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Chapter 1

Introduction

One of the main problem addressed by the computer science community is the automatic
classification problem. For the human being the task of classifying is in most cases trivial,
just think of the the huge amount of information that every moment is sent to the brain
and processed unconsciously. The brain, despite the high load of information, can still
provide answers in a very short time. Currently, machine learning is still far from reaching
similar results, although research in this area is still proceeding.

The attempt to reproduce in an artificial way the abilities of the brain has remote
origins; Leibniz with the ideas of the characteristica universalis and of the calculus ratio-
cinator ( [Leibniz, 1890] or, for example, [Peckhaus, 2010]), that is an idealized language
in which any other language can be expressed and at the same time can be replicated by
a machine (point of view proposed in [Wiener, 1948]) can be seen as the foundation of
modern AI. Other relevant works are [Boole, 1854, Mill, 1884], which help to bring the
logic closer to the maths and the AI.

The first pattern recognition algorithm was suggested in [Fisher, 1936], highlighting
how the problem of classification could be faced in the search for decision surfaces. A
few years later, in [McCulloch and Pitts, 1943] was shown how some logical predicates
can be translated into neural activities, but it is in the 1950s that A. Turing, in [Turing,
1950], discussed about the existence of a machine that can learn, and, always, in those
years, pioneering studies on machine learning began to appear, such as the Perceptron in
[Rosenblatt, 1957] or ADALINE in [Widrow and Hoff, 1960], which were the first attempts
to provide a mathematical model of the biological neuron; based on these models, the
modern neural networks will be designed. The first computer program based on machine
learning is to be attributed to A. Samuel [Samuel, 1959], which, in addition to introducing
for the first time the term “machine learning”, implemented a version of the game of checkers
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in which the moves to be made were computed using the knowledge of past rounds. Machine
learning thus became an integral part of the study of Artificial Intelligence. In the 1960s,
new classification methods were also proposed, such as the first Support Vector Machines
[Vapnik and Lerner, 1963], which will be refined in and extended in [Boser et al., 1992,
Cortes and Vapnik, 1995], and the Nearest Neighbor algorithm [Cover and Hart, 1967]. In
[Minsky and Papert, 1969] the limits of the first neural networks are discussed, showing
how these models were not universal classifiers, because there are decision surfaces that
can not be modeled using these early architecture (XOR problem). However, these limits
will be overcome by using different architectures and adequate learning rules that will be
proposed in the 1970s [Linnainmaa, 1970, Linnainmaa, 1976, Rumelhart et al., 1986]. As
early as the mid-50s, there was a decline in interest from the AI community in the machine
learning techniques, preferring knowledge-based methods [Jackson, 1998]. These systems
used knowledge bases on a given domain providing solutions through the use of rules;
among these we mention DENDRAL [Lindsay et al., 1980], which formulates hypotheses
on the structure of organic compounds, and Hearsay [Balzer et al., 1980] which analyzes
spoken language.

In recent years we have seen a renewed interest of the scientific community in machine
learning techniques, thanks to factors as the big amount of data available for machine learn-
ing; at the end of 1980s UCI Machine Learning Repository [Dheeru and Karra Taniskidou,
2017], a collection of datasets for studies in machine learning, was introduced and made
available to the community; recently, others important dataset were created, as for example
the MNIST dataset [LeCun and Cortes, 2010], Cifar10/100 [Krizhevsky and Hinton, 2009]
and ImageNet [Deng et al., 2009].

Other factors, as hardware previously used for different purposes (e.g. GPU) and the
discovery of new elements able to improve the convergence of the learning algorithms, have
allowed to improve the performance of the current supervised classifiers. An important
work was made in [Krizhevsky et al., 2012], where a Convolutional Neural Network reached
the State of Art in the ImageNet Large Scale Visual Recognition Challenge in 2012.

More specifically, a real change in the orientation of the research has been achieved
thanks to the rediscovery of Neural Networks due to the use of new techniques based on:

- external training procedure ( e.g. pre-training methods, [Erhan et al., 2010]);

- new activation functions (e.g. ReLU, [Nair and Hinton, 2010]).
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These innovations have improved the performance of neural networks both in terms of
speed of learning and in terms of accuracy of results.

The innovations introduced in the Neural Networks have rekindled the interest not
only in this particular branch of machine learning, but in everything related to artificial
intelligence.

In this work, the problem of improving automatic classification performance is ad-
dressed, searching for methods to boost the performance of a classification system in two
different ways:

• the first one which is suitable for neural network classifiers, and that focus on the
possibility to learn appropriate activation functions from data [Apicella et al., 2018c,
Apicella et al., 2018b];

• the second one which is suitable for any kind of probabilistic classifier, using knowl-
edge coming from the real world formalized in a probabilistic ontology [Apicella et al.,
2017b, Apicella et al., 2017a, Apicella et al., 2018a].

More specifically, the first method is about the adaptable activation functions, that are
activation functions which are adjusted during the learning phase using the training data
and that allow the network to exploit the data better respect to classic activation function
with fixed-shape; the current studies on new activation functions and the attention of the
scientific community on this subject show that it is an open topic in machine learning
research; ReLU [Nair and Hinton, 2010], the newest ELU [Clevert et al., 2015] and all the
others functions belonging to the rectifier family are a recent progress that indicate that
there is still much to be said on this subject. On a closer look, a part of the scientific com-
munity is moving toward the learnable activation functions, that are activation functions
whose shape is learned by data. In this work, we made a careful survey on the state of the
art of this type of functions, that, in our knowledge, has never been made, and then we
propose a new a simple and efficient learnable activation function.

Differently from the first method that is specific for neural network classifiers, the
second one provides two frameworks for integrating an external knowledge base with the
results given by a generic classifier so as to improve its results “correcting” some errors.
The most commonly used tools for encoding a-priori information are standard ontologies.

A probabilistic ontology can be made available for the considered domain, but it could
also be built or enriched by using entities and relations extracted from a document related
to the image. For example, a picture could have been extracted from a technical report
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or a book where the text gives information that is related to the considered images. This
world knowledge, formalized in a probabilistic ontology, together with the output of the
classifier, is fed to a probabilistic model [Bishop, 2006], with the goal of improving the
performance of the single classifiers.

This method does not directly involve the classifier structure, that is it can be defined
model-agnostic, making it also suitable for classifiers different from Neural Networks, having
only as constrain that they provide a probability distribution over the possible classes for
every given input, or at least a set of scores on which to build it. The framework described
in this work has two main aspects of novelty. The first one is that, to the best of our
knowledge, a probabilistic ontology has never been proposed for a computer vision problem.
The integration of a probabilistic model with a probabilistic ontology presents a second
element of novelty.

Outline

This work is organized in the following way: chapter 2 shows a brief introduction to the
classification problem in the supervised learning framework, showing some of the most
important classifier techniques present in literature; the work is then divided into two
parts:

• The first part is dedicated to the learnable activation functions; after doing a sur-
vey of the most important studies for the learnable activation function proposed in
literature, a new learnable activation function is proposed; this part is divided as
follows:

– in Chapter 3 Neural Networks are introduced, without wanting to be a detailed
treatment on the subject, as it would be outside the scope of this thesis, and
referring the reader to more detailed references as for example [Bishop, 2006,
Hagan et al., 1996, Haykin, 1994];

– in Chapter 4 a survey on the learnable activation functions is made; the most
important study on this topic are discussed and described, also proposing a
taxonomy in which to divide them;

– in Chapter 5 the proposed model is described together with the experiments
made and the results obtained, both on Full-Connected Neural Networks and
on Convolutional Neural Networks;
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– in Chapter 8 concludes the work with the final remarks.

• The second part is dedicated to a method based on the integration of a knowledge
base with a classifier, is organized as follows:

– in Chapter 6 is defined the term “ontology”, showing how the term is difficult
to define and how various studies have been conducted to obtain its complete
formalization, also discussing the State of Art in the use of ontologies for the
classification task;

– in Chapter 7 are proposed two different methods to merge the ontology knowl-
edge with the results given by a classifier, together with experiments made and
the results obtained.

– Chapter 8 concludes this works summing up the work done and the results
obtained.

Notation

unless otherwise indicated, we will use the following notation from now: we will indicate sets
with words starting with capital letters and with lowercase letters the elements that they
contain (for example, D = {a, b, c, d}); in some cases, we will indicate with the elements
of a set will be indicated all with the same letter and distinguished by a number at the
apex in parenthesis (for example, D = {x(1), x(2), x(3)}) capital letters will also be used to
indicate matrix (for example, W ∈ R2×3); a tuple of numbers arranged by column will be
indicated with a lowercase letter with an arrow above and the components that compose
it will be indicated with the same letter with a number to the subscript (for example,
~v = (v1, v2, v3)T ). The same notations could also be used to distinguish between values of
a variable in different time moments (for example, gk, gk+1, . . . ).
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Chapter 2

The classification Problem

Introduction

This chapter wants to give an overview on the classification problem and some methods
to deal with it. After giving an introduction on the classification problem in Section 2.1,
the remain of the present chapter describes some of the most common machine learning
techniques dedicated to the classification problem.

2.1 Empirical Risk Minimization for Supervised Learn-
ing

Given a set of pairs D = {(~x(1), y(1)), (~x(2), y(2)), . . . , (~x(n), y(n))} ⊆ X × Y where X is
the input space (usually X ⊆ Rd with d given) and Y (usually Y ⊆ Z for classification
problem and Y ⊆ R for regression problems) is the desired output space, a supervised
learning problem (see [Vapnik, 1992, Cord and Cunningham, 2008, Scholkopf and Smola,
2001]) consists to infer a mapping function f : X → Y (which is called a classifier, if
the output is discrete as in classification problems, or regression function if the output is
continuous) s.t. f(~x) is good approximation of y, also if (~x, y) 6∈ D. Usually, in classification
problems, we assume that the (~x(i), y(i)) are sampled by an unknown distribution P (~x, y)

and ∀(~x(i), y(i)) ∈ Tr, ~x(i) ∈ Rd and y(i) ∈ N; to this aim, a loss (or cost) function L(f(~x), y)

which measures how the prediction given by f(~x) are different from the real y is used. using
the loss function L, is possible to define the Risk (or Generalization error) as

R(f) =

∫
L
(
f(~x), y

)
P (~x, y)d~xdy (2.1)
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The objective of a supervised learning algorithm is to find the function f that minimizes
the R(f) value, i.e. the algorithm looks for a function f ∗ = arg min

f
R(f); in practice, this

is not possible because the real distribution P (~x, y) is unknown.
So, in real cases an approximation of the risk, i.e. the empirical Risk, is used; this is

given by:

Remp(f) =
1

n

n∑
i=1

L
(
f(~x(i)), y(i)

)
. (2.2)

This can be seen as the Risk when considering the empirical distribution of the data
as a surrogate for the true distribution. For the law of large numbers (see, for example,
[Rosenthal, 2006]), as the number of elements in Tr goes to infinity, for every fixed function
f , the empirical Risk Remp(f) converge to the Risk R(f); however, this doesn’t imply that
the minimized function fm = arg min

f
Remp(f) will lead to a risk value as good as the

best risk R(f ∗): there are cases of learned function where the empirical risk is zero on the
training data Tr, but is greater on another set of data sampled from the same distribution;
this phenomena is said over-fitting. So, it is always a good practice to have another set on
which to test the function learned (that is called test set).

A possible method to deal with this problem is to restrict the search domain for the
fm function; to this aim, instead of Remp(f), it is minimized a constrained variation:

Rerg(f) = Remp(f) + λΩ(f) (2.3)

where Ω(f) is a regularization term which introduces a penalty on some kind of func-
tions, and λ > 0 is a trade-off parameter between the empirical risk minimization and the
introduced penalty. The risk function actually used is called the objective function L .

2.2 Model selection

Almost all classification methods can suffer of two main problems:

1. over-fit: a model results to over-fit the training set when it gives high performance
on the training data and poor performance on new data. As stated in [Picard and
Cook, 1984]: “when a model is chosen because of qualities exhibited by a particular
set of data, predictions of future observations that arise in a similar fashion will
almost certainly not be as good as might naively be expected”. For this reason, it is
important to have methods to assess how a chosen model will generalize to unseen
data.
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2. free-parameters choice: many pattern recognition methods need one or more free
parameters (or hyper-parameters), as for example, the learning rate value in gradient
descent algorithms; their values can change sensibly the model performances. For
these reasons is necessary to find a good set of hyper-parameters for the problem,
i.e. a set of hyper-parameters that gives a model with good performance not only on
training data but also on new observations.

Therefore, methods to select a proper model for a classification problem are necessary.
The cross-validation techniques (see for example [Mosteller and Tukey, 1968, Arlot et al.,
2010]) attempt to address these problems, helping to understand how a given model is
good in terms of generalization and then if it can be chosen or not. The main step of a
cross-validation method is to split the available data into two subset and taking one subset
as training Set Tr, that is used materially to train the model, and the remaining data
as test set Te, on which the learned model is tested; this simple form of validation is
said hold-out validation [P. Devroye and Wagner, 1979] and it has, as main drawback, a
potential high variance, because the evaluation may be significantly different depending
on how the division is made. A possible solution can be averaging over several splits,
yielding a cross-validation estimate. Based on this, there are different method to perform
cross-validation, as:

• leave-p-out cross validation [Shao, 1993]: p points are chosen as Te while the
remaining points form the Tr set and an hold-out validation is made for every possible
(Tr, Te) data split based on p points and then averaged;

• leave-one-out cross validation [Stone, 1974, Geisser, 1975]: as leave-p-out, but
with p = 1;

• k-fold cross validation [Geisser, 1975]: a k-partition P of the data is made; a set
from P is taken as Te, and the union of remaining set in P is taken as Tr; The
process is then repeated for every possible pair (Tr, Te) in the partition and then
averaged;

• Monte Carlo cross validation [Picard and Cook, 1984]: the dataset is randomly
divided into training and validation data .The process is repeated more times for
different random pairs (Tr, Te) and then averaged.
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Algorithm 1: k-fold cross validation procedure
Input: Dataset D, number of folds k, hyper-parameters values {p1, p2, . . . , pn} with

pi = { possible values for i-th hyper-parameter } with 1 ≤ i ≤ n
1 foldResults = 0 ∈ Rk;
2 split D in a k−partition P k(D) ;
3 forall 1 ≤ i ≤ k do
4 testSet← P k

i (D);
5 R← P k(D) \ {TestSet};
6 split R in a 2−partition P 2(R) ;
7 trainSet← P 2

1 (R);
8 valSet← P 2

2 (R);
9 bestParams← ∅;

10 bestResults← ∅;
11 forall H ∈ p1 × p2 × · · · × pn do
12 model←MakeModel(trainSet,H);
13 results← Evaluate(model, valSet);
14 if results better than bestResults then
15 bestParams← H;
16 end
17 end
18 model←MakeModel(trainSet ∪ valSet, bestParams);
19 foldResultsi ← Evaluate(model, testSet);
20 end
21 return Average(foldResults);

Furthermore, to find a good set of hyper-parameters, many cross validation algorithms
consider a third subset of examples called validation set [Ripley, 2007], disjoint from the
training and the test sets that is used only to tune the hyper-parameters of a classifier.
The procedure using a k-fold cross-validation scheme is summarized in Algorithm 1.

2.3 Classification types

Classification problems can be divided into two main classes:

• binary (or two-class) classification: every input ~x belongs to one of two possible
classes {C1, C2};

• multi-class classification: every input ~x belongs to one ofK possible classes {C1, C2, . . . , CK},
with K > 2.
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For binary classification, the two possible classes are usually indicated through a variable
y ∈ {0, 1} (or y ∈ {−1, 1}) where y = 0 (y = −1) indicates that the input ~x belongs to the
class C1 and y = 1 in the second class C2, while, for multi-class classification problems,
the variable is usually defined as y ∈ {1, 2, . . . , K} (or y ∈ {0, 1, . . . , K − 1}); anyway, in
multi-class case, can be convenient to code the input class, instead that using a variable y,
using a vector ~t ∈ {0, 1}K with the constraint that the component yi = 1 if and on only if
the input ~x belongs to the class Ci, otherwise yi = 0.

2.4 Linear classifiers

A linear classifier is one of the most popular classification framework. The main character-
istic of a linear classifier is that it assigns input vectors to classes through linear decision
boundaries. Formally, considering an input ~x = (x1, x2, . . . , xd)

T ∈ Rd, a linear classifier
uses a set of parameters ~w = (w1, w2, . . . , wd)

T to estimate the class of ~x as:

~̂y = f(s(~x))

with s(~x) = ~wT~x + w0 a decision surface, and f a discriminative function that assigns
the ~x to a class using s(x). If desired, it is possible to include the term w0 in the vector
~w expanding the vector ~x with a constant 1, i.e. ~w = (w0, w1, w2, . . . , wd)

T ∈ Rd+1,
~x = (1, x1, x2, . . . , xd)

T ∈ Rd+1 obtaining the form

s(~x) = ~wT~x.

For a binary classification problem with classes C1, C2, the discriminant function is usually
the sign(·) function, that is, the input can be considered belonging to the C1 class if
s(~x) ≥ 0, C2 class otherwise.

For the multi-class problems,it is possible to consider three possible approaches:

- One vs All : a different binary classifier is trained for each class and each classifier
predicts whether the instance ~x belongs to the target class or not; this approach
can lead to ambiguity regions, for example if multiple classifiers say that the input
belongs to its class;

- All vs All : a different binary classifier is trained for each possible pair of classes
obtaining K(K − 1)/2 classifiers; each point can be classified based on majority vote
between classifier; also in this case there could be ambiguous decision regions;
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- One vs All with score: as the One vs All approach, but instead of considering just the
final binary prediction of each classifier, this approach considers the score associated
with the prediction (in linear case, it is the distance from the decision boundary given
by s(x) value) and take the maximum value.

Usually, the One vs All with score is the most used approach.
A linear model makes the strong assumption that the output ŷ can be modeled through

a linear function on ~w, that is the data are linearly separable, which implies that they can be
separated exactly by a linear decision surfaces, an assumption that can be flawed especially
in complex models. However, this kind of model results to be fast, so that it can be used in
situations where speed is particularly important even at the cost of obtaining less accurate
results. The remainder of this Section discusses some of the most common linear model in
literature.

