. Release managers may be more inclined to accept patches with

higher landing delta (as the more time a patch has been on the Nightly channel,

the more time it has been tested by Nightly users). Patches with low release delta

are likely to be refused uplifts, since patches that are developed closer to the date

of release might pose more risk (as there is less time to �x potential regressions).

Patches with low response delta may also be rejected (since developers have less
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Table 4.5. Code centrality (SNA) metrics (m20 - m22).

Metric mi Description Type and range

PageRank 20 Time fraction spent to �visit� a node (i.e.,
�le) in a random walk in the call graph.

Float, from 0.0 to
1158.91.

Betweenness 21 Number of classes passing through a node
among all shortest paths.

Float, from 0.0 to
6.2e+07.

Closeness 22 The average length of the shortest path
between a node and all other nodes.

Float, from 0.0 to
3.21.

time to evaluate the risks associated with the patch). Patches with low landing

delta, release delta, and low response delta may also lead to faults if uplifted.

3. Sentiments We computed sentiment metrics because we believe that sentiments

can a�ect uplift decisions and their success rate: for example, a release manager

who is not happy about a patch might be less willing to accept it. From each

studied issue, we extract developers' comments to compute their sentiments. We

leverage the sentiment mining tool, SentiStrength [87], to estimate the extent of

developers' positive and negative sentiments toward a speci�c issue. As one of the

state-of-the-art sentiment mining tool, SentiStrength is easy to apply and it has

achieved a reasonable performance in prior work [87, 144]. To adapt this tool to

the software engineering context, we ignored a group of words that have negative

meanings in general but do not represent any negative sentiment in Bugzilla dis-

cussions, e.g., bug, error, issue, regression, failure, fail, leak, crash3. To further

�lter out irrelevant information from the comments, we used regular expressions

to ignore hyperlinks and referred texts (i.e., lines starting with �>�). In addition

to developers' sentiments, we also computed module owners' sentiments.

4. Code Complexity Previous work, such as [72], has shown that complex code is

likely to introduce faults. We calculated code complexity metrics to understand

how uplifting decisions and their success are a�ected by the complexity of the

uplifted patches. We extracted the �les changed in each patch and use the static

code analysis toolUnderstand [126] to calculate the following complexity metrics on

the �les: lines of code (LOC), average cyclomatic complexity, number of functions,

maximum nesting, and ratio of the comment lines over the total code lines.

5. Code centrality (SNA) metrics Kim et al. [72] observed that functions close

to the centre of a call graph are likely to experience more faults. Hence, we

3 Please refer to our data repository to see the whole list of ignored words:

https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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computed metrics capturing the centrality of functions involved in uplifted patches

and uplifted patch candidates. We used the network analysis tool, igraph [39], in

combination to Understand [126], as in [5], to compute the following Social Network

Analysis (SNA) metrics: PageRank, betweenness, and closeness. When computing

complexity and SNA metrics, we only considered the C/C++ code since Firefox

contains 86% of C/C++ code. Computing code complexity and SNA metrics is

a very time-consuming task. Instead of computing the metrics for each patch, we

computed metrics by releases and map a given patch to its latest major release

as in our previous work [5]. To make the metric results as precise as possible, we

considered all major releases from Firefox 32.0 until Firefox 48.0, which cover the

system's history from September 2014 until August 2016.

4.3 Case Study Results

This section presents and discusses the results of our �ve research questions. For

each question, we discuss the motivation, the approach designed to answer the question,

and the �ndings. To get a deeper insight of the patch uplift process, we perform both

quantitative and qualitative analyses for each research question.

RQ1: What are the characteristics of patches that are uplifted?

Motivation. This question aims to understand the characteristics of patches that are

uplifted. We are particularly interested in understanding what di�erentiates patch uplifts

among di�erent channels. Although Mozilla has published rules to guide the patch uplift

process [106], it is unclear if and how these rules are enforced in practice. The answer

to this research question can help discover hidden factors that a�ect the uplift process,

and help software practitioners make this process more predictable.

1) Quantitative Analysis

Approach. Using the metrics from Tables 4.1 to 4.5, we statistically compared

22 numerical characteristics of patch uplift candidates that were accepted and those

that were rejected. As Mozilla release managers take a whole issue report into account

during the uplift process (see Section 4.2.1), we calculated the average values of the code

complexity and SNA metrics for all patches in a subject issue report.

For each of the 22 metrics mi, we formulated the following null hypothesis:

H01
i : there is no di�erence between the values of mi for patch uplift candidates that were

accepted and those that were rejected, where i ∈ {1, . . . , 22}
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Table 4.6. Accepted vs. rejected patch uplift candidates.

Channel Metric Accepted Rejected p-value E�ect size

Aurora Comment ratio 0.1 0.2 0.03 small

Landing delta 0.4 3.0 0.02 small

Response delta 0.9 2.4 1.80e-05 medium

Beta LOC 529.0 1,046.8 9.27e-04 small

Cyclomatic 2.0 3.0 0.04 negligible

# of functions 20.0 35.2 9.62e-04 small

Comment ratio 0.1 0.2 8.86e-05 small

Betweenness 2,789.0 20,586.3 0.01 negligible

PageRank 1.4 1.7 0.01 negligible

Max. nesting 2.3 3.0 7.72e-03 negligible

Module number 1.0 1.0 7.13e-03 negligible

Response delta 0.7 1.0 6.28e-04 small

Release Response delta 0.02 3.1 1.39e-12 large

We used the Mann-Whitney U test [57] to accept or reject these hypotheses. The

Mann-Whitney U test is a non-parametric statistical test that measures whether two in-

dependent distributions have equally large values. We used a 95% con�dence level (i.e.,

α = 0.05) to accept or reject the hypotheses. Since we performed more than one com-

parison on the same dataset, to reduce the chances of obtaining false-positive results, we

used Bonferroni correction [43] to control the familywise error rate. Concretely, we calcu-

lated the adjusted p-value, which is multiplied by the number of comparisons. Whenever

we obtained statistically signi�cant di�erences between metric values, we computed the

Cli�'s Delta e�ect size [32] to measure the magnitude of the di�erence. Given a result of

the Cli�'s Delta, d, we use the following thresholds to decide its magnitude: |d| < 0.147

�negligible�, |d| < 0.33 �small�, |d| < 0.474 �medium�, otherwise �large� [122]. In the fol-

lowing, we report only the metrics for which there is a statistically signi�cant di�erence

between accepted and rejected patch uplift candidates.

Results. Table 4.6 summarizes di�erences between the characteristics of patches

that were accepted for an uplift and those that were rejected. We show the median

value of accepted and rejected uplifts for each metric, as well as the p-value of the

Mann Whitney U test and the e�ect size. For all three channels, rejected uplifts have

longer response delta (m7) than accepted uplifts. We attribute this outcome to the high

complexity of the rejected patches, which required longer time for risk assessment. We

summarize the di�erent results among the channels as follows:
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� Aurora: We observed that rejected uplift requests have signi�cantly higher landing

delta; this might imply that the rejected patches are landing at the end of the

Aurora cycle, and so have less time for stabilization. Also, rejected uplift requests

have higher ratio of comment in the source code, although we expected that a

higher comment ratio might help release managers understand the code. A high

comment ratio could also indicate a high code complexity. Release managers may

hesitate to release patches with complex code ahead of schedule.

� Beta: Compared to accepted patches, rejected patches tend to have higher code

complexity in terms of LOC and number of functions, as well as higher SNA values

in terms of PageRank. This result is expected, because we assume that complex

code and code connected with many other classes is less likely to be accepted for

urgent releases. As in the Aurora channel, rejected patches also contain code with

higher ratio of comment. Although accepted and rejected patches have signi�cant

di�erences on some other metrics such as cyclomatic complexity, the magnitude of

these di�erences is negligible.

According to the results, we can only reject H01
7 , meaning that the re-

sponse delta can signi�cantly a�ect the decision to uplift a patch or not.

The impact of other metrics, including code complexity and SNA metrics, is

channel dependent.

We quanti�ed the acceptance rate of uplift requests for di�erent components and

observed that certain components enjoy a 100% acceptance rate (perhaps because they

rarely experienced faults); while other components have lower acceptance rates (perhaps

because they are inherently more complex, e.g., the implementation of JavaScript, or

because release managers have had bad experience with some of them). This di�erence

between the acceptance rates of components is more pronounced in the Release chan-

nel. Some components that are involved in a large number of uplifts (e.g., Audio/Video,

Graphics, and DOM components) also have the lowest acceptance rate. Perhaps de-

velopers of those components tend to ask for uplifts more often, prompting a negative

reaction from release managers who may feel that they take too many risks.

2) Qualitative Analysis

Since we did not observe signi�cant structural di�erences between the code of patch uplift

candidates that were rejected and those that were accepted, we conducted a qualitative

study to identify and compare the reasons behind successful and failed patch uplift

requests.
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Table 4.7. Uplift reasons and descriptions (abbreviations are shown in parentheses).

Reason Description

Security Security vulnerability exists in the code.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.

Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong functional-
ity (func)

Incorrect functionalities besides rendering issues.

Web incompatibil-
ity (web comp)

Program does not work correctly for a major website or many
websites due to incompatible APIs or libraries, or a function-
ality, which was removed on purpose, but is still used in the
wild.

Add-on or plug-in
incompatibility
(addon comp)

Program does not work correctly for a major add-on/plug-
in or many add-ons/plug-ins due to incompatible APIs or li-
braries, or a functionality, which was removed on purpose, but
is still used in the wild.

Compile Compiling errors.

Feature Introduce or remove features, including support adding.

Improvement (im-
prove)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other uplift reasons, e.g., data corruption and license incom-
patibility.

Approach. From 2,384 uplifted issues in the Beta channel and 231 uplifted issues in

the Release channel, we randomly chose respectively 459 and 154 issues as our samples

(which correspond to a con�dence level of 95% and a con�dence interval of 5%). Inspired

by Tan et al.'s work [140], we classi�ed the uplift reasons into 14 categories based on

their (potential) impact and detected fault types. Some of Tan et al.'s categories are

too broad, such as incorrect functionality. We broke them into more detailed uplift

reasons, e.g., incorrect functionality is split to incorrect rendering and (other) wrong

functionality. Some of Tan et al.'s categories, such as data corruption, are with too few

occurrences. We combined them into the �other� category. Table 4.7 shows the uplift

reasons used in our classi�cation. We performed a card sorting on each of the sampled

issues. By studying the issue report, two researchers individually classi�ed each issue

into one or multiple uplift reasons (some uplift may be due to multiple reasons). Then we

compared their classi�cations and resolved con�icts through discussions. We discussed

each con�ict until an agreement was reached.
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Figure 4.3. Distribution of uplift reasons in Beta.

To connect uplift reasons with the risk of regression, we will show the distribution of

the faulty uplifts for each uplift reason.

Moreover, to identify organizational factors that play a role in patch uplift decisions,

we interviewed three of the current �ve Mozilla release managers (the other remaining

two were new to the role) one at a time (to avoid them in�uencing each other), asking

them the following questions:

1. Which factors do you take into account when deciding about an uplift?

2. Are there di�erences in how you handle uplifts in di�erent channels, and what are

the di�erences?

3. How do you decide which developers you can trust?

After this �rst more structured interview with the questions above, we performed

a semi-structured one, showing the results of our quantitative analysis to the release

managers and asking them for their feedback.

The questions of both the interviews were open-ended, so we had to perform an

analysis to extrapolate interesting elements and to group together similar ones (e.g., if

an interviewee mentioned �a really important issue reported multiple times� as being one

of the factors and another mentioned �a bug a�ecting many users�, we considered these

factors to be the same and grouped them together in �Importance of the issue�).

Results. Figures 4.3 and 4.4 show the distribution of the uplift reasons, as well

as the distribution of fault-inducing uplifts and clean uplifts for each reason. We ob-

served that, in the Beta channel, most patches are uplifted because of a wrong func-

tionality, crash, security vulnerability, incompatibility with some major websites, or to
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Figure 4.4. Distribution of uplift reasons in Release.

introduce/remove a feature. Most regressions are introduced by the uplifts that resolved

wrong functionalities, crash, and security issues. For some uplift reasons, including im-

provement, resolving add-on/plug-in incompatibility and compiling errors, few patches

lead to faults in our studied sample. However, a high percentage of patches resolving

performance and rendering problems introduced new regressions.

In the Release channel, we observed the same top �ve uplift reasons. Compared

to the Beta channel, there are fewer regressions; implying that these uplifted patches

may have been more carefully scrutinized, the rules for approval on the Release channel

being more strict. The fault-inducing patches only concentrated on �ve uplift categories:

crash, hang, security, performance degradation, and incorrect rendering. Especially,

most patches for incorrect rendering lead to future faults. These results suggest that,

although developers prudently uplift patches in the Release channel, they still need to

carefully review patches belonging to the aforementioned categories in order to prevent

delivering faults to users.

Through the interview, we learn that release managers take into account several

factors when deciding whether to approve or reject a patch uplift request.

1. Importance of the issue. This is measured through the impact that rejecting the

uplift would have on users.

2. Risk associated with the patch. Release managers share the same view on the risks.

They generally trust developers' words, unless they have had bad experiences with

them (e.g., developers who caused regressions and did not �x them); they evaluate

the risk of the patch by looking at its size and complexity, the presence/absence of
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automated tests, the reviewers of the patch. In case of doubts, release managers

consult other release managers or engineering managers to get a clearer picture.

3. Timing of the uplift in the Aurora/Beta cycle. They tend to trust more patches

that have been in Nightly for some time and patches that are far from the next

release date. They almost always accept uplifts requested during the �rst weeks

of the Aurora cycle.

4. Veri�cation of the patch. In particular for more stable channels, they make sure

that the patch has been veri�ed to actually �x the problems it was supposed to

�x. If needed, they ask QA to manually verify the patch. If it is a patch that �xes

a Nightly crash, before uplifting the patch to Aurora, they will verify if users are

no longer reporting the crash.

They remarked that the uplift bar gets higher as they are getting closer to release. After

the middle point of the Beta cycle, they only accept patches �xing high security issues,

high-volume crashes, severe recent regressions, severe performance issues or memory

leaks.

We presented the release managers with the results of our quantitative and qualitative

analysis and collected the following observations.

They found that the response delta information is interesting. After thinking

about it, they all gave us similar replies. When they are evaluating a complex issue and

are still undecided, they will not make the call immediately. One release manager said

that �when I reject something, I won't make the call immediately. I will think about it

before doing it, in case I change my mind or new facts are coming in the equation".

Regarding the landing delta, they were surprised, as they thought they were more

likely to accept patches with a higher landing delta (that is, patches that have been in

Nightly for longer). They have also said that they are almost always accepting patches

during the �rst four weeks of the Aurora cycle, which would explain this discrepancy (as

those patches have a small landing delta).

The interviewed release managers also told us that they take into account the fault-

proneness of components when making uplift decisions; which is in line with what we

found (some components have a smaller acceptance rate). One release manager told us

that �some components always come out as causing the most regressions, e.g., graphics

layers, DOM". Regarding the trust in developers, they all mentioned the assessment of

risk as one of the �rst factors. One release manager explained that �when they seem really

overcon�dent or aren't telling me the whole story I lose some trust", another one stated
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that �some developers are taking a lot of risks, some other less and are super reactive

to �x potential fallout". This �nding is consistent with the uplift criteria followed at

Facebook [158], where release managers tend to trust developers who introduced less

regressions in the past.

