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I am also grateful to the Professors of the Department of Economic and

Statistic Sciences who have been fundamental for me in approaching a different

subject with respect to the one that I have studied during the bachelor and

the master.

Last but not least I thank all my family for their invaluable support and



CONTENTS 4

endurance.



Chapter 1

Introduction

In this thesis some aspects of the class of Aggregative Games are investigated.

Aggregative games are strategic form games where each payoff function

depends on the corresponding player’s strategy and some aggregation among

strategies of all players involved. Classical examples of aggregation are the

unweighted sum and the mean.

The concept of aggregative games goes back to Selten (see [92]) who considers

as aggregation function the summation of players’ strategies. Later, this concept

has been studied in the case of other aggregation functions and it has been

generalized to the concept of quasi-aggregative games (see [2], [18], [24], [41],

[54], [98]).

In literature, there are many games that present an aggregative structure:

among them, we mention Cournot and Bertrand games, patent races, models of

contests of fighting and model with aggregate demand externalities. Many com-

mon games in industrial organization, public economics and macroeconomics

are aggregative games. Computational results for the class of aggregative games

have been also investigated (see, for example, [36], [45]).

The thesis proceeds to provide existence results of several innovative equi-

librium solutions in aggregative games.
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In Game Theory the well known Nash equilibrium concept is a solution

concept used in a non-cooperative situation where all the players act simulta-

neously, optimizing their own payoff taking into account the decisions of the

opponents. There is also the possibility that players do not act simultaneously:

for example, in the classical Stackelberg leader–follower model ([100]), a player,

called the leader, acts first, anticipating the strategy of the opponent, known

as the follower, who reacts optimally to the leader’s decision. In this case,

the leader’s optimization problem contains a nested optimization task that

corresponds to the follower’s optimization problem.

In the case of multiple players, more than two, it is possible to have a

hierarchy between two groups of players: a group, acting as a leader, decides

first and the other group reacts to the leaders’ decision. Now, it is necessary to

determine the behavior within each group. In several applications, players at

the same hierarchical level decide in a non-cooperative way (see [21], [46]): each

player in the group knows that any other group member optimizes his own payoff

taking into account the behavior of the rest. Thus, a Nash equilibrium problem

is solved within each group and a Stackelberg model is assumed between the

two groups. This leads to the multi-leader multi-follower equilibrium concept.

In literature, this model appeared in the context of oligopolistic markets

(see [94]) with one leader firm and several follower firms acting as Cournot

competitors. Other applications can be found, for example, in transportation

(see [68]), in the analysis of deregulated electricity markets (see [39]), in water

management systems (see [89]) and in wireless networks (see [43] ). See [40]

for a survey on the topic.

As it happens in concrete situations, in various contexts, such as in eco-

nomics, evolutionary biology and computer networks, some uncertainty may

appear in the data and a stochastic model can be formulated [93]. Usually, a

random variable may affect the payoffs, and then one can consider the expected
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payoffs with respect to its probability distribution. Then, the players optimize

the expected payoffs according to the considered solution concept. De Miguel

and Xu (see [24] ) extend the multiple-leader Stackelberg–Nash–Cournot model

studied in [94] to the stochastic case assuming uncertainty in the demand

function: leader firms choose their supply levels first, knowing the demand

function only in distribution and followers make their decisions after observing

the leader supply levels and the realized demand function.

As mentioned before, the Cournot game presents an aggregative structure

thus, considering as starting point the paper by De Miguel and Xu and referring

to [54], the first part of this thesis is devoted to provide a general framework for

dealing with a hierarchy between two groups of players involved in an aggregative

game, i.e. whose payoff functions depend on aggregation of strategies, in the

case in which there is some uncertainty that hits each player’s payoff. More

precisely, following the existing literature on aggregative games ([2], [19], [20],

[41]) and in line with [24], in Chapter 3 we focus on a new equilibrium solution

concept, namely the multi-leader multi-follower equilibrium concept for the

class of stochastic aggregative games. The considered game presents asymmetry

between two groups of players, acting non-cooperatively within the group and

one group is the leader in a leader-follower hierarchical model. Moreover, the

model is affected by risk and the game is considered in a stochastic context.

Thus, assuming an exogenous uncertainty affecting the aggregator, the multi-

leader multi-follower equilibrium model under uncertainty is presented and

existence results for the stochastic resulting game are obtained in the smooth

case of nice aggregative games as well as in the general case of aggregative

games with strategic substitutes.

The second part of this thesis is devoted to give existence results of equilib-

rium solutions in some applications to environmental and resource economics,

that are concerned with the economic aspects of the utilization of natural renew-
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able resources (fisheries, forests), natural exhaustible resources (oil, minerals)

and environmental resources (water, air). A lot of environmental and resource

games can be cast as aggregative games since they depend, for example, on the

summation of emissions in the case of pollution games (see [7], [13], [42]) or on

the summation of irrigation water that each farmer pumps from the groudwater

resource (see [27]) and so on.

Thus, in line with [31], [32] and referring to [57], the first application that

we examine is on Common-Pool Resources. A common-pool resource (CPR) is

a natural or human-made resource, like open-seas fisheries, unfenced grazing

range and groundwater basins, from which a group of people can benefit. A

CPR consists of two kinds of variables: the stock variable, given by the core

resource (for example, in the open-seas fisheries it’s the total quantity of fish

available in nature), and the flow variable, given by the limited quantity of

fringe units that can be extracted (for example, the limited quantity of units

that can be fished).

A problem which a CPR copes is the overuse: in fact, a CPR is a subtractable

resource i.e., since its supply is limited, if the quantity that can be restored is

used more and more there will be a shortage of it. This problem can lead to the

destruction of the CPR (e.g. the CPR is destroyed if, in a short range of period,

all the fish of a certain species are taken). Historically, in 1833 the economist

William Forster Llyod published a pamphlet which included an example of

overuse of a common parcel of land shared by cattle herders (see [49]).

Figure 1 shows the annual change in groundwater storage in the 37 largest

groundwater basins in the world: in particular, the basins colored with shades of

brown have had more water extracted that the quantity that could be naturally

replenished while the ones in blue have had an increase of the level of the water

maybe due to precipitation, ice melting and so on.