2.4.1 Least Square method

One of the most popular method to find the parameters ~w of a linear classifier is Least
Square method. Considering a binary classification problem, LS method requires a set
D = {(~x(1), y(1)), (~x(2), y(2)) . . . , (~x(n), y(n))} of data from which to fit the model parameters,
with ~x(i) ∈ Rd+1 and y(i) ∈ {−1,+1} as described in section 2.4. Given a parameter vector
~w ∈ Rd+1, it is possible to estimate s(x)(i) = ~wT~x(i), and the the residual as:

r(i)(~w) = (~wT~x(i) − y(i))2.

The residual sum of squares is given by:

RSS(~w) =
n∑
i=1

r(i)(~w).

Knowing that D can be written in matrix form as a matrix X ∈ Rn×(d+1) and a vector
~yT ∈ {−1,+1}n. In matrix form, RSS becomes

RSS(~w) = (~y −X ~w)T (~y −X ~w).

The least square method search for the vector ~w∗ which minimizes the RSS(~w) function,
that is

~w∗ = arg min
~w

RSS(~w)
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the minimum can be found searching for the point where the gradient respect to ~w becomes
zero, i.e. ∇RSS(~w) = 0; the solution can be found analytically, ∇RSS(w) = 2XT (~y −
X ~w) = 0 if ~w∗ = (XTX)−1XT~y.

In a multi-class problem, the dataset can be considered asD = {(~x(1), ~y(1)), (~x(2), ~y(2)) . . . , (~x(n), ~y(n))}
where ~y(i) ∈ {0, 1}K is the class variable coded as described in section 2.3. In matrix form,
the datasetD can be coded into two matrices, a first matrixX ∈ Rn×(d+1) and a second ma-
trix Y ∈ {0, 1}n×K . The model parameters can be represented by a matrix W ∈ R(d+1)×K

and the sum of residual can be written as:

RSS(W ) = Tr
(
(XW − Y )T (XW − Y )

)
and the estimated W ∗ can be computed as:

W ∗ = (XTX)−1XTY.

One of the main drawbacks of the Least Square method is that it doesn’t result very
robust to outliers [Vecchia and Splett, 1994].

2.4.2 Rosenblatt’s Perceptron

In [Rosenblatt, 1957] the Perceptron is presented, one of the best known examples of
linear model for binary classification. In this framework, the data has to be expressed as
a set D = {(~x(1), y(1)), (~x(2), y(2)) . . . , (~x(n), y(n))} which requires that y(i) ∈ {−1, 1}. The
Perceptron linear model is expressed as:

ŷ = f
(
~wTφ(~x)

)
where φ(~x) is a fixed non-linear transformation of the input ~x, and f the step function, i.e.

f(a) =

{
−1 if a < 0

+1 otherwise.

So, f maps all values above 0 threshold to the first class and all the other values to
the second class. The Perceptron method is based on the observation that all the correct
classifications respect the constraint ~wTφ(x)y > 0; the target can be defined as to minimize
the following quantity:

E(~w) = −
∑
i∈M

~wTφ(~x)y,
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whereM is the set of misclassified points in D. This error function can be minimized using
the Gradient Descent (henceforth GD) algorithm (see section 3.3 for details). Briefly,
the GD algorithm brings the parameters along the opposite gradient direction that is
~w ← ~w−∇E(~w). It has been proven [Rosenblatt, 1961] that, if this process is repeated for
a finite number of steps and the data are linearly separable, the algorithm will converge to
a minimum (Perceptron convergence theorem); in the opposite case, the algorithm will not
converge. However, also if the data are linearly separable, the number of steps could be very
large. Furthermore, the Perceptron is difficult to generalize for multi-class classification
problems.

The solution given by a Perceptron classifier depends on the initial values of parameters
~w and on the order in which the data points are presented to the learning algorithm.
Furthermore, the solutions can be easily subject to over-fitting.

2.4.3 Linear Support Vector Machines

Differently from the Perceptron, an SVM tries to find the solution with the smallest general-
ization error. To achieve this result, the SVMs use the concept of margin, that is the small-
est distance between the decision surface and any input point. Considering a binary classi-
fication problem with class labels y(i) ∈ {−1, 1}, for any point x(i) and a decision boundary
as defined in section 2.4.2 but with external bias term, i.e. s(~x) = ~wTφ(~x)+w0, the distance
from a surface identified by a parameters vector ~w can be computed as d(~w, ~x) = y(i)s(~x(i))

||~w|| .
The margin is thus defined as the distance between the decision boundary and the nearest
point in D (at least one for each class); so, a SVM wants to resolve the following problem:

~w∗, w∗0 = arg max
~w,w0

( 1

||~w||
min

1≤i≤n

(
y(i)s(~x(i))

))
This problem can be simplified considering that scaling the vector ~w, which is orthogonal
to the hyperplane, or w0, does not change the distance from the surface, so it is possible to
constrain y(i)s(~x(i)) = 1 for all the points closest to surface; these points are said support
vectors. A consequence of this is that, for all points in D, y(i)s(~x(i)) ≥ 1. Using this
constraint, the problem can be formalized in the following more convenient form:

~w∗, w∗0 = arg min
~w,w0

(1

2
||~w||2

)
subject to y(i)s(~x(i)) ≥ 1, ∀ 1 ≤ i ≤ n.
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Logistic Regression

The Logistic Regression is a classification method which returns a probability distribution
for a given input point. Considering a binary classification problem with classes {C1, C2},
assuming that the data are sampled from two normal distributions having respectively
average µ1 and µ2,the same covariance matrix Σ and the same priors, It can be shown (see
for example [Flach, 2012]) that

log
P (~x|C1)

P (~x|C2)
= ~wT~x+ q

and that
log

P (C1|~x)

P (C2|~x)
= ~wT~x+ q +

logP (C1)

logP (C2)
= ~wT~x+ w0

that, in binary classification problems, is equivalent to write:

log
P (C1|~x)

1− P (C1|~x)
= ~wT~x+ w0

then
P (C1|~x)

1− P (C1|~x)
= exp

(
~wT~x+ w0

)
= exp

(
s(~x)

)
from which is possible to derive (using the notation the notation in which ~w includes w0

and ~x is expanded with a 1):

P (C1|~x) =
1

1 + exp
(
− s~w(~x)

) = sig(s~w(~x))

and
P (C2|~x) = 1− P (C1|~x) = 1− sig(s~w(~x)) = sig

(
− s~w(~x)

)
that is the Sigmoid function. Using as class labels y ∈ {0, 1} where y = 1 means that
the item belongs to C1 class and y = 0 to the other, it is possible to view the problem to
estimate ~w∗, w∗0 as a Maximum Likelihood problem with Bernoulli distribution:

~w∗ = arg max
~w

n∏
i=1

P (C1|~x(i))y
(i)(

1− P (C1|~x(i))
)1−y(i)

This can be shown as a convex optimization problem, which means that there is only one
maximum and then many optimization techniques can be used; for example, if we use as
Loss function the negative logarithm of the likelihood:

L (~w) = −
n∑
i=1

y(i) log sig(s~w(~x(i)) · (1− y(i)) log(1− sig(s~w(~x(i))))
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is possible to use a Gradient Descent algorithm or Newton methods to minimize it. To
notice that, if y ∈ {−1, 1}, the problem can be written as

~w∗ = arg max
~w

n∏
i=1

sig
(
y(i) ~wT~x(i)

)
so the loss function becomes:

L (~w) = −
n∑
i=1

log
(
1 + exp(y(i) ~wT~x(i))

)
;

it is important to notice that, if the assumption of a equal covariance matrix is not made,
the resulting function is no more a linear one, but a quadratic one.

If we consider a multi-class case with K classes, it is possible to consider one class as
main reference (“pivot” class, e.g. the K class) and consider K − 1 logistic regressors:

log
P (C1|~x)

P (CK |~x)
= ~w(1)T~x =⇒ P (C1|~x) = P (CK |~x)e~w

(1)~x

log
P (C2|~x)

P (CK |~x)
= ~w(2)T~x =⇒ P (C2|~x) = P (CK |~x)e~w

(2)~x

...

log
P (CK−1|~x)

P (CK |~x)
= ~w(K−1)T~x⇒ P (CK−1|~x) = P (CK |~x)e~w

(K−1)~x

where every ~w(i), ∀ 1 ≤ i ≤ K − 1 is a different vector. P (CK |~x) can be computed as:

P (CK |~x) = 1−
K−1∑
t=1

P (CK |~x)e~w
(t)T ~x = 1− P (CK |~x)

K−1∑
t=1

e~w
(t)T ~x

=⇒ P (CK |~x) + P (CK |~x)
K−1∑
t=1

e~w
(t)~x = 1

=⇒ P (CK |~x)(1 +
K−1∑
t=1

e~w
(t)T ~x) = 1

=⇒ P (CK |~x) =
1

1 +
K−1∑
t=1

e~w(t)T ~x
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and then the probability of the others class can be computed as

P (C1|~x) = P (CK |~x)e~w
(1)T ~x =

e~w
(1)T ~x

1 +
K−1∑
t=1

e~w(1)T ~x

P (C2|~x) = P (CK |~x)e~w
(2)T ~x =

e~w
(2)T ~x

1 +
K−1∑
t=1

e~w(2)T ~x

...

P (CK−1|~x) = P (CK |~x)e~w
(K−1)T ~x =

e~w
(K−1)~x

1 +
K−1∑
t=1

e~w(K−1)T ~x

The Maximum Likelihood problem can be written, using the 1−K coding scheme for the
labels ~y described in section 2.3, as:

~w(1)∗, ~w(2)∗, . . . , ~w(K)∗ = arg max
~w(1)∗, ~w(2)∗,..., ~w(K)∗

n∏
i=1

K∏
j=1

P (Cj|~x(i))~y
(i)
j

2.5 Non-linear classifiers

The following section wants to describe some of the most common non-linear classifier
present in literature; non-linear classifier are used in situations where linear classifier are
not enough to achieve good classification performance. In this section Neural Networks
are not mentioned, since, being one of the main subjects of this work, it was decided to
dedicate a separate chapter to it, i.e. the Chapter 3.

2.5.1 k-Nearest Neighbors

k-NN algorithm is one of the simplest non-linear classification methods; given a set of data
points D and an integer value k > 0, k-NN assigns to each new point ~x the most frequent
class considering the k points in D nearest to ~x (“majority voting” on k nearest data points).
Euclidean distance is usually used as closeness measure, however other distance measures
can be used. One of the crucial choices of this algorithm lies in the value of the parameter
k; Obviously, the parameter k should be odd to avoid “break even” situations (that is,
many classes with the same score). A common way to choose it is to use some parameter
selection techniques (e.g., cross-validation, see section 2.2). In case of k = 1 the point is
simply assigned to the same class as the nearest point.
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The main drawback of this technique is the need to keep the entire dataset stored, in
addition to the computational cost for the computation of the distances between points.
Furthermore, the presence of outliers can influence the classification. One way to improve
the performances is to weight the points relying on the proximity to the point to be
classified. k-NN is an example of algorithm based on distance-based learning, i.e. a class
of learning methods that, instead of learning a function to generalize from the training
data, make decisions relying on the data themselves; in other terms, no model is learned
because the training instances themselves represent the knowledge.

2.5.2 Kernel methods

If the data are non-linearly separable in a certain space, nothing prevents them to be
linearly separable if they are projected into a higher dimensionality space; for example,
suppose that a set D = {(x1, x2)(1), (x1, x2)(2), . . . , (x1, x2)(n)} of n points is sampled from
a two dimensional space and that they form two concentric circles centered at the origin;
obviously, they are not linearly separable. But, if these points are non-linearly mapped
into an extended space using as third dimension the radius of the circles, (i.e. D′ =

{(x1, x2, x
2
1 + x2

2)(1), (x1, x2, x
2
1 + x2

2)(2), . . . , (x1, x2, x
2
1 + x2

2)(n)}) the two groups of points
can be linearly separated. This observation is enunciated and demonstrated by Cover
[Cover, 1965] in the following statement: “A complex pattern-classification problem, is
more likely to be linearly separable than in a low-dimensional space, provided that the
space is not densely populated.”

On the ground of what said above, a possible approach to obtain a linearly separable set
could be to map the data into a feature space with a higher dimensionality and to learn a
linear model in this new space, that is, to find a function φ : X → S with dimensionality of
S larger than the dimensionality of X and then to learn a linear model ŷ = f(~wTφ(~x)). The
main drawback of a similar approach is that to work in a larger space can be expensive
in computational terms. However, it may be considered that some linear classifiers, as
Perceptron and SVM, do not directly require that the points are mapped in the new space,
but they require only the inner product between points. So, it is possible to replace the
inner product with a function k(v, w) (known as kernel function) that returns the inner
product of v and w in some feature space. In other words, a kernel function returns
the value of the inner product < v,w >S in some space S. More formally, a function
k : X ×X → R is a kernel if:

- k is symmetric;
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- ∀n ∈ N and ∀x1, x2, . . . , xn chosen from X, the Gram Matrix K defined by Kij =

k(xi, xj) is positive semidefinite.

the operation of replacing the inner product with a kernel function is known as the kernel
trick and any method that uses a kernel trick is said to be a kernel method.

2.5.2.1 Kernel Perceptron

Reviewing the Perceptron weights update rule, it’s possible to note that, every time an
example x(i) is misclassified, the GD algorithm adds the y(i)~x(i) quantity to the weight
vector ~w, so the weights can also be computed as:

~w =
n∑
i=1

αiy
(i)~x(i)

with αi number of misclassification of the data point ~x(i); in other words, the weight
vector can be viewed as a linear combination of the training instances, so the Perceptron

rule can be rewritten as ŷ(j) = f(
n∑
i=1

αiy
(i)~x(i)T~x(j)) and the learning algorithm searchs

for ~α = (α1, α2, . . . , αn) instead that ~w. The parameters ~α can be used to have further
information about data points D, e.g.:

- αi = 0 =⇒ the data point x(i) isn’t useful to the training procedure because it will
not affect the final results;

- αi > 0 =⇒ the data point x(i) has been misclassified during the training at least
once.

The Perceptron problem formulated in this way is called dual ; the product ~x(i)T~x(j) can be
substituted by a kernel k(~x(i), ~x(j)).

2.5.2.2 Kernel SVM

Linear SVM described in section 2.4.3 can be formulated in the Lagrange dual form (see
for example [Rockafellar, 1993]) taking into account Karush-Kuhn-Tucker conditions [Kuhn
and Tucker, 2014]; In general, the Lagrange multipliers transform a constrained problem

a∗, b∗ = arg min
a,b

f(a, b) subject to g(a, b) = c

into an equivalent form that uses a function

Λ(a, b, λ) = f(a, b)− λ(g(a, b)− c).
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This problem is then solved for∇Λ(a, b, λ) = 0, because ∂Λ
∂a,b

= f(a, b)−λg(a, b) = 0 implies
that f and g point to the same direction, and ∂Λ

∂λ
= g(a, b)− c = 0 implies that the original

constrain is satisfied. Thanks to the KKT conditions, this method can be generalized to
problem with inequality constraints. So, applying the above method to the Linear SVM
formulation, we obtain the following Lagrange function:

Λ(~w,w0, α1, α2, . . . , αn) =
1

2
||~w||2 −

n∑
i=1

αi(yi(~w
T~x(i) + w0)− 1)

setting ∇Λ = 0 is equivalent to resolve the following problem:

~α∗ = arg max
~α
−1

2

n∑
i=1

n∑
j=1

αiαjy
(i)y(j)~x(i)T~x(j)+

n∑
i=1

αi, subject to ∀αi > 0 and
n∑
i=1

αiy
(i) = 0

with ~α∗ = (α1, α2, . . . , αn). This is the dual formulation for the SVM problem and, as for
the Perceptron, it is possible to know some interesting properties using α values:

- αi = 0 =⇒ the data point x(i) is not useful for the training;

- αi > 0 =⇒ the data point x(i) determines the decision boundary and then it is a
support vector.

Furthermore, given that ∂Λ
~w

= 0 ⇐⇒ ~w =
n∑
i=1

αiy
(i)~x(i), it is possible to determine the

decision boundary while w0 can be recovered by the equation y(i)(~wT~x(i) + w0) = 1 with
x(i) support vector.

In the dual formulation, it is possible to see again the use of an inner product ~x(i)T~x(j),
that can be substituted by a kernel function as in the Kernel Perceptron case.

For many years, the kernel SVM have been the state of the art in the classification for
many machine learning tasks.
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Part I

Learnable Activation Functions
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Chapter 3

Neural Networks

“Deep learning is just a buzzword
for neural nets, and neural nets
are just a stack of matrix-vector
multiplications, interleaved with

some non-linearities.
No magic there.”
Ronan Collobert

Introduction

In this chapter an overview of Neural Networks will be made. Due to the vastness of
this topic,this chapter wants to be only a general introduction to the subject, referring to
other readings (for example [Bishop, 2006, Hagan et al., 1996, Haykin, 1994]) for further
information.

In the first part of the present chapter we will make a general description of Neural
Networks, describing from which elements it is composed and the main architectures gen-
erally used, focusing on Full-Connected Networks and Convolutional Networks as the main
theme of the work done. The chapter ends with a discussion of the most used learning
algorithms in neural networks, highlighting their limits and crucial points.
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3.1 General description

A Neural Network (NN) consists of a number of elements, called neurons, arranged together
into a structure. Following the schema proposed in [Haykin, 1994], we can briefly define a
neuron as a processing unit constituted by:

- a set of external input {x1, x2, . . . , xn};

- a set of real numbers {w1, w2, . . . , wn}, called weights or connection strengths), each
one of them associated to an input;

- a threshold value θ called bias, with the aim to increase or decrease the input sum;

- an output y; the output of the unit can be modeled as y = f(
n∑
i=1

xiwi− θ) where f(·)

is a function called activation function.