Regarding uplift reasons, release managers were not surprised that test and compile

changes are less frequent than others. They argued that these kinds of changes are really

hard to move from the Nightly channel to a stabilization channel (build or test failures,

unless they happen on really particular con�gurations, are noticed as soon as a patch is

applied, since tests are run for every changeset). For the same reasons, they were not

surprised that the uplift regressions are rarely compile-related.

Release managers argued that the information about the distribution of uplift reasons

is useful for their future decision-making. They were initially surprised to see that crash

and security-related uplifts often caused regressions, but they thought that the urgency

of those �xes might degrade their quality. They were also interested in the results

regarding the categories where a high proportion of uplift patches caused regressions

(e.g., performance uplifts). They said that they will start to take this information into

account when deciding about uplifts, and will be more careful with the uplifts in those

categories.

Patches accepted for uplift tend to have lower code

complexity in development channels. Release man-

ager tend to take a longer time to decide when

rejecting patches than when accepting them. The

top four reasons for uplift are wrong functionality,

crash, security vulnerability, incompatibility with

major websites. Release managers take decisions

based on their past experience with developers or

code components, focusing on the importance of

the uplift, then the risk associated with it, then the

timing of the uplift in the release cycle, then on its

veri�cation by QA.

RQ2: How e�ective are uplift operations?

Motivation. Previous studies showed that some issues cannot be e�ectively �xed by

one patch, but need additional �xing e�orts. These issues can be detected by seeking
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reopened [86], cloned [141], duplicate, or resolved by multiple patches [113]

(which also includes backouts made by tree sheri�s, [110]) issues. In this research

question, we want to examine whether it happens that patch uplift operations require

multiple attempts (we refer to such uplifts as �ine�ective uplifts�). Since such outcome

is not desirable, it would be useful to help developers identify the characteristics of such

patch uplifts, so that they can take the necessary steps to avoid reoccurrences of issues

addressed by uplift operations.

Approach. To identify issues that were reopened, we used the REOPENED Bugzilla

resolution type. To identify issues that were cloned, we used a regular expression to

match the following pattern, which Bugzilla adds automatically when a user clones a

bug.

+++ This bug was initially created as a clone of Bug #ISSUE_ID +++

To identify issues that were �xed by more than one uplift, we used regular expressions

to detect uplifts in issue reports (see Section 4.2.1), and initially marked issues where at

least two uplifts occurred (at a distance of at least three days between them). We chose

three days because the distance between two beta builds is three days. A shorter time

would likely have caught simple follow-up �xes that we are not interested in. A longer

time would likely have missed some cases of multiple uplifts.

From the obtained results, we removed the issues that were reopened or cloned before

their corresponding patches had been uplifted. We also removed the issues with multiple

uplifted patches, which were actually uplifted together (or at the same time) or where

one of the multiple uplifts was a simple test-only �x (identi�ed by a=test-only in the

commit message). From the user side, these issues were resolved by only one shot.

To identify issues duplicate of a previous issue �xed by patch uplift, we used the

approach described in Section 4.2.2.3.

For each identi�ed and veri�ed issue that was not e�ectively �xed by an uplift, two

researchers independently card sorted the root causes of the ine�ective uplift into one

or multiple categories. They �rst de�ned categories separately, and then merged similar

categories into one. Next, they standardized the category names as shown in Table 4.8.

Finally, they used these standardized categories to compare their classi�cation di�erences

and resolve con�icts until reaching an agreement for each of the issues.

Results. Table 4.9 shows the number of ine�ective uplifts detected from the three

development channels. Since some patches were uplifted into multiple channels, the

table also shows the unique number of the ine�ectively uplifted patches in a speci�c

manner (e.g., reopened, cloned, or duplicate). Figure 4.5 depicts the root causes of the
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Table 4.8. Root causes of the ine�ective uplifts.

Category Description

Not �xed The issue was completely not �xed, i.e., the up-
lifted patch did not have any e�ect.

Partially �xed The issue was only partially �xed, i.e., the uplifted
patch had an e�ect but did not completely resolve
the problem.

Need more QA The uplifted patch had not gone through enough
manual veri�cation.

Need more tests There were no tests added with the uplifted patch,
but they were required.

Diagnostics An uplift was made to gather more data on a prob-
lem, then another uplift was made to actually �x
it.

Regressions The uplifted patch caused other defects.

Test failure The uplifted patch did not pass a certain test.

Build failure The uplifted patch caused a build error.

Other Other reasons, e.g., an issue was �xed by an up-
lift, but then appeared again because of another
patch; or the patch depended on other patches to
be uplifted �rst.

ine�ective uplifts and shows the prevalence of each root cause. In this �gure, if the patch

of an issue was uplifted to multiple channels, we only counted it once. In general, 196

out of the 4,958 (4%) studied issues were not e�ectively �xed by one patch

uplift and required additional e�orts. In previous studies, Park et al. [113] and An

et al. [6] respectively detected 32.8% and 23.8% general Mozilla issues (in di�erent time

periods) that were resolved by multiple patches. Shihab et al. [131] detected 6.5% to

26% reopened issues from Eclipse, Apache HTTP, and OpenO�ce. Compared to these

results, uplifted patches are more likely to �x a problem in one shot than other patches,

even though we analyzed ine�ective uplifted patches from di�erent angles, including

reopened, cloned, duplicate issues, and issues �xed by multiple uplifts. This implies that

uplifted patches have a better general quality than other patches.

�The original uplifted patches did not completely �x the problem� is the

most frequent root cause behind the issues that were ine�ectively �xed and

were later reopened, cloned, or duplicate. An example of such case is issue

#1156182; the original uplifted patch of issue #11561824 only �xed the crash problem

on Windows. The issue was reopened to further �x crashes on Linux.

�Leading to regressions� is another important frequent root cause of the

4 https://bugzilla.mozilla.org/show_bug.cgi?id=1156182

https://bugzilla.mozilla.org/show_bug.cgi?id=1156182


4.3. CASE STUDY RESULTS 77

Table 4.9. Number of ine�ective uplifts in the three channels.

Aurora Beta Release Unique count

Reopened 70 49 10 77

Cloned 28 16 3 32

Duplicate cre-
ated after an
uplift

15 10 2 16

Duplicate re-
solved after an
uplift

5 3 2 7

Resolved by
multiple uplifts

50 42 3 78

issues that were reopened, cloned, and were resolved by multiple uplifts. An

example of such case is issue #1044975; after uplifting and landing a patch to the Aurora

and Release channels to �x crashes of issue #10449755, developers noticed an increase

of crashes with another stack trace in the �eld. They had to uplift another patch to

address the regressions.

In addition, among the ine�ective uplifts, 27.5% of the issues were reopened after

patch uplifts because these patches did not resolve the issues at all. 18.1% of the issues

were resolved by multiple uplifts because their �rst uplifted patch did not pass a test case.

Test and build failures happen because the patch from the Nightly version is applied to

an earlier version (Beta or Aurora), so the rest of the code might be di�erent. In the

current work�ow, the uplift is published only after the uplift is accepted. In other words,

build or test failures can only be detected after an uplift is approved. If a developer does

not �x a problem quickly enough, the uplift might be published later than it could have,

thus missing one or more Beta builds (which are made twice a week), which means

reducing the time dedicated to manual testing. In the data we have collected, build or

test failures caused on average around four days lost on Aurora and around three days

lost on Beta. This means loosing four days of testing on Aurora, and almost one week of

testing on Beta (since there are only two Beta builds per week). We suggest that Mozilla

performs �uplift simulations�, i.e., notifying developers whether their patch causes build

or test failures as soon as they request an uplift, instead of after the uplift is approved.

Moreover, we observed that 9 out of the 77 reopened issues did not completely

get resolved, which were further �led as cloned or duplicate issues. For example,

issue #11540036 was created due to crashes in the drawing method DrawingCon-

5 https://bugzilla.mozilla.org/show_bug.cgi?id=1044975
6 https://bugzilla.mozilla.org/show_bug.cgi?id=1154003

https://bugzilla.mozilla.org/show_bug.cgi?id=1044975
https://bugzilla.mozilla.org/show_bug.cgi?id=1154003
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diagnostics: 1.2%
need more tests: 5.0%
need more QA: 1.2%

regressions: 20.0%
other: 3.8%

not fixed: 27.5%

test failure: 3.8%

partially fixed: 37.5%

(a) Reopened.

diagnostics: 3.1%
not fixed: 3.1%

other: 9.4%

partially fixed: 71.9%
regressions: 12.5%

(b) Cloned.

not fixed: 12.5%

other: 6.2%

partially fixed: 75.0%
regressions: 6.2%

(c) Duplicate created after an uplift.

not fixed: 14.3%

partially fixed: 85.7%

(d) Duplicate resolved after an uplift.

build failures: 6.0%
diagnostics: 4.3%

not fixed: 2.6%
other: 19.8%need more tests: 0.9%

partially fixed: 10.3%

regressions: 37.9%
test failure: 18.1%

(e) Resolved by multiple uplifts.

Figure 4.5. Root causes of the ine�ective uplifts.

text::FillRectangle. After uplifting a patch to the Aurora and Release channels, de-

velopers still observed a high volume of crashes with the same signature. To address the

missing edge cases of these crashes, developers cloned the issue into issue #11625207.

This �nding inspired us to investigate whether the cloned and duplicate issues were re-

solved in the same version as their original issues or resolved in a later version. We found

that 23 out of the 54 (32+15+7) cloned or duplicate issues were resolved in the same

version as their original issues, and the other 32 issues were resolved in a later version.

In this study, we only target for closed issues, but during our manual analysis, we

observed that some issues �xed by uplifted patches have not been eventually closed.

For example, issue #12973908 was created as a follow-up to the crashes �xed in issue

#12801109. Issue #1297390 has not been closed because the crash volume decreased

again to a relatively low level. The priority of this issue were adjusted to P3, i.e., would

like to �x, but waiting for resources [98]. Although it would be interesting to investi-

7 https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
8 https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
9 https://bugzilla.mozilla.org/show_bug.cgi?id=1280110

https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
https://bugzilla.mozilla.org/show_bug.cgi?id=1280110
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gate how many issues �xed by ine�ective uplifts have been �completely and eventually�

resolved, we can hardly get an exact answer because �rst, our subject dataset is dated

from September 2014 to August 2016. Answering this question is beyond the scope of

our study. Second, developers and testers can hardly know whether the most recent

patch has covered all possible aspects to �x a certain issue, in other words, a ��xed�

problem may come back again in the future. A lesson from this �nding is that some

issues are more di�cult to get �xed than others. If an issue has recurred in the �eld, a

proper follow-up is required even after the issue has been closed.

Regarding the di�erences of the ine�ective uplift among channels, we observed that

153 out of the 4,368 (3.5%) Aurora uplifts, 112 out of the 2,614 (4.3%) Beta uplifts, and

16 out of the 285 (5.6%) Release uplifts were ine�ective. Although the strictness of the

uplift rules increases from Aurora, Beta, and to Release, the prevalence of ine�ective

uplifts does not decrease accordingly in these channels. The percentages vary among

di�erent kinds of ine�ective uplifts, in particular �not �xed� uplifts account for 0.5% in

Aurora, 0.9% in Beta, and 2.5% in Release. A possible reason could be that patches

uplifted to the Release channel are aimed at more critical problems, which might be

harder to �x. We looked in more detail at the �not �xed� cases in Release. It turns

out that these uplifts indeed often �x very hard issues that occur in not-easily repro-

ducible scenarios (even though they a�ect many users), thus developers are forced to

fumble around in the dark, attempting tentative �xes that sometimes do not work at

all. However, we still suggest that release managers enhance the review e�ort on the

Release uplifts, because these patches are targeted to the most stabilized version and

most users of the product. Releasing updates to them without �xing the issues might

be counterproductive.

According to our results, we suggest that developers and testers should carefully

inspect whether a patch has completely resolved an issue and verify whether the patch

has covered all possible scenarios of the issue. They also need to examine whether the

patch would lead to new problems (i.e., regressions) before requesting for uplift. Some

ine�ective uplifts (such as those due to test and build failures) can be prevented by

performing uplift simulations.

We have shown the results to the release managers, who observed that many times

in order to mitigate risk and especially for very urgent issues, they actually request

developers to either implement a workaround or a partial �x, postponing a full �x (and

potential refactorings) for a subsequent release.
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4% of the issues �xed by patch uplift were not ef-

fectively resolved but were later reopened, cloned,

duplicated, or �xed by additional uplifts. Two fre-

quent root causes were identi�ed from our man-

ual analysis, i.e., the original uplifts only partially

�xed the issues or caused regressions. Sometimes

release managers speci�cally request partial �xes in

order to mitigate risk.

RQ3: What are the characteristics of uplifted patches that introduced

faults in the system?

Motivation. In RQ2, we studied ine�ective uplifts, i.e., uplifted patches that need

additional �xing e�orts. We observed that leading to regressions is one of the reasons

of these ine�ective uplifts. In this research question, we focus on the uplifted patches

that introduced new regressions. These patches not only decrease the users-perceived

software quality, but also increase development costs, since developers, testers and release

managers have to rework the faulty patches. In Firefox' Aurora, Beta and Release

channels, we found respectively 8.8%, 8.3%, and 7.9% of uplifted patches that introduced

regressions in the system. Understanding the characteristics of these �fault-inducing

uplifts� can help software organizations focus their QA and code review e�orts on speci�c

kinds of uplifts to prevent users' frustration.

1) Quantitative Analysis

Approach. To discover all possible fault-inducing uplifts, we applied the SZZ algo-

rithm (described in Section 4.2.2.2) on all fault-�xing changes to identify uplifted patches

that introduced a fault in the system. Next, we classi�ed the uplifted patches into two

groups: fault-inducing uplifts and clean uplifts. We used the 22 metrics listed in Tables

4.1 to 4.5 to assess the di�erences between these two groups. For each (mi) metric, we

tested the following hypothesis:

H02
i : there is no di�erence between the values of mi for uplifted patches that intro-

duced a fault in the system and those that did not.

Similar to RQ1, we used the Mann-Whitney U test and Cli�'s Delta e�ect size to

accept or reject the hypotheses, and assessed the magnitude of the di�erences between

fault-inducing uplifts and clean uplifts. We also tested the hypotheses for all three

channels.
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Table 4.10. Fault-inducing uplifts vs. clean uplifts.