In this context, the economic investigation is about how to make a trade-off
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Figure 1.1: Acquired January 2003-December 2013. NASA Earth Observatory images by

Joshua Stevens using GRACE global groundwater data courtesy of Jay Famiglietti NASA

JPL/University of California Irvine and Richey et al. (2015). Caption assembled by Mike

Carlowicz, based on stories by Alan Buis (JPL) and Janet Wilson (UCI).

between preserve and, at the same time, consume the resource and benefit from

it.

The concept of CPR goes back to Gordon in 1954 (see [34]) who examines

the economic theory of natural resource utilization in the context of fishing

industry. In order to understand which is the better way to manage a CPR,

Hardin in 1968 claims that if all members in a group act just according to their

own-self interest with no regards for others, all resources would eventually be

destroyed and this leads to the so called tragedy of commons (see [38], [76]),

that is a central concept in the study of human ecology and of the environment

in general (see [87]).

In 1990, Ostrom lists eight design principles which are prerequisites for a

stable CPR management (see [86]). This management is highly dependent on

the type of resource considered and in [88] Ostrom points out that the adaptive
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governance is the best method to obtain a good management of a CPR.

Applications of the CPR concept have been developed later for example in

the case of renewable energy (see [102]).

It is important to point out that a CPR is not a Public Good (PG) (see

[8]). In fact, they are both non-excludable goods but they differs on the

rivalry property in the sense that a PG can be consumed without reducing

the availability for others (for example the air or the national defense), while

consuming a CPR will decrease the available resource for others (see [4]).

Let us explicitely note that aggregative games represent a fundamental

instrument to model a game that involves a CPR. This is because a CPR

is, as the name itself suggests, a resource that is common for a group of

people that benefit from it. Thus, everything that is linked to a CPR depends

on the aggregation of strategies and, since the payoff in aggregative games

depends explicitely on the aggregation of strategies (see [2]), it is clear that an

aggregative game is an appropriate tool in order to model a CPR game and to

obtain more sophisticated results. As consequence, the novelty of this part of

the thesis is about modeling a CPR game as an aggregative game and doing an

equilibrium analysis on it, providing existence results in both deterministic case

and stochastic case in which the possibility of a natural disaster is considered

in the model.

Although a CPR game could be studied in a dynamic framework, since each

CPR is a subtractable resource and so a priori players should take into account

the total quantity of resource available in nature that varies time by time, in

this setting we suppose that the players involved in the CPR game are myopic

in the sense that they do not account for the dynamics in their equilibrium

decision problem i.e. they optimize their individual payoff without considering

the impact of their decisions on the stock of the resource.

Sometimes environmental games present not only a generic aggregative
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structure but an additively separable aggregative one.

In additively separable aggregative games, each payoff function is a sum of

a function that depends on an aggregation of strategies and a function that

depends on player’s own strategy.

The model of additively separable aggregative games appeared in literature,

among others, in the context of International Environmental Agreements

(IEA)(see [25]), studying the formation of stable IEA in the case in which each

country’s choice variable is emission and then extending the results to the dual

case i.e. the case where the choice variable is abatement effort.

Also Public Good Provision games are in the context of additively separable

aggregative games (see [9]) where each player consumes a certain amount of a

private good and donates a certain other amount to the supply of the public

good. Thus the payoff function of each player turns to depend not only on

the quantity of private good that he consumes but also on all the gifts to the

public good made by all individuals.

McGuinty and Milam (see [70]) investigate the impact of asymmetry in

a voluntary public goods environment by proposing an improved design that

explicitely isolates individual incentives, without assuming a dominant strategy.

In the framework of additively separable aggregative games and in line with

the asymmetry considered in [70], in the last part of the thesis we introduce and

study a class of non-cooperative games, called Social Purpose Games, where the

payoffs depend separately on a player’s own strategy (individual benefit) and on

a function of the strategy profile which is common to all players (social benefit)

weighted by an individual benefit parameter which allows for asymmetry of

public benefit across agent. We apply the general results obtained for this class

of games to a water resource game, doing an equilibrium analysis and giving a

stability result for the coalition arising from a partial cooperative equilibrium

study.
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The novelty about the presence of the weights, given by the individual

benefit parameters, underlines how the collective part of the payoff is important

for each player with respect to the individual part. This novelty is in the

spirit of hedonic games, i.e. games where each player’s payoff is completely

determined by the identity of other members of his coalition, in which, as

showed in [10], for achieving either individual stability or efficiency, symmetry

across agents must be sacrificed, prefering asymmetry.

After the Introduction, in Chapter 2 we introduce some fundamental prelim-

inaries for a better understanding of all the work done, in Chapter 3 we present

the multi-leader multi-follower aggregative game under uncertainty, exploring

existence results of the equilibrium in a regular case and then in a more general

case, and in Chapter 4 we show applications of aggregative game theory to an

investment in Common-Pool Resouces game and, after introducing the class of

Social Purpose Games, to a withdrawal water resource game. Some concluding

remarks and some directions of further research are presented in Chapter 5.



Chapter 2

Preliminaries

2.1 Non-cooperative games: simultaneous vs

sequential games

One of the most important feature of the decisional interdependence among

more than one person is the so called strategic interaction: the result gained

by an individual does not depend just only on his own actions but also on the

actions made by the other people that interact with him. A game is the formal

representation of a strategic interaction between people with different but not

necessarily opposite interests.

A classical distinction in game theory is made between non-cooperative and

cooperative game.

The focus of non-cooperative games is the individual behavior and, even if in

some situations preplay communication between agents is allowed, they cannot

make agreements except for those which are established by rules of the game.

On the contrary, the focus of cooperative games is the behavior of players’

coalitions, since cooperative game theory studies negotiations among rational

agents who can make agreements about how to play the game.

From now on let us deal with non-cooperative games.
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In order to describe a non-cooperative game we need the following essential

concepts:

• players or decision makers that are the agents who partecipate in the

game, where a player can be an individual or a set of individuals;

• actions or strategies that are the choices that a decision maker can take.

Actually an action and a strategy are not the same concept. In fact

a strategy is a decisional plan that specifies a priori how a player will

behave in each situation in which he has to play. Any consequence of

such a strategy is called an action;

• payoff functions that measure desirability of the possible outcomes of the

game and that mathematically are real valued function defined on the

Cartesian product of the action spaces.

In the context of non-cooperative games, in which a set of agents interact and

choose a strategy according to a given set of rules, we can distinguish between

simultaneous and sequential games, depending on whether the decision is taken

simultaneously or sequentially.

The most familiar representation of strategic interactions in game theory is

given by the so called normal form game (or strategic form game).