The activation function is used for limiting the amplitude of the output neuron; the choice of
the activation function could be a critical point for the network performances. In [Cybenko,
1989]it is shown that a non-linear activation function enables the network to approximate
arbitrarily complex functions. the most common activation functions used in neural net-
work literature are showed in section 4.2. Another mathematical equivalent formulation of
a neuron compacts the bias term θ adding a weight w0 = θ and a constant input x0 = −1

transforming the output y as y = f(
n∑
i=0

xiwi) [Bishop, 2006, Hastie et al., 2009].

3.2 Common architectures

Another important characteristic of a Neural Network is the architecture, that is how the
neurons are arranged together. The possible architectures are usually divided into two
classes: Recurrent Neural Networks, which have feedback loops, and Feed-forward Neural
Networks, without any cycle. In the rest of this chapter, we will focus on Feed-forward
Neural Networks as the main objects of the present discussion, referring the interested
reader to Recurrent Networks to other readings (see for example [Bishop, 2006, Lipton,
2015])

A Feed-forward Neural Network is organized in layers, in which every layer is a set
of neurons without any connection between each others; every layer makes independent
computations on the data that it receives from the previous layer and passes the results
to the next layer, and so on. Finally, the last layer (that can be composed of one or
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more neurons) determines the final network output. According to the number of layers,
Feed-forward NN can be categorized in two main types:

- single-layer Feed-forward networks: networks with a single layer of neurons; every
neuron is connected to every input producing a single output; the network results to
be a mapping from the d input to n output; in the simplest case, the network has
just one neuron (and then a single output y), d ≥ 2 input {x1, x2, . . . , xd} a set of
{w1, w2, . . . , wd} weights and a bias therm θ; the output value can be computed simply

as y = f(
d∑
i=1

wixi − θ) where f is the activation function (for example the heavyside

function, see table 4.1); using this setup, the final output of the network can be −1 or
+1, so that it could be used for binary classification tasks; notorious example of this
kind of network are Perceptron [Rosenblatt, 1957] and Adaline [Widrow and Hoff,
1960]. Currently, this kind of network are not considered very interesting because
in [Minsky and Papert, 1969] it is shown that a single-layer networks cannot solve
problems which are not linearly separable.

- multi-layer Feed-forward Neural Networks: all the networks with more than a sin-
gle layer of neurons. Differently from single-layer Networks, it is shown that every
continuous function from input to output can be approximated by a network with
enough hidden units, one hidden layer, and proper nonlinear activation functions (see
[Cybenko, 1989, Sonoda and Murata, 2017]);

The possible connections between layers divide the types of feed forward neural net-
works into 2 different types:

- Full-Connected Network: a FFNN where each neuron of a layer is connected
with all the neurons in the next layer (see for example [Bishop, 2006]);

- textitPartially-Connected Network: there are missing connections between neu-
rons in consecutive layer;

- Convolutional Network: as partially-Connected network, but with some weights
shared between units (see [LeCun et al., 1999]).

Figure 3.1 shows an example of two Full Connected architectures. In the remainder
of this section, these Full-Connected and Convolutional networks are briefly described.
Partially Connected networks are not described as they are equal to convolutional networks
without the sharing weights constraint. Given the vastness of the topic, this paragraph
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Figure 3.1: Examples of Full-Connected Neural Networks architectures with a single out-
put; on the left, a single-layer FCNN; on the right, a 3-layer FCNN.

only wants to be an introduction to the argument, for a more in-depth discussion, please
refer to more appropriate references such as [Bishop, 2006] and [LeCun et al., 2015].

Full-Connected Neural Networks

Neural networks with totally connected levels are historically the most famous and studied
networks; they are composed of layers totally connected among them, that is for every
level, the output of every neuron is connected to all the neurons of the next level. we will
indicate with:

• ~x ∈ Rd a generic data point of d components and, for a generic layer l composed by
n neurons;

• W l ∈ Rn×d the weights matrix where the generic component w(l)
ij is the connection

strength between the i-th neuron and the j-th input for the layer l;

• ~b(l) ∈ Rn the biases of the n neurons.

The first layer is said the input layer, the last layer the output layer, and all layers that
are placed between the first and the last layers are said the hidden layers. Furthermore,
an activation function f (l) : Rn → Rn is associated to each leayer. Using this notation, the
output of a generic layer z(l) with input ~x can be expressed as ~z(l) = f (l)(W~x +~b(l)). So,
given a generic multilayer feed-forward network composed by L layers with weight matrices
(W (1), . . . ,W (L)) and (~b(1),~b(2), . . . ,~b(L)) biases, given an input point ~x, the final output ~y
of the network can be computed as described in Algorithm 2. So, the parameters necessary
for the construction of a generic FC layer l are:
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Algorithm 2:Output computation of a Full-Connected FFNN (forward propagation)
Input: a point ~x, weight matrices (W (1), . . . ,W (L)), biases vectors (b(1), . . . , b(L)),

activation functions (f (1), . . . , f (L))
Output: The final output y

1 ~z(0) ← ~x
2 forall l← 1 to L do
3 ~z(l) ← f l(W (l)~z(l−1) +~b(l))

4 ~y ← ~z(L)

- the number of neurons n(l);

- the activation function f (l).

Convolutional Neural Networks

Convolutional networks are particularly suitable for signal-related tasks (e.g. image pro-
cessing, audio processing); essentially, CNN are mainly composed by convolutional levels
that are based on three key principles:

- sparse interactions (or sparse weights): connections between consecutive levels are
reduced, so as to decrease the number of parameters that need to be learned;

- parameter sharing: some connections share the same weight values;

- equivalent representations: similar input features are represented in similar way.

In a convolution level, the input is considered divided into overlapping regions of fixed size
called receptive field and each neuron is connected only to a single region of the input.
The overlap and the distance between consecutive windows is determined by a parameter
called stride. The weight-sharing mechanism is obtained through the convolution operation
[Dumoulin and Visin, 2016]: the weights are stored in a matrix called filter which acts
locally on each individual input window through the convolution operator; the output of
the convolution operation is then used as argument of an activation function; the final
output is called a feature map. Each convolutive layer can have many filters, and then
it can produce many features map; so, every filter can be viewed as a group of neurons
that share the same weights that, through a convolution operation, act on different regions
of the input. Generally, for every convolutive layer a pooling operation follows, which
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Prev. layer Conv. layer Feature maps
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Figure 3.2: Examples of a Convolutional Neural Network architectures with an FC layer
as last layer. Every input region is processed by a different filter (grey) and then it is fed
to an activation function (e.g., ReLU). The ouput is then send to a pooling layer, or to the
next layer that can be another convolutional layer or the last layer, that is usually a Full
Connected layer.

is responsible for extracting useful statistics from local input areas. So, the parameters
necessary for the construction of a generic convolution layer l are:

- the number of filters n(l);

- the receptive field size M (l);

- the stride s(l)

- the activation function f (l).

The last layer of a Convolutive Network is usually a Full Connected Layer or a Global Pool-
ing Layer as proposed in [Lin et al., 2013]. Figure 3.2 shows an example of a convolutional
architecture.

3.3 Learning in neural networks

Optimizing a neural network objective function means to find the best set of weights and
biases such that the network gives the minimum risk on a given training set and that best
generalizes the problem, that is avoiding as much as possible the over-fitting. Although
the objective function is not convex, methods based on gradient descent [Robbins and
Monro, 1951] still lead to acceptable results; in this paragraph some of these methods are
described. Anyway, almost all these learning algorithm in neural networks suffer of three
critical issues:
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1. initial value of the parameters : different weights’ initializations can lead the network
to converge to a different local minima, so the initial value of the weights can be
decisive for the network performances; a classic approach [Krizhevsky et al., 2012]
consists in initializing weights using Gaussian noise with mean equal to zero and
standard deviation with value 0.01; other methods [Glorot and Bengio, 2010, Glorot
et al., 2011, He et al., 2015] propose to estimate the standard deviation using some
features of the layers. Other methods were proposed, e.g. RandomWalk Initialization
[Sussillo and Abbott, 2014]; however, a rule for the right initialization schema to use
does not seem to exist, the most appropriate criterion seems to depend on the task
to do and on the activation functions used.

2. hyper-parameters selection: the choice of the learning algorithm parameters, as for
example the learning rate in gradient descent method, can affect the training progress
in terms of convergence and velocity; for example a too low learning rate can lead to
a very slow learning, while a too large value can lead to a non-convergence situation;
the choice of a proper learning rate is still an open topic in the machine learning
community. One of most simple way is to use a parameter selection method as cross
validation (see section 2.2); another method is to use a recent learning algorithm, as
AdaGrad [Duchi et al., 2011], which uses different learning rates computed from the
gradients, or techniques like the one proposed in [Smith, 2015] where a range within
which the learning rate can be varied is computed cyclically.

3. gradient computation: gradient descent methods need to compute many times the
first order gradient of the loss function, so it is necessary an efficient method to
compute it; a computational acceptable way is to use the backpropagation algorithm
(see for example [Rumelhart et al., 1986, Bishop, 2006]) which is the current standard
de facto for calculating the gradient in algorithms based on gradient descent.

Gradient descent

The most popular algorithm to train a classifier is the gradient descent, also known as
steepest descent [Robbins and Monro, 1951]. The basic idea is, given an initial set of
parameters w0 and a training set Tr, we can iteratively find a better set of parameters
wt = wt−1 − η ∂L (wt−1,T r)

∂wt−1
; the negative gradient is the direction in which the objective

function L decrease most rapidly and η ( calledlearning rate or step size) controls how
large is the step during each iteration; the pseudo-code is shown in algorithm 3.
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Algorithm 3: Gradient Descent algorithm
Input: a starter set of parameters w0, a training set Tr, a learning rate η
Output: The final set of parameters wf ,

1 w ← w0;
2 cost← L (Tr, w);
3 while stop criteria is not met do
4 compute the gradient g;
5 w ← w − ηg;
6 cost← L (Tr, w);

7 wf ← w

Usually the stop criteria is a maximum number of iterations or a threshold on the
objective function.

The main drawback of the gradient descent training algorithm is that it requires many
iterations for functions which have long, narrow valley structures. Furthermore, the start
point w0 could affect the learning result; usually, it is chosen random but it could not
be the best choice. Gradient descent is one of the most famous learning algorithm for
classifiers as neural networks, but it could result too slow, especially when data or the
number of parameters is large; there are many variations of the original algorithm which
try to overcome these cases.

Mini-batch stochastic gradient descent

Mini-batch Stochastic Gradient Descent (see for example [Bottou et al., 2018]) is the most
used GD variation, especially in neural networks training: at each iteration, rather than
computing the gradient g = ∇L (w), a gradient descent takes a randomly samples B ⊆ Tr

from Tr and computes g = ∇L (w) using only the B points instead of all the points in Tr.
In the extreme case, when |B| = 1, the algorithm is also called Online Gradient Descent.
A full iteration of the algorithm over all the points in the dataset Tr is said an epoch.

Gradient descent with momentum

Momentum [Rumelhart et al., 1986, Sutskever et al., 2013, Polyak, 1964, Rutishauser,
1959] is a modification of the GD algorithm based on the observation that the convergence
might be improved smoothing out the oscillations of the trajectory in the parameters space;
parameters update makes a linear combination between the gradient and the previous
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update (momentum) using a momentum term 0 ≤ α ≤ 1 to set up the momentum effect;
the algorithm is described in Algorithm 4.

An interesting interpretation of view of momentum effect is shown in [Hagan et al.,
1996], where the momentum is explained as a kind of low-pass filter on the gradient tra-
jectory.

Algorithm 4: Gradient Descent algorithm with Momentum
Input: a starter set of parameters w0, a training set Tr, a learning rate η, α
Output: The final set of parameters wf

1 w ← w0;
2 v ← 0;
3 cost← L (Tr, w);
4 while stop criteria is not met do
5 compute the gradient g;
6 v = αv − ηg;
7 w ← w + v;
8 cost← L (Tr, w);

9 wf ← w

Gradient descent with Nesterov momentum

In [Nesterov, 1983, Bengio et al., 2013] is introduced a variation on GD + momentum
which computes the gradient value in the approximated new position instead of in the
current position, so that the descent can be faster. The pseudo-code is shown in algorithm
5.

Gradient descent with variable learning rate

The cost function for a classifier could not be a quadratic function, having instead different
shape in different area of parameters space. A common way to speed up the convergence
is modifying the learning rate during the training; a possible approach in this direction is
shown in [Vogl et al., 1988].

Adaptive Gradient algorithms

The benefits given by the variable learning rate may increase if a different learning rate
is applied to different parameters, as proposed in AdaGrad and its variations (see [Duchi
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Algorithm 5: Gradient descent with Nesterov momentum
Input: a starter set of parameters w0, a training set Tr, a learning rate η, α
Output: The final set of parameters wf

1 w ← w0;
2 v ← 0;
3 cost← L (Tr, w);
4 while stop criteria is not met do
5 compute the gradient g respect to w + v;
6 v = αv − ηg;
7 w ← w + v;
8 cost← L (Tr, w);

9 wf ← w

Algorithm 6: Adagrad algorithm
Input: a starter set of d parameters w0, a training set Tr, a learning rate η, α
Output: The final set of d parameters wf

1 w ← w0;
2 hist← 0 ∈ Rd;
3 cost← L (Tr, w);
4 while stop criteria is not met do
5 compute the gradient g;
6 foreach gi do
7 histi = histi + g2

i ;
8 wi = wi − η√

histi
gi

9 cost← L (Tr, w);

10 wf ← w

et al., 2011]); with AdaGrad algorithm, the parameters that during the learning received
little updates will have larger learning rate respect to parameters with smaller updates.
A pseudo-code of this algorithm is presented in Algorithm 6. The main drawback of this
algorithm is that, during the training, the learning rate can go to zero because of the
accumulation of the squared gradients in the denominator.

To deal the vanishing learning rate of AdaGrad algorithm, there are at least two vari-
ation, RMSprop and AdaDelta [Ruder, 2016, Zeiler, 2012] which restricts the window of
accumulated past gradients to a moving average on fixed size window. Other algorithms as
ADAM, AMSGrad [Kingma and Ba, 2014, Reddi et al., 2018] try to merge together RM-
SProp/AdaDelta approach with momentum, while NADAM [Dozat, 2016] merge it with
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Algorithm 7: Newton-Raphson algorithm
Input: a starter set of parameters w0, a training set Tr
Output: The final set of parameters wf

1 w ← w0;
2 cost← L (Tr, w);
3 while stop criteria is not met do
4 compute the gradient g;
5 compute the Hessian matrix H;
6 compute the inverse Hessian matrix H−1;
7 w ← wt−1 −H−1g;
8 cost← L (Tr, w);

9 wf ← w

Nesterov.

Conjugate-gradient method

Conjugate-gradient is a method based on gradient descent and Newton-Raphson method
(see for a more accurate description [Galántai, 2000]). Newton’s method uses the Hessian
matrix H = ∇2L (w) to find a better training direction respect to gradient descent; in
an iterative way, it constructs a quadratic approximation of the objective function which
matches the first and second derivative values. The algorithm then minimizes the approx-
imate quadratic function instead of the original objective function.

A quadratic approximation of an objective function L , using a starting point w0, can be
obtained using the Taylor expansion E = L (w0)+∇L (w0)·(w−w0)+ 1

2
·(w−w0)2 ·H(w0);

setting ∇L (w0) = 0, the iterative expression has the form wt = wt−1−H−1∇L (wi). The
algorithm is shown in Algorithm 7.

One of the main drawback of this algorithm is that, if the Hessian Matrix is not positive
definite, the movement can be toward a maximum instead of a minimum; furthermore, the
computation of the Hessian Matrix and its inverse is often complicated or intractable,
requiring a lot of computation.

The conjugate gradient algorithm tries to overcome these problem, showing generally a
faster convergence than gradient descent algorithm. Conjugate-gradient method is based
on the definition of conjugate vectors of a matrix, i.e. a set of vectors ~v(1), ~v(2), . . . , ~v(k)

is mutually conjugate with respect to a symmetric positive definite matrix A if and only
if ∀i 6= j, ~v(i)A~v(j) = 0; The matrix A can be the Hessian Matrix, but it is hard to
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Algorithm 8: A conjugate-gradient algorithm
Input: a starter set of parameters w0, a training set Tr
Output: The final set of parameters wf

1 compute the gradient g0;
2 p← −g0; w ← w0;
3 cost← L (Tr, w);
4 while stop criteria is not met do
5 compute the gradient gt;
6 β =

gTt gt
gTt−1gt−1

;

7 p← −gt + βp;
8 search η s.t. minimize E(Tr, wt + ηp); . Line Search
9 w ← wt + ηp;

10 cost← L (Tr, w);

11 wf ← w

compute; furthermore, we can found a set of conjugate directions without to compute
directly the Hessian matrix(see [Luenberger and Ye, 2015, Hagan et al., 1996]) but instead
of constructing a set of vectors in a iterative way. Briefly, defining the change of the gradient
between two iterations as ∆gk = gk+1 − gk, in each iteration a vector p(k) orthogonal to
the set {p(1), p(2), . . . , p(k−1)} is built; this vector has the form p(k) = −gk + βkp

(k) where
βk can be computed in various ways, as βk =

gTk gk
gTk−1gk−1

(given by Fletcher and Reeves,
for alternative ways, see for example [Hagan et al., 1996]). A possible pseudo-code of
Conjugate-gradient method is shown in 8.

Each iteration of the conjugate gradient algorithms requires a Line Search step that is
computationally expensive, since it requires to compute the network response to all training
points many times for each search. In [Møller, 1993] is proposed a method to avoid the
time-consuming Line Search. However, there are other approaches that tries to overcome
the computational problems of Newton’s method, for example the Quasi-Newton methods
(see for example [Nocedal and Wright, 2006]) which build an approximation to the inverse
Hessian at each iteration of the algorithm using only information on the first derivatives
of the objective function.
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Chapter 4

Activation Function in Neural Networks

Introduction

This chapter wants to give an overview on the most used functions present in the literature
proposing a possible taxonomy to classify them. The chapter is structured as follows: in
Section 4.1 a taxonomy for the activation functions is proposed, dividing the activation
functions in fixed-shape family, which are briefly discussed in Section 4.2, and learnable-
shape family, which are discussed in Section 4.3 in more detail. Finally, in Table 4.2 the
best accuracy values found in literature on some datasets are reported; it is important to
keep in mind that the values shown are only indicative, as they do not take into account
the network architecture actually used.