Channel Metric Faulty Clean p-value E�ect size

Aurora Patch size 155.0 34.0 5.59e-65 large

Prior changes 362.5 164.0 3.80e-10 small

LOC 903.6 457.4 2.23e-06 small

Cyclomatic 2.5 2.0 1.08e-06 small

# of functions 34.3 17.0 2.25e-06 small

Max. nesting 2.7 2.0 5.14e-04 negligible

Comment ratio 0.2 0.1 4.00e-15 small

Module number 2.0 1.0 2.99e-24 small

Closeness 1.5 1.2 2.78e-13 small

Betweenness 45,221.9 880.7 2.65e-14 small

PageRank 1.7 1.4 1.95e-15 small

# of comments 26.0 20.0 1.76e-09 small

Developer exp. 28.5 10.0 1.19e-18 small

Reviewer exp. 9.0 2.0 6.63e-09 small

Comment words 10.0 2.0 9.08e-07 small

Developer senti. -3 -3 8.92e-04 negligible

Owner sentiment -2 -1 1.66e-04 negligible

Beta Patch size 141.0 32.0 6.44e-33 large

Prior changes 268.0 156.5 1.02e-03 small

LOC 895.5 476.3 1.66e-03 small

Cyclomatic 2.5 2.0 3.69e-03 small

# of functions 37.0 18.0 3.13e-03 small

Max. nesting 2.7 2.2 0.01 negligible

Comment ratio 0.2 0.1 4.61e-05 small

Module number 2.0 1.0 7.45e-12 small

Closeness 1.6 1.2 2.87e-07 small

Betweenness 35,661.7 1,327.8 6.00e-08 small

PageRank 1.7 1.4 1.08e-06 small

# of comments 28.0 22.0 1.18e-04 small

Comment words 8.0 3.0 0.04 negligible

Developer exp. 29.0 10.0 1.33e-08 small

Reviewer exp. 10.0 2.0 3.35e-05 small

Owner sentiment -2 -1 4.14e-03 small

Release Patch size 108.0 27.0 2.07e-03 large

Results. Table 4.10 summarizes di�erences between the characteristics of uplifted

patches that introduced a fault in the system and those that did not. We observed that
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fault-inducing uplifts have signi�cantly larger patch size (m11) than clean ones, across all

three channels. The e�ect size of the di�erence is large. This implies that patches with

larger modi�cations are more likely to introduce a regression if uplifted. We observed

the following on the di�erent channels:

� On Aurora and Beta channels, fault-inducing uplifts tend to have more complex

code in terms of LOC, cyclomatic complexity, number of functions, and number

of modules. These patches often contain classes that are connected to many other

classes, in terms of closeness, betweenness and PageRank. Fault-inducing uplifts

also tend to have higher comment ratios and tend to change �les that were changed

more frequently. Interestingly, fault-inducing uplifts are frequently submitted by

developers or reviewers with high experience. Fault-inducing uplifts also have a

larger amount of comments than clean uplifts. A large number of comments may

be a sign that developers are struggling with the patch, which may explain the high

fault-proneness. Although fault-inducing uplifts and clean uplifts also display other

signi�cant di�erences (as shown in Table 4.10), the magnitude of these di�erences

is negligible.

� For the Release channel, we do not observe a signi�cant di�erence between fault-

inducing uplifts and clean uplifts for the above metrics.

Overall, we rejected H02
11 , i.e., fault-inducing uplifts have larger patch size

than clean uplifts. Release managers should pay attention to large patches

and reviewers should scrutinize them carefully. Although the e�ect of other

characteristics is channel dependent, in Aurora and Beta, we observed that

patches with high complexity and centrality tend to lead to faults. Uplift

requests submitted by experienced developers and reviewers also tend to

lead to regressions.

Similar to RQ1, we examined patch uplifts per component, and observed that patch

uplifts a�ecting certain components (e.g., Graphics component) are more likely to cause

regressions than others. Some of the components with the highest fault-inducing rates

also have a low approval rate; probably because the release managers were acting based

on their previous experiences with those components (for example, the Web Audio com-

ponent). Components like the Audio/Video, which are involved in multiple patch uplift

operations, also have the highest fault-inducing rates; these components would be inher-

ently more prone to faults because of their complexity, or technical debt.

We made a similar observation regarding developers' submitting uplift requests.

Many developers who submitted multiple uplift requests appear in the list of devel-
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Table 4.11. Fault reasons and descriptions.

Reason Description

Memory Memory errors, including memory leak, over�ow, null
pointer dereference, dangling pointer, double free,
uninitialized memory read, and incorrect memory al-
location.

Semantic Semantic errors, including incorrect control �ow, miss-
ing functionality, missing cases of a functionality, miss-
ing feature, incorrect exception handling, and incor-
rect processing of equations and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or
add-ons.

Concurrency Synchronization problems between multiple threads or
processes, e.g., incorrect mutex usage.

Compile Compile-time errors.

Other Other errors.

opers with high fault-inducing rates; perhaps, by uplifting more patches, they are taking

more risks.

2) Qualitative Analysis

To understand the root cause of faults in uplifted patches, we conducted a qualitative

study.

Approach. We manually examined uplifted patches (from the samples selected in

RQ1) that introduced faults, and classi�ed the reasons behind the faults. Inspired by

the work of Tan et al [140], we de�ned seven possible root causes for uplift faults (as

shown in Table 4.11). We identi�ed respectively 132 and 17 fault-inducing uplifts from

the Beta and Release samples chosen in RQ1, and performed a card sorting to classify

each of the faults into one or multiple causes. As in RQ1, two researchers individually

read the issue reports and their fault-�xing patches to understand the root causes of the

faults (i.e., the reason why their corresponding uplifted patches caused the faults) and

classi�ed these root causes along our seven categories. Similar to RQ1, disagreements

were resolved through discussions.

We also interviewed release managers, asking them the following question: What are

the characteristics of fault-inducing patches that you are not currently taking enough into

account but could be considered in the future?

Results. Figure 4.6 depicts the distribution of the reasons why fault-inducing up-

lift introduced regressions. In both channels, semantic and memory-related errors are

dominant root causes of the uplift regressions. With a detailed check on the patches, we

found that many memory errors are due to null pointer dereference and memory leak.
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Figure 4.6. Reasons of fault-inducing uplifts.

In addition, incompatibility of plug-ins and drivers also cause uplift regressions in both

channels. Concurrency issues are ranked as a popular cause for Beta's uplift regressions,

but we did not �nd any example of this category in the Release channel. In general,

our results suggest that, when uplifting a patch, release managers need to care-

fully check for potential faults on the program's semantic meaning, memory

operations, synchronization, and third-party extension's compatibility.

In the interview, all the release managers agreed that it would be bene�cial

for them to have more detailed information about the complexity of the

patches they are asked to evaluate and more information about the history

of the components involved in these patches. This resonates with our �ndings.

Release managers were surprised to see that fault-inducing patches were more likely to

be written by more experienced developers and reviewed by more experienced reviewers.

They guessed that these developers/reviewers are assigned to more complex tasks with

more complex solutions. A release manager told us that �if you call in the big guns, then

it's a warning sign�.

The fault categorization was also interesting for the release managers, who told us

that Mozilla is about to employ more static analysis tools (e.g., Coverity [37]) and to

move some of their code from C++ to a safer language (e.g., Rust). It is promising for

them to see how many memory and concurrency faults can be avoided by using these

techniques, and how many semantic and third-party faults can be reduced by enhancing

code review or testing e�orts.
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Uplifted patches that introduced regressions in the

code are more complex than clean uplifts, and

they tend to change a higher number of lines of

code. Most regressions are caused by patch uplifts

aimed at �xing wrong functionalities and crashes.

The most common root causes of faults in uplifted

patches are semantic and memory errors.

RQ4: Are regressions caused by uplift more severe than the bugs that

were �xed with the uplift?

Motivation. In RQ3, we found that some uplift patches lead to regressions. For these

patches, following an observation from the release managers, we are curious to compare

their potential impact with the impact of the regression they lead to. We would suggest

developers to carefully uplift certain kinds of patches if the patches have often caused

more severe problems than what they intended to address.

Approach. We performed a manual analysis on the uplifted patches that were examined

in RQ3. For each of these patches, two researchers independently identi�ed: 1) the

problem the patch aims to address (noted as �original problem�), and 2) the impact of the

regression the patch caused (noted as �regression problem�). To facilitate the comparison

on the severity level between the original problem and the regression problem, we merged

some of the categories (which have the same severity) de�ned in Table 4.7 as in Table

4.12. We also ranked the severity among di�erent uplifted reasons (or regressions).

In some cases, the uplift and regression problems belong to the same category, but

they a�ect users to a di�erent extent. For example, issue #105979710 (which was uplifted

to address a hang problem) caused a regression as issue #123978911 (which is a crash

problem). Although crash and hang are considered to have the same level of severity, the

�rst issue only happened during test runs, whereas the second one can be reproduced

by users. To reduce any biases in the above rule, we also carefully examined the severity

of the issues that belong to di�erent categories. For example, issue #107519912 (which

was uplifted to add a mock GMP plugin for testing) caused issue #116091413 (which is

10 https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
11 https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
12 https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
13 https://bugzilla.mozilla.org/show_bug.cgi?id=1160914

https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
https://bugzilla.mozilla.org/show_bug.cgi?id=1160914
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Table 4.12. Categories of uplift reasons and regression impact. The severity is ranked by
descending order (1 represents the most severe reason; while 6 represents the least severe
reason).

Reason Description Severity

Security Same as security in Table 4.7. 1

Crash crash + hang. 2

Broken functional-
ity (func)

func + web compat + addon compat + ren-

dering.
3

Performance degra-
dation (perf)

Same as perf in Table 4.7. 4

Improvement or
new feature (im-
prove)

improve + feature. 5

Compile or test
problem (compile)

compile + test. 6

Other Same as other in Table 4.7. 6

Figure 4.7. Whether the regression an uplift caused is more severe than the problem the
uplift aims to address.

(a) Beta channel.

more: 37.5%

same: 17.0%

less: 45.5%

(b) Release channel.

same: 33.3%

less: 66.7%

a crash). Although the latter is a crash, it only a�ects the plugin used for testing, i.e.,

it has no impact on end users. Thus, we considered that the former is more important.

Results. Figure 4.7 depicts the proportion of uplifted patches that caused a more, same,

or less severe regression. Tables 4.13 and 4.14 show the frequency and probability of a

regression that an uplift on the Beta or Release channel can lead to.

In the Beta channel, more than one third (37.5%) of the manually ex-

amined uplifted patches led to a regression that is more severe than the

problem they intended to address. Most of these patches were used to introduce

improvements or new features (but caused crashes/hangs and broken functionalities),

to �x broken functionalities (but caused crashes/hangs), or to �x performance degra-
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Table 4.13. The frequency and probability of a regression that an uplift in the Beta channel
can lead to (rows in italic indicates that the regression is more severe than the problem the
uplift intended to address).

Uplift Regression Frequency Probability

compile crash 2 0.67

compile compile 1 0.33

crash crash 24 0.50

crash func 13 0.27

crash compile 5 0.10

crash perf 3 0.06

crash other 2 0.04

crash security 1 0.02

func func 35 0.57

func crash 14 0.23

func perf 7 0.11

func compile 4 0.07

func other 1 0.02

improve crash 7 0.37

improve func 7 0.37

improve compile 2 0.11

improve perf 2 0.11

improve security 1 0.05

perf func 5 0.50

perf crash 4 0.40

perf perf 1 0.10

security func 8 0.33

security crash 7 0.29

security security 5 0.21

security compile 2 0.08

security other 1 0.04

security perf 1 0.04

dation (but caused crashes/hangs and broken functionalities). In addition, we observed

that crash/hang and broken functionality are the most frequent and the most probable

regressions, which ranked as the top regression for each type of the analyzed uplifts. Es-

pecially, 50% of the patches uplifted to �x a crash caused other crashes, and 50% of the

patches uplifted to �x a broken functionality broke other functionalities. Regarding the

patches uplifted for security vulnerabilities (which have the worst impact on users), 21%

of them caused other severity vulnerabilities and 29% of them caused crashes/hangs.
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Table 4.14. The frequency and probability that an uplift in the Release channel can lead
to.

Uplift Regression Frequency Probability

crash func 6 0.55

crash crash 5 0.45

func func 1 0.50

func perf 1 0.50

security func 2 0.50

security security 2 0.50

In the Release channel, none of the examined uplifted patches led to

a regression that is more severe than the problem the patches intended to

address. This result is expected because patches uplifted for the Release channel should

have been more strictly reviewed and approved. The examined patches are only used to

�x security vulnerabilities, crashes/hangs, and broken functionalities, which respected

the uplift rules for the Release channel. 33.3% of these patches led to a regression as the

same type of problem they intended to address. All these patches have a high probability

to cause a new broken functionality.

In general, developers and release managers should carefully uplift patches that aim

to �x security vulnerabilities, crashes/hangs, or broken functionalities because these

patches may lead to the same kind of problems they intend to address and these problems

have the worst impact on end users. Uplifting patches that aim to introduce improvement

(or new features) or to �x performance degradation should also be prudently inspected

because these patches may cause regressions that are more severe than the problem they

intended to address. Although none of the examined patches that were uplifted to the

Release channel caused a more severe regression than what they intended to address,

around half of the patches �xing the top severe problems (i.e., crash/hang or severity

problems) caused other severe problems. More QA e�ort needs to be invested on these

patches, to avoid releasing severe regression to users.

Release managers were, as one might have predicted, happy to see our results re-

garding the release channel, but were not surprised because, compared to other chan-

nels, release uplifts are inspected with more QA e�orts and are more carefully approved.

When using the metrics listed in Tables 4.1 to 4.5 to compare the di�erences between

Beta uplifts that caused more severe regressions than they �xed and other manually
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analyzed Beta uplifts14, we observed that the former uplifts tended to happen closer to

the release date and tended to have a shorter review duration (but these results are not

statistically signi�cant as the sample we analyzed is probably small). Release managers

thought that these patches might have been uplifted in a rush and under pressure, which

would explain both the closeness to the release date and the short review duration.

More than one third of the fault-inducing Beta up-

lifts, but none of the Release uplifts, led to a re-

gression that is more severe than the problem they

aimed to address.

RQ5: Could some of the regressions have been prevented through more

extensive testing on the channels?

Motivation. Given the results of RQ2, we set out to �nd whether any regressions could

actually have been prevented by more extensive testing on the stabilization channels.

In this research question, we tried to identify, from a selected sample of regressions

that hit users, which issues were reproducible and how they were found by Mozilla. Our

result can inform developers and release managers whether more extensive testing e�orts

would be e�ective in preventing regressions and how many regressions could possibly be

prevented. It should be noted that there is an important trade-o� that release managers

take into account when deciding about uplifts: the necessity of shipping features as fast

as possible versus the need to not introduce regressions. More extensive testing e�orts

might improve the second aspect, but hamper the �rst.

Approach. To identify regressions that were shipped to users (that is, the regres-

sions caused by patches that were uplifted to a version of Firefox and �xed only in

a later version of Firefox; for example, a patch that is uplifted to Firefox 57 and

causes a regression that is only �xed in Firefox 58), we used Bugzilla status �ags

(cf_status_firefox), which specify the status of the issue for a given Firefox ver-

sion (e.g., cf_status_firefox48 set to �a�ected� means that the issue a�ects Firefox

48). In particular, �a�ected� means that the issue exists for the given version; �wont�x�

means that the issue exists and that Mozilla does not plan on �xing it for that speci�c

version; ��xed� means that the issue is �xed in the given version; �veri�ed� means that

14 Please refer to the detailed comparison in our data repository:

https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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Table 4.15. How an uplift regression is reproducible.

Reproducible Description

By all Everybody was able to reproduce.

By some Somebody was able to reproduce (depending for
example on the version of a driver, or a speci�c
version of an operating system, and so on).

By the re-
porter only

Nobody else except the reporter was able to repro-
duce.

By no one Nobody was able to reproduce (and the issue was
found, for example, by analyzing crash reports).

Table 4.16. How a regression was found.

Found Description

By tooling The issue was found by fuzzing or static analysis.

By developers The issue was found by Mozilla developers (by
code inspection, by running tests that were not in-
cluded in Firefox' test suites, or by running special
tools such as Valgrind or ASan) or by an external
developer (e.g., a security researcher).

On a widely used
feature/website/-
con�g

The issue was found by a user (an end-user, a
volunteer, or a website developer) on a widely
used feature, on a widely used website, or in a
widespread con�guration.

On a rarely used
feature/website/-
con�g

The issue was found by a user on a rarely used
feature or rarely used website or on an uncommon
con�guration.

Via telemetry The issue was found by analyzing crash reports or
performance measurements from the �eld.

the issue is �xed in the given version and is also veri�ed to be �xed either by the re-

porter, QA, a volunteer, or a developer who could reproduce the problem (but not by

the developer who �xed it). Given an uplift �xing Issue A and a resulting regression

tracked in Issue B, we identi�ed it as being shipped to users if Issue A was set as �xed

or veri�ed in an earlier version than Issue B.