Definition 2.1 (Strategic form or normal form game). An N-person normal-

form game (N ∈ N, where N is the set of natural numbers) is a tuple

Γ =< N ;U1, ..., UN ; f1, .., fN >,

where:

• N = {1, 2, ..., N} is the finite set of the N players, with N the fixed number

of players that are involved in the game and indexed by i;

• Ui is the set of possible actions or strategies for player i ∈ N ; we denote by

U = U1×U2× ...×UN and each vector x = (x1, ..., xN ) ∈ U is called an action

profile;
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• fi : U → R is called the objective or payoff function of player i ∈ N (R is

the set of real numbers); it can represent a cost (to minimize) or a profit (to

maximize).

The normal form allows us to represent every player’s utility for every state

of the world in the case where states of the world depend only on the players’

combined actions.

Note that if player 1 chooses x1 ∈ U1, ..., player N chooses xN ∈ UN , then

each player i obtains a cost or a profit fi(x1, ..., xN). We define for i ∈ N the

vector x−i = (x1, .., xi−1, xi+1, .., xN) and the set U−i = Πj∈N\{i}Uj. Let x ∈ U

and i ∈ N . Sometimes we denote x = (xi, x−i). We suppose in the following

that all the players are profit maximizing, except when explicitly specified.

Definition 2.2 (Finite game). If each player has a finite number of available

strategies, we say that the game is a finite game.

Two classical examples are the following.

Example 2.1 (Prisoner dilemma). Two suspects are arrested by the police

for the same crime and the two prisoners have been separated. The police have

insufficient evidence so they cannot convict them if none of the two prisoners

confesses. Thus the police visit each of them to offer the same deal: if one

testifies for the prosecution against the other and the other remains silent, the

former goes free and the latter receives the full 30 year sentence. If both remain

silent, both prisoners are sentenced to only 2 years in jail for a minor charge.

If each betrays the other, each receives a 8 year sentence. Each prisoner must

make the choice of whether to betray the other or to remain silent. How should

the prisoners act?

The situation can be modeled as a two-person finite game

Γ =< 2;U1, U2; f1, f2 >,
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where the strategy sets are U1 = U2 = {NC,C} where the choice C means

“confess”, the choice NC means “not confess” the payoffs represent the years

sentence and each player wants to minimize the years in jail .

Table 2.1: Prisoner dilemma game matrix

C NC

C 8,8 0,30

NC 30,0 2, 2

Example 2.2 (Linear Cournot duopoly). There are two firms with identical

products, which operate in a market where the market demand function is

known. Let us denote the production level of firm i by qi . The demand

function p relates the unit price of the product to the total quantity offered by

the firms. Let us assume a linear structure for the market demand curve

p = a− (q1 + q2)

and linear production costs to both firms cqi (i = 1, 2) with a, c positive

constants and a > c. Then the situation can be modeled by a two-person game

Γ =< 2;U1, U2; f1, f2 >,

where 1 and 2 are the two firms profit maximizing, the strategy sets are

U1 =U2 = [0,+∞[ and the profit functions are given by:

fi(q1, q2) = qi(a− (q1 + q2))− cqi, i = 1, 2.

Each firm has to choose the optimal quantity to produce in order to maximize

his own profit, given the choice of the opponent firm.

Let us consider simultaneous-move games, in which all players move only

once and at the same time.
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Let us introduce the concept of dominant and dominated strategies. These

notions and the concept of iterated dominance provide a first restriction on the

strategies that rational players should choose to play.

From now on, let us suppose that the cardinality of the strategy set Ui, for any

i ∈ N , is greater or equal than 2.

Definition 2.3 (Dominated strategies). Let Γ =< N ;U1, .., UN ; f1, .., fN > be

a strategic form game and x′i, x
′′
i ∈Ui for i ∈ N . The strategy x′i is dominated

(in a maximizing problem) for player i if there exists x′′i such that

fi(x
′
i, x−i) < fi(x

′′
i , x−i), ∀x−i ∈ U−i.

Sometimes dominated strategies are called strictly dominated strategies.

The strategy x′i is weakly dominated for player i if there exists x′′i such that the

above inequality holds with weak inequality and it is strict for at least one x−i.

We should expect that a player will not play dominated strategies, those for

which there is an alternative strategy that yields him a higher profit regardless

of what the other players do.

Let us analyse the dominated strategies in the prisoner dilemma: for player

2 the strategy NC is strictly dominated by C then player 2 will not choose

NC since it is rational and player 1 knows that player 2 is rational (common

knowledge). So from the initial game we can consider the reduced game in

Table 2.2 where the strategy NC for player 2 is eliminated (grey column).

Table 2.2: Prisoner dilemma: dominated strategies - step 1

C NC

C 8,8 0,30

NC 30,0 2, 2
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The same holds for player 1 in this reduced game: the strategy NC is

strictly dominated by C, so that the profile (C,C) is an obvious candidate for

the prediction of how the game will be played. We can consider the reduced

game in Table 2.3 where the strategy NC for player 1 is eliminated.

Table 2.3: Prisoner dilemma: dominated strategies - step 2

C NC

C 8,8 0,30

NC 30,0 2, 2

The final result of the game has given by this last reduced game that is

(C,C): we say that we solve the game by iterated strict dominance.

Let us formalize the iterated strict dominance concept. Given U = U1×· · ·×UN ,

we define the set of player i’s undominated responses by

Ri(U) = {xi ∈ Ui : ∀x′i ∈ Ui∃x = (x1, . . . , xN) ∈ Us.t.fi(xi, x−i) ≥ fi(x
′
i, x−i)}.

Let R(U) = (Ri(U) : i ∈ N ) be the list of undominated responses for each

player. In order to represent the process of iterated elimination of strict

dominated strategies, define U0 = U the full set of strategy profiles. For s ≥ 1,

let us define U s = R(U s−1). A strategy xi is serially undominated if xi ∈ Ri(U
s)

for all s: these are the strategies that survive to the iterated strict dominance

process.

Let us note that in the prisoner dilemma case although cooperating would

give each player a payoff of 2, self interest leads to an inefficient outcome with

payoff 8 > 2 for both players. Thus this procedure not always offers efficient

outcomes.

Moreover, in other games, like in the other two classical examples i.e. battle

of the sexes and matching pennies games, no (strict) dominated strategy can
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be found for each player. Thus we can face also the problem of non existence

of (strict) dominated strategies.