4.1 A taxonomy of activation functions

The activation function plays a central role for the expressiveness of a neural network;
the introduction of new activation functions has contributed to renew the interest of the
scientific community for neural networks; the use of ReLU, Leaky ReLU parametric ReLU,
and similar activation functions in neural networks has been shown to improve significantly
the network performances, thanks to properties as the no saturation feature that helps to
avoid typical learning problems as vanishing gradient. So, individuating new functions
that can potentially improve the results is still an open field of research.

In this regard, we propose a possible taxonomy of the main activation functions pre-
sented in the literature. A diagram of the proposed taxonomy of activation functions is
given in Figure 4.1.
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For what has been said so far, a first division of the activation function can be made on
the possibility of being able to modify their shape based on the training data. So, we can
divide the activation functions currently present in the literature into two main categories:

• fixed shape activation functions: in this category fall all the activation functions
the behaviour of which is fixed a priori as, for example all the classic activation func-
tions used in neural network literature, such as sigmoid, tanh, ReLU etc. However,
since the introduction of rectified functions (as the ReLU) can be considered a turn-
ing point in literature, resulting in one of the factors that gave new life to the study
of neural networks, we can further divide this kind of functions in:

– rectified-based function: all the function belonging to the rectifier family, as
ReLU, LReLU, etc.

– classic activation function: all the function that are not in rectifier family, as
the sigmoid, tanh, step functions.

• learnable-shape activation functions: in this category we put all the activation
functions the behaviour of which is learned from a set of data; the idea behind
this kind of functions is to search the best function shape using knowledge given by
training data. The studies currently present in the literature model the proposed
functions mainly in two ways:

– using sub-networks: the activation function is modelled through one or more
sub-networks which determine the final shape of the function; in many cases,
this kind of functions does not require changes in the learning algorithm, because
the function parameters are fully integrated into the network, and therefore can
be learned like any other network weight;

– using sub-functions: the activation function is modelled through a set of explicit
sub-functions which are combined together; in many cases, this kind of func-
tions requires changes in the learning algorithm to handle the parameters that
determine its shape. However, we can divide these functions into other three
subcategories, that are:

∗ Quasi-fixed: their shape is given by a slight change learned from the data
of a basic fixed-shape function;

∗ Interpolation based: their shape is computed using classical interpolation
techniques;
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Figure 4.1: A proposed taxonomy of the activation functions present in the Neural Net-
works literature.

∗ Ensembled: their shape is the combination of many functions, also very
different from each other.

4.2 Fixed-shape activation functions

With Fixed-shape activation functions we refer to all activation functions in which there
is no learnable parameter, i.e. its values are only dependent on the activation value given
in input.

As far as this work is concerned about learnable activation function, in this section a
description regarding the main fixed-shape activation functions used in neural networks is
made; This is motivated by the fact that many learnable activation functions in literature
are proposed as combination or variation of fixed-activation function.

This section is divided into two parts, the first one that talks about the classic activation
functions not based on rectifiers used primarily in the past, the second one that talks about
ReLU and its possible improvements given by changing its shape in a slight ways so limit
its drawbacks using just new hyper-parameters.

Classic activation functions

A list of the most common activation functions in feed forward neural network literature is
given in table 4.1. For many years, bounded activation function as sigmoid [Cybenko, 1988]
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Name Expression Range
Identity id(x) = x (−∞,+∞)

Step (Heavyside) f(x) =

{
0 if x < 0

1 otherwise
{0, 1}

Bipolar f(x) =

{
−1 if x < 0

+1 otherwise
{−1, 1}

Sigmoid sig(x) = 1
1+e−x

(0, 1)

Bipolar sigmoid f(x) = 1−e−x
1+e−x

(−1, 1)

Tanh tanh(x) = tanh(x) (−1, 1)
Hard tanh f(x) = max

(
− 1,min(1, x)

)
[−1, 1]

Absolute f(x) = |x| (0,+∞)
Cosine f(x) = cos(x) [−1, 1]

Table 4.1: Commonly used activation functions

or hyperbolic tangent [Chen, 1990] have been the most famous activation function for neu-
ral networks; unfortunately, these functions suffer of the vanishing gradient problem (see
[Bengio et al., 1994]) compromised learning in networks with many levels, although they
have excellent results especially in shallow network architecture (see for example [Glorot
et al., 2011, Pedamonti, 2018]). In [Cybenko, 1989, Hornik et al., 1989] is shown that any
continuous function can be approximated by a feed-forward network with a single hidden
layer containing a finite number of neurons on compact subsets, under the assumptions
that the activation function are non-constant, bounded and monotonically-increasing con-
tinuous function. This theorem proved that activation functions like the identity function
or any other linear function, used for example in early networks as ADALINE or MADA-
LINE [Widrow and Hoff, 1960, Widrow and Lehr, 1990], are not suitable to approximate
any continuous function. In [Pinkus, 1999, Sonoda and Murata, 2017] is shown that the
previous assumptions on the activation functions were too strong, showing that also neural
networks with unbounded but non-polynomial activation functions (e.g. ReLU, [Nair and
Hinton, 2010]) respect the universal approximation conditions. Furthermore, to use un-
bounded activation function seems to attenuate the vanishing gradient problem (see [Nair
and Hinton, 2010]); this interesting property opened new frontiers in research on classifiers
based on neural networks and on machine learning in general.
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Rectifier-based activation functions

Over the last years, many different activation function have been proposed, most of which
are inspired by the success obtained by ReLU and therefore fundamentally of the same
type, with small variations compared to the original work of [Glorot et al., 2011]. This
kind of activation functions are the standard de facto in modern neural network design,
surpassing other classic functions as Sigmoid and Tanh used in the past literature. One
of the first studies that showed the performance improvements was [Glorot et al., 2011],
where DNNs equipped with ReLU activation functions perform better respect to networks
with sigmoid units. The main advantage of using rectified activation functions is that they
avoid the vanishing gradient problem [Bengio et al., 1994], which has been one of the main
problems for learning deep networks for many years. This event has opened new frontiers
in research, focusing the scientific community attention in seeking new activation functions
in order to further improve performance.

• ReLU: the introduction of ReLU within the neural networks has been a real turning
point within the scientific community allowing to reach new and promising results
in the field of machine learning. Introduced for the first time by [Hahnloser et al.,
2000], but it was with the works done by [Nair and Hinton, 2010],[Glorot et al.,
2011] that has gained popularity thanks to the obtained results, becoming the new
de facto standard in place of the activation functions used previously. Defined as
ReLU(a) = max(0, a), these function has important positive aspects has:

– to alleviate vanishing gradient: being not bounded in at least one direction,
ReLU function doesn’t allow saturation conditions generally present with other
functions as sigmoid or tanh that, as the number of layers of the network in-
creases, leads to the vanishing gradient problem;

– sparse coding: using ReLU, the percentage of neurons that are active at the
same time is very low; the benefits of sparsity can be seen in [Glorot et al.,
2011] and can be resumed in a better dimensionality of the representation and
in a greater invariance to slight input changes.

However, ReLU function is not free from defects, as the non-differentiability at zero
or the “dying” ReLU problem [Maas et al., 2013], i.e. when a large negative unit bias
is learned causing the output of the ReLU to be always zero regardless of the input.

41



• Leaky ReLU and its randomized version: One of the first rectified-based activation
function was LReLU, proposed by [Maas et al., 2013]. More in details, a ReLU
function is defined as ReLU(a) = max(0, a); this function can originate at least two
problems:

– gradient-based learning algorithm will not change the weights of units with
potential in the negative semi-axis because the gradient is 0 whenever the unit
is not active;

– assuming that the lack of activation of some neurons does not affect the con-
vergence, learning could still be slow because of the gradient equal to 0 for
non-positive input values.

LReLU was proposed in an attempt to alleviate potential problems given by ReLU
in the event of too low activations, it is defined as:

LReLU(a) =

{
a if a > 0

0.01 · a otherwise.

A Leaky Rectifier activation function allows learning to continue giving a small gra-
dient when the unit is saturated and not active. Anyway, empirical results show
that Leaky rectifiers perform nearly identically to standard rectifier DNNs, resulting
in a negligible impact on performances. A randomized version, (Randomized Leaky
ReLU), where the weight value for a is sampled by an uniform distribution U(l, u)

with l < u and l, u ∈ [0, 1) was proposed in [Xu et al., 2015].

• Truncated Rectified: [Memisevic et al., 2014], tackle the problem by focusing on
a particular type of DNN, i.e. autoencoders, starting from the observation that this
type of network tends to have large negative bias to achieve sparsity but that can
make difficult to learn non-trivial manifold as a side effect. From this observation, the
authors propose the Truncated Rectified as activation function which can be defined
as:

TRect(a) =

{
a if a > t

0 otherwise.

to note that the t point is in TRec is a non-continuity point, unlike ReLU in which
the threshold point (which is 0) is only a non-differentiable point. Authors use TRec
only during training, and then replace it with ReLU during testing.
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• Softplus: Introduced by [Dugas et al., 2000], the softplus function can be seen as
a smooth approximation of ReLU function. It is defined as

softplus(a) = log (1 + exp(a))

the smoother form and the lack of points of non-differentiation could suggest a better
behavior and an easier training as an activation function; however, experimental
results made in [Glorot et al., 2011] tend to contradict that hypothesis, suggesting
that ReLU properties can help supervised training better than softplus functions.

• Exponential Linear Unit: Introduced by [Clevert et al., 2015], ELU introduce
is an activation function with negative values that keeps the identity for positive
arguments. It is defined as:

ELU(a) =

{
a if a > 0

α · (exp(a)− 1) otherwise.

with α hyper-parameter that controls the value for negative inputs. The negative
values given by ELU units pushes the mean of the activations closer to zero, giving
a faster learning (as showed in [Clevert et al., 2015]), at the cost of an extra hyper-
parameter that requires to be set.

• Sigmoid-weighted Linear Unit: Originally proposed in [Elfwing et al., 2018],
Sigmoid-weighted Linear Unit is a sigmoid function weighted by its input, i.e.:

SiLU(a) = a · sig(a)

In the same study, another activation function is proposed, that is the derivative of
SiLU uses as activation function, i.e.:

dSiLU(a) = sig(a)
(
1 + a(1− ·sig(a))

)
These function are tried on Reinforcement Learning Task, but further results are
given in [Ramachandran et al., 2017] where the same function is tested with the
name of Swish-1.
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4.3 Learnable-shape Activation functions

The idea of using learnable activation functions is not new in neural networks. Many
studies were published on the subject as early as the 1990s, for example [Piazza et al.,
1992, Piazza et al., 1993, Guarnieri, 1995, Chen and Chang, 1996]. In recent years, the
renewed interest in the field of neural networks has led the scientific community to consider
again the hypothesis that the learnable activation functions can improve the performance
of neural networks with respect to fixed-shape functions. One of the main reasons for this
renewed interest is the availability of more powerful computing resources combined with
a large amount of data that can be processed. This has made it possible to train models
of increasingly complex neural networks with good results. In this section we describe
and analyze the main methods in literature related to the activation functions that can be
learned. We divide them into groups based on their main characteristics. Specifically, we
have isolated the following families of learnable activation functions:

• Sub-network based: activation functions which are fitted by a sub-network inside
the main network. The key property of this kind of functions is that they don’t
require any change (or a minimal) in the network learning algorithm, because their
learnable parameters are integral parts of the general network.

• sub-functions based: activation functions which shape is modelled using one or
more explicit sub-functions in different ways; we divide these activation functions in
the following sub-categories:

– Quasi-fixed shape activation functions: all the activation functions whose
form is bound to be a simple variation of a basic function such as sigmoid or
tanh;

– Interpolation-based Activation Functions: all the activation functions
which are approximated using classical interpolation techniques;

– Activation functions based on ensemble methods: all the activation func-
tions which are obtained by some combination of many functions.

In the following of this section we will describe each of these categories.
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4.3.1 Sub-network based functions

With Sub-network based functions we refer to all the activation functions which are origi-
nally modelled as network that can be integrated into the network without modification or
addition to the learning algorithm; in fact, the sub-network structure allows the function
to be trained in a “transparent” way for the rest of the network and for the chosen training
algorithm.

Maxout unit

[Goodfellow et al., 2013] was one of the first modern study that proposed a more general
learnable activation function. The name Maxout was given by the fact that output is the
max of a set of linear functions. Maxout units are more than simply activation function,
since they use multiple activations for every neuron instead of a single activation given
by a = ~w~x + b as for classical neurons. More precisely, a Maxout unit defines a vector of
activations ~a = (a1, a2, . . . , ak) with ∀i ∈ {1, k}, ai = ~w(i)T~x + b(i) with ~x ∈ Rd output
given by the previous layer, {~w(1) ∈ Rd, ~w(2) ∈ Rd, . . . , ~w(k) ∈ Rd}, {b(1) ∈ Rm, b(2) ∈
Rm, . . . , b(k) ∈ Rm} parameters to be learned. and then returns their maximum, i.e.

Maxout(~a) = max
1≤j≤k

{ai}.

In other words, Maxout units take the maximum value over a subspace of k trainable
linear functions of the same input ~x, obtaining a piece-wise linear approximator capable of
approximating any convex functions. The same model can be defined putting all the ~w(i)

vectors as column of a single matrix W ∈ Rd×k and all the b(i) scalars in a single vector
~b ∈ Rk, obtaining ~a = W T~x+~b.

To notice that, setting k = 2 and ~w(1) = 0, b(1) = 0, Maxout becomes

Maxout(~a) = max(~w(1)T~x+ b(1), ~w(2)T~x+ b(2)) =

max(0, ~w(2)T~x+ b(2)) = ReLU(~w(2)T~x+ b(2)),

In a similar way, Maxout unit can be made equivalent to Leaky ReLU, so Maxout can
be viewed as a generalization of classic rectifier units. Being Maxout constituted by a set
of feed-forward sub-networks, its parameters can learned together with the whole network
using classical SGD approach. By running a cross-validation experiment the authors of
[Goodfellow et al., 2013] found that Maxout offers a clear improvement over ReLU units
in terms of classification errors. Despite the performance, this approach requires many
new weights respect to a classic network based on ReLU, namely k times the number of
parameters for every single neuron, greatly increasing the cost of the learning process.
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Multi-layer Maxout

Authors of [Sun et al., 2018] generalize the Maxout-based networks using a function com-
position approach that they call Multi-layer Maxout Network (MMN) that further increase
the number of parameters. To limit the computational costs introduced, the authors them-
selves propose to replace just a portion of activation functions in traditional DNN with
MMNs as a trade-off scheme between the accuracy and computing resources.

Probabilistic Maxout

In [Springenberg and Riedmiller, 2013] is described Probout, a stochastic generalization of
the maxout unit trying to improve its invariance, which replace the maximum operation
in Maxout with a probabilistic sampling procedure, i.e.

Probout(~a) = ai, with i ∼ Multinomial(p1, p2, . . . , pk)

where pi = exp(λai)∑k
j=1 exp(λaj)

with λ hyperparameter. The maximum operation substitution in
Maxout arises from the observation that to use other operation could be useful to improve
the performances. To notice that the Probout function reduces to the Maxout for λ→ +∞.

Network In Network

[Lin et al., 2013] proposed a learnable activation function designed for convolution networks:
they substitute the activation functions of a classic convolution layer with a full-connected
multilayer perceptron. For instance, given a CNN, a MLP sub-net with l layers is applied
to every xij, where with xij we refer to the input patch centered on the point (i, j). This
operation results in a set of functions f (i) of the shape:

f
(1)
i,j,c1

= max(W (1)
c1
xij +~bc1 , 0),

...

f
(l)
i,j,cl

= max(W (l)
cl
f l−1
ij +~bcl , 0).

where ci are the input channels and l the chosen number of layers for the MLP. So, this net-
work can be viewed as an MLP with ReLU units. So, the NIN output is a map where every
point is the output of last layer function f (l). Despite the good performances obtained,
this methods requires a lot of new parameters to learn especially if l is large.
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Convolution In Convolution

Based on [Lin et al., 2013], authors of [Pang et al., 2016] proposed Convolution in Con-
volution which uses a sparse MLP instead of the classic full-connected MLP as activation
function; NIN and CIC seem to move away from the concept of variable activation function
of a single neuron because the MLP could have common connections with other nodes of
the previous layers, in other words there are no constraints on the fact that the final layer
of the MLP can have more than one output.

Batch-Normalized Maxout Network in Network

In [Chang and Chen, 2015] are combined together two different learnable architecture,
i.e. Maxout and NIN, with Batch Normalization [Ioffe and Szegedy, 2015]; the general
architecture replaces the ReLU functions present in NIN with Maxout to avoid the zero
saturation followed by Batch Normalization to avoid the problems connected with changes
in data distribution [Ioffe and Szegedy, 2015]. For instance, given a CNN, a MIN sub-net
with l layers and Maxout sub-nets composed by {k1, k2, . . . kl} activations (see Section 4.3.1
is applied to every xij, where with xij we refer to the input patch centered on the point
(i, j). So, the final function si given by:

f
(1)
i,j,c1

= BN(W (1)
c1
xij +~bc1),

...

f
(l)
i,j,cl

= max
1≤m≤kl

{BN(W
(l)
km
f l−1
ij +~bcl)}.

4.3.2 Quasi-fixed activation functions

With Quasi-fixed activation functions we refer to all the function with a shape very similar
to a given basis fixed-shape function, but whose diversity from the latter comes from a set
of trainable parameters. the addition of these parameters therefore requires changes, even
minimal ones, in the learning algorithm, for example, in the case of using gradient-based
methods with backpropagation, the partial derivatives of these new parameters are needed.

Adjustable Generalized Sigmoid

A first attempt to have a learnable activation function was given in [Hu, 1992]; the proposed
activation functions was a generalization of classic Sigmoid sig(a) = 1

1+exp(−a)
which adds
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two learnable parameters α, β to rule the function shape, i.e.:

AGSigα,β(a) =
α

1 + exp(−βa)

Both values are adjustable together using classic gradient descent algorithm.