We then manually analyzed the identi�ed regressions, categorizing both whether an

issue was reproducible and how the issue was found. We have analyzed all Release

regressions, and a representative sample of 152 Beta regressions (which corresponds to

a con�dence level of 95% and a con�dence interval of 5%).

Table 4.15 and Table 4.16 show and describe how an uplift regression is reproducible

and how it was found. We considered the regressions as possibly preventable by additional

testing if they were not only reproducible by the issue reporter and were found either

on a widely used feature/website/con�g or via telemetry. If they were reproducible
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not reproducible: 8.2%
not reproducible (except by reporter): 4.1%

reproducible: 74.0%

reproducible (but not by everyone): 5.5%
unknown: 8.2%

(a) Beta channel.

not reproducible: 8.3%
not reproducible (except by reporter): 8.3%

reproducible: 75.0% reproducible (but not by everyone): 8.3%

(b) Release channel.

Figure 4.8. Whether the regressions caused by an uplift were reproducible.

developers: 27.4%telemetry: 17.8%

rarely used feature/
website/config: 12.3%

tooling: 19.2%
widely used feature/
website/config: 23.3%

(a) Beta channel.

developers: 33.3%

telemetry: 16.7%

rarely used feature/
website/config: 16.7%

tooling: 8.3%
widely used feature/
website/config: 25.0%

(b) Release channel.

Figure 4.9. How the regressions caused by uplifts were found.

only by the issue reporter, additional testing would not help. The regressions found via

telemetry could be prevented if the data (crash reports and measurements) were analyzed

in a timely manner (for example if there was an alerting system in place). We considered

the regressions as not easily preventable, if they were reproducible but found on a rarely

used feature/website/con�guration, or found via telemetry but not reproducible, since

manual testing is likely going to focus on widely used features/websites/con�gurations

rather than seldom used ones, and issues noticed via telemetry are harder to �x if they

cannot be reproduced. We consider the remaining regressions as hardly preventable:

the regressions found by tooling could hardly be prevented, as the speci�c tooling was

not available at the time the uplift was made (they could be prevented now that it is

available); the regressions found by developers (e.g., by code inspection) could hardly

be prevented by additional testing. They could, in some cases, be mitigated by more

detailed code reviews.

Results. Figure 4.8 shows the proportion of reproducibility on the regressions. On Beta,

58 out of 73 regression issues were reproducible by all or by some developers, 9 were not

reproducible or reproducible only by the reporter. The reproducibility of the remaining
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6 regressions cannot be identi�ed. On Release, 10 out of 12 were reproducible by all or

by some developers, 2 were not reproducible or reproducible only by the reporter. To

summarize, 79.5% of the regressions caused by Beta uplifts and 83.3% of the

regressions caused by Release uplifts were reproducible.

Figure 4.9 shows the distribution of ways through which the regressions were found

by Mozilla. In Beta, 20 regressions were found by developers, 14 were found by tooling,

13 were found via telemetry, 17 were found by users on widely used features/websites/-

con�gurations, 9 were found on rarely used features/websites/con�gurations. In Release,

4 were found by developers, 1 was found by tooling, 2 were found via telemetry, 3 were

found by users on widely used features/websites/con�gurations, 2 were found on rarely

used features/websites/con�gurations.

Between the two channels, both the reproducibility and how the issues were found

have similar characteristics (i.e., the proportions are very similar), as can be seen from

the �gures mentioned above.

In order to understand the share of regressions that could have possibly been pre-

vented, we compare the numbers of the possibly preventable, not easily preventable, and

hardly preventable regressions in each channel. In Beta, 20 regressions (around

30%) could have been possibly prevented according to our de�nition; 13 re-

gressions (around 20%) could not be prevented easily; 34 regressions (around 50%) could

hardly be prevented. In Release, 3 regressions (around 25%) could have been

possibly prevented according to our de�nition; 3 regressions (around 25%) could

not be prevented easily; 6 regressions (around 50%) could hardly be prevented. We

notice that the proportions are similar between the two channels; meaning that our

discussion applies to both channels.

From these results, we suggest that developers and release managers should:

1. Try to detect issues via telemetry as early as possible (e.g., using alerting systems),

so that they can also be �xed in time;

2. Perform more QA on the stabilization channels, e.g., trying more diverse con�gu-

rations, as around 24% of the issues were reproducible and found on widely used

features.

Coming back to the trade-o� aspect we brie�y discussed in the �Motivation� part, it

applies to our suggestions too. An e�ective alerting system should not need to collect

data for too long before being able to produce alerts, otherwise if release managers had

to wait in order to check whether there are alerts, the release process would be slowed
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down (in this case, a higher number of users on the stabilization channels might help

because the more users the more quickly data is available to make decisions). The same

applies to QA, in the best case scenario the QA e�orts should be increased in a parallel

way or should be more directed towards widely used features, to avoid slowing down the

release process.

Release managers have recently introduced changes to avoid regressions like these

to go unnoticed: Mozilla now performs QA on the Nightly channel for new features

directly when they are introduced. This allows more time to detect regressions and to

�x them. We found (not a statistically signi�cant result probably due to the small size

of the sample) that the possibly preventable issues tend to have been on Nightly for

longer (higher landing delta), but tend to be uplifted later, closer to the release date

(lower release delta)15. Given the additional QA on the Nightly channel, the situation

of regressions (at least for the issues that could possibly be prevented by additional QA)

may be improved soon. Verifying the potential improvement will be a part of our future

work.

25% to 30% of the regressions due to Beta and

Release uplifts could be possibly prevented because

they can be reproduced not only by the issue re-

porter but also by developers and were found on

widely used feature/website/con�guration or via

the Mozilla telemetry.

4.4 Threats to Validity

In this section, we discuss the threats to validity of our study following the guidelines

for case study research [157].

Construct validity threats are concerned with the relationship between theory and

observation. In this study, the construct validity threats are mainly due to measurement

errors. In RQ2, to �nd ine�ective uplifts, we looked for cases where an issue linked to

the uplift had been, after the uplift operation, reopened, cloned, duplicate, or resolved

by multiple patches. To prevent false positive results due to this heuristic, we took a

series of measures to remove noisy results from our dataset (see the �Approach� part of

RQ2) and manually examined all candidates of ine�ective uplifts. We believe that the

15 Please refer to the detailed comparisons in our data repository:

https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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eventually included results have a high precision. In addition, some correct candidates

might not be detected by our heuristic, i.e., the false negatives. For example, some

ine�ective uplifts can be beyond our expected cases (such as reopened, cloned or dupli-

cated issues) or mislabelled by developers in Bugzilla. However, instead of �nding all

possible ine�ective uplifts, the aim of this research questions is to identify precise and

representative ine�ectively uplifted patches, analyzing their characteristics and propose

methods for software practitioners to avoid them. In RQ3, we observed that uplifted

patches with more lines of code are more likely to be fault-inducing. This result is not

surprising if we assume that the fault density is uniformly distributed in the studied

system. Nevertheless, as suggested by previous studies, software practitioners should

always carefully approve patches modifying a large number of lines.

Internal validity threats concern factors that a�ect the independent variable with

respect to causality. Since we do not draw any casual conclusion, threats to the internal

validity are not applicable for our study.

Conclusion validity threats concern the relationship between the treatments and the

outcome. We paid attention not to violate the assumptions of the statistical tests that

we performed. Speci�cally, in RQ1 and RQ3, we applied non-parametric tests that

do not require making assumptions on the distribution of our dataset. We used Sen-

tiStrength as the sentiment detection tool. We compared the performance of this tool

with SentiStrengthSE [61], the version tailored for software engineering, and obtained

the same results, i.e., no signi�cant di�erences between accepted and rejected uplifts

in any channel, and only a small e�ect size of the di�erences on the module owners'

sentiment between clean and fault-inducing uplifts. Another reason why we prefer Sen-

tiStrength over SentiStrengthSE is that the former tool can be used from the command

line and can be easily integrated into our automated scripts. On the contrary, currently

the latter tool can only be executed from a user interface. In addition, when ingesting

a large dataset such as the one we used in this study, the latter tool cannot be as easily

deployed into a distributed environment. Before conducting the case study, we limited

our studied dataset within a duration that covers consecutive series of relatively sta-

ble periods on all the three uplift channels. In addition, we used a keyword matching

heuristic to identify fault-related issues. We manually validated a random sample of

380 issues. Whenever there were diverging opinions, we set up a meeting and discussed

the issue until a consensus was reached. As a result, we found that our heuristic can

achieve a precision of 87.3% and a recall of 78.2%, when identifying fault-related issues.

Moreover, we performed manual classi�cations on the uplift reasons, the root causes of

uplift regressions and reoccurrences, the reproducibility of the uplift regressions, and the
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way by which developers were discovered the regressions. We also manually compared

the severity of the issues that the uplifts intended to address with the severity of the

regressions that they led to. To mitigate potential bias that may result from our sub-

jective opinions, we also discussed on each of our classi�cation con�icts until reaching

a consensus. However, as any other taxonomic study, we cannot guarantee a 100% of

accuracy on our classi�cation results. Future replications are welcomed to validate our

work. Last, we used a heuristic to detect issues that duplicate a previous issue �xed

by uplifted patches, which was inspired by Tian et al.'s approach [143]. Besides the

automated detection, we manually con�rmed every case used in our analyses to answer

RQ2. Although some true positive cases might have been missed, the goal of RQ2 is

not to �nd all duplicate cases, but to understand why some uplifted patches did not

completely resolve a problem and re-occurred in the �eld.

External validity threats are concerned with the generalizability of our results. In

this study, we only considered Mozilla Firefox. First, Mozilla Firefox is the most studied

system for issues related to rapid releases; moreover, the system's data are publicly avail-

able. We also have the opportunity to perform both quantitative and qualitative analyses

(including the interviews with release managers) on this system. However, we should rec-

ognize that our �ndings may not be generalizable to other systems. In the future, we plan

to collaborate with other software organizations, to validate and extend the results of

this work. In addition, more studies on other systems with other programming languages

are desirable to further validate our results. To facilitate future replication studies, we

share our datasets and scripts at: https://github.com/swatlab/uplift-analysis.

Another issue is that, in the manual classi�cation, although we randomly chose our sam-

ples by applying a con�dence level of 95% and a con�dence interval of 5%, our samples

might not precisely re�ect the distributions of the uplift reasons and�or root causes of

uplift regressions on the whole Firefox dataset. Further investigations on larger data

sets are desirable.

4.5 Related Work

Patch uplift is an activity performed during the release engineering process. Hence,

in this section, we present and discuss relevant literature on release engineering.

Release engineering encompasses all the activities aimed at �building a pipeline that

transforms source code into an integrated, compiled, packaged, tested, and signed prod-

uct that is ready for release� [2].

Since the adoption of the rapid release model [71] by Mozilla in 2011, a plethora

https://github.com/swatlab/uplift-analysis
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of studies have focused on the impact of rapid release strategies on software quality.

Khomh et al. [71] compared crash rates, median uptime, and the proportion of post-

release bugs between the versions of Firefox that followed a traditional release cycle and

those that followed a rapid release cycle. They observed that short release cycles do

not induce signi�cantly more bugs. However, compared to traditional releases, users

experience bugs earlier during software execution. Nevertheless, they also observed that

post-release bugs are �xed faster under the rapid release model. Khomh et al. observed,

in their extended work [69], that one of the major challenges of fast release cycles is the

automation of the release engineering process. Da Costa et al. [40] studied the impact of

Mozilla's rapid release cycles on the integration delay of addressed issues. They found

that, compared to the traditional release model, the rapid release model does not deliver

addressed issues to end users more quickly, which is contrary to expectations. Adams

et al. [3] analyzed the six major phases of release engineering practices and proposed

a roadmap for future research, highlighting the need for more empirical studies that

validate the best practices and assess the impact of release engineering processes on

software quality.

Another important aspect of release engineering that has been investigated by the

community is the integration of urgent patches that are used to �x severe problems,

such as frequent crashes or security bugs, or to introduce important features. Urgent

patches break the balance between new feature work and software quality, and hence

could lead to faults and failures. Hassan et al. [56] investigated emergency updates

for top Android apps and identi�ed eight patterns along the following two categories:

�updates due to deployment issues� and �updates due to source code changes�. They

suggest to limit the number of emergency updates that fall in these patterns, since they

are likely to have a negative impact on users' satisfaction. In a recent work, Lin et

al. [78] empirically analyzed urgent updates in 50 most popular games on the Steam

platform, and observed that the choice of the release strategy a�ects the proportion of

urgent updates, i.e., games that followed a rapid release model had a higher proportion

of urgent patches in comparison to those that followed the traditional release model.

Rahman et al. [117] examined the �rush to release� period on Linux and Chrome. They

observed that experienced developers are often allowed to make changes right before

stabilization occurs and these changes are added directly to the stabilization line. They

also found that there is a rush in the number of commits right before a new release is

added to the stabilization channel, to add �nal features. In a following work, Rahman

et al. [116] observed that feature toggles [82] can be e�ectively turned o� faulty urgent

patches, which limits the impact of faulty patches.
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To the best of the authors' knowledge, none of these prior works has empirically in-

vestigated how urgent patches in the rapid release model a�ect software quality in terms

of fault-proneness, and how the reliability of the integration of urgent updates could be

improved. This study �lls this gap in the literature by investigating the reliability of the

Mozilla's uplift process, since uplifted patches are urgent updates.

4.6 Conclusion

Mozilla follows a rapid release model, which uses 18 weeks to deliver fault �xes and

new features to users. Frequently, certain patches that �x critical issues, or implement

high-value features are promoted directly from the development channel to a stabilization

channel, because they are too urgent and cannot wait for the next release train. This

practice, known as patch uplift, is risky because the time allowed for the stabilization of

the uplifted patches is short. In average, 8% of uplifted patches introduced a regression in

the code of Firefox. In this chapter, we investigated the decision making process of patch

uplift at Mozilla and observed that release managers are more inclined to accept patch

uplift requests that concern certain speci�c components, and�or that are submitted by

certain speci�c developers (RQ1). We found that 4% of the issues �xed by patch uplift

were not e�ectively resolved but were later reopened, cloned, duplicated, or �xed by

additional uplifts. Two frequent root causes were identi�ed from our manual analysis,

i.e., the original uplifts only partially �xed the issues or caused regressions (RQ2). We

examined the characteristics of uplifted patches that introduced regressions in the code

and found that they are more complex than clean uplifts, and they tend to change a

higher number of lines of code. Most regressions are caused by patch uplifts aimed at

�xing wrong functionalities and crashes. The most common root causes of faults in

uplifted patches are semantic and memory errors (RQ3). In addition, through a manual

analysis on a sample of the uplifts that introduced regressions, we found that more than

one third of the fault-inducing Beta uplifts led to a regression that is more severe than the

problem they aimed to address (RQ4). Last but not least, we observed that 25% to 30%

of the regressions due to Beta and Release uplifts could be possibly prevented because

they can be reproduced not only by the issue reporter but also by developers and were

found on widely used feature/website/con�guration or via the Mozilla telemetry (RQ5).