Thus, let us introduce one of the most used solution concepts in Game Theory

i.e. the Nash equilibrium (see [78]) that gives more accurate predictions about

the solution of the game than other solution concepts.

The fundamental feature of Nash equilibrium is the strategic stability : none

of the players, knowing the strategies chosen by the others, wants to deviate

from the one that he has chosen. In other words, every component of a Nash

equilibrium vector is the optimal response, for the related player, to the other

components.

Definition 2.4 (Nash equilibrium). A Nash equilibrium for Γ is a strategy

profile x̂ = (x̂1, x̂2, ..., x̂N ) ∈ U such that for any i ∈ N and for any xi ∈ Ui we

have that

fi(x̂) ≥ fi(xi, x̂−i).

Such a solution is self-enforcing in the sense that once the players are playing

such a solution, it is in every player’s interest to remain in his strategy. We

denote by NE(Γ) the set of the Nash equilibrium strategy profiles of the game

Γ.

Any x̂ = (x̂1, x̂2, ..., x̂N ) ∈ NE(Γ) is a vector such that for any i ∈ N , x̂i is

solution to the optimization problem

max
xi∈Ui

fi(xi, x̂−i).

We can restate the definition of a Nash equilibrium through the introduction

of the concept of a player’s best reply correspondence.

Definition 2.5 (Best reply). For any i ∈ N , for any x−i ∈ U−i, the set

Bi(x−i)={xi ∈ Ui : fi(xi, x−i) ≥ fi(x
′
i, x−i) ∀x′i ∈ Ui}
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is called player i ’s best reply to the opponents’ decision x−i. The correspondence

B : x = (x1, ..., xN) ∈ U → (B1(x−1), ..., Bn(x−N)) ∈ U is called the best reply

correspondence.

Note that the strategy profile x̂ is a Nash equilibrium of the game Γ if and

only if x̂i ∈ Bi(x̂−i) for i = 1, ..., N and x̂∈ NE(Γ) if and only if x̂∈U is a

fixed point of B, i.e.

x̂ ∈ B(x̂).

Nash equilibrium solutions in normal form games can be obtained as the

intersection points of the best reply curves (or correspondences) of the players.

Example 2.3 (Prisoner dilemma). The players have to minimize the years

sentences. We can compute the best reply functions (Table 2.4) and see that

the unique Nash equilibrium is the profile (C,C).

Table 2.4: Prisoner dilemma - best replies

NC C

NC 2, 2 30, 0

C 0,30 8, 8

Example 2.4 (Linear Cournot duopoly). In this case the firms are profit

maximizing and the best reply functions are simply computed (the profit

functions are strictly concave) by means of the first order conditions:

b1(q2) = {(a− q2 − c)/2}

b2(q1) = {(a− q1 − c)/2}

The Nash equilibrium solution (also called Nash-Cournot equilibrium) is

the intersection of the two best replies, (q̂1, q̂2) = ((a− c)/3, (a− c)/3).
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Example 2.5 (Linear Cournot duopoly with a leader firm). As in Exam-

ple 2.2, there are two firms with identical products, which operate in a market

in which the market demand function is known. Now they act sequentially:

firm 2 reacts to the firm 1’s decision.

Firm 1 acts as the leader and announces q1 ≥ 0; firm 2, the follower, observes

q1 and firm 2 reacts by choosing q2 ∈ B2(q1), B2(q1) = {(a− q1− c)/2}, that is

(for q1 < a− c) a solution of

max
q2≥0

f2(q1, q2) = max
q2≥0

q2(a− q1 − q2 − c).

Firm 1 knows that for any q1 firm 2 will choose q2 = B2(q1) (that is unique)

and solves

max
q1≥0

f1(q1, B2(q1)) = max
q1≥0

q1(a− q1 − c)/2.

The equilibrium strategy, called either Stackelberg equilibrium strategy

or, in this particular example, Stackelberg-Cournot equilibrium strategy, is

q∗1 = (a− c)/2 and firm 2 will choose q∗2 = B2(q∗1) = (a− c)/4.

Starting from Example 2.5, let us now focus on a solution concept for

two-person games that involves a hierarchical structure in decision making: one

of the players (called leader) declares and announces his strategy before the

other player (called follower). The follower observes this and in equilibrium

picks the optimal strategy as a response. Players may engage in a Stackelberg

competition if one has some sort of advantage enabling it to move first. In

other words, the leader must have commitment power. Such games are called

Stackelberg games and have been introduced in the context of duopoly problems

by H. von Stackelberg, who published “Market Structure and Equilibrium”

(Marktform und Gleichgewicht) in 1934 ([100]).

This game displays sequential moves: players choose at different stages of

the game taking their own decision. Player 1 behaves as a leader and plays

first anticipating the reactions of the rival and takes them into account before
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choosing his strategy. Player 2 behaves as a follower answering to player 1 in

an optimal way.

Let Γ =< 2;U1, U2; f1, f2 > be a two-person game, where player 1 is the

leader and both players are profit maximizers. For any x1 ∈ U1, let B2(x1) be

the follower’s best reply to the leader’s decision x1. At this point, suppose that

for any x1 ∈ U1 the best reply is a singleton denoted by B2(x1) = {x̃2(x1)}, so

that B2 is a function.

The case in which there are multiple follower best replies will be explicitely

illustrated in Section 2.2.

Definition 2.6. (Two-person Stackelberg equilibrium) In a two-person game

Γ with player 1 as leader, a strategy x̄1 ∈ U1 is called a Stackelberg equilibrium

strategy for the leader if

f1(x̄1, x̃2(x̄1)) ≥ f1(x1, x̃2(x1)),∀x1 ∈ U1 S

where x̃2(x1), for any x1 ∈ U1, is the unique solution of the problem

f2(x1, x̃2(x1)) ≥ f2(x1, x2),∀x2 ∈ U2 P (x1).

The Stackelberg equilibrium strategy x̄1 ∈ U1 is a solution to the upper

level problem S, and x̃2(x̄1) is the optimal choice for player 2, the follower.

The pair (x̄1, x̃2(x̄1)) will be called Stackelberg equilibrium.

Sometimes P (x1) is called the lower level problem and corresponds to the

follower’s optimization problem1. The game is solved by backward induction,

i.e. analyzing the game from back to front.