Sigmoidal selector

In [Singh and Chandra, 2003] is proposed the following class of sigmoidal functions:

Sk(a) =
( 1

1 + exp(−a)

)k
parameterized by a value k ∈ (0,+∞). A neural network can use any of them and have
the universal approximation property [Haykin, 1994], by a previous choice of k parameter.
In [Chandra and Singh, 2004] the k parameter is learned (and so the effective function
is selected) by the gradient descent algorithm + backpropagation together with the other
network parameters.

Adjustable Generalized Hyperbolic Tangent

Proposed in [Chen and Chang, 1996], this activation function generalizes the classic hy-
perbolic tangent function tanh(a) = 1−e−2a

1+e−2a introducing two learnable parameters α, β:

AGTanhα,β(a) =
α
(
1− exp(−βa)

)
1 + exp(−βa)

in this function, α adjusts the saturation level while β controls the slope. This two param-
eters are learned using classic gradient descent algorithm combined with back-propagation
together with the weights between neurons, initializing all the values in a random way.
In [Yamada and Yabuta, 1992a, Yamada and Yabuta, 1992b] a similar activation function
was proposed, with the main difference that it used just one learnable parameter which
controls the slope.

Parametric ReLU

[He et al., 2015] introduced another ReLU-like function but able to partially learn its shape
in a linear way from the training set transforming the negative part using a parameter w;
the function Parametric ReLU, can be defined as:

PReLUα(a) =

{
a if a > 0

α · a otherwise.
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The additional α parameters are learned jointly with the whole model using classical gradi-
ent based methods with back propagation without weight decay to avoid pushing α to zero
during the training. The gradient of the loss function L respect to the new parameter α is
given by ∂L

∂α
= min(0, a) ∂L

∂PReLUα(a)
which the term ∂L

∂PReLUα(a)
is the gradient propagated by

the successive level of the network. The additional parameter appears to be a negligible
addition to the total number of network parameters if a α-sharing policy is used. Empirical
experiments show that the magnitude of α rarely is larger than 1. although no constraints
on the range are applied. However, the resulting function remains basically a modified
version of the ReLU function that can change its shape just in the negative part.

Parametric ELU

[Trottier et al., 2017] tries to eliminate the need to manually set the α parameter of ELU
unit by proposing an alternative version based on two parameters that can be learned, i.e.

PELUβ,γ(a) =

{
β
γ
a if a ≥ 0

β · (exp( a
γ
)− 1) otherwise.

where β, γ > 0 are parameters that control the function shape learning together with the
others network parameters using any optimization gradient-based method. The partial
derivatives of PELU function respect to β and γ result to be
∂PELU(a)

∂β
=

{
a
γ

if a ≥ 0

(e
a
γ − 1) otherwise

, ∂PELU(a)
∂γ

=

{
(−βa

γ2
) if a ≥ 0

(− β
γ2

)e
a
γ otherwise

4.3.3 Interpolation-based Activation Functions

In this section we report a set of activation functions whose shape is computed using classi-
cal interpolation techniques. These techniques may need some additional input, depending
on the technique used (for example a set of sampled points from a start function).

Spline Activation Function

In [Guarnieri, 1995] was introduced the use of spline based activation functions whose shape
can be learned by data using a set of Q representative points. This method has therefore
been improved by [Vecci et al., 1998, Scardapane et al., 2016]. More in detail, this technique
try to find a cubic spline to model the activation function initializing the control points
from a sigmoid (as in [Guarnieri, 1995]) or from another function (e.g. hyperbolic tangent,
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as in [Scardapane et al., 2016]) assuring universal approximation capability. the resulting
function is given by:

SAF(a) = ~uTB~qi:i+P

where:

• i is the index of the closest knot;

• ~q is the knots vector, with ~qi:i+P := (qi, qi+1, . . . , qi+P )T , so the output is computed by
spline interpolation over the closest knot and its P right-most neighbors. supposing
that the knots are uniformly spaced, i.e. ~qi+1 = ~qi + ∆t, for a fixed ∆t ∈ R, the
normalized abscissa value can be computed as u = a

∆t
− b a

∆t
c;

• ~uT = (uP , uP−1, . . . , u, 1) ∈ RP+1 is the reference vector;

• B ∈ R(P+1)×(P+1) is the basis spline matrix. Different bases makes different inter-
polation schemes; in [Vecci et al., 1998] is used the Catmull-Rom matrix [Smith,
1983].

The ~q values are then adapted during the learning, adding a regularization term on ~q to
prevent the over-fitting. The regularization term results to be a very critic issue: while the
authors of [Vecci et al., 1998] act on the ∆x value, in [Scardapane et al., 2016] is proposed
to penalize changes in ~q respect to a “good” set of values, as for example the initial control
points values, sampled from a standard NN activation function.

Look-up Table Units

Based on a similar principle, [Wang et al., 2018] introduce Look-up Table Unit based on
spline; in this work, the activation function is controlled by a look-up table containing a
set of anchor-points that determine the function shape. The look-up table idea is not new
in learnable activation function field; a first work was made in [Piazza et al., 1993], where a
generic adaptive look-up table was addressed by the neuron activation and learned by data.
The main difference with [Wang et al., 2018] is the look-up table structure which returns
the result of a spline interpolation instead of the raw number in the table. More in detail,
defining the set of anchor point as A = {(q1, u1), (q2, u2), . . . , (qm, qm)} with qi = q1 + i ·∆t
and ui the learnable parameters, [Wang et al., 2018] proposes two different methods to
generate the activation function; the first one by interpolation, i.e.:

LuTU(a) =
1

t
ui(qi+1 − a) + ui+1(a− qi), if qi ≤ a ≤ qi+1
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and the second one using cosine smoothing, i.e.:

LuTU(a) =
m∑
i

ui · r(a− qi, αt)

where α ∈ N and

r(w, τ) =

{
1
2τ

(1 + cos(π
τ
w)) if − τ ≤ w ≤ τ

0 otherwise.

the method based on cosine smoothing was proposed to address the gradient instability
suffered by the interpolation method. This kind of approaches require to set additional
hyper-parameters like the function input domain, the number of anchor point and the space
between, the α value in [Wang et al., 2018] second approach or the spline type for [Vecci
et al., 1998] and [Scardapane et al., 2016] approach so, beyond a strong mathematical
formulation, these approaches seem to require to set up many hyper-parameters manually
or through a model selection process.

4.3.4 Activation functions based on ensemble methods

With ensemble methods we refer to some technique to merge together different functions.
Basically, each of these techniques provides:

• a set of basis functions, which can contains fixed-shape functions or trainable func-
tions or together;

• a merge model, that is the method by which the basis functions are combined to-
gether.

obviously, based on the choices made in the two cases, the learning algorithm may need to
be modified.

Harmon & Klabjan Activation Ensembles

Some studies try to define activation functions using different available activation functions
rather than creating an entirely new function. For example, authors in [Harmon and
Klabjan, 2017] allow the network to chose the best activation function from a predefined
set F = {f (1), f (2), . . . , f (k)} or some combination of those. Differently from Maxout, the
activation functions are combined together instead of simply taking the maximum value.
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The activation function proposed by [Harmon and Klabjan, 2017] works on single mini-
batch, i.e. its input is tuple ~a(u) = (a

(u)
1 , a

(u)
2 , . . . , a

(u)
B ) which every element a(u)

i , 1 ≤ i ≤ B

is the activation of the unit u on the i-th element of mini-batch. The proposed activation
function is based on a sum of normalized functions weighted by a set of of learned weights;
the resulting activation function Φ(a) for an input activation ~a(u)

b has the form:

Φ(u)(a
(u)
b ) =

k∑
j=1

αju
(
η(j)gj(a

(u)
b + δ(j))

)
where αju a weight value for the u-th unit and the j-th function, η(j) and δ(j) are inserted to
allow the network choosing to leave the activation at its original state if the performance
of one are particularly good and

gj(a
(u)
b ) =

f j(a
(u)
b )−min

i
f j(a

(u)
i )

max
i
f j(a

(u)
i )−min

i
f j(a

(u)
i ) + ε

where ε is a small number. Authors emphasize that, during the experiments, many neurons
favored the ReLU function since respective α value was greater in magnitude respect to
the others. The learning of α value was done formalizing the problem as a optimization
problem with the additional constraint that α values must be non-zero and sum to one to
limit the magnitude. So, the approach proposed by [Harmon and Klabjan, 2017] seems
to require the additional computational cost to solve the defined optimization problem
together with a standard network learning procedure.

Adaptive Piecewise Linear Units

In [Agostinelli et al., 2014] the activation functions are modeled as a sum of hinge-shaped
functions that results in a different piece-wise linear activation function for every unit u:

APLu(a) = max(0, a) +
k∑
i=1

wu,k max(0,−a+ bu,k)

with k hyper-parameter and wu,k, bu,k variables learned during the network training. The
total overhead in terms of number of parameter to learn respect to a classic NN with n

units is 2 · k · n, so the number of parameters increases with the number of hidden units
and, for a large enough input, the learned function tends to have a ReLU-like behavior,
reducing the expressiveness of the learned activation functions. In the experiments reported
in [Agostinelli et al., 2014] the value of k was determined using a validation while the w
and b parameters were regularized with an L2 penalty, so that the optimizer can not choose
very large values for the parameters that would lead to numerical instability.
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S-Shaped ReLU

Taking inspiration by Webner-Fechner law [Fechner, 1966] and Stevens law [Stevens, 1957],
the authors of [Jin et al., 2016] designed an activation S-shape function composed by three
linear function:

SReLU(a) =


b1 + w1(a− b1) if a ≤ b1

a if b1 < a < b2

b2 + w2(a− b2) if a ≥ b2

with b1, w1, b2, w2 parameters that can be learn together to the others. The partial deriva-
tive of the SReLU function respect the introduced parameters are:
∂SReLU(a)

∂b1
=

{
1− w1 if a ≤ b1

0 otherwise
, ∂SReLU(a)

∂w1
=

{
a− b1 if a ≤ b1

0 otherwise

∂SReLU(a)
∂b2

=

{
1− w2 if a ≥ b2

0 otherwise
, ∂SReLU(a)

∂w2
=

{
w2 − b2 if a ≥ b2

0 otherwise
Also in this case, the weight decay it not usable because it tends to pull the parameters
to zero. SReLU can learn both convex and non-convex functions, differently from others
as Maxout that can learn just convex function. Furthermore, ReLU can approximate also
ReLU when b2 ≥ 0, w2 = 1, b1 = 0, w1 = 0 or LReLU/PReLU when b2 ≥ 0, w2 = 1, b1 =

0, w1 > 0.

Adaptive Activation functions

In [Qian et al., 2018] are presented different ways to obtain mixture of eLU and ReLU, in
a probabilistic and hierarchical context, able to obtain an activation function learned by
data. They propose the following activation function:

• Mixed activation: ΦM(a) = p · LReLU(a) + (1 − p) · ELU(a) with p ∈ [0, 1] learned
from data;

• Gated activation: ΦG(a) = sig(βa) · LReLU(a) + (1 − sig(βa)) · ELU(a) with sig(·)
the sigmoid function and β learned from data;

• Hierarchical activation: this function is composed by a three-levels little neural net-
work, where each input unit u is connected to n units, every pair of nodes are com-
bined together in similar manner as in gated activation (with the substitution of ELU
function with PELU and ReLU with PReLU) and the last layer takes the maximum
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of middle level unit; so, the different function output can be formalized as:
φ

(1)
l (a) = PReLU(a) and φ(1)

r (a) = PELU(a) for the first level
φ

(2)
i (a) = sig(βa) · φ(1)

l (a) + (1− sig(βa)) · φ(1)
r (a) for the i-th unit of the second level

φ(3)(a) = max
i
φ

(2)
i (a) for the third level

and the final activation function is ΦH(a) = φ
(3)
l (a).

Swish

In [Ramachandran et al., 2017] a search technique for activation function is proposed.
Given a set of basis activation function, a set of new activation function is constructed by
repeatedly composing them. For each candidate activation function, a network with which
uses generated function is trained on some task to evaluate the performance. Between all
the tested functions, the best one results to be:

Swish(a) = a · sig(α · a)

with α trainable parameter. To note that for α→ +∞, Swish becomes like ReLU, while,
if α = 1, the becomes equal to SiLU [Elfwing et al., 2018]. The derivative can be computed
as:

∂Swish(a)

∂a
= α · a · sig(a) + sig(α · a)(1− α · a · sig(α · a))

4.3.5 Other studies

In [Piazza et al., 1992] was proposed an attempt to model activation functions using a
polynomial activation function with adaptable coefficients; for a given degree k ∈ N, the
relative polynomial function is

AP(a) =
k∑
i=0

αi · ai

with (α0, α1, α2, . . . , αk) parameters to learn. These function parameters can be learned
together with net parameters using gradient descent with back-propagation. The gradient

respect to the new parameters can be computed trivially as ∂AP(a)
∂a

=
k∑
i=1

i·αi ·ai−1. However,

it must be taken into account that networks with polynomial activation function are not
universal approximator, as shown in [Stinchcombe and White, 1990].

[Eisenach et al., 2016] tries to approximate an activation function using a Fourier ex-
pansions; this study uses a 2-stage Stochastic Gradient Descend (SGD) algorithm to learn
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the parameters of the activation functions and of the network. [Urban et al., 2017] tries
to learn the activation function using Gaussian processes. [Goh and Mandic, 2003] tries to
learn the amplitude of the activation functions but in Recurrent Neural Networks [Cardot
and Romuald, 2011]. [Ertuğrul, 2018] and [Li et al., 2013] proposed two learnable acti-
vation functions using linear regression and subnet-based approach respectively; however,
these studies are done on network models different from the classic feed-forward neural
networks (see for example [Chen et al., 2018, Huang, 2015]).

4.4 Conclusions

In this chapter, we have discussed about the most common activation functions present in
the literature, proposing a possible taxonomy to classify them. We have divided the possible
functions into two main categories: fixed shape and learnable shape, focusing especially
on the latter as the main topic of the work done. However, it must be kept in mind that
the activation functions are not the only entities that determine the performances of a
neural network. Other parameters, as the number of neurons together with the way they
are arranged, or the weights initialization protocol can be decisive for the performance of
the network, together with the parameters to be set for the learning algorithm. Moreover,
even if the experiments are conducted with the same datasets, these may have been pre-
processed in different ways (e.g., ZCA [Bell and Sejnowski, 1997] or data-augmentation
[Perez and Wang, 2017]) which can in turn condition the results. So, it can be really
difficult to make a comparison between the activation functions, since the experiments
made in the literature are often conducted on very different setup. Table 4.2 reports the
accuracies obtained by some works present in the literature. As an indication, we report
just the best values obtained, without taking care of the different architectures used.
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Chapter 5

Variable Activation Functions based on
a simple and efficient Neural Network
architecture

Introduction

Trained activation functions is a active topic in neural network research. Despite a lot
of works and promising results, currently is still difficult to find a simple and handful
way to learn an activation function without introducing new parameters or different learn-
ing techniques. The actual State-of-Art in neural networks activation functions has been
discussed in chapter 4. The introduction of new activation functions has contributed to
renew the interest of scientific community for neural networks; the use of ReLU and similar
fixed-shape functions, such as Leaky ReLU and parametric ReLU, as activation function in
neural networks has been shown to improve significantly the network performances thanks
to properties as no saturation and sparse coding. Individuating alternative functions that
can potentially still improve the results is an open field of research. From this point of
view, a number of recent papers compare neural architectures with different activation
functions as in [Liu and Yao, 1996, Yao, 1999, Pedamonti, 2018]. The idea of the learnable
activation function is instead to search the “best” activation functions using knowledge
given by training data. In this work, we propose a simple way to obtain a set of trained ac-
tivations function simply using local sub-nets with few neurons. Using the taxonomy that
we defined in chapter 4, our approach can be considered belonging to the sub-networks
based functions family. In particular, we built upon the possibility to obtain adaptable
activation functions in terms of sub-networks with just one hidden layer. In a nutshell,
each neuron with a non-linear activation function g can be substituted with a neuron with
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an Identity activation function sending its output to one-hidden layer sub-network with
just one output neuron.

5.1 Proposed model: Variable Activation Function Sub-
network

In general, in a MLFF network the output of a neuron i belonging to the l-th layer is
obtained by a two-step computation (see [Bishop, 2006], Section 4): the first step computes
the input of a neuron i as ali = ~wli~x

l−1 + bli where ~wli are the weight connections between
the neuron i and the previous layer, ~xl−1 are the output of the neurons belonging to the
previous layer (or network input values), ~wl are the connection weights going from the
neurons of the previous layer l − 1 to the neuron i, and bli is the bias associated to the
neuron i . The output of the neuron i is then computed in a second step transforming the
input ali using a fixed activation function f , obtaining zli = f(ali).

The key idea of our approach is to modify the second step of the computation by trans-
forming the input ali using a small one-hidden layer sub-network with m hidden neurons
and just one input and one output neuron. Let us call it Variable Activation Function
(VAF) sub-network. So, a VAF for a neuron i can be described as a network composed by:

• an hidden layer, composed by m > 1 neurons directly connected to the neuron i by
a set of αh, ∀1 ≤ h ≤ m weights;

• a set of fixed basis functions f1, f2, . . . , fm;

• an output layer composed by a single neuron connected to all the neurons of the
hidden layers by a set of βh, ∀1 ≤ h ≤ m weights.

computation of VAF sub-network can be described as follows: VAF is fed with an input
a, the m neurons of the hidden layer compute m outputs as: yh = f(αha + α0h) with
h = 1, 2, · · · ,m, the output node computes z =

∑
h βhyh + β0. αh and α0h are weights and

biases of the hidden layer of the subnetwork, respectively. βh and β0 are weights and bias
of the output layer of VAF sub-network, respectively. In this way the output of the neuron
i can be expressed as :

VAF(a) = ~βTφ
(
a · ~α + ~α0

)
+ β0

with ~α = (α1, α2, . . . , αm)T , ~α0 = (α01, α02, . . . , α0m)T , ~β = (β1, β2, . . . , βm)T , and φ(~x) =(
f1(x1), f2(x2), . . . , fk(xk)

)T . ~α, ~α0, ~β, β0 are parameters that can be learned by data during
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Figure 5.1: A VAF unit.

the training process.
A general schema of a VAF unit is shown in figure 5.1. This schema enables one to
approximate arbitrarily well any activation function provided that:

• the number m of VAF’s hidden neurons is sufficiently large;

• all the activation functions fi of VAF’s hidden layer are not-polynomial functions.