We hope that software organizations take our �ndings and suggestions as a reference to

improve their uplift (or urgent patch approval) strategy.
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Chapter 5
An Empirical Study of DLL Injection

Bugs in the Firefox Ecosystem

5.1 Introduction

Firefox, since its inception, has always provided APIs to extend the functionality

of the browser. There has been an evolution of methods to extend the functionality

towards safer and more stable methods (starting from plugins such as Flash, moving to

XUL/XPCOM extensions, then ending with JavaScript/HTML WebExtensions). While

Firefox and other equivalent browsers provide public APIs for extending functionality,

a lot of third-party software (i.e., software that adds code into another software) still

employ DLL injection techniques, i.e., techniques that forces host software (i.e., software

that allows other software to extend its functionality) to run arbitrary code by making it

load a dynamic-link library (DLL). By injecting arbitrary code, third-party software can

extend the functionality of the host software without limits. However, injecting arbitrary

code, while it is a very powerful technique, can easily cause severe bugs, such as crashes,

in the host software. As can be seen in [96], bugs arising from injection can be indeed

severe and widespread as to delay or cause revisions of entire software releases.

To the best of our knowledge, there has not been an empirical study towards un-

derstanding the DLL injection landscape, why third-party software vendors still employ

these techniques despite the availability of safer alternatives, the root causes of DLL in-

jection bugs, and proposing solutions to reduce them. This motivated us to conduct this

work, in which we analyzed DLL injection bugs that occurred from July 2015 to August

99
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2017 in the Firefox ecosystem. In particular, our study aims to answer the following

three research questions:

RQ1: What are the characteristics of the bugs caused by DLL injections?

We observed that most of the DLL injection bugs led to severe problems. Out of the

103 studied bugs, 93 bugs (90.3%) caused crashes (among them, 47 bugs (45.6%)

crashed Firefox while the browser was starting) and four bugs (3.9%) made the

browser hang (i.e., losing responses from users' requests). By analyzing the types

of the third-party software, we found that 57 bugs (55.3%) derive from antivirus

software, 19 from hardware vendor drivers, and 10 from malware.

RQ2: Which factors triggered the DLL injection bugs?

To further understand the root causes of DLL injection bugs, we surveyed third-

party vendors who caused the bugs. From their responses, we learnt that third-party

software uses a variety of techniques (including standard Windows DLL injection

techniques and proprietary techniques) to inject DLLs into the host software. DLL

injection bugs can be triggered by injection engine errors, compiler/runtime incom-

patibility, or version incompatibility between the host and third-party software.

RQ3: What would be the potential solutions to reduce such DLL injection bugs?

In the survey, we also asked questions about the potential solutions that could reduce

DLL injection bugs. From the answers, we realized that DLL injection should not

be outright blocked from the ecosystem because it could be useful under certain

circumstances, e.g., when antivirus software intercepts suspicious processes. Host

and third-party software vendors should strengthen their collaboration. Host software

vendors should extend the features of the extension API (as a safer alternative to DLL

injection) and can build a publicly accessible validation test framework.

The rest of the paper is organized as follows. Section 5.2 provides background

knowledge on the Firefox ecosystem as well as the risks and countermeasures of DLL

injection in the system. Section 5.3 describes the design of the case study. Section 5.4

shows and analyzes the results of the case study. Section 5.5 discusses the implications

of our �ndings. Section 5.6 discusses the threats to the validity of our study. Section 5.7

summarizes related work, and Section 5.8 draws conclusions.
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5.2 Background

5.2.1 Firefox Ecosystem

There are several ways third-party developers have been able to extend the function-

ality of Firefox: a) themes; b) plugins; c) extensions; d) DLL injection.

Themes are only allowed to change UI elements of the browser, thus they are very

limited.

The API used to build plugins, NPAPI (Netscape Plugin Application Programming

Interface), has been introduced by Netscape in 1995, and later adopted by most major

browsers. NPAPI plugins declared content types that they could handle. When the

browser was not natively able to handle that content type, it would load the appropriate

plugin and let it run. NPAPI plugins are binary plugins, and they have been slowly

deprecated for security reasons (e.g., Chrome dropped NPAPI plugins in September

2015, Firefox dropped all NPAPI plugins except Flash in March 2017 and will drop

Flash too in 2019).

Since its inception, Firefox has also allowed third-party developers to extend the

functionality of the browser through JavaScript/HTML APIs by writing extensions.

Extensions are either self-hosted, or hosted on a Mozilla website called AMO (ad-

dons.mozilla.org). When hosted on AMO, they undergo code review by Mozilla employ-

ees and/or volunteers. Since Firefox 44 (released in January 2016), Mozilla introduced

a signing requirement where all extensions (either self-hosted or hosted on AMO) must

be signed by Mozilla in order to be installable in Firefox (with the objective of reducing

malware). This means that all extensions since Firefox 44 undergo code review.

Initially, extensions had access to browser internals (using XUL/XPCOM APIs);

meaning that they could introduce technical debt into Firefox itself, as Mozilla developers

could not easily modify Firefox internal code that was being used by extensions.

To ease development and to make extensions higher level (which would allow Mozilla

to change their internal APIs without breaking existing extensions), Mozilla later in-

troduced an extension SDK (JetPack). Behind the hood, JetPack extensions were still

using XUL/XPCOM APIs.

A new set of APIs, the WebExtensions API [99], was later introduced in alpha state in

November 2015, then in stable state since August 2016. Since November 2017, following

a major rewrite of the browser which would have made many extensions incompatible,

all extensions are required to use the WebExtensions API, which is an API supported by

many major browsers (Firefox, Edge, and Chromium-based browsers). The advantage of

such a common API is that developers only need to write a single extension and it will
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(modulo implementation di�erences) work on multiple browsers seamlessly, much like

the web. The WebExtensions API is more restrictive than the old APIs, but also more

secure and stable, and with better performance characteristics [95] [94]. Moreover, since

these extensions are not allowed to use Firefox internal APIs, they cannot introduce

technical debt as the old extension APIs used to do.

Another way that third-party developers use to extend the functionality of the

browser (and of other software) is DLL injection.

5.2.2 Risks of DLL Injection and Countermeasures

By employing DLL injection, third-party developers are able to inject in the Firefox

process any type of code, whose behaviour was not intended nor anticipated by Mozilla

developers.

DLL injection is a powerful technique as it allows third-party developers to extend

the functionality of the host software however they want, but it can be very risky. The

injected code can, for example, use internal functions of the host software, without the

knowledge of the host software developers, thus causing crashes or other problems when

the host software removes or changes the behaviour of those functions. In order to use

internal functions of the host software, some injected code depends on the binary layout

of the host software, which changes for every speci�c build. If there are no mitigations

in place, the injected code can cause crashes for every new release of the host software.

Figure 5.1 shows an excerpt of some buggy code injected in Firefox by a software using

an open source library, EasyHook1. This is one of the few examples that can be shown,

as usually the injection techniques are proprietary. In this example, Firefox is the host

software (whose functionality is extended) and the software using the EasyHook library

is the third-party software (which injects its code into Firefox). The process of the third-

party software used the CreateRemoteThread function2 to create a thread that runs

in the Firefox process address space. The thread would call the Injection_ASM_x86

function, which �rst loads the library to inject (line 11), then tries to �nd the entry

point of the library using the GetProcAddress function (AcLayers!NS_Armadillo::

APIHook_GetProcAddress(), from the Windows DLL: AcLayers.dll) (line 19). This is

where the crash occurs: the address to the GetProcAddress function was retrieved by

the third-party software in its process, but then called in the Firefox process, expecting

it to have the same function and at the same address. Since Firefox does not load

1 https://github.com/EasyHook/EasyHook
2 https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-

processthreadsapi-createremotethread

https://github.com/EasyHook/EasyHook
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread
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1 public Injection_ASM_x86@0

2 Injection_ASM_x86@0 PROC

3 ; no registers to save, because this is the thread main function

4 ; save first param (address of hook injection information)

5
6 mov esi, dword ptr [esp + 4]

7
8 ; call LoadLibraryW(Inject->EasyHookPath);

9 push dword ptr [esi + 8]

10
11 call dword ptr [esi + 40] ; LoadLibraryW@4

12 mov ebp, eax

13 test eax, eax

14 je HookInject_FAILURE_A

15
16 ; call GetProcAddress(eax, Inject->EasyHookEntry);

17 push dword ptr [esi + 24]

18 push ebp

19 call dword ptr [esi + 56] ; GetProcAddress@8

20 test eax, eax

21 je HookInject_FAILURE_B

Figure 5.1. An example of DLL injection performed by RoboSizer.

AcLayers.dll, this function does not exist in its process. EasyHook later �xed the

bug by retrieving the address of the function from the remote process, rather than the

process doing the injection.

Other software employed a very similar technique to the one used by EasyHook,

but using apphelp!StubGetProcAddress() instead (from the Windows DLL ap-

phelp.dll. Again, the technique is not used by Firefox). AcLayers.dll and apphelp.dll

are both part of Windows, providing �xes for backward compatibility. GetProcAd-

dress is usually part of kernel32.dll (which is loaded in every process), but for such

software, Windows was probably shimming the API for compatibility, redirecting to

apphelp.dll or AcLayers.dll.

Mozilla later totally blocked this kind of injection mechanism which uses CreateR-

emoteThread (ironically, the code blocking this kind of injection mechanism triggered

a bug in another third-party software, an antivirus, which was later �xed by the vendor).

Using public APIs rather than DLL injection is preferable. Besides the aforemen-

tioned examples, there are other reasons:
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1. Since the WebExtensions API is supported by multiple browsers, the extension

code only needs to be written once but can be deployed to di�erent major browsers;

2. The public API is controlled by the browser vendor, who has information on the

API's usage and can decide when to deprecate it (and when not to);

3. The extensions are written in JavaScript and HTML, just like normal web pages,

which implies a very reduced chance of crashing the browser compared to the

binary code that is injected with DLL injection;

4. Should an extension cause a problem, the browser can easily recover (e.g., by

reloading the extension). Instead, when an injected DLL causes a problem, it will

likely lead to an unrecoverable situation.

Mozilla has been applying a blocklisting policy to react to bugs caused by third-

party DLLs [111]. If a DLL causes a severe and�or widespread bug (such as an easily

reproducible startup crash), Mozilla will, in parallel: a) try to contact the vendor of the

third-party DLL and ask them to solve the problem; b) start preparing a blocklisting

addition to block the DLL; c) attempt to reproduce the problem with its own quality

assurance (QA) resources, if the third-party software is publicly available.

In order to solve the problem, third-party vendors usually request crash dumps from

Mozilla, which often cannot be shared with external people for privacy reasons (the

dumps might contain personal information of Firefox users). Mozilla may share crash

dumps with third-party vendors only in the two following situations: 1) when Mozilla's

QA manages to reproduce the crash; 2) when Mozilla manages to get in contact with

users who can reproduce the crash (users can optionally leave their contact details when

they submit a crash via Socorro, i.e., Mozilla's automated crash reporting system) and

the users agree to the sharing of crash dumps.

If the third-party software is publicly available, Mozilla will prepare modi�ed Firefox

builds that block the o�ending DLLs. Sometimes blocking a DLL is not easily feasible,

as some DLL injection techniques operate at the kernel level. Sometimes blocking DLLs

can cause more severe problems than the ones caused by the DLL itself. Hence, the

blocklisting addition has to be tested �rst. If blocklisting works and does not cause re-

gressions, Mozilla will apply the blocklisting patch, uplift it (i.e., publish the patch ahead

of the normal release cycle [25]), and, if the problem is widespread enough, generate a

new release build to ship to users.
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5.3 Case Study Design

In this section, we describe the data collection, design of the survey, and analysis

approaches that we used to answer our three research questions.

5.3.1 Data Collection

From the Mozilla bug tracking system, Bugzilla [150], we searched bug reports that

were created between July 2015 and August 2017. We chose this time window because

the WebExtensions API was introduced in September 2015, and our study started in

August 2017. In this work, we did not limit the analysis on already resolved bugs, because

some bugs were closed as WONTFIX or WORKSFORME, for example, if a DLL injection bug

was deemed too hard to �x for very little bene�t or if the in�uence of a DLL injection

bug drastically decreased after the opening of the bug. From all the bugs in the studied

time period, we selected the ones that matched at least one of the following rules:

� the Bugzilla component of the bug is the one Mozilla uses to track bugs caused by

third-party software (�External Software A�ecting Firefox::Other�);

� the title of the bug contains one of the keywords: �.dll�, �virus�, �malware� or

�adware�;

� the whiteboard of the bug contains the text �AV�, which Mozilla uses to mark some

bugs caused by antiviruses.

We then manually analyzed the results of the search to �lter out false positives,

obtaining 103 bugs caused by external software through DLL injection.

The AV- and malware-speci�c rules only helped increasing our dataset slightly (5

out of 103 bugs), so our results should not be biased towards those kinds of software.

Within the results from the other generic rules, we also found AV- and malware-speci�c

bugs.

5.3.2 Data Processing

We manually identi�ed a series of characteristics from the 103 bugs obtained in

Section 5.3.1. Table 5.1 shows the names and the descriptions of the characteristics.

To reduce biases in the manual identi�cation, two researchers separately collected the

characteristics before comparing their results together. They created an online document

to discuss any divergence until reaching an unanimous decision. In addition, we wrote
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Table 5.1. Characteristics of the bugs caused by third-party software.

Characteristic Description

Manually collected characteristics

Bug impact Whether a bug broke the functionality of the browser, caused a
crash (or startup crash), or caused a hang.

Software name Name of the software that caused a bug. If no software name is
mentioned in a bug report, we marked as �unknown�.

Software type Type of the external software, e.g., antivirus, malware, and hard-
ware vendor driver.

How resolved How a bug is resolved, e.g., �xed by the vendor, or blocked by
Mozilla.

Reproducibility Whether a bug can be reproduced by the QA of Mozilla or third-
party vendors.

Automatically collected characteristics

Percentage of DLL
users

Percentage of Firefox users who also have the third-party software.

Fixing time How many days it took for a bug to be �xed since its �rst occur-
rence. We cannot retrieve the �rst occurrence date for some bugs,
we have to use the time period from the creation date until the
�xed date to estimated these bugs' �xing time.

Tracked or block-
ing

Whether a bug was ever tracked for a release or was blocking a
release. More information about Mozilla tracking �ags and how
they are used in the release management process can be found in
[105].

scripts to automatically extract some other characteristics as shown in the bottom of

Table 5.1.

5.3.3 Survey

To further understand the root cause of the DLL injection bugs and how the bugs

were resolved, we designed a survey intended for the 58 vendors who caused these bugs.

However, we could not �nd the contact information of 14 vendors (including the malware

producers) from Bugzilla or through an online search. Hence, we ended up contacting

only 44 vendors. Among them, 12 vendors answered all or part of our questions, which

corresponds to a response rate of 27%. As we aim to propose potential solutions to

reduce this kind of bugs, we also asked these software vendors questions on improving

the reliability when adding their code into Firefox.

In our survey, we only used open questions. Participants could choose all or a part
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of the questions to answer. Our questions were designed to better understand the DLL

injection landscape: what techniques are used, what kinds of bugs can arise, why DLL

injection is still used as an extension mechanism despite the presence of safer techniques.

Here are the questions we used in the survey:

Q1. What is the injection mechanism that you used?

Q2. Do you know the root cause of this bug?

Q3. If the bug is resolved from your part, do you remember the way by which you

resolved this bug?

Q4. Since Mozilla is encouraging other organizations to produce their software as an

extension, is there any speci�c reason why you are still using the way of DLL

injection to add functionalities into Firefox?

Q5. Would you be open to switching to an extension-based solution if Mozilla gave

you the API you needed?

Q6. Do you run QA with pre-release versions of Firefox (e.g., Firefox Beta)?

Q7. Do you have any suggestions to improve the Mozilla API extension?