Possible extentions of Definition 2.6 concern removing the uniqueness of the

best reply and the limitation to two-person games, as we are going to illustrate

in Section 2.2.
1Remark that a Stackelberg game can also be seen as a subgame-perfect Nash equilibrium

of a two-stage game (i.e. the strategy profile that corresponds to a Nash equilibrium of every

subgame of the original game) with complete information.
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2.2 Leader/Follower Model

Let us briefly introduce some of the different aspects of the Stackelberg

Leader/Follower model, enlightening some generalizations of the model in-

troduced in Definition 2.6. For more details and discussion on open problems

see [56] and the literature therein.

Case 1: multiple follower reaction. As it happens in many cases, the

lower level problem P (x1) may have more than one solution for at least one

x1 ∈ U1. Let us consider for any x1 ∈ U1 the best reply B2(x1) of the follower

player, that is a correspondence defined on U1 and valued in U2 mapping to

any x1 ∈ U1 the subset B2(x1) ⊆ U2 of all possible solutions to the problem

P (x1). In this case the best reply is a multi-valued function and the upper

level problem has to be formulated depending on the leader’s behavior. The

leader has to optimize the updated profit function, but he does not know what

the follower’s choice in the set B2(x1) is. So, a possible approach is that the

leader supposes that the follower’s choice is the best for himself and solves the

following upper level problem: find x̄1 ∈ U1 s.t.

max
x2∈B2(x̄1)

f1(x̄1, x2) = max
x1∈U1

max
x2∈B2(x1)

f1(x1, x2) Ss

where B2(x1), for any x1 ∈ U1, is the set of all possible solutions to the problem

P (x1). Any pair (x̄1, x̄2) with x̄2 ∈ B2(x̄1) is referred to as a strong Stackelberg

solution for the two-person game with player 1 as the leader.

This solution concept corresponds to an optimistic leader’s point of view

([11],[48]).

A very common feature in applications is the so called weak Stackelberg

strategy or security strategy. We now suppose that the leader prevents the

worst that can happen when the follower chooses his decision in the set of the
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best replies. So he minimizes the worst and solves the following upper level

problem: find x̄1 ∈ U1 s.t.

min
x2∈B2(x̄1)

f1(x̄1, x2) = max
x1∈U1

min
x2∈B2(x1)

f1(x1, x2) Sw

where B2(x1), for any x1 ∈ U1, is the set of all possible solutions to the problem

P (x1). Any pair (x̄1, x̄2) with x̄2 ∈ B2(x̄1) is referred to as a weak Stackelberg

solution for the two-person game with player 1 as the leader ([11],[48]).

Differently from the strong solution concept, the weak one corresponds to a

pessimistic leader’s point of view.

Existence of weak Stackelberg strategies is a difficult task from mathemat-

ical point of view, because it may not exist even in smooth examples. An

existence theorem guarantees the existence of weak Stackelberg strategies under

assumptions on the structure of the best reply set ([5]). Existence results of

solutions as well as of approximated solutions can be found in [50], [51] for the

strong and the weak Stackelberg problem under general assumptions. Existence

of solutions and approximations in the context of mixed strategies for the

follower as well as for both players are in [58], [59].

A more general definition is the so-called intermediate Stackelberg strategy

(see [60], [62]) where the leader has some probabilistic information about the

choice of the follower in the optimal reaction set.

Case 2: multiple follower case. A more general case, dealing with one

leader and multiple followers, is the so-called Stackelberg-Nash problem.

Let us consider a N+1-person game Γ =< N ;U0, U1, ..., UN ; f0, f1, ..., fN >,

where N = {0, 1, ..., N}, one player 0 is the leader and the rest of them 1, ..., N

are followers in the sense that players 1, . . . , N act simultaneously and answer to

0’s strategy in optimal way. It is supposed that the N followers are engaged in a

non-cooperative competition corresponding to a Nash equilibrium problem. Let
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U0, U1, ..., UN be the leader’s and the followers’ strategy sets, respectively. Let

f0, f1, ..., fN be real valued functions defined on U0×U1× ....×UN representing

the leader’s and the followers’ profit functions.

The leader is assumed to announce his strategy x0 ∈ U0 in advance and

commit himself to it. For a given x0 ∈ U0 the followers select (x1, ..., xN ) ∈ R(x0)

where R(x0) is the set of the Nash equilibria of the N -person game with players

1, ..., N , strategy sets U1, ..., UN and profit functions f1, ..., fN . For each x0 ∈ U0,

that is the leader’s decision, the followers solve the following lower level Nash

equilibrium problem NE(x0):

find (x̄1, ..., x̄N) ∈ U1 × ....× UN such that

fi(x0, x̄1, ...., x̄N) = max
xi∈Ui

fi(x0, x̄1, ..., x̄i−1, xi, x̄i+1, ..., x̄N) ∀i = 1, ..., N

The non-empty set R(x0) of the solutions to the problem NE(x0) is called

the followers’ reaction set. The leader takes into account the followers Nash

equilibrium, that we assume to be unique, and solves an optimization problem

in a backward induction scheme.

Let (x̃1(x0), ...., x̃N(x0)) ∈ U1 × .... × UN be the unique solution of the

problem NE(x0), the map

x0 ∈ U0 → R(x0) = (x̃1(x0), ...., x̃N(x0))

is called the followers’ best reply (or response). The leader has to compute a

solution of the following upper level problem SSN : find x̄0 ∈ U0 such that

f0(x̄0, x̃1(x̄0), ...., x̃N(x̄0)) = max
x∈U0

f0(x, x̃1(x), ...., x̃N(x)) SSN

Any solution x̄0 ∈ U0 to the problem SSN is called a Stackelberg-Nash

equilibrium strategy.

The given definition for N = 1 is nothing but the classical Stackelberg

equilibrium solution. This model, for N > 1, has been introduced in the
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oligopolistic market context in [94] and studied from a computational point of

view in [52]. Existence of solutions and approximate solutions under general

assumptions are in [74]. Existence of solutions in mixed strategies has been

given in [61], [63] for two followers playing a zero-sum or a non-zero sum game,

respectively.

An example dealing with communication networks is studied in [6]: the

problem is formulated as a leader-follower game, with a single leader (the

service provider, who sets the price) and a large number of Nash followers (the

users, who decide on their flow rates), and the asymptotical behavior with an

infinite number of followers is discussed.

Case 3: multiple player games with hierarchy. It is possible to extend

the Stackelberg Leader/Follower model also in the case of multiple players: it

is necessary to fix the hierarchical level of each player and precise his behavior

as leader as well as follower.