The first condition is given by [Hornik et al., 1989, Hornik, 1991] where it was shown that
a multilayer feed-forward networks can approximate any continuous function provided that
sufficiently many hidden units are available and that the activation functions are continu-
ous, bounded and non-constant. This result was generalized in [Leshno et al., 1993], where
it is shown that a standard multilayer feed-forward network can approximate any contin-
uous function to any degree of accuracy if and only if the network’s activation function
is not polynomial. With these conditions, a VAF activation function can substitute any
other network activation function without loss in generality and having as only overhead
an increase in the number of networks parameters equal to N ·(3k+1) with N total number
of the hidden neurons of the network. The number of required parameters can drop to
L · (3k + 1) with L number of hidden layers if we adopt the shared weights principle, i.e.
the functions on the same layer share the same VAF weights. With this design choice,
we reduce the number of parameters by making the reasonable assumption that if one
function is good for a neuron, then it should also be good for the other neurons of the
same layer. This assumption can also be motivated, instead of under the profile of the
sub-networks weights, in terms of activation function of a classic neural networks used in
the neural network literature, where activation functions belonging to same layer exhibit
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Figure 5.2: VAF units in a Full-Connected network (left) and in a Convolutional Neural
Network (right).

the same activation function. For the same reason we can assume that, for any level, all
the basis function fi(·) are equals to each other. Summing up, for every network level the
only hyper-parameters to set are:

• the number of hidden nodes m;

• basis function f(·).

It is also to be highlighted that in our approach we have a neural sub-network archi-
tecture which is still a MLFF network without adding external structures, so the only
new hyper-parameter is the number of VAF hidden units m. The training procedure can
be can be left unaltered (e.g. Stochastic Gradient Descent) since the new unit, being a
sparse sub-net with weights shared similarly to a convolutional network, fits perfectly into
any network architecture. Figure 5.2 shows how a VAF network can be integrated into
a common multilayer full-connected neural network (on the left) and in a convolutional
neural network (on the right).

5.2 VAF learning

As above discussed, our neural architecture with VAF is a MLFF network, consequently it
can be trained using any learning algorithm dedicated to MLFF network (see section 3.3).
However, in case of considering the same VAF acting uniformly for all neurons of a layer,
then there is the constrain that the weights of VAF networks should be considered shared
weights. From an implementing point of view this corresponds to consider VAF network as
a function convolving with the ali values [Lin et al., 2013]. The weight values of the VAF,
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being few and connected to each unit, they influence the behavior of the entire network,
therefore their behavior must be particularly taken into consideration during the training
phase, in particular, the initial value of the VAF weights can be decisive. Training of neural
networks usually starts initializing the weights and biases in a random way [Bishop, 2006]
or using any initialization rule as for example [Glorot and Bengio, 2010]. Although this
approach can also be followed in this case, one can choose different solutions for the VAF
weights. In particular, a possible alternative is to select the initial VAF’s weights so that
at the start of learning process the VAF networks approximate a pre-fixed function such
as, for example, a classic activation function as ReLU or Sigmoid or the f basis function
associated to the other hidden layers of the network. In this way hypothetically the function
would start from a notoriously already valid form in which the training process should only
modify it just enough to improve the performance of the network based on the training
data. However, it should be borne in mind that this choice would risk negatively affecting
the solution generated by the learning process, given that the resulting VAF could be too
similar to the initial function.

5.3 Comparison with existing models

According to our knowledge, the approach currently present in the literature that is closest
to that proposed by us is Network in Network (see section 4.3.1 and [Lin et al., 2013]),
with some substantial differences:

• hypothetically, the number of nodes in the last layer of a NIN unit could be greater
than one, thus losing the one-to-one correspondence between the neuron input and
the output. The lack of this constraint causes the loss of "function" approximator
for the sub-network, which is instead preserved in our approach by constraining the
VAF last layer to be composed by a single node.

• NIN sub-network provides the ability to have multiple hidden levels, resulting in
a new hyper-parameter (the number of levels) to be set and a greater number of
weights to learn. We think that this solution can be excessive, since the universality
theorem [Hornik et al., 1989, Hornik, 1991], together with the work carried out by
[Leshno et al., 1993], guarantees us that a single level is sufficient to approximate
any function, especially if this function has a form not too complex as expected.
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• the work proposed by [Lin et al., 2013] is tested only on convolutional network, we
instead consider also classic full-connected feed-forward networks.

5.4 Experiments and results

To empirically evaluate our approach we performed two different series of experiments. In
the first one, we consider standard MLFF networks, and in the second one convolutional
MLFF networks.

5.4.1 Model validation

A feed-forward neural network usually has many hyper-parameters to be set, some closely
related to the design of the network, as the number of neurons, the number of levels, the
activation function to be used, and others related to learning process as the learning rate
and momentum, weight decay. A set of acceptable parameters can be found using any
model validation procedure (for example cross validation 2.2); while this method could
be done with network with a low parameters number, it can be unfeasible with networks
with a great number of parameters since the validation procedure is exponential on the
number of hyper-parameters to be found. So, instead of using this kind of model selection
procedure for all the model’s hyper-parameters, is often preferred to fix some of these
to fixed values that other studies have shown to be valid even if on unequal but similar
problems. In our case, in CNN experiments, we use a network architecture that is very
similar to [Lin et al., 2013] and learning hyper-parameters setup used in [He and Sun, 2015].
To evaluate our approach we use K-Fold Cross-Validation (KFCV) procedure (see section
2.2 and algorithm 1). The optimal K value is between 5 and 10, because the statistical
performance does not increase a lot for larger values of K [Hastie et al., 2009]. Thus, in our
experiments we use K-FCV procedure with K = 10 to evaluate different neural network
models and learning approaches, unless it is not specified differently.

5.4.2 Selecting VAF hidden units

As above discussed, an important hyper-parameter to setup is the number k of hidden
nodes of the VAF units; instead of increasing the computational load of the cross valida-
tion procedures adding another hyper-parameter, we decide to find an acceptable k value
making a separate 5-CV run. We evaluate the accuracy given by a single-layer CNN with
a different number of filters and different values of k. We choose a subset of 7000 images
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Figure 5.3: The mean accuracy of single-layer CNN networks equipped with VAF units on
MNIST dataset with 5-fold CV. On the x axis we have the number of filter of the CNN;
each plot is a different value of k, that is the number of hidden nodes for the VAF units.

Name Istances Input Dim. N. classes Task Neural Network Arch. Ref.
Liver 345 7 2 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Wine 178 13 3 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Statlog Image Segmentation 2310 19 7 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Statlog Landsat Satellite 6435 36 7 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Cardiotocography 2126 22 3 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Seismic bumps 2584 18 2 Classif. MLFF [Sikora and Wróbel, 2010]
Dermatology 336 35 3 Classif. MLFF [Dheeru and Karra Taniskidou, 2017]
Diabetic retinopathy debrecen 1151 19 2 Classif. MLFF [Antal and Hajdu, 2014]
QSAR biodegradation 1055 41 2 Classif. MLFF [Mansouri et al., 2013]
Climate model simulation 540 18 2 Classif. MLFF [Lucas et al., 2013]
MNIST 70000 28× 28 10 Classif. CNN [LeCun and Cortes, 2010]
Fashion MNIST 70000 28× 28 10 Classif. CNN [Xiao et al., 2017]
Cifar10 60000 32× 32× 3 10 Classif. CNN [Krizhevsky and Hinton, 2009]

Table 5.1: Properties of used datasets and neural network architectures applied with.

taken from the MNIST dataset [LeCun and Cortes, 2010]. Results are showed in figure
5.3. The baseline is a CNN network equipped classic ReLU activation function. We can
notice two interesting results: the first one is that using VAF unit in a simple single-layer
CNN seems to significantly improve the performance, the second one is that increasing the
number of VAF hidden nodes beyond a certain limit does not bring significant benefits;
the best compromise for the k value seems to be between 3 and 5, since taking a higher
number increases the complexity of the model without bringing significant improvements.

5.4.3 First experimental scenario: Full Connected Feed-Forward
Neural Networks

In this experimental scenario we focus on evaluating the impact of both VAF sub-networks
as adaptable activation functions and VAF initialization, using standard MLFF networks.
In particular, we consider standard MLFF networks with 1 or 2 hidden layers with ReLU
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Model number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Standard net10 net25 net50 net100 net25,10 net50,10 net100,10 net50,25 net100,25 net100,50

VAF vnet310 vnet325 vnet350 vnet3100 vnet325,10 vnet350,10 vnet3100,10 vnet350,25 vnet3100,25 vnet3100,50

Table 5.2: Neural network architectures used in the first experimental scenario. See text
for further details.

activation function. To validate our network, we use 10 public datasets, 5 for binary clas-
sification and 5 for multiclass classification, with different number of points and features.
They are all reported in the first part of table 5.1.

The number of hidden neurons of the network changes in the set {10, 25, 50, 100}, but
for neural networks with 2 hidden layers we only selected models with a number of hidden
neurons belonging to the first layer greater than the number of hidden neurons of the second
layer. ReLU was selected as basis function f for the hidden nodes of VAF sub-networks.
Thus, for each dataset we made 4 network models with 1-hidden layer and 6 models with
2-hidden layers. Let us call netm1 and netm1,m2 the 1-hidden and 2-hidden layer networks,
respectively, with m1,m2 ∈ {10, 25, 50, 100}. On the basis of what was discussed in Section
5.1, to each network netm1 (netm1,m2) it is possible to associate a neural network vnetmm1

(vnetmm1,m2
) equipped with VAF sub-networks, m is the number of hidden nodes of VAF

sub-networks. In Table 5.2 we report the neural network architectures used in this series of
experiments. Neural network architectures were sorted in ascendant way according to their
complexity. Networks were trained according to an usual learning approach as described in
chapter 3. In particular, we used a batch approach, RProp [Riedmiller and Braun, 1992],
with “small” datasets, i.e, when the number of examples was less than 5 · 103, otherwise we
used a mini-batch approach, RMSProp [Tieleman and Hinton, 2012]. Moreover, networks
with VAF sub-networks were trained using two different strategies:

• a random initialization;

• an initialization such that they approximate the basis function (in our case, ReLU).

All the network models, i.e., netm1 ,netm1,m2 ,vnetmm1
and vnetmm1,m2

, were compared in a 10-
fold cross validation schema (see Algorithm 1). Note that Learning Rate (LR) in RMSProp
has been varied in the range [0.0001, 0.1] considering 10 equispaced values, while in RProp
η+ was selected equal to 1.01 and η− equal to 0.5. In Table 5.3 are summarized the
parameters of this series of empirical evaluations.

64



m1, m2 # VAF hidd. units VAF init. Learning approaches # max. epochs # folds
{10, 25, 50, 100} 3 {Random, ReLU} {RMSProp, RProp} 300 10

Table 5.3: Parameters of the first experimental scenario. See text for further details.

# filters for layer # VAF hidd. units VAF init. Learning approaches # max. epochs # folds
192 5 {Random, ReLU} SGD {100,300} 10

Table 5.4: Parameters of the second experimental scenario. See text for further details.

5.4.4 Second experimental scenario: Convolutional Neural Net-
works

To experimentally evaluate the impact of VAF on Convolutional Neural Networks (CNN),
we consider standard CNN networks with 2 and 3 convolutional layers and 3 different
dataset: MNIST, Fashion MNIST and Cifar10 (see Table 5.1 for further details); let us call
cnet2 and cnet3 respectively the 2-convolutional layer and 3-convolutional layer networks
with classic activation function (in our case, ReLU); as stated in section 5.1, to each
cnet, it is possible to associate a neural network vcnetm equipped with VAF sub-networks
equipped with m hidden units. Due to the greater complexity of the data compared to
those used in the first scenario, for MNIST and Fashion-MNIST dataset we use 2-layer CNN
networks and for Cifar10 3-layer CNN networks. All the experiments were done using a
10-Fold Cross Validation schema as described in 1. As also discussed in Section 5.2 and
5.4.3, a key aspect is how the VAF network is initialized, thus also in this case we choose
to initialize the weights of the VAF sub-networks either randomly or to approximate a
ReLU function. Networks were trained using Stochastic Gradient Descent (SGD) method
with mini-batching. Properties of the used CNN architectures and learning process are
summarized in table 5.4.

5.5 Results

In this section, we show the results obtained in the experiments carried out; we show
the performance difference between the different approaches and some activation functions
that have been obtained. Performances are measured in terms of averaged accuracy and
standard deviation, the best results are reported in bold style.
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5.5.1 First experimental scenario: Full connected feed-forward
NN

Performance results are showed in Table 5.5; in general, Neural networks with VAF out-
performs neural networks without VAF except in two cases where neural networks without
VAF outperforms neural networks with VAF. Anyway, standard deviations remain com-
parable or lower than those without VAF. Using one or the other of the two initialization
schemes does not seem to give. in general, significant differences.

standard Relu VAF Init random VAF Init ReLU
Accuracy: mean + St.Dev Accuracy: mean + St.Dev Accuracy: mean + St.Dev

Liver 0.6203± 0.0474 (net25,10) 0.6290± 0.0378 (vnet3100,10) 0.6348± 0.0375(vnet325)
Wine 0.8879± 0.0516 (net10) 0.9552± 0.0371 (vnet350) 0.9162± 0.0434 (vnet310)

Image segmentation 0.9463± 0.0128 (net25) 0.9351± 0.0179 (vnet350) 0.9381± 0.0079 (vnet350)
Satellite image 0.8821± 0.0101 (net100,50) 0.8856± 0.0028 (vnet3100) 0.8875± 0.0080 (vnet3100,25)

CTG 0.8979± 0.0263 (net100) 0.9040± 0.0073 (vnet3100) 0.8984± 0.0261 (vnet350,25)
Seismic bumps 0.9346± 0.0009 (net10) 0.9234± 0.0074 (vnet310) 0.9342± 0.0001 (vnet310)
Dermatology 0.9749± 0.0116 (net50,25) 0.9692± 0.0182 (vnet310) 0.9750± 0.0248 (vnet3100)
Diabetic 0.7254± 0.0290 (net100) 0.7315± 0.0238 (vnet310) 0.7333± 0.0231 (vnet350)

Biodegradation 0.8635± 0.0336 (net10) 0.8673± 0.0225 (vnet3100,10) 0.8569± 0.0108 (vnet350)
Climate simulation 0.9500± 0.0140 (net50,25) 0.9519± 0.0211 (vnet310) 0.9556± 0.0240 (vnet3100)

Table 5.5: Obtained accuracies in classification datasets by a K-Fold Cross-validation
evaluation. In bold the best results. The best neural architecture is in round brackets.

5.5.2 Second experimental scenario: Convolutional NN

In Table 5.6 are showed mean and standard deviations of accuracy for the three clas-
sification datasets Cifar10, MNIST and Fashion MNIST using a 10-fold cross-validation
approach. The best results are reported in bold style. One can note that VAF approach
outperforms always the standard approach, especially using random initialization scheme.
Also in this experimental scenario the standard deviations obtained by networks with VAF
remain comparable or lower than those without VAF subnetworks. Especially in Cifar10
case, we obtain a considerable improvement. In Figure 5.7, 5.10 are shown some exam-
ples of learned activation functions respectively in vcnn2 and vcnn3; in this scenario, the
initialization of the VAF hidden units seems to condition the performance more clearly,
especially for more complex dataset as Cifar10, where the performance improvements is
more evident. Analyzing the shape of the resulting activation function, it seems that, in
case of initialization as ReLU, the initial shape remains mostly unchanged, giving a result-
ing function that looks like a PReLU/Leaky ReLU. A more interesting behavior is given
by random initialization, where every VAF unit seems to exhibit greater changes respect
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Figure 5.4: Plots of some VAF behaviors on Full-Connected NN at the end of the learning
process.

to the initial function. This greater variability given by random initialization respect to
ReLU initialization seems to give an improvement in accuracy results as shown in Table
5.6.

standard ReLU VAF Init random VAF Init ReLU
Acc. + St.Dev Acc. + St.Dev Acc. + St.Dev

Cifar10 0.857± 0.002 (cnet53) 0.875± 0.003 (vcnet53) 0.860± 0.002 (vcnet53)
MNIST 0.991± 0.001 (cnet52) 0.994± 0.001 (vcnet52) 0.993± 0.002 (vcnet52)

Fashion MNIST 0.923± 0.001 (cnet52) 0.935± 0.002 (vcnet52) 0.934± 0.001 (vcnet52)

Table 5.6: Results on convolutional networks with 10-fold cross Validation

5.6 Conclusions

In this work, we proposed a simple and direct way to obtain adaptable activation functions
in a feed-forward neural networks. In particular, we proposed to modify a feed-forward neu-
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ral network without adaptable activation function by adding Variable Activation Functions
(VAF) in terms of one-hidden layer subnetworks. The resulting network is again a feed-
forward neural network. The proposed architecture doesn’t need of many more parameters
than networks using not adaptable activation functions as ReLU and the learning process
follows standard approaches. Importantly, VAF subnetworks can approximate arbitrarily
well any activation functions provided that the number of hidden neurons is sufficiently
large. We experimentally evaluated our architecture in two different series of experiments.
In the first series, we considered full-connected Multi-Layered Neural Network (MLFF)
networks. More specifically, we selected 10 networks with 1 or 2 hidden layers. A cor-
respondent network with VAF subnetworks was built for each of these 10 networks. We
obtained a total of 20 different neural architectures. These neural architectures were eval-
uated and compared using a K-Fold Cross-Validation (KFCV) procedure on 10 different
datasets (see Table 5.1). The results show that the approach with VAF subnetworks is
uniformly more performing than that without VAF networks. In particular, our approach
overcomes that without VAF networks in the 80% of the datasets. Only on three datasets
our approach had worse results.