A possible approach to mitigate the DLL injection issues is to adopt a whitelist

solution. Instead of reacting to DLL injection issues by blocklisting misbehaving DLLs,

Mozilla could proactively block all DLLs except �good" ones. The vendors in the whitelist

would need to be more careful and perform QA in order to be in the whitelist. Once a

whitelisted DLL causes a problem, it will be removed from the whitelist. Also, developers

using the WebExtensions API would e�ectively be exempt and would always be in the

whitelist. Besides reducing bugs, Mozilla expects that this mechanism can push third-

party software vendors to use the WebExtensions API, which can also avoid crashes in

the third-party code taking down Firefox [96].

To evaluate how this solution would be received by third-party vendors, we asked

additional questions to the vendors who have answered our initial questions. During

this work, we consulted some Mozilla developers by email and added these follow-up

questions based on their suggestions.

Q8. In your opinion, what would be a solution to allow for an e�ective integration of

third-party code into software like Firefox?
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Q9. Some software vendors are moving to instruct users to uninstall third-party soft-

ware after a crash, what do you think of such practice?

Q10. When Firefox rolls out new content security features, it often runs into compat-

ibility issues with third-party suites that leverage injection. What steps do you

think Firefox should take to prevent these issues with your product(s) in the

future?

Q11. What support might you be willing to provide to avoid these issues in the future?

Q12. If Firefox blocks third-party injection associated with your product, what side

e�ects do you anticipate? Would this potentially break your software product(s)?

Could this break Firefox?

Q13. Some vendors are considering introducing a whitelist that only allows �reliable�

DLLs to be installed. Would the whitelist be an incentive to adopt the cross-

browser WebExtensions API? (products using the extension API are always

whitelisted)

Q14. Would the existence of a whitelist be an incentive for your company to do more

QA with Firefox?

Q15. Would your company try to circumvent the whitelist? If yes, how would you do

it?

5.4 Case Study Results

We present the results of our case study and discuss the implications of these results.

5.4.1 (RQ1) What are the characteristics of the bugs caused by DLL

injections?

According to Mozilla telemetry3, large shares of Firefox users are also users of soft-

ware employing DLL injection to extend Firefox functionality. Each major third-party

software can be installed on between 1% and 15% of Firefox users' machines. Severe bugs

a�ecting a DLL from a third-party software that is installed on 15% of users' machines

(or even 1%) can be very concerning for Mozilla.

3 https://wiki.mozilla.org/Telemetry

https://wiki.mozilla.org/Telemetry
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Table 5.2. Impact of the DLL injection bugs (some bugs have more than one impact).

Bug impact Occurrence Proportion

startup crash 47 45.6%

crash (unknown) 25 24.3%

crash 21 20.4%

broken functionality 8 7.8%

hang 4 3.9%

plugin crash 2 1.9%

Table 5.3. Types of the DLL injection software.

Software type Occurrence Proportion

antivirus 57 55.3%

hardware vendor driver 19 18.4%

malware 10 9.7%

multimedia tool 4 3.9%

screen reader 3 2.9%

other 3 2.9%

IME 2 1.9%

download manager 2 1.9%

desktop customization 1 1.0%

�le hosting service 1 1.0%

accessibility 1 1.0%

Table 5.2 shows the distribution of the impact of the DLL injection bugs. Out of the

103 studied bugs, 93 bugs (90.3%) caused browser crashes, i.e., the browser unexpectedly

terminates. Among them, 47 bugs (45.6%) caused crash during the browser startup

(the most severe type); 21 (20.4%) crashed while the browser was running; we could

not deduct the type of crash from the other 25 bugs (24.3%) (i.e., uptime unknown).

Besides, two bugs (1.9%) crashed a browser plugin. In addition, four bugs (3.9%) caused

hangs, i.e., the browser does not respond to users' requests. Only eight bugs (7.8%) have

lower severity. They break the browser's expected functionality. The overall impact of

the DLL injection bugs are severe, which can negatively a�ect users' trustfulness on the

quality of the browser. From the side of users, they may not know whether the severe

problems (such as crashes) are caused by the host software itself (Firefox in this case)

or by its interaction with third-party software (usually they will just assume it is the

host software, since that is the one which crashes, even if the crash stems from injected



110 CHAPTER 5. DLL INJECTION BUGS IN THE FIREFOX ECOSYSTEM

Table 5.4. How the DLL injection bugs were �xed (some bugs were �xed by more than
one resolution).

Resolution Occurrence Proportion

�xed by the vendor 24 23.3%

worksforme 18 17.5%

not yet resolved 18 17.5%

blocklisted 16 15.5%

duplicate 12 11.7%

wont�x 8 7.8%

workaround 5 4.9%

invalid 2 1.9%

�xed by switching to
WebExtension

2 1.9%

�xed bug in �refox 1 1.0%

code). If the problems are kept unresolved for a long time, users may switch to other

equivalent products. Especially for startup crashes, where users cannot use the browser

at all, nor automatically update it to a newer version when a �x is released by Mozilla.

The only options for them are to manually reinstall Firefox after a �x is released, wait

for an update of the third-party software, or switch to use another browser.

Table 5.3 shows the types of the DLL injection software. More than half of the

bugs (57, i.e., 55.3%) are from antivirus software, 19 (18.4%) are from hardware vendor

drivers, 10 (9.7%) are from malware, and 17 (16.5%) are from other software, including

multimedia tools, screen readers, input method tools (IME), and download managers.

Overall, except for a small amount of malware and purpose-unidenti�ed software, most

bugs are derived from DLLs that provide useful features to users.

Table 5.4 shows how the DLL injection bugs were resolved (or not resolved). 58 bugs

(56.3%) were not actually resolved by the time of this study. Some of the bugs were closed

with a label as �WORKSFORME� (bugs can no longer be reproduced), �INVALID�

(bugs are in the third-party software and with low enough severity), �WONTFIX� (due

to low or decreased volume of impact), or �DUPLICATE� (duplicate of another resolved

bug). Unfortunately, the labels are not always used consistently (for example, bugs with

very low impact are sometimes resolved as INVALID and sometimes as WONTFIX).

Besides, �ve bugs (4.9%) were �xed by employing workarounds (temporary and ugly

solutions). For the bugs that were actually resolved, 16 (15.5%) were �xed by Mozilla

by blocklisting the o�ending DLLs; 24 (23.3%) of them were �xed from the vendor side.

Only two bugs (1.9%) were resolved by switching to using Mozilla's WebExtension API
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Figure 5.2. Distribution of the bug �xing time. Each bin represents a period of six weeks,
e.g., the �rst bin means bugs �xed within six weeks (i.e., one release cycle).

as recommended. Merely one bug (1%) was not due to the DLL vendors but due to

defects of Firefox. From the result, we observe that a weak percentage of the bugs

can be resolved by the host software itself (Firefox). Third-party vendors' e�orts and

collaboration are important to keep the Firefox ecosystem healthy. Moreover, few third-

party vendors have adopted Mozilla's recommendation of using the WebExtensions API.

Figure 5.2 depicts the time period (in six weeks periods) during which the DLL

injection bugs were resolved. In this �gure, we only considered the 81 bugs that were

closed by the time of this study. 40 bugs were �xed within a period of six weeks; meaning

that nearly half of the DLL injection bugs can be �xed before the next release. 55 bugs

were resolved within 18 weeks, a full release cycle from Nightly to Release. End users can

bene�t from the resolution of these bugs within three releases (a new version is released

every six weeks). However, we also observed 10 bugs that were not resolved for more

than one year. Moreover, 22 other bugs have never been resolved until the writing of this

paper. Long resolution time of DLL injection bugs challenges users' trustfulness not only

to the third-party software, but also, and in many cases even more, to the host software.

To maintain the health of the ecosystem, both sides of the host and third-party software

need to actively and e�ectively discover and resolve bugs. We found that some bugs,

such as Bug #1268470, were resolved late because at the time of reporting the bug, it

a�ected only a small number of users. When the bug started a�ecting more users, it

attracted Mozilla's attention.

Although Bugzilla has priority/importance �elds, they are used inconsistently by



112 CHAPTER 5. DLL INJECTION BUGS IN THE FIREFOX ECOSYSTEM

di�erent developers and di�erent teams, thus cannot be relied upon to infer the impor-

tance of a given bug. In order to evaluate the actual severity of the bugs, we analyzed

the Bugzilla tracking �ags that are used by Release Managers during the release pro-

cess [105]. We found that 32 bugs (31.1%) were tracked or blocking for a release at

least once. These kinds of bugs are particularly important because they either have

been closely monitored by release managers for possible resolution in a Firefox release

(tracked bugs: 24, 23.3%) or have been marked as blocking (must be �xed before

shipping) a Firefox release (blocking bugs: 8, 7.8%). To put it into perspective, we can

compare these percentages with the overall ones: 3390 tracked bugs (around 0.037%)

and 165 blocking bugs (around 0.002%). This means that DLL injection bugs, even

though expectedly rarer than other bugs, are often more severe than other bugs. We

also compared the �xing times of DLL-injection blocking/tracked bugs with those of

generic blocking/tracked bugs. In addition, we found that the average �xing time is

around 3.4 times higher for DLL-injection tracked bugs than generic tracked bugs (for

blocking bugs the average is 2.8 times higher). However, the di�erences are not statisti-

cally signi�cant based on the Mann-Whitney U test [57]. One reason is that there are

too few samples in our dataset.

Finally, 26 (25.2%) of the DLL injection bugs could be reproduced by Mozilla or

third-party vendor's QA, four (3.9%) of the bugs could not be reproduced, and we

cannot identify whether the rest 73 bugs (70.9%) could be reproduced or not. For

bugs that were reproducible, additional QA performed by either Mozilla or the third-

party vendors before a Firefox release could have prevented the bug from hitting users.

Among the aforementioned eight blocking bugs (account for 7.8%), �ve of them could

be reproduced by Mozilla or third-party QA, one of them could not be reproduced, and

we cannot identify the reproducibility for the remaining two bugs. If more in-depth QA

was part of the envisioned whitelist policy of Mozilla, many of these blocking bugs could

have been resolved before they became blocking.

93 bugs (90.3%) of the DLL injection bugs led to

crashes. 57 bugs (55.3%) of the bugs are from an-

tivirus software, 19 (18.4%) of them from hardware

vendor drivers, and 10 (9.7%) from malware. 1%

to 15% of Firefox users also have some of the soft-

ware that caused these bugs.
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Table 5.5. Statistics on the survey participants (all participants are from di�erent vendors).

Question Participants Software type (and its frequency)

1 12 antivirus (7) screen reader (1)

unknown (1) internet downloader (1)

media recorder (1) hardware vendor driver (1)

2 12 antivirus (7) screen reader (1)

unknown (1) internet downloader (1)

media recorder (1) hardware vendor driver (1)

3 10 antivirus (5) screen reader (1)

unknown (1) internet downloader (1)

media recorder (1) hardware vendor driver (1)

4 11 antivirus (7) screen reader (1)

unknown (1) hardware vendor driver (1)

5 7 antivirus (3) screen reader (1)

unknown (1) hardware vendor driver (1)

6 6 antivirus (2) screen reader (1)

unknown (1) hardware vendor driver (1)

7 5 screen reader (1) unknown (1)

hardware vendor driver (1) media recorder (1)

8 5 antivirus (3) media recorder (1)

9 4 antivirus (3) media recorder (1)

10 4 antivirus (3) media recorder (1)

11 4 antivirus (3) media recorder (1)

12 4 antivirus (3) media recorder (1)

13 4 antivirus (3) media recorder (1)

14 5 antivirus (3) media recorder (1)

15 4 antivirus (3) media recorder (1)

5.4.2 (RQ2) Which factors triggered the DLL injection bugs?

Firefox is an open source browser. Its crash and bug reports are also open to the

public. Developers and researchers can leverage these resources to understand the root

causes of most bugs. However, through our manual analysis, none of the DLL injection

software that caused bugs in Firefox is open source. Thus, we cannot understand the

root causes of these bugs from source code. As we observed in RQ1, many subject

bugs, which were eventually resolved, were �xed by the software vendors or blocked by

Mozilla. In both cases, Mozilla did not know the triggers. Although the third-party

vendors knew the triggers of the bugs they resolved, they rarely mentioned them in the

bug reports. In other words, bug reports cannot help us to understand the bugs' root
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causes either. Therefore, to answer this research question, we decided to ask the software

vendors themselves. In the rest of this section, we will show the vendors' responses to the

corresponding survey questions and discuss these responses. Table 5.5 shows statistics on

the participants for each survey question. In this table, we respectively provided the total

number of participants who answered a question, types of these participants' software,

and number of participants for each type of software. All the reported responses are

from closed source software vendors. Due to privacy reasons, we may have hidden some

con�dential details.

DLL injection mechanisms used by the software vendors (Q1).

We received 12 responses to the question related to the injection mechanisms used on

Firefox. Two general kinds of mechanisms can be identi�ed from the responses: stan-

dard Windows techniques and proprietary techniques. Among the eight responses on

the standard techniques, seven participants explained the detail of their technique, one

participant only mentioned that their DLL injection technique is standard for the Win-

dows OS. Here we quote our participants' answers to this question: �It's just a standard

Shell Extension that runs when folks use the open/save dialogues.� �We use SetWin-

EventHook [129] from user32.dll.� �We used a general mechanism (SetWindowsHookEx

[128]) to inject other processes in order to be able to in�uence window creation �ags

in case the user decides to not be disturbed in Game Mode / Do Not Disturb Mode.�

�AppInit_dll [10] registry entry.� �CreateRemoteThread+LoadLibrary [38, 80]�.

Three participants said that they used proprietary techniques, but none of them

revealed details. Two other participants did not directly answer this question but said

that the injection mechanism is irrelevant to the bugs. Overall, third-party software

uses a variety of techniques to inject DLLs into the host software.

Root causes of DLL injection bugs and resolution mechanisms (Q2, Q3).

Our second and third questions concerned the root causes of the bugs and how the bugs

were resolved. Nine participants explained the root causes of the bugs caused by their

injected software. 10 participants explained the resolution process of the bugs caused by

their injected code. Some bugs were caused by the injection engine. The participants

said: �Bug in hook engine. Legacy code not covered by automatic tests.�, �Problem was

internal to the hooked functionality and likely not dependent on Firefox code�. The DLL

vendors resolved the bugs by �xing their injection code.

Compiler or runtime incompatibility is another cause mentioned: �Our compiler

wasn't C++ 11 compliant and therefore introduced a race initialization of a mutex.�

�(Our DLL) was incompatible with C++ runtime, shipped with Windows 8.0 x64. It is
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not depend of upgrade or clear installation of FF (Firefox). In addition, it should not

depend from browser, for crash it is enough Windows 8.0 x64 C++ runtime and any

browser.�. Participants did not provide detailed information about the resolution of this

problem. We suppose that upgrading the compiler would address the bugs.

Some other bugs were due to generic programming mistakes, which were later resolved

and made the DLL work again. One participant explained: �It was a mistake regarding

64 and 32 bit values in our code base.� �bad_alloc wasn't caught in our code.�

In addition, bugs can also occur when �users forcibly loaded old extensions to newer

versions of Firefox and disabled compatibility checks ... (Old versions of Firefox) missed a

check for NULL on one of interface queries. The issue started to persist after signi�cant

changes in Mozilla interfaces.� To reduce this kind of bugs, the host software can alert

users to upgrade their old version of the third-party software, and warn them of the

potential consequences of the incompatibilities on the host/third-party software versions.

Based on our observations, most bugs are due to injection engine problems,

compiler/runtime incompatibility, or version incompatibility between the

host and third-party software. This �nding corroborates what we found in RQ1:

most bugs are in third-party software's code and thus cannot directly be �xed by Mozilla.

In many cases, DLL injection bugs are triggered by

injection engine errors, compiler/runtime incom-

patibility, or version incompatibility between the

host and third-party software.