A possible definition is the generalization of the Stackelberg-Nash problem

to a M +N -person game with M players acting as leaders and the rest of them

behave as N followers. It is assumed a non-cooperative behavior between the

leaders and between the followers, so the model can be written by considering

a Nash equilibrium problem at the lower level with the follower players and

another Nash equilibrium problem at the upper level with the leader players.

An existence result for equilibria for Stackelberg games where a collection

of leaders compete in a Nash game constrained by the equilibrium conditions

of another Nash game amongst the followers, imposing no single-valuedness

assumption on the equilibrium of the follower-level game, has been given in [46]

under the assumption that the objectives of the leaders admit a quasi-potential

function and applied in communication networks.

Case 4: inverse Stackelberg game. In the two-person inverse Stackelberg
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game the leader does not announce the strategy x1, as in the Stackelberg

one, but a function gL(·), which maps x2 into x1. Given the function gL, the

follower’s optimal choice x∗2 satisfies

f2(gL(x∗2), x∗2) ≥ f2(gL(x2), x2), ∀x2 ∈ X2.

The leader, before announcing the function gL, realizes how the follower will

play, and he should exploit this knowledge in order to choose the best possible

gL-function, such that his own profit becomes as big as possible, i.e.

g∗L(·) = argmaxgL(·) f1(gL(x2(gL(·))), x2(gL(·)))

The problem is in general very difficult to solve. However, if the leader

knows what he can achieve (in terms of maximal profit) and what has to be

done by all players to reach this outcome, the leader may be able to persuade

other players to help him to reach this goal (i.e., the value of the leader’s profit

function obtained if all players maximize it). If it is unknown what the leader

can achieve in terms of maximal profits, finding the leader’s optimal gL-strategy

is generally very difficult.

The problem has been studied for special classes of payoff and applied to

an electricity market problem ([84]).

2.3 Supermodular Games

Supermodular games are characterized by “strategic complementaries” in the

sense that the marginal utility of increasing a player’s strategy increases when

the other players’ strategies increase. This particular class of games is interesting

for several reasons. Firstly, it includes a lot of applied models. Secondly,

existence results of a pure strategy equilibrium hold without the quasi-concavity

assumption of the payoff functions. Finally, they have nice comparative statics
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properties. The theory of supermodular optimization has been developed by

Topkis (see [96], [97]), Vives (see [98], [99]) and by Granot and Veinott (see

[37]).

Let us consider a non-cooperative N -person game in normal form

Γ =< N ;U1, ..., UN ; f1, .., fN > .

In order to introduce the notion of supermodular games, let us give some

mathematical preliminary tools, considering generic sets (Ui)
N
i=1 and generic

function fi defined on Ui for any i ∈ {1, . . . , N}.

Let us suppose Ui equipped with a partial order ≥ that is transitive, reflexive

and antisymmetric2 (see [72]). Given U ′i ⊂ Ui, x ∈ Ui is called an upper bound

for U ′i if x ≥ x for all x ∈ U ′i ; x is called the supremum of U ′i (denoted by

sup(U ′i)) if for all upper bounds x of U ′i , x ≥ x. Lower bounds and infimums

are defined analogously. A point x is a maximal element of Ui if there is no

y ∈ Ui such that y > x (that is, no y such that y ≥ x but not x ≥ y); it is the

largest element of Ui if x ≥ y for all y ∈ Ui. Minimal and smallest elements are

defined similarly. A set may have many maximal and minimal elements, but it

can have at most one largest and one smallest element.

The set Ui is a lattice if x, x′ ∈ Ui implies x ∧ x′, x ∨ x′ ∈ Ui, where x ∧ x′

and x ∨ x′ denote, respectively, the infimum and supremum between x and x′.

The lattice is complete if for all nonempty subsets U ′i ⊂ Ui, inf(U ′i) ∈ Ui and

sup(U ′i) ∈ Ui.

The real line (with the usual order) is a lattice and any compact subset of

it is, in fact, a complete lattice, as any set in RN formed as the product of N

compact sets (with the product order).

A sublattice U ′i of a lattice Ui is a subset of Ui that is closed under ∨ and ∧.

A complete sublattice U ′i is a sublattice such that the infimum and supremum

2Recall that transitive means that x ≥ y and y ≥ z implies x ≥ z; reflexive means that

x ≥ x; antisymmetric means that x ≥ y and y ≥ x implies x = y.
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of every subset of U ′i are in U ′i .

A chain Ci ⊂ Ui is a totally ordered subset of Ui that is, for any x, x′ ∈ Ci,

x ≥ x′ or x ≤ x′. Given a complete lattice Ui, a function fi : Ui → R

is order continuous if it converges along every chain Ci in both increasing

and decreasing directions i.e. if limxi∈Ci,xi→inf(Ci)fi(xi) = fi(inf(Ci)) and

limxi∈Ci,xi→sup(Ci)fi(xi) = fi(sup(Ci)). It is order upper semi-continuous if

limsupxi∈Ci,xi→inf(Ci)fi(xi) ≤ fi(inf(Ci)) and limsupxi∈Ci,xi→sup(Ci)fi(xi) ≤

fi(sup(Ci)).

Let us suppose that in the game Γ each strategy set Ui is a partially ordered

lattice. A function fi : Ui × U−i → R is supermodular in xi if for all fixed

x−i ∈ U−i,

fi(xi ∨ x′i, x−i)− fi(xi, x−i) ≥ fi(x
′
i, x−i)− fi(xi ∧ x′i, x−i)

for all xi, x
′
i ∈ Ui.

Supermodularity represents the economic notion of complementary inputs.

The following result is a characterization of supermodularity for twice continu-

ously differentiable functions with Euclidean domains. The standard order on

such domains is the so-called “product order” i.e., x ≤ y if and only if xi ≤ yi

for all i, for each x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ RN .

Topkis’s Characterization Theorem Let I = [x, x] be an interval in RN .

Suppose that f : RN → R is twice continuously differentiable on some open set

containing I. Then, f is supermodular on I if and only if for all x ∈ I and all

i 6= j, ∂2f/∂xi∂xj ≥ 0.

In general, the order structure of the lattice is the only instrument that super-

modularity uses. It does not involve assumptions of convexity or connectedness

of the domain or convexity, concavity or differentiability of the function itself.

However, as the theorem suggests, it is easy to check the supermodularity of

smooth functions on Euclidean intervals.