In the second series, we considered Convolutional Neural Networks with 2 and 3 layers
and correspondent networks with VAF units and we evaluate them using 3 image dataset
for classification; also in this case the VAF subnetworks seem more performing respect to
network with fixed-shape units.

In conclusion, VAF units have been tested using traditional DNN and CNN networks
with various dataset and seem to give better results compared with networks with sim-
ilar design but with traditional ReLU functions. We showed that is possible to obtain
encouraging results without the need to use complex designs or particular initialization
schemes.
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Random init.

ReLU init.

Figure 5.7: Examples of changes in a VAF in a 2 layer conv. network using random (on
the left) and ReLU initialization (on the right). The blue line is the start function, the
orange line is the learned function.
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Random init.

ReLU init.

Figure 5.10: Examples of a resulting VAF in a 3 layer conv. using random (top) and ReLU
initialization (bottom). The blue line is the start function, the orange line is the learned
function.
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Part II

Integration of Context Information
through Probabilistic Ontological

Knowledge into Image Classification
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Chapter 6

Problem definition and related works

Introduction

This chapter wants to give an introduction to the ontologies; in the first part, the term
“ontology” will be discussed, showing how it is difficult to formalize. Various definitions
have been proposed over the years, each of these adding or modifying the previous ones
trying to give an ever more precise meaning to the term. It will therefore be shown how,
from the concept of ontology, we have passed to the concept of probabilistic ontology, and
of how this is defined. The chapter concludes with a brief state of the art on the use of
ontologies in pattern recognition and how these can be used in the representation of the
context, that is, in the representation of relationships between items in the same domain,
focusing in the image domain.

6.1 Problem definition

The topic of this part is the problem of recognising the content of a digital image. This
is a particularly important problem due to the very large number of images now available
on the Internet, and for producing an automatic description of the content of the images.
This research topic has received increasing attention, as shown by the references in Section
6.3, and well performing systems using deep networks have been proposed. We consider
a method for exploiting context information in the image for improving the performance
of a classifier. Classifiers for recognising the content of natural images are based usually
on information extracted only from images, and can be, in the most general case, prone to
errors. The approach taken in this paper attempts to integrate some domain knowledge in
the loop. The framework presented here aims at integrating the output a classier/detector,
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considered as the probability of a particular object to be present in a definite part of the
input image, with an encoded domain knowledge. The most used tool for encoding a-
priori information are standard ontologies, however, they do fail when dealing with real
world uncertainty. For this reason we preferred to include in our framework a Probabilistic
Ontology (henceforth PO) [Ding and Peng, 2004], which associates probabilities to the
coded information, and then provides an adequate solution to the issue of coding the
context information necessary to correctly understand the content of an image. Such
information is then combined with the classifier output to correct possible classification
errors on the basis of surrounding objects.

The aim of this work is to boost the performance of a system for the recognition/identification
of classes of objects in natural images introducing in the loop knowledge coming from the
real world, expressed in terms of probability of a set of spatial relations between the objects
in the images. A probabilistic ontology can be made available for the considered domain,
but it could also be built or enriched by using entities and relations extracted from a
document related to the image. For example, the picture could have been extracted from
a technical report or a book, where the text gives information which are related to the
considered images. We wish to stress the fact that we are not thinking of a text directly
commenting or describing the image, but of a text which is completed and illustrated by
the image. In this case, both the classes of objects which can appear in the image and the
relations connecting them could be mentioned in the text and could therefore be automat-
ically extracted [Bach and Badaskar, 2007]. A probability can then be associated to them
on the basis of the reliability of the extraction or the frequency of the item in the text.

The objective of the our system is to obtain a set of keywords that can be used to
describe the content of an image. The system takes an image as input and produces a set
of hypotheses on the presence of some objects in the image. Some of this hypotheses are
likely to be wrong. As an example let us consider the case of the reflection of a building
on the water, beneath a boat; it is likely that a simple classifier will label that reflection
as building, while the boat can be labelled correctly. Our opinion is that the spatial
relation between the two image segments, together with the external knowledge that an
image segment beneath a boat and surrounded by water is more likely to be water than a
building, can be used to correct the misclassification. This world knowledge, formalised in
a probabilistic ontology, together with the output of the classifier, is fed to a probabilistic
model [Bishop, 2006], with the goal to improve the performance of the single classifiers.
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The framework described in this work has two main aspects of novelty. The first one
is that, at the best of our knowledge, a probabilistic ontology has never been proposed for
a computer vision problem. The integration of a probabilistic model with a probabilistic
ontology presents a second element of novelty.

6.2 Ontologies

The term “ontology” has remote origins; born in the philosophical field (as discussed in,
for example, [Devaux and Lamanna, 2009, Guarino, 1995]), it comes to the present day in
the information technology field as a knowledge description; one of the first definitions of
“ontology” in computer science was given in [Gruber, 1995]:

Definition 1. “An ontology is an explicit specification of a conceptualization. The term
is borrowed from philosophy, where an Ontology is a systematic account of Existence. For
Artificial Intelligence (AI) systems, what “exists” is that which can be represented. A
conceptualization is an abstract, simplified view of the world that we wish to represent for
some purpose. Every knowledge base, knowledge-based system, or knowledge-level agent is
committed to some conceptualization, explicitly or implicitly”.

A more formal description of an ontology is given by in [Guarino, 1995], where the
previous definition is examined and discussed, focusing on the meaning of term conceptual-
ization, which is fundamental for the ontology concept. In [Genesereth and Nilsson, 1987]
a conceptualization is defined as

Definition 2. “Every knowledge base, knowledge-based system, or knowledge-level agent is
committed to some conceptualization, explicitly or implicitly.”

and is explained as an equivalent of an extensional relational structure that we report
as defined in [Guarino et al., 2009]:

Definition 3. An extensional relation structure is a tuple (D,R) where:

• D is a set called the universe of discourse

• R is a set of relations on D.

In [Guarino et al., 2009] is pointed out that the above definition depends too much on a
specific state of the world, while a conceptualization should be about concepts, i.e., it should
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not change if the world changes, while an extensional specification of a conceptualization
would require listing the extensions of every (conceptual) relation for all possible worlds.
For this purpose, the authors suggest to specify a conceptualization in an intensional way,
using suitable axioms in a given first-order logic language L. More formally, the authors
define a conceptualization as an intensional relation structure:

Definition 4. An intensional relation structure is a triple C = (D,W,R) with:

• D is the universe of the discourse;

• W the set of the possible worlds;

• R a set of intensional relation in the domain < D,W > where an intensional relation
rn of arity n is a total function rn : W → 2D

n where 2D
n is the set of all n-ary

extensional relation on D.

Finally, using the above definition, [Guarino et al., 2009] defines ontological commitment
used to define an ontology :

Definition 5. Let L be a first-order logical language with vocabulary V and C = (D,W,R)

an intensional relation structure; an ontological commitment for L is a tuple K = (C, I)

where I is a total function I : V → D∪R that maps every symbol of V to either an element
of D or to an intensional relation in R.

Definition 6. Let L be a first-order logical language with vocabulary V and C = (D,W,R)

an intensional relation structure and K an ontological commitment; an ontology OK for
C with vocabulary V and ontological commitment K is a logical theory consisting of a set
of formulas of L, designed so that the sets of its models approximates as well as possible
the set of intended models of L according to K.

So, an ontology can be viewed as just a logical theory designed in order to capture
the intended models corresponding to a certain conceptualization and to exclude the un-
intended ones, in other terms “it is an approximate specification of a conceptualization:
the better intended models will be captured and non-intended models will be excluded”
[Guarino et al., 2009].

Another important property of an ontology, as described in [Sir et al., 2015], is the
Open Word Assumption (OWA,[Reiter, 1987]), which highlights even more the difference
between ontologies and common databases, which are based instead on Closed Word As-
sumption (CWA, [Genesereth and Nilsson, 1987]); while CWA is used by systems that
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assume to have complete information about a given domain, an OWA system is based on
the assumption that the contained information are incomplete, so the desired information
have to be inferred or deducted.
In [Noy and Mcguinness, 2001] are summarized a list of typical reason for the development
of ontologies:

• To share common understanding of the information structure between people or
software;

• To enable reuse of the domain knowledge;

• To make the domain assumptions;

• To separate the domain knowledge from the operational knowledge;

• To analyze the domain knowledge.

Ontologies can not cope properly with uncertain information when dealing with real world
problems. To overcome this problem, over the last years some tools have been designed
for adding probabilities to the information contained in ontologies, obtaining probabilistic
ontologies [Ding and Peng, 2004]. A definition of probabilistic ontology is given in [Costa,
2005]:

Definition 7. A probabilistic ontology is an explicit, formal knowledge representation that
expresses knowledge about a domain of application. This includes:

1. Types of entities that exists in the domain;

2. Properties of those entities;

3. Relationships among entities;

4. Processes and events that happen with those entities;

5. Statistical regularities that characterize the domain;

6. Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge;

7. Uncertainty about all the above forms of knowledge;

where the term entity refers to any concept (real of fictitious, concrete or abstract) that can
be described and reasoned about within the domain of application.
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Among the tools proposed one of the most important is probably PrOWL [Costa, 2005];
PrOWL, based on Multi Entity Bayesian Networks (MEBN) [Laskey, 2008] (an extension
to Bayesian [Ben-Gal, 2008] network to first order logic’s expressive power), allows to define
probabilistic ontologies capable to encode a priori knowledge for real world applications
and make inferences based on ontologies defined.

6.3 Related Work

The importance of context is known from the dawn of pattern recognition; in [Toussaint,
1978] is made a clear dissertation on this topic, pointing out how the same entity can show
different properties in different contexts, showing some basic visual example. An example
of the importance of relations between object In the human brain is shown in [Bar and
Ullman, 1996] where is stated that “proper spatial relations among the features of a scene
decrease response times and error rates in the recognition of individual features”; this con-
sideration is shown through a set of psycho-physical experiments. In pattern recognition,
the work done in [Schneiderman and Kanade, 1998] uses a probabilistic model for object
recognition task using local appearance. For instance, given an object O and an image I,
the authors model the posterior probability P (O|I) in a functional form applying a set of
simplifications and assumptions to the general form of the posterior probability function,
i.e. P (O|Region) = P (Region|O)P (O)

P (Region)
; applying the Bayes theorem and making statistical

independence assumptions, is then possible to write a decision rule in the form:{
P (Region|O)

P (Region|O)
≥ λ the object is present in the region

P (Region|O)

P (Region|O)
< λ the object is not present in the region

with λ = P (O)
P (O)

. This approach could be generalized for a large set of object, taking
into account that assumption as statistical independence makes this approach not good
to represent many relationships as for example brightness distribution across the object
larger than a subregion. For instance, authors tries this approach for face detection.

In a similar way, [Schmid, 1999] tried to recognize a query image which can be a part
of a model image in a probabilistic way; briefly, given a query image Q and a set of n
model images M = {m1,m2, . . . ,mn}, they model every possible set of matches between
a query image and model images as an Hypothesis, so the query image can be repre-
sented by the set H = {h1, h2, . . . , hk} of all possible Hypothesis and searching the most
similar model image can be view as to find the model image m∗ with the highest prob-
ability P (m∗|H); assuming independence between hypothesis in H and using Bayes rule,
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Pr(m∗|H) =

k∑
i=1

Pr(Hi,|m∗) Pr(m∗)

n∑
j=1

k∑
i=1

Pr(Hi,|mn)P (m∗)

; the probabilities P (Hi, |mn) are computed as combina-

tion of correspondences quality, spatial and global coherence, as defined in [Schmid, 1999].
A few years later, another study in this direction, but for image automatic annotation, was
proposed in [Zhang et al., 2005], where a probabilistic semantic model in which the visual
features and the textual words are connected via a hidden layer is proposed. More recently
in the context of 3D object recognition, a system that builds a probabilistic model for each
object based on the distribution of its views was proposed in [Wang et al., 2013].

In [Spyns et al., 2002] the differences and similarities between ontologies and data
models (as databases) are discussed, and a new ontology engineering framework (DOGMA
framework), which wants to resolve the conflict between the generality of the knowledge,
as a fundamental asset of an ontology, and the high number of domain rules that are
needed for effective interoperability, is introduced. The authors of DOGMA decompose an
ontology into an “ontology base”, which consists of sets of intuitively “plausible” domain
fact types, and a layer of “ontological commitments”, where each commitment holds a set
of domain rules to mediate between the ontology base and its applications.

[Breen et al., 2002a, Breen et al., 2002b] was, in our knowledge, one of the first studies
that introduces ontologies in a classification framework; the proposed system combines the
use of ontologies and neural networks as object identifiers to improve the precision in the
classification of an image based on its content using the actual objects within an image to
discover useful relationships classifying the entire image.

The study presented in [Mezaris et al., 2003] is a method to combine image processing,
ontology-based knowledge and machine learning techniques together to make an object-
based image retrieval system; in this work, the ontology results as a vocabulary used to
make a qualitative description of an image region obtained by an initial segmentation
process. So, for every semantic object, is necessary to supply a description using the
intermediate-level descriptors provided by the ontology. These intermediate-level features
are mapped to a set of low-levels features calculated for each region that summarize prop-
erties as color, position and shape. The intermediate descriptor are used to product a first
output which is subsequently refined with a relevance-feedback system (useful for excluding
obviously undesirable regions) and an Support Vector Machine to product the final query
output. In [Hollink et al., 2003] was proposed a tool to make semantic search in image
dataset with the support of four common ontologies.
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[Wu et al., 2004] an ontology-based learning strategy to improve the accuracy of individ-
ual classifiers considering the possible influence relations between concepts in an ontology
hierarchy was proposed. Moreover, an ontology driven classification system for protein
classification was proposed in [Wolstencroft et al., 2006].

The authors of [Chang and Huang, 2008] propose a document classifier system based
on Ontology and the Naive-Bayes Classifier.

[Fan et al., 2007, Fan et al., 2008] proposed a scheme for achieving automatic multi-
level image annotation incorporating concept ontology in large-scale image collections. In
[Hudelot et al., 2008] was proposed an interesting work dedicated to the representation of
uncertain using a fuzzy representations of spatial concepts in the image domain, i.e. rela-
tions such as “intersects”, “in the interior of”, “exterior to” and many others were defined
from fuzzy set theoretical concepts [Dubois, 1980]; these relations are then used to enrich
a generic spatial ontology in order to guide image interpretation.

in [Zhang et al., 2014] a hierarchical Bayesian network is introduced in a weakly su-
pervised segmentation model; in particular the system learns the semantic associations
between sets of spatially neighbouring pixels, defined as the probability these sets to share
the same semantic label.

In the context of image retrieval, [Sarwar et al., 2013] proposes SIRNS (Semantic Image
Retrieval of Natural Scenes), an ontology based image retrieval framework from a corpus
of natural scene images while, in the context of information Retrieval, [Alicante et al.,
2014] introduced a probabilistic model based on Graphical Models to integrate ontological
constraints with the output of a statistical classifier, with the goal of constructing an index
for a more semantically oriented search engine for collection of documents. [Abdollahpour
et al., 2015] improves Bag-of-Visual-Words method [Sivic and Zisserman, 2003, Csurka
et al., 2004] using an ontology to achieve higher classification accuracy.

Finally [Eweiwi et al., 2015], in the context of action recognition, presents a generative
model that allowsfor characterising joint distributions of regions of interest, local image
features, and human actions.
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Chapter 7

Integrating a priori knowledge

Introduction

This chapter wants to describe the approach proposed to improve the classification results
using the knowledge given by an ontology. Using the general architecture described in Sec-
tion 7.1, two different framework to combine together the knowledge given by the ontology
with the results given by a generic probabilistic classifier are designed. It is worth to point
out that the proposed frameworks are model-agnostic, that is they don’t require to know
any information about the structure and the internal state of the used classifier. The only
constraint required by our frameworks is that the used classifiers return a probability dis-
tribution of the possible classes for any input. The chapter is structured as follow: Section
7.1 describes the proposed system architecture; 7.2 describes our experimental setup; in
Section 7.3 are shown the results obtained.

7.1 Proposed architecture

The proposed model is composed by the following components:

• a probabilistic classifier, which returns the probability for a detected object to belong
to a class;

• a probabilistic ontology, which contains the knowledge about object relations in a
probabilistic way;

• the probabilistic model, which merges the ontological knowledge with the class prob-
ability given by the classifier.
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Figure 7.1: Scheme of the proposed framework.

We start from the hypothesis to have a classifier that does not always return reliable results,
for example due to a few training data available, and then we try to improve the results
of the classification through the use of the domain knowledge contained in an ontology.

The classifier

In a classification problem, given an input x ∈ X, with X input space, a probabilistic
classifier Γ returns an estimated class for x using an estimated probability distribution on
the set C of all possible classes, i.e. Pr

Γ
(c|x), ∀c ∈ C. The simplest measure of good-

ness of a classifier is the accuracy, that is the percentage of examples correctly classi-
fied in a given set (generally called test set). Formally, given a classifier Γ, a test set
S = {(x(1), c(1)), (x(2), c(2)), . . . , (x(n), c(n))} ⊆ X, and a classifier Γ : X → C, the accuracy
A is given by:

A =
|{Γ(x(i)) = c(i) s.t. (x(i), c(i)) ∈ S}|

|S|

with Γ(x(i)) = arg max
c∈C

Pr
Γ

(c|x).
The accuracy doesn’t take into account how much every wrong classification is far

from the correct one, since the predicted class is the one with the maximum probability,
without taking into account the other class probabilities that can be viewed as other
source of information. For example, when two or more class probabilities are very close
to each other, the right class could be not the first one but the second one in terms of
probability, and this could be a particularly serious issue when the right class and the
wrong class selected by the classifier are very close to each other in terms of probability’s
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Figure 7.2: Examples of probability distributions for a classifier.

values. Figure 7.2 shows an example: on the left, an image classifier gives the probability
distribution under six class: computer, sink, bed, chair Table, Jar; the most probable class
for the classifier is the table, while the real class (sink) is in second-most probable class;
the center and the right figures show a similar situation with the right class (bed) that is
still the second one in terms of probability.