5.4.3 (RQ3) What would be the potential solutions to reduce such

DLL injection bugs?

Unreliability challenges all software ecosystems. To reduce potential crashes caused

by third-party software, from September 2018, Chrome will try to block most third-party

software that injects code into it [30] (Chrome developers claim that �users with soft-

ware that injects code into Windows Chrome are 15% more likely to experience crashes�).

The organization hopes third-party software can switch to use the recommended We-

bExtensions API to run code inside Chrome processes. Mozilla is also trying to reduce

bugs caused by third-party software, while avoiding outright blocking, by introducing a

whitelist to allow only DLLs, which are proved reliable, to inject code into Firefox. With

the same expectation as Chrome, Mozilla hopes that this measure can make third-party

software vendors switch from DLL injection to WebExtensions, which is considered as
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a more reliable way to interact with Firefox. In this paper, by analyzing survey partic-

ipants' answers, we want to discuss whether the whitelist is the best solution to reduce

bugs from third-party software, and whether there are better alternatives to it.

Reasons provided for not adopting WebExtensions (Q4).

First, we wanted to know the reasons why many third-party vendors are still using the

way of DLL injection, although WebExtensions have been available for a while (in alpha

state since Firefox 42, released in 2015-11-03; in a stable state since Firefox 48, released

in 2016-08-02). This corresponds to Question #4 in the survey. 11 participants answered

this question. Multiple participants mentioned that their DLL is not speci�cally designed

for Firefox but is also being used for other host software, e.g., �Our software is not just

used for FF (Firefox). It is a general purpose audio recorder. Users choose which

application they wish to target.� For these vendors, migrating to WebExtensions would

not be interesting because it requires extra e�orts to refactor the existing code.

Another reason is that some vendors cannot use WebExtensions to achieve their

goal, e.g., �We must be able to gather content from Firefox. The most e�cient way

being to inject. Extensions are not suitable for Screen Reading software such as ours�.

An antivirus vendor said: �We provide secure input feature in our product, which means

that no one can intercept symbols, which user input in browser �elds. The task could

not be done on Windows OS without kernel driver and injected dll in browser�. Another

antivirus vendor explained: �As hackers always inject, while we are reducing to minimize

our injections, we cannot totally eliminate them�. This would partially explain why a

big percentage of DLL injection bugs derive from antivirus software. Due to the above

two reasons, if a host software banned DLL injections, the vendors will have to �nd other

feasible hosts.

Moreover, some participants indicated the disadvantages of WebExtensions, e.g.,

�The main disadvantage we �nd is that WebExtensions can be easily disabled (for a user

with admin-rights, and in a Windows workgroup environment). We had taken this route

of injecting a DLL to enforce URL �ltering even in such environments�. Again, DLL

injection is currently the most suitable way for such vendors.

Only one participant is willing to accept WebExtensions, but they also said that

WebExtensions cannot ful�ll some particular purposes, which is inline with the afore-

mentioned observations.

In general, some DLL vendors do not want to adopt WebExtensions, be-

cause they do not target for one speci�c host software, and the features

currently o�ered by the WebExtensions API are still limited for some pur-
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poses. One participant told us that their organization has thoroughly analyzed the

pros and cons about using WebExtensions. However, they still keep using DLL injection

because they �don't see any way how and why to stop injecting there (in order to pro-

tect our users, which is our business)�. We cite their analysis here and hope that host

software organizations can take this as a reference to improve the extension API and�or

communicate better about their advantages.

�In comparison with injection, extension has much worse deployment possibilities � the

installation process is cumbersome (you can't install the extension silently without user

interaction which is a major UX problem, you can't protect the extension from unin-

stalling, you'd need to check for browser reinstalls and install again etc).

Also, it's possible to write the extension, but since the API is limited (everyone saw the

2/3 of extensions being removed from new Firefox because of API problems) and the

model is also asynchronous, which kinda gets in a way what would AV product need.

And the next point against extensions is a need for three di�erent extensions for three

browsers � although they all use WebExtensions, they're quite di�erent. And MSIE is

still there, with stronger presence than Edge.�

Migration from code injection to WebExtensions (Q5).

Q5 is about whether third-party vendors are open to switch to WebExtensions if Mozilla

gave them the needed API. Seven participants answered this question. One participant,

who is the one saying that WebExtensions can be easily disabled, simply said Yes.

Those vendors targeting multiple hosts answered No, because �Mozilla doesn't control

the surface area we modify�.

A participant suggested that if di�erent host software organizations can standard-

ize their APIs, third-party vendors will be more willing to migrate. �It depends on the

functionality and if there are general, OS runtime based standard mechanisms already

available. It makes no sense to have two di�erent implementations of the same func-

tionality.�

Other participants' attitude is rather open, but they doubt whether Mozilla can pro-

vide the speci�c API they require. For example, �I doubt that the extension mechanism

would be su�cient for our requirements. However, we, Mozilla, and other vendors are

actively considering other ways that software such as ours would not have to inject to

gather this content.�

�We are combatting malware and exploits though, which work in a low-level way,

directly manipulating Firefox code and interacting with the operating system. It is quite
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unlikely that a high-level extension (i.e., JavaScript) can be used to detect and mitigate

all those threats reliably.�

�Actually, we prefer to use `standard' means whenever possible ... The main concern

is, how do you expose the API without any malicious software using it.�

Overall, although some third-party vendors are open to adopt WebExten-

sions API, they doubt whether the API can ful�ll their requirements.

Quality assurance of injected code (Q6).

Six participants answered whether they run QA with pre-release versions of Firefox.

Four participants said Yes, one of them further explained: �but not as often as we would

like�. The other two said No. In our opinion, running QA against each version of the

host software is necessary. The vendors who neglect this process may miss bugs in the

ecosystem. In this case, the whitelist would be an e�ective measure to penalize the

vendors who do not test their software well and frequently have bugs.

Suggested improvements to the WebExtensions API (Q7).

Q7 encourages participants to suggest improvements for the WebExtensions API. One

participant wished that �(Mozilla) can provide a mean to get the HWND [155] of a

window from within the extension�. This suggestion is in line with the doubts on the

functionality o�ered by the WebExtensions API.

Another suggestion is about the reliability of the API itself: �Some of the mechanisms

(of WebExtensions) do not work ... We opened a bug (on this problem)�. Therefore,

completely blocking DLL injection may not be the best solution because if a third-party

vendor can neither use DLL injection nor program against an available/reliable API,

they have to give up the host software and �nd other platforms. However, if all browsers

move to reduce DLL injection, third-party software will be forced to gradually transition

to WebExtensions.

To further discuss the solutions of reducing DLL injection bugs, we will analyze the

answers on the follow-up questions. Some of the questions are targeted for the upcoming

whitelist by Mozilla. Only �ve participants answered these questions. Their answers may

not be representative, but can be used as a reference for host and third-party software

to improve the reliability of an ecosystem. In the following of this section, we will cite

their answers and discuss the implications.

Allow an effective integration of third-party software into another software

(Q8).

Our follow-up questions start by how to allow an e�ective integration of third-party

software into another software. Our participants answered as follows: �Certainly the
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most common extensions can and should be handled by a plugin API like WebExtensions.

Additionally, having a link to AMSI (Anti-Malware Scan Interface) by Microsoft would

make sense. But generally, what Windows supports should be also supported by Firefox,

which also includes code injection. For monitoring the process state on a system level,

sometimes there are no other options that would come to my mind.�

�Use of extensions is the most e�ective method. However, in enterprise environment,

admin would want to enforce use of certain extensions (without allowing a user to disable

it). Browsers allow enforcing certain extension through group policy in domain environ-

ment. However, we have a lot of SMB (small and midsize business) customers who don't

have domain-network environments. Solving that requirement is tricky.�

�There (should be) an extensive QA veri�cation process in place that includes Firefox

test scenarios and a working collaboration with Mozilla. One proven approach to improve

the code quality of external components is to establish a publicly accessible validation

test framework that provides the test scenarios an extension has to pass and where test

scenarios are updated, based on observances with �eld issues.�

�If they can provide an API (e.g., callback) that will be available only for registered

whitelisted DLLs, we can move to that model instead of our current model and reduce

even more compatibilities issues.�

Based on their answers, besides the extension API, third-party software vendors

believe that DLL injection should also be kept as an option since it is legally supported

by the operating system. The collaboration between host and third-party software is

necessary to ensure the quality of an ecosystem. Particularly, a publicly accessible

validation test framework can help standardize the QA for both parties. Moreover, the

upcoming whitelist seems to be a favourable solution for some third-party vendors.

Whether suggest users to uninstall third-party software after a crash (Q9).

We then were curious to know the opinions of third-party vendors on the practice that

some host software (e.g., Chrome [30]) will suggest users to uninstall third-party software

after a crash. We received a favourable opinion �If an app crashes on your machine then

sure uninstall it. Makes complete sense. Not all machines are created equal.� versus

multiple against opinions �I consider this generally to be a bad practice, especially when a

crash can't be clearly attributed to a particular third-party software � which is usually not

possible in an automated way.� �They put their customers at risk, since the legitimate

(e.g., antivirus) will be removed ... If I were malware, I will use this functionality to

ask users to remove any 3rd party mechanisms that prevent me from doing whatever I

need.� �Uninstalling third-party solution isn't a long term solution.�
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From the answers, we can see that this is a complex problem. First, such suggestions

may become false alarms to users because a host vendor cannot simply decide whether

a crash is due to the third-party or the host software itself. Second, in the Mozilla

ecosystem, many crashes are caused by antivirus software. If such antivirus software

is uninstalled, malware may take advantage of this. Facing a third-party software

related crash, we suggest that host vendors warn users about the potential

risks of running the third-party software (e.g., by showing the number of

crashes) but also remind them of the risks of removing it. Besides, host ven-

dors should investigate whether the crash happens with other equivalent host software.

Moreover, host vendors should always make e�orts to improve the reliability of their

platform if necessary, because if users value the importance of the third-party software

and �nd it working well with other hosts, they may uninstall the host software instead.

Incompatibilities between host and third-party software (Q10, Q11).

Q10 and Q11 are about the way to prevent incompatibilities between host and third-

party software when the host software rolls out new content security features. Our

participant suggested: �Notify us like they did when there is an issue. Worked well last

time. We have a �x rolled out very quickly when we were made aware of the issue.�

�Browser vendors can closely work with security vendors to bring about more stable,

secure browser ecosystem.�

�A preview of such functionality to test it in our labs will be highly appreciated (with

enough leeway and documentation to have the time for the vendors to adapt their code).�

In the meanwhile, the participants told us that they are willing to take the following

measures from their part. �We always try and �x any issues with our software when they

are reported to us. We do this as soon as we were alerted to the problem.�

�Regular compatibility testing of latest aurora/beta releases of various browsers from

our side along with our product and addresses any issues found.�

�We are willing, and already testing, any beta and post beta releases. But if we can

get documentation and enough time, we can commit to have our code ready and tested

by the release date (or if push comes to shove, temporarily some remove functionality to

accommodate browsers releases).�

Overall, we learnt that many third-party vendors are making e�orts on compatibility

testing and bug �xing for each (pre-) release. A good communication between

host and third-party software would help to reduce incompatibilities due

to new security features. Mozilla can provide some preview and necessary
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documentation of the new features to the trusted (i.e., whitelisted) vendors

(for compatibility testing) before the features are released to users.

Blocking of third-party DLLs (Q12).

Blocking third-party DLLs is one the of measures host software is using. Let us look at

the potential side e�ects analyzed by third-party vendors.

�Our users would not be able to target FireFox ... and would probably use another

browser.�

�Practically I wouldn't anticipate any side e�ects, although theoretically it could a�ect

the stability of Firefox, our software products or even the whole operating system.�

�It will break our protections and cause frauds associated with the removed protections,

can crash our browser components and probably Firefox as well.�

�This will break our ability to scan HTTPS URLs for malware/phishing links.�

Again, according to the respondents, blocking DLLs would not be the best

way to resolve DLL bugs. Before doing this, host software vendors should be

aware of any potential and serious side e�ects. This is the reason why in Mozilla's

blocklisting policy the blocks are always applied after careful consideration and testing,

and also why outright blocking might pose problems if not handled well.

Enforcing a whitelist (Q13, Q14).

Some host software vendors are considering to put the DLLs into the whitelist if the

DLL software is also using the standard extension API.

On the one hand, some third-party vendors agreed that such whitelist bonus is an

incentive for them to adopt the extension API, but these vendors have already consid-

ered/started to migrate to the API. �Yes ... (the whitelist bonus will be) along with the

ability to enforce addons in certain scenarios.� �We already adapting to the best of our

ability the WebExtension API. We also moved to that methods on other browsers.�

On the other hand, some others are not interested in this bonus because �I am un-

aware that we can extract audio from a browser using this API� and �The WebExtensions

API has simply di�erent use cases than the ones we are currently implementing. There-

fore I don't think it makes sense to mix that up�. The bene�t of the whitelist bonus still

needs to be veri�ed in the future.

Some participants agreed that the existence of a whitelist will be an incentive for them

to do more QA. For the two participant who did not agree, one thought that their �current

QA processes are su�cient�. The other one absolutely denied potential bene�ts from

the whitelist: �A whitelist approach is inferior as it holds back the extension ecosystem

overall, in my opinion. A proactive approach providing extensive and frequently updated
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test scenario framework support covering known problematic techniques is superior.�

Therefore, we also need future evidences to answer this question.

Bypassing the whitelist (Q15).

About our last question, no participant plans to circumvent the whitelist, even for the

vendors who insist to use DLL injection.

�No, because it won't be a long term solution.�

�We would not for legal reasons. We do not circumnavigate anything.� �This question

is quite hypothetical right now. Likely we would respect Firefox's policy and not try to

actively circumvent anything like this by technical means, but instead we may notify our

users about this and suggest to move to another browser. Depending on the exact method

of implementation, it's questionable if we'd be a�ected by such a whitelist though.�

�If we will be on the white list, why should we (circumvent it)?�

However, we do not know whether malware producers would try to circumvent the

whitelist (our guess is that they probably would), since we are not able to contact any

of them. Also, we cannot be sure that the answers to this question are actually honest,

given that circumventing the whitelist might be illegal and would be a direct challenge

against Mozilla. Clearing out this doubt will be a part of our future work, once we

collect enough �eld data on the whitelist.

Completely blocking DLL injection might not be

the best strategy to reduce bugs caused by third-

party software. Instead, host software vendors

should strengthen their collaboration and commu-

nication with third-party vendors, and build a pub-

licly accessible validation test framework. To at-

tract third-party vendors to use the standard ex-

tension API, host software should improve the

API's reliability and functionality (i.e., available

functions). A whitelist might be bene�cial, but

more empirical evidences are needed to support this

claim.

5.5 Discussion

In a software ecosystem, pursuing user satisfaction is one of the most important goals

for both host and third-party vendors. However, to achieve this goal, some host and
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guest vendors are taking con�icting measures. In the previous section, we have observed

that, on the one hand, some host vendors are (even completely) blocking third-party

software added through DLL injection and are suggesting users to uninstall unreliable

software. On the other hand, some third-party vendors are not willing to adopt host

vendors' advice and new solutions because once their extensions cannot work with the

host software, they claim that they will suggest users to migrate to another host. We

believe that in an ecosystem, host and third-party vendors should not consider their

bene�t as a zero-sum game, but a win-win game. To satisfy and hold their common users,

host and third-party vendors should strengthen their collaboration along all aspects of

the development of the ecosystem, including (but not limited to) testing, bug �xing,

feature introducing, and API evolution.