Let us suppose that Ui for any i ∈ {1, . . . , N} is a lattice. A function
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fi : Ui × U−i → R exhibits increasing differences in xi and x−i if for all

x′i > xi the function fi(x
′
i, x−i)− fi(xi, x−i) is nondecreasing in x−i

3. Let us

explicitely note that the assumption of increasing differences is nothing but the

assumption of strategic complementarity. In fact it means that it becomes more

profitable for player i to increase his choice variable when the other players

increase their choice variables as well.

We are now ready to introduce the notion of supermodular games. Let us

suppose that in the game Γ, considered above, each strategy set Ui is a partially

ordered lattice, with relation ≥, and the strategy profiles are endowed with the

product order i.e. if x = (x1, . . . , xN) and x′ = (x′1, . . . , x
′
N) are two strategy

profiles and x ≥ x′, it means that xi ≥ x′i for any i ∈ {1, . . . , N}.

Definition 2.7. The game Γ =< N ;U1, ..., UN ; f1, .., fN > is a supermodular

game if, for each i ∈ N :

(1) Ui is a complete lattice;

(2) fi : U → R ∪ {−∞} is order upper semicontinuous in xi, with x−i fixed,

order continuous in x−i, with xi fixed, and has a finite upper bound;

(3) fi is supermodular in xi, for fixed x−i;

(4) fi has increasing differences in xi and x−i.

From Topkis’s Characterization Theorem we can prove the following:

Theorem 2.1 ([72]). The game Γ =< N ;U1, ..., UN ; f1, .., fN > is a supermod-

ular game if, for each i ∈ N :

(1’) Ui is an interval in Rki ;

(2’) fi is twice continuously differentiable on Ui;

3Similarly fi : Ui×U−i → R exhibits decreasing differences in xi and x−i if for all x′i > xi

the function fi(x
′
i, x−i)− fi(xi, x−i) is nonincreasing in x−i



Preliminaries 31

(3’) ∂2fi
∂xij∂xih

≥ 0 for all i and all 1 ≤ j ≤ h ≤ ki;

(4’) ∂2fi
∂xij∂xlh

≥ 0 for all i 6= l, 1 ≤ j ≤ ki and 1 ≤ h ≤ kl.

Games that satisfy conditions (1’)-(4’) are called smooth supermodular

games.

Referring to the definition of strategy serially undominated, given in the previous

section, let us give the following theorem, that is crucial in the analysis of a

supermodular game:

Theorem 2.2 ([72]). Let Γ be a supermodular game. For each player i, there

exist largest and smallest serially undominated strategies, xi and xi respectively.

Moreover, the strategy profiles (xi)i∈N and (xi)i∈N are pure Nash equilibrium

profiles.

For further details and results on supermodular games see [37], [72], [96],

[97], [98] and [99].

2.4 Potential Games

In some situations a Nash equilibrium may not exists, may not be unique and

also may not be optimal for the players. It turns out to be very hard sometimes

to check if the game has a Nash equilibrium and, even if a Nash equilibrium

exists, it could be very hard to compute it by using a fixed point theorem (see

[17], [30], [80]).

When one has to face one of these situations, the class of potential games could

be very useful. Namely, in games with a potential function, known as potential

games, the problem of finding a Nash equilibrium is a simple minimization

or maximization problem rather than a fixed point problem. Thus, potential

games appear the natural link between optimization and game theory: by

solving an optimization problem the players find a Nash equilibrium strategy.
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Potential games have been introduced by Monderer and Shapley (see [73]):

the idea is that a game is said potential if the information that is sufficient

to determine Nash equilibria can be summarized in a single function on the

strategy space, the potential function.

Definition 2.8. A game Γ = 〈N ;U1, . . . UN ; f1, . . . , fN〉 is an exact potential

game (or simply potential game) if there exists a function P : U → R such

that for each player i ∈ N = {1, . . . , N}, each strategy profile x−i ∈ U−i of i’s

opponents, and each pair xi, yi ∈ Ui of strategies of player i:

fi(yi, x−i)− fi(xi, x−i) = P (yi, x−i)− P (xi, x−i).

The function P is called an exact potential (or, in short, a potential) of the

game Γ.

In words, if P is a potential function of Γ, the difference induced by a single

deviation is equal to that of the deviator’s payoff function.

Clearly, by definition, the strategy equilibrium set of the game Γ coincides with

the strategy equilibrium set of the game ΓP = 〈N ;U1, . . . UN ;P 〉 that is the

game in which every player’s payoff is given by P . In fact, x ∈ NE(Γ) if and

only if for any i = 1, . . . , N we have that

P (x) ≥ P (xi, x−i)

for every xi ∈ Ui.

As immediate consequences of Definition 2.8, we have the following propositions.

Proposition 2.1. Let Γ be a potential game with potential P . Then

• NE(Γ) = NE(ΓP );

• argmaxx∈UP (x) ⊆ NE(Γ);

• if P admits a maximal value (maximizer), then Γ has a (pure) Nash

equilibrium.
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From Propositions 2.1 we can ensure that if x ∈ argmaxx∈UP (x) then x is

a Nash equilibrium of Γ. The converse does not hold true in general. However,

adding some assumptions, we can prove the following:

Theorem 2.3 ([91]). Let Γ be a potential game with potential function P .

If U = U1 × · · · × UN is a convex set and P is a continuously differentiable

function on the interior of U , then

• if x is a NE of Γ, then x is a stationary point of P ;

• if P is concave on U and if x is a NE of Γ, then x ∈ argmaxx∈UP (x).

If P is strictly concave, such NE must be unique.

For example, a finite game Γ that turns out to be potential, has a Nash

equilibrium strategy. The following proposition is proved in [73].

Proposition 2.2. Let Γ be a potential game with potential P . Then P is

uniquely defined up to an additive constant.

Example 2.6. In the case of Cournot duopoly of Example 2.2 if we define a

function

P (q1, q2) = (a− c)(q1 + q2)− (q2
1 + q2

2)− q1q2

we can verify that for every firm i and for every q−i ∈ R+,

fi(qi, q−i)− fi(xi, q−i) = P (qi, q−i)− P (xi, q−i)

for every qi, xi ∈ R+, so the Cournot duopoly with linear inverse demand

function is a potential game.

Let us give another definition similar to Definition 2.8:

Definition 2.9. A game Γ = 〈N ;U1, . . . UN ; f1, . . . , fN〉 is a weighted potential

game if there exists a function P : U → R (the potential) such that for each
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player i ∈ N , each strategy profile x−i ∈ U−i of i’s opponents, and each pair

xi, yi ∈ Ui of strategies of player i and for fixed weights ωi > 0:

fi(yi, x−i)− fi(xi, x−i) = ωi(P (yi, x−i)− P (xi, x−i)).

In weighted potential games, a change in payoff due to a unilaterally

deviating player matches the sign in the value of P but scaled by a weight

factor. Clearly, all exact potential games are weighted potential games with all

players’ weights equal to 1.

Although defined separately, exact potential games and weighted potential

games are equivalent if we scale appropriately the payoff functions.

Lemma 2.1. Γ = 〈N ;U1, . . . UN ; f1, . . . , fN〉 is a weighted potential game with

potential function P and weights (ωi)
N
i=1 if and only if

Γ′ =

〈
N ;U1, . . . UN ; g1 =

1

ω1

f1, . . . , gN =
1

ωN
fN

〉
is a potential game with potential function P .

More general is the following definition:

Definition 2.10. A game Γ = 〈N ;U1, . . . UN ; f1, . . . , fN〉 is an ordinal potential

game if there exists a function P : U → R such that for each player i ∈ N =

{1, . . . , N}, each strategy profile x−i ∈ U−i of i’s opponents, and each pair

xi, yi ∈ Ui of strategies of player i:

fi(yi, x−i)− fi(xi, x−i) > 0 ⇐⇒ P (yi, x−i)− P (xi, x−i) > 0.

The function P is called an ordinal potential of the game Γ.

In words, if P is an ordinal potential of Γ, the sign of the change in payoff

to a unilaterally deviating player matches the sign of the change in the value

of P .
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Example 2.7. If we consider a symmetric duopoly Cournot competition with

linear cost function ci(qi) = cqi with i ∈ {1, 2} and with generic positive inverse

demand function F (q1 + q2), the profit function of firm i is defined on R2
+ as

fi(q1, q2) = F (q1 + q2)qi − cqi.

Define a function P : R2
++ → R:

P (q1, q2) = q1q2(F (q1 + q2)− c).

For every firm i and for every q−i ∈ R++,

fi(qi, q−i)− fi(xi, q−i) > 0 ⇐⇒ P (qi, q−i)− P (xi, q−i) > 0,

for every qi, xi ∈ R++, so the Cournot duopoly with generic inverse demand

function is an ordinal potential game.

As announced at the beginning of this section, potential games (exact and

ordinal ones) are really useful in order to show the existence of Nash equilibria

as shown in the following:

Theorem 2.4 ([91]). Let Γ be a potential game with a potential function P .

If we assume that the set of maxima of P is non empty, then Γ admits at least

one NE.

If, in addition, U is compact, convex set, and P is a continuously differentiable

function on the interior of U and strictly concave on U , then the NE of Γ is

unique.

Corollary 2.5 ([73]). Every finite potential game admits at least one NE.

Corollary 2.6. Let Γ be an infinite potential game with a potential function

P . If U is a compact set and P is upper semicontinuous on U then there exists

at least one NE of Γ.

For further details and properties see [53] and [73].



Preliminaries 36

2.5 Best-reply Potential Games and Quasi ag-

gregative Games

In potential games introduced in the previous section, information concerning

Nash equilibria can be incorporated into a single real-valued function on the

strategy space. All classes of potential games that Monderer and Shapley

([73]) defined share the finite improvement property: start with an arbitrary

strategy profile that can be improved deviating to a better strategy. Under this

property, this process eventually ends in a Nash equilibrium. Voorneveld in

[101] introduces a new class of potential games namely the best-reply potential

games. The main distinctive feature is that it allows infinite improvement

paths, by imposing restrictions only on paths in which players that can improve

actually deviate to a best reply.

Definition 2.11. A game

Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉

is called best-reply potential game if there exists a function P : U → R such

that for any i ∈ N and for any x−i ∈ U−i

argmaxxi∈Uifi(xi, x−i) = argmaxxi∈UiP (xi, x−i).

The function P is called a (best-reply) potential of the game Γ.

In words, a game Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 is a best-reply potential game if

there exists a coordination game 〈N , (Ui)i∈N , P 〉 where the payoff of each player

is given by function P such that the best-reply correspondence of each player

i ∈ N in Γ coincides with his best-reply correspondence in the coordination

game.

Analogous to what obtained in [73], the following holds:
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Proposition 2.3. Let Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 be a best-reply potential game

with best-reply potential P :

• the Nash equilibria of Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 and 〈N , (Ui)i∈N , P 〉 co-

incide;

• if P has a maximum over U (e.g. if U is finite), Γ has a Nash equilibrium.

For more details, see [101].

In [41] the class of quasi-aggregative games is introduced and conditions un-

der which such games admit a best-reply potential are established, implying

existence of a pure strategy Nash equilibrium without any convexity or quasi

concavity assumptions.

Definition 2.12. A game Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 is called a quasi-aggregative

game with aggregator function g : U → R if there exist continuous functions

Fi : R × Ui → R (the shift functions) and σi : U−i → Y−i ⊆ R, i ∈ N , (the

interaction functions) such that each of the payoff functions fi with i ∈ N can

be written:

fi(x) = f i(σi(x−i), xi)

where f i : Y−i × Ui → R and

g(x) = Fi(σi(x−i), xi)

for all x ∈ U and i ∈ N .

In order to prove that a quasi-aggregative game admits a best-reply potential,

the following assumptions are required:

Assumption 2.1. Each of the correspondences Ri : Y−i → 2Ui is strictly

decreasing (i.e. every selection from Ri is decreasing).

Assumption 2.2. The shift-functions Fi : Y−i × Ui → R, i ∈ N , all exhibit

increasing differences in y−i and xi.
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Theorem 2.7 ([41]). Let Γ be a quasi-aggregative game with compact strategy

sets and upper semicontinuous payoff functions. Then if Assumptions 2.1 and

2.2 are satisfied, the game is a best-reply potential game. Moreover, associated

potential function may be found which is upper semicontinuous.

2.6 Aggregative Games

Let us consider a non-cooperative game in normal form Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉

where

• N = {1, . . . , N} is the finite set of players (N ∈ N is a natural number);

• for any i ∈ N , Ui ⊆ RN is the finite-dimensional strategy set and

fi : U → R the payoff function of player i.

As usual, let us denote by U =
∏N

i=1 Ui and U−i =
∏

j 6=i Uj, i ∈ N .

Definition 2.13. The game Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 is called aggregative if

there exists a continuous and additively separable function g : U → R (the

aggregator