So, if we define a function ρΓ(x, c) : X × {1, . . . , |C|} → C which returns, for every
x ∈ X, the K-th most probable class under the distribution Pr

Γ
, we can define a classifier

Γ a K-best classifier with accuracy A if it gives a mean accuracy of A and, for every
misclassified item x, the real class c is in { ρΓ(x, 2), . . . , ρΓ(x,K)}.

In other terms, in a K-best classifier we take care not only on the accuracy A, but also
if the right class is in the first K classes or not, so it is possible to deduce that the learned
model is not too wrong and that it can be improved without training it from scratch.
Furthermore, we can use the distance between probabilities as a measure of certainty of a
classifier: if for an input x there is a value preponderant over the others, a classifier can be
considered Certain about its result, but if there are many values close to the maximum,
the classifier can be considered Doubtful.

In other words, we want to take into account when the classifier has more than one
possible plausible choice for a given input x; in the worst case, all the classes have the same
probability, that is we have an uniform distribution where every class has a probability of
value 1

|C| , with |C| number of classes; so, given an input x and a |C|-class classifier Γ, we
can say that:

• the classifier Γ is Certain about x(i) if exists a class probability c′ ∈ C that is
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positively “far enough” from the uniform probability, i.e. ∃c′ ∈ C s.t. | 1
|C| −Pr

Γ
(c(i) =

c′)| > 1− δ with 0 ≤ δ ≤ 1 degree of reliability of the classifier Γ;

• the classifier Γ is Doubtful about x(i) when the classifier is not Certain, i.e. all the
classes are close to the uniform probability.

When the classifier is Certain, we can be sure enough of the answer, but when it is
Doubtful we may need external help.

The Probabilistic Ontology

The scheme of the chosen Probabilistic Ontology contains a set of spatial relations between
the classes of the items. The probabilities are estimated from a training set of images where
the objects have been manually labelled, and spatial relations are constructed analyzing
pairs of regions of interest.

The probabilistic models

We want to improve a probabilistic classifier Γ using knowledge in an Ontology Ω, so we
propose two strategies for merge the probabilities given by Γ together with the probabilities
given by Ω; the first one can be suitable for a classifier where the only performance measure
considered is the classic accuracy, while in the second one we consider different top-K
classifiers (see section 7.1).

First Framework

In this scenario, we consider a generic classifier without taking care about any goodness
measures about the learned classifier. We gain the problem learning a log-linear model
that bind together the classification given by the probability with the classification given
by the ontology; we can model the probability that the real classes c(i), c(j) of two input
x(i), x(j) that are in a relation r(x(i), x(j)) ∈ R are respectively c1 and c2 as:

Pr
(
c(i) = c1, c

(j) = c2|x(i), x(j), r(x(i), x(j))
)

=

=
1

Z
exp

(
vc1 Pr

Γ
(c(i) = c1|x(i)) + vc2 Pr

Γ
(c(j) = c2|x(j)) + wr,c1,c2 Pr

Ω
(r, c1, c2)

)
with {vc : c ∈ C}, {wr,c1,c2 : c1, c2 ∈ C∧r(c1, c2)} parameters to learn; the first ones are class
parameters, the second one are relation parameters; in total, we have |C| class parameters
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and |R| · |C|2 relation parameters to estimate using a maximum likelihood approach. So,
given an input x(i), the final class can be estimated computing a score for every class c:

Score(c, x(i)) = max
x(h):∃r∈R,r(x(i),x(h))

∑
c2∈C

∑
r∈R

Pr
(
c(i) = c, c(h) = c2|x(i), x(h), r(x(i), x(h))

)
(7.1)

and we find the final estimated class ĉ for the input x maximizing on it:

ĉ = arg max
c∈C

(Score(c, x)) (7.2)

Second framework

In this scenario, we consider doubtful classifiers, i.e. with more classes close to the maxi-
mum probability values. Remembering that, as stated in Section 7.1, we define a classifier
Γ Certain about an input x(i) if ∃c′ ∈ C t.c. | 1

|C| − Pr
Γ

(c(i) = c′)| > 1 − δ, we model

the probability that the real classes c(i), c(j) of two input x(i), x(j) that are in a relation
r(x(i), x(j)) ∈ R are respectively c1 and c2 as:

Pr(c(i) = c1, c
(j) = c2|r(x(i), x(j))) =

=

Pr
Γ

(c(i) = c1, c
(j) = c2|x(i), x(j)) if | 1

|C|2 − Pr
Γ

(c(i) = c1, c
(j) = c2|x(i), x(j))| > (1− δ)2

Pr
Γ

(c(i) = c1, c
(j) = c2|x(i), x(j))(1 + εG(∆P ))

where:

• Pr
Γ

(c(i) = c1, c
(j) = c2|x(i), x(j)) is the probability given by the classifier Γ that x(i)

belongs to class c(i) and x(j) belongs to class c(j); assuming that x(i) and x(j) are
statistically independent, Pr

Γ
(c(i) = c1, c

(j) = c2|x(i), x(j)) = Pr
Γ

(c(i) = c1|x(i)) Pr
Γ

(c(j) =

c2|x(j));

• 1
|C|2 is the uniform probability of two points assuming that they are statistically
independent;

• 0 ≤ δ ≤ 1 is the degree of reliability of the Classifier;

• ε = 1− δ is the is degree of reliability in the ontology Ω; it shows how much increase
or decrease the probability relying on the Ontology response; we assume that a
decreasing confidence in the classifier increases the confidence in ontology;
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• ∆P = Pr
Ω

(c1, c2|r)−Pr
Γ

(c(i) = c1, c
(j) = c2|x(i), x(j)) is the difference between the prob-

ability given by the Ontology and the probability given by the Classifier (assuming
that x(i), x(j) are statistically independents);

• G(x) is a function that takes into account the difference ∆P between the probabilities
given by Γ and Ω; for simplicity, we choice G(x) = sign(x), so that G(∆P ) gives us
just the sign of its argument, leaving the amount of how much increase or decrease
the potential to the confidence factor ε (e.g. if the probability given by Ω is greater
than the probability given by Γ, we increase the potential of a percentage ε, decrease
otherwise).

The score and the final class is then computed using Equations 7.1 and 7.2.

7.2 Experimental assessment

The main objective of the experiments described in this Section is to assess whether the
model proposed really improves the performance of a classifier. To this end we measured
the classification performance of our model against the classifier performance.

7.2.1 Model validation

The dataset selected for this experimental assessment is a subset of the MIT-Indoor [Quat-
toni and Torralba, 2009], where interesting objects have been manually segmented and
labelled; this approach gives us a reliable ground-truth for estimating the performance
of our combination model. The data set includes 1, 700 images that have been manually
segmented. These images were taken at common indoor locations, such as kitchens, bed-
rooms, libraries, gyms and so on. The data set has been partitioned in three subsets: the
first two, each one containing 30% of the whole data set, are used for training the proba-
bilistic ontology (DPO) and the first combination model (DCM) proposed in this work, and
the remaining 40% go into the DTest subset that is used to assess the performance of the
system. In our experiments the three subset have been selected randomly at each run of
the algorithm. Each run has been repeated several times in order to avoid experiment bias
due to lucky or unlucky data splits. From our point of view it is particularly important
that the probabilistic ontology and the combination model are trained on different data,
as this is what it is very likely to happen in real cases.
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The data-set contains a large set of object classes, some of them with very few objects.
In order to avoid the impact that small classes might have on the construction of the
probabilistic ontology we preferred to take only the six with the largest number of items.

Used classifiers

In order to make this experiment as general as possible we initially decided not to use an
existing system for the detection/classification task, but preferred to design a simulated
top-K classifier, for which we were able to set a desired accuracy (see, for instance, [Zouari
et al., 2004]) together with K value. To this end we designed a strategy that is detailed
by the pseudo-code in Algorithm 9. Briefly, we assign the highest probability value to the
gold class with a probability given by the desired accuracy, while in the other case the gold
class has a probability in the first K value in descending order.

In this way it is possible to have an idea of the impact that the ontological information
has on the performance, and to describe the dependence of the system performance on
the classification accuracy. Next, we tried in a real case if the chosen approach led to
significant improvements. Once verified that our approach gave acceptable results in the
simulated classification environment, we moved to an experimental environment that uses a
real classifier. For instance, we used a Neural Network designed as described in [Krizhevsky
et al., 2012], well known in the literature thanks to the good performances achieved on
difficult data-sets like ImageNet [Deng et al., 2009].

Ontology construction

The ontology used was build searching a set of binary relation as described in Section 7.1
on the DPO ⊂ D subset. We choose the following two symmetrical relations:

• intersect(x, y): two objects x and y intersect if exists at least a point of x contained
in y;

• closeness(x, y, T ) : the object x is close the object y if Area(x)+Area(y)
ConvexHull(x,y)

> T where
Area(·) is a function that returns the area of the argument and ConvexHull(·, ·)
returns the convex hull of the arguments.

the final relations set R is then composed by the following three relation:

R = {intersect(x, y), near(x, y), veryNear(x, y)}
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with near(x, y) = closeness(x, y, T1) and veryNear(x, y) = closeness(x, y, T2) using T1 = 0.5

and T2 = 0.8. The probability that two classes are in a given relation is estimated by the
frequency of such event in the data set. Formally, denoting by D a set of image segments
used for computing the probabilities, and with R the set of relations considered, with C
the set of classes of objects, the probability that an object of class c1 ∈ C is in relation
r ∈ R with an object of class c2 ∈ C is computed as as:

Pr
Ω

(r, c1, c2) =
|Dr(c1, c2)|∑

cx,cy∈C
|Dr(cx, cy)|

(7.3)

where Dr(c1, c2) ⊆ D is the set of regions of classes respectively c1 and c2 that satisfy the
relation r. for simplicity, we use binary relation but the structure is easily generalizable to
relations with different cardinality.

We use Protégé [Musen, 2015] for formalizing the schema of the ontology, and we use
Pronto [Klinov and Parsia, 2008, Klinov and Parsia, 2013] as a reasoner for Probabilistic
Ontologies.

7.2.2 First experimental scenario

In this scenario, we tried our first Framework described in Section 7.1 using a simulated
multi-class top K-classifier with a given accuracy. For the first experimental framework, we
don’t need the K-best properties, so we fix K = |C| i.e. the only parameter is the desired
accuracy A. The tests were performed with simulated classifiers with different accuracy;
for instance, we try it with accuracies in set {30%, 40%, 50%, 60%, 70%, 80%, 90%} and K
in {2, 3, 4, 5}. As stated in Section 7.1, this approach needs a set of parameters to be
learned. If we consider the number of used relations |R| = 3 and classes |C| = 6, we need
114 parameters. To validate our results, we repeat the experiments for 20 times and plot
the average accuracy.

7.2.3 Second experimental scenario

In this scenario, we tries our second Framework described in Section 7.1 using a simulated
multi-class top K-classifier with a given accuracy. The main advantage lies in not needing
a training phase for the probabilistic model, at the price of stronger a priori conditions on
the classifier. For this reason this approach has been tested on different simulated top-K
classifiers with different accuracy values. For instance, we try it with accuracies in set
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{30%, 40%, 50%, 60%, 70%, 80%, 90%} and K in {2, 3, 4, 5}. To validate our results, we
repeat the experiments for 10 times and plot the average accuracy.

7.2.4 Third experimental scenario

In this experiment, we try our second approach using a real classifier. For instance, we use
a neural network designed as described in [Krizhevsky et al., 2012]. To avoid retraining
the network from scratch, we decided to use a freely available model already trained on
ImageNet data [Deng et al., 2009] and then only make a fine-tuning phase with our training
data. This kind of approach is very common in literature as a type of transfer learning [Pan
and Yang, 2010] and it allows to obtain acceptable performances by using models already
trained on data that are usually not available or that require a large computational time
to be learned.

7.3 Results

7.3.1 First experimental scenario

The system accuracy of the first approach proposed in Section 7.1 are depicted in Figure
7.3 and compared with the accuracy of the simulated classifier applied alone (main diago-
nal). We see that the proposed model outperforms the baseline for low classifier accuracy,
while deteriorate when the classifier accuracy improves. This trend is in line with our
expectations, since it highlights how the contribution given by an external agent is useful
in case of low performance of the basic system, while it can become irrelevant (or even
counter-productive as in the case of the model under examination) in the case in which
the classifier already has good performance.

7.3.2 Second experimental scenario

The system accuracy of the second approach proposed in Section 7.1 on simulated classifier
are depicted in Figure 7.4; every figure shows a line for every top-K classifier+ontology with
K ∈ {2, 3, 4, 5}. We see that the proposed model outperforms the baseline of low K-best
classifier accuracy with low K, while deteriorates when the classifier accuracy improves
and with high values of K. The explanation of this behavior can be given by the fact that
as K increases, the goodness of the trained model decreases, making the contribution of
the ontology vain if not counterproductive.
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Figure 7.3: Results given by the first framework proposed (red line)

7.3.3 Third experimental scenario

The system accuracy of the approach proposed in Section 7.1 using a real classifier with
different δ values are depicted in Figure 7.5; is possible to see that, with acceptable val-
ues of trust in the ontology, we have an improvement in the classification base accuracy,
confirming what has already been verified with the simulated classifiers. Even in this case,
giving too much confidence to the ontology, the performance gets worse. This could be
due to the relationships used, perhaps too simple for the problem in exam. However, the
improvements obtained seem encouraging showing the validity of the proposed method and
we expect that, when more sophisticated ontologies will be available containing information
from large data sets, the integration will give better results.

7.4 Conclusions

This work proposes two probabilistic models for integrating probabilities coming from a
probabilistic ontology, representing a domain knowledge, with the probabilities produced
by some sort of statistical classifier. The two models have been experimentally evaluated
and both of them showed performance that may encourage to push forward for an use in
real systems, as showed in the third experimental scenario.

In order to obtain a clear idea of the performance of the integration module, we removed
the effects of most of the external factors. To this end, we conducted our experiments using
images that have been manually segmented and labelled, and used a simulated classifier
designed in such a way that we could control its accuracy.
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baseline:30% baseline:40% baseline:50%

baseline:60% baseline:70% baseline:80%

Figure 7.4: Accuracy obtained in the second experimental framework

A prototype of a fragment of a probabilistic ontology has been designed and populated
using three binary relations which can be automatically detected in input images. The
probabilities corresponding to each relations have been estimated from their frequencies in
the ontology training set. When more sophisticated ontologies will be available containing
information from large data sets, we expect the integration to give even better results.
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Figure 7.5: Accuracy of the second framework proposed (red line) applied to a real classifier
with various values of δ; is possible to see that, with high value of δ (i.e. acceptable values
of trust in the ontology) we have an improvement in the classification base accuracy (blue
line)
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Algorithm 9: K- best Classifier simulator
Input:
K : desidered K value;
A : desidered accuracy;
C : classes set;
c∗ : the gold class index of the input to classify.
Output:
a probability distribution with the gold class c∗ in the first K values.

1 Let vectorProb[|C|];
2 Let vectorOutput[|C|];
3 forall 0 ≤ i < |C| do
4 vectorProb[i] ∼ U(0, 1);

5 vectorProb← Sort(vectorProb,′DescentOrder′);
6 if U(0, 1) < A then
7 V ectorOutput[c∗]← V ectorProb[0];
8 V ectorProb[0]← −1;

9 else
10 Let r ∼ bU(1, K)c;
11 Output[c∗]← vectorProb[r];

12 forall 0 ≤ i < |C| do
13 if i == c∗ then
14 continue;

15 Let t ∼ U(0, |C| − 1);
16 while V ectorProb[t] == −1 do
17 t ∼ U(0, |C| − 1);

18 vectorOutput[i]← V ectorProb[t];

19 normalize(vectorOutput);
20 return vectorOutput;
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Chapter 8

Conclusions and final considerations

8.1 Achievements

This thesis has proposed two different methods to improve automatic classification per-
formances in terms of accuracy, the first one suitable for specific type of classifier, that is
a Feed-Forward Neural network, the second one suitable per each probabilistic classifier,
that is a classifier whose output is a probability distribution over the possible classes.

In the first part of this work (Chapters 3,4 and 5), a novel type of trainable activation
function is presented, together with survey of the other works in this area. The main
contributions of this part are two, detailed below.

The first one (Chapter 4) proposes a new taxonomy to categorize the trainable activation
functions proposed in the literature based on their main features, together with a descrip-
tion of these.

The second one (Chapter 5) presents a simple trainable activation function for Feed-
Forward Neural Networks which can be build in terms of one-hidden layer sub-networks,
so that it does not require any modification to the learning algorithm. Experiments show
that the use of this new activation function improves the accuracy of the neural networks
in many cases respect to fixed-shape activation functions.

In the second part of this work (Chapters 6 and 7), two novel frameworks to improve the
accuracy of a classifiers using the support of an external knowledge base are proposed.
Several tests on both synthetic and real classifiers show that the proposed approaches can
improve the classification performances.
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8.2 Final considerations

The introduction of rectified activation functions has certainly helped to renew the interest
in topics such as neural networks, however the extensive literature on this subject (Chapter
4) is showing how these functions are not said to be the best choice, and how a “customized”
function based on data can, in many cases, help performance.

The activation function proposed in this work (Chapter 5) is easy to implement and, at
the same time, provides promising results compared to those obtained on functions usually
used in literature.

In any case, the introduction of the new parameters necessary for a trainable activation
function leads the model to be more complex, thus leading to the question of when to use
this particular class of functions; obviously, this depends on the degree of accuracy that
the real application requires.

The second part of the this work shows how a generic classifier can achieve better perfor-
mance through the use of external media, as a basis of knowledge. The use of a simulated
environment allowed us to get away from the classifier actually used, giving us the possi-
bility to generalize our results for any probabilistic classifier. In this work the knowledge
base has been implemented as a fragment of a probabilistic ontology, that has been built
by using three relation types related with reciprocal position of the objects in the images.
They can be automatically recognised directly in the input images, while the corresponding
probabilities have been estimated from their frequencies.

We have therefore provided a possible framework to integrate the information contained
in the ontology with the outputs of a classifier (Chapter 7). The strategies proved to per-
form in an acceptable way to a system only based on the statistical classifier and could
be used in an actual system. The work carried out therefore opens up new scenarios for
the revaluation of classifiers not based on neural networks, and how these can be improved
even without knowing their internal structure in detail.
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