In this work, we choose DLL injection as subject because some host software vendors

realize that this technique often caused bugs (even crashes) and can be exploited by

attackers. However, besides DLL injection and a standard extension API, there are

other ways to add third party code into another software, such as Flash. As a resource

consuming and outdated technique, Flash has been made �click-to-play� in both Firefox

and Chrome since 2017, and will be completely blocked in all browsers by 2019 (2020

for Firefox ESR), so we do not study it in our work. Comparing the reliability among

di�erent extension techniques will be a part of our future work.

5.6 Threats to Validity

Construct validity threats are concerned with the relationship between theory and

observation. Studying DLL injection bugs in an ecosystem is a new research topic. As

far as we know, there has not been a theory behind this. However, before conducting

the empirical study, we learnt some assumptions through our contact with Mozilla de-

velopers, but observed opposing results. For example, some Mozilla developers thought

that the WebExtensions API can ful�ll most of the purposes. They guessed that some

third-party vendors are not willing to migrate to the API because the vendors do not

want to spend time to modify their existing code. However, multiple of our survey par-

ticipants indicated that their purposes cannot be satis�ed by the current WebExtensions

API. Moreover, to reduce DLL injection bugs, host vendors are taking measures, e.g.,

blocking DLL injection, suggesting users to uninstall �unreliable� extensions. By ana-

lyzing feedback from third-party vendors, we realize that many of these measures could

be harmful for end users and even the host vendors themselves.

Internal validity threats concern factors that may a�ect a dependent variable and were
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not considered in the study. Some of our observations derived from the 12 survey re-

sponses. Although these responses cannot represent all third-party vendors' opinions,

they provided us valuable information to understand the root causes of the DLL injec-

tion bugs and to propose potential solutions to reduce the bugs occurrence. The most

important reason is that such information cannot be discovered from any open source

repositories, such as Mozilla bug reports, crash reports, or commit logs. Besides, we

studied all the 103 DLL injection bugs reported during the past two years. These bugs

were caused by 58 di�erent vendors, among which, 44 vendors were contacted. 12 survey

participants represent a 21% coverage of all subject third-party vendors and 27% survey

response rate (which is higher than the average response rate in questionnaire-based

software engineering studies, i.e., 5%, according to Singer et al.'s �nding [132]).

Conclusion validity threats concern the relationship between the treatments and the

outcome. When investigating the characteristics of the DLL injection bugs, we man-

ually classi�ed DLL bugs into di�erent categories. To reduce any biases during this

process, we did not prede�ne any category. For each characteristic, two researchers in-

dependently made their classi�cation before comparing their results and resolving each

of the discrepancies. Despite this, we cannot guarantee a 100% accuracy on our classi�-

cation result. To help future studies validate our result, we share our dataset online at:

https://github.com/swatlab/dll_injection. Some of the important observations

are based on the survey responses. To reduce any possible biases, besides our discussion

and analyses, we cited participants original answers. Readers can use this information

to validate our conclusion and discover more insight. When compiling the survey re-

sponses, we hid some details due to privacy reasons. For example, we did not make a

table showing which participant answered which question because this way may disclose

information that participants do not wish to publish. In the survey, we only use open

questions, because �rst, our subject problem has not been empirically studied before,

i.e., there is no reference to help us prede�ne options for the answers. Second, prede�ned

answers may bias and limit participants' judgement. In this work, we are open to receive

any unexpected ideas that can lead us to a better understanding of the subject problem.

External validity threats are concerned with the generalizability of our results. In this

work, we choose Mozilla Firefox as subject ecosystem because other equivalent ecosys-

tems either lack relevant data or will try to completely block DLL injection soon (e.g.,

Chrome). We believe that Firefox is a large-scale representative ecosystem, which con-

tains various and diverse DLL software (refer to the software types discussed in RQ1).

In addition, Firefox possesses some public resources that we cannot bene�t from other

https://github.com/swatlab/dll_injection
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host vendors, such as bug reports, where we can also often see decision processes in play,

and third-party vendors' contacts. Nevertheless, the results and conclusion of our work

may not be generalized to other environments. Future studies are required to validate

and complement our �ndings. Researchers can also use our shared dataset to replicate

this study: https://github.com/swatlab/dll_injection.

5.7 Related Work

5.7.1 Software Ecosystems

When a software organization increasingly allows other software to join and extend

its software platform, an ecosystem is gradually formed. Many software organizations

have realized that either creating or joining into such an ecosystem can be bene�cial

because they no longer have to produce an entire system but only need to work for a

part of it. Recently, we have seen an increase in the number of software ecosystems

and the number of research studies that have focused on them. Bosch [20] observed

the emerging trend of the transition from traditional software product lines to software

ecosystems and proposed actions required for this transition. He also discussed the im-

plications of adopting a software ecosystem approach on the way organizations build

software. Hanssen [55] conducted an empirical study of the CSoft system, which transi-

tioned from a closed and plan-driven approach towards an ecosystem. He observed that

transitioning to a software ecosystem improved the cross organizational collaboration

and the development of a shared value (i.e., technology and business) in the collabora-

tion. Jansen et al. [64] discussed the challenges of software ecosystems at the levels of

software ecosystems themselves, software supply network, and software vendors. This

early work provided a guideline for software vendors to make their software adaptable to

new business models and new markets, and help them to choose appropriate strategy to

succeed in an ecosystem. Later on, Van Den Berk et al. [146] built models to quantita-

tively assess the status of a software ecosystem as well as the success of decisions taken

by the host vendors in the past.

Researchers have also empirically studied various popular open source ecosystems,

including Linux kernel (e.g., [145]), Debian distribution (e.g., [49, 51]), Eclipse (e.g.,

[151, 21]), and R (e.g., [48]) ecosystems. The host software in these ecosystems are

respectively operating system, integrated development environment, and mathematical

software. However, as far as we know, there is no previous study that empirically in-

vestigates a browser-based open source ecosystem (e.g., Firefox, Chrome). Although

https://github.com/swatlab/dll_injection
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Liu et al. [79] studied the extension security model of Chrome and Karim et al. [68]

studied the Jetpack Extension Framework of Mozilla, their research focused on the ex-

tension techniques rather than on the ecosystems. We contribute to �lling this gap by

conducting an empirical study of DLL injection bugs in the Firefox ecosystem. Another

di�erence between our work and these previous works [79, 68] is that DLL injection is

completely arbitrary, i.e., a third-party software can execute whatever it requires; while

the extension API can constrain third-party software's behaviour.

5.7.2 DLL Injection

DLL injection is one of the popular ways to insert code into other software. It can

force a process to load external code in a manner that the author of the process does

not anticipate or intend. Leveraging the DLL injection technique, Andersson et al. [8]

proposed a framework to detect code injection attacks [152]. Lam et al. [76] proposed

an approach that uses DLL injection to isolate the execution of the incoming email

attachments and web documents on a physically separate machine rather than on the

user machine. Their approach can help reduce the risk that user machines are attacked.

Berdajs et al. [16] analyzed the limitations of multiple existing DLL injection techniques

(including CreateRemoteThread, proxy DLL, Windows hooks, using a debugger, and

re�ective injection) and introduced a new approach that combines DLL injection and

API hooking (a technique by which we can modify the behaviour and �ow of an API

call [60]). The improved approach can inject code even when the application is not fully

initialized.

As DLL injection allows a program to inject arbitrary code into arbitrary pro-

cesses [153], malware producers can also take advantage of this technique to exploit

computers. Jang et al. [63] proposed an approach to help identify malicious DLLs in

Windows. Windows maintains a list of all loaded modules, including DLL modules.

Some software checks this list to detect DLLs injected from another process and take

corresponding measures, e.g., block it if a DLL is suspicious. However, an approach

called Re�ective injection [45] can inject DLLs in a stealthy manner, which increases the

di�culty of detecting suspicious DLLs.

Like a double-edged sword, DLL injection is a useful (even indispensable) program-

ming technique, but can also cause severe damages due to its arbitrary nature. To the

best of our knowledge, we are not aware of any existing work that empirically studied

the root causes and counterplans of the bugs or defects caused by DLL injection. Partic-

ularly, in a software ecosystem, this kind of bugs can hardly be predicted but can a�ect
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a large number of users. To help software practitioners understand the root causes of

DLL injection bugs and propose solutions to reduce them, we conduct this case study

on the Firefox ecosystem.

5.8 Conclusion

In a software ecosystem, DLL injection allows third-party software to forcibly load

arbitrary code into the host software. This technique may cause severe problems, such

as crashes and hangs. In this paper, we quantitatively and qualitatively studied DLL in-

jection bugs in the Firefox ecosystem. We found that: most of the subject bugs (93 bugs,

i.e., 90.3%) led to crashes, and 57 (55.3%) of them were caused by antivirus software

(RQ1). Various DLL injection mechanisms were applied by third-party vendors; the

triggers of the bugs can be engine errors, compiler/runtime incompatibility, or version

incompatibility between the host and third-party software (RQ2). Completely banning

DLL injection might not be the best strategy because some software (e.g., antivirus)

relies on this technique. Collaboration between host and third-party software vendors

could help reduce DLL injection bugs; host software vendors should extend the features

of the extension API (as a safer alternative of adding functionalities onto the host soft-

ware) and build a publicly accessible validation test framework (RQ3). In the future,

we plan to investigate whether the upcoming whitelist can further help reduce DLL

injection bugs.
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Chapter 6
Conclusion

In this thesis we showed that the development and the use of machine learning and

data mining techniques can support several software engineering phases, ranging from

crash handling, to code review, to patch uplifting, to software ecosystem management.

We presented the motivation behind our work, we explained the approach we fol-

lowed, and we presented the challenges we faced. To validate our thesis, we conducted

several studies tackling di�erent problems in an industrial open-source context, focus-

ing on the case of Mozilla. We have also applied some of the results presented in the

dissertation in the same industrial open-source context, at Mozilla, by either providing

tools to actors involved in the software development process or contributing to changes

in processes.

6.1 Contributions

During the course of this dissertation, we made a series of contributions to the state of

the art in machine learning and data mining techniques applied to software engineering.

We summarize the major ones in the following.

6.1.1 Automatic analysis of groups of crashes for �nding correlations

In Chapter 2, presenting our work from [28], we found that analyzing crash reports

in an automated manner can help developers in �xing crashes, by removing manual

analysis burden from developers, or by �nding properties that would have been really

di�cult to �nd with manual analysis, or can give clues in the characterization of crashes.

129
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Software organizations can use these data mining techniques to speed up and simplify the

resolution of crashes and to reduce the amount of manual tedious work for developers.

6.1.2 Relation between code review and crashes

In Chapter 3, presenting our work from [7], we found that some high-impact defects,

such as crash-related defects, can still pass through the review process and negatively

a�ect end users. We compared the characteristics of reviewed code that induces crashes

and clean reviewed code in Mozilla Firefox. We observed that crash-prone reviewed

code often has higher complexity and centrality, i.e., the code has many other classes

depending on it. Compared to clean code, developers tend to spend a longer time on and

have longer discussions about the crash-prone code; suggesting that developers may be

uncertain about such patches. Through a qualitative analysis, we found that the crash-

prone reviewed code is often used to improve performance of a system, refactor source

code, �x previous crashes, and introduce new functionalities. Moreover, the root causes

of the crashes are mainly due to memory and semantic errors. Some of the memory

errors, such as null pointer dereferences, could be likely prevented by adopting a stricter

organizational policy with respect to static code analysis.

6.1.3 Patch uplift in rapid release development processes

In Chapter 4, presenting our work from [24] and [25], we found that in average, 8%

of uplifted patches introduced a regression in the code of Firefox. We investigated the

decision making process of patch uplift at Mozilla and observed that release managers are

more inclined to accept patch uplift requests that concern certain speci�c components,

and�or that are submitted by certain speci�c developers. We found that 4% of the

issues �xed by patch uplift were not e�ectively resolved but were later reopened, cloned,

duplicated, or �xed by additional uplifts. Two frequent root causes were identi�ed

from our manual analysis, i.e., the original uplifts only partially �xed the issues or

caused regressions. We examined the characteristics of uplifted patches that introduced

regressions and found that they are more complex than clean uplifts, and they tend to

change a higher number of lines of code. Most regressions are caused by patch uplifts

aimed at �xing wrong functionalities and crashes. The most common root causes of

faults in uplifted patches are semantic and memory errors. In addition, through a manual

analysis on a sample of the uplifts that introduced regressions, we found that more than

one third of the fault-inducing Beta uplifts led to a regression that is more severe than

the problem they aimed to address. Last but not least, we observed that 25% to 30%
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of the regressions due to Beta and Release uplifts could be possibly prevented because

they can be reproduced not only by the issue reporter but also by developers and were

found on widely used feature/website/con�guration or via the Mozilla telemetry.

6.1.4 DLL injection bugs in the Firefox ecosystem

In Chapter 5, presenting our work from an article that is currently under submis-

sion, we found that most of the subject bugs (93 bugs, i.e., 90.3%) led to crashes, and 57

(55.3%) of them were caused by antivirus software. Various DLL injection mechanisms

were applied by third-party vendors; the triggers of the bugs can be engine errors, compil-

er/runtime incompatibility, or version incompatibility between the host and third-party

software. Completely banning DLL injection might not be the best strategy because

some software (e.g., antivirus) relies on this technique. Collaboration between host and

third-party software vendors could help reduce DLL injection bugs; host software ven-

dors should extend the features of the extension API (as a safer alternative of adding

functionalities onto the host software) and build a publicly accessible validation test

framework.

6.2 Implications

The implications of our dissertation are important for both researchers and prac-

titioners. Our work shows that machine learning and data mining techniques can be

leveraged to improve software engineering processes, supporting several of their phases.

6.2.1 Crash handling

The part of our work on automatically analyzing groups of crashes for �nding corre-

lations, presented in Chapter 2, shows that practitioners can use data mining techniques

to improve their understanding of crashes, and automate it e�ectively, making better

use of their automated crash reporting systems. Researchers could �nd improvements

on our proposed algorithm, or improvements for the crash clustering phase which is at

the basis of our proposed techniques. Moreover, they could �nd additional possible ap-

plications for our correlations results (or investigate the ones suggested in Section 2.3.2),

for example to try to automatically reproduce �eld crashes in a controlled environment.
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6.2.2 Code review and crash-related defects

The part of our work on the relation between code review and crashes, presented

in Chapter 3, shows that practitioners can use the results of our study to inform their

review processes, increasing the scrutiny for risky patches and decreasing it for less risky

ones. Researchers could �nd ways to automatically detect patches that would require

more scrutiny, and they could propose ways to automate parts of the review process

to ease prevent crash-related defects (for example, by investigating the e�ects of static

analysis tools).

6.2.3 Uplift/urgent patches processes

The part of our work on patch uplift in rapid release development processes, presented

in Chapter 4, shows that practitioners can use the results of our study to inform their

uplift processes: for example, release managers can be more careful when deciding about

certain kinds of patches and QA processes could be modi�ed to prevent regressions at

an earlier stage for uplifts. Researchers could propose automated ways to help release

managers in their decisions, employing the data which can be collected on the uplift

process.

6.2.4 Software ecosystems

The part of our work on DLL injection bugs in the Firefox ecosystem, presented

in Chapter 5, shows practitioners that increasing collaboration between developers of

host software and developers of software extending it might help in reducing bugs and

improving the quality of both host and guest software. Researchers could perform similar

studies applied to other ecosystems to corroborate our �ndings and expand the number

of responses from third-party developers, moreover they can investigate whether other

ways adopted by other software organizations to mitigate DLL injection bugs could be

more or less e�ective.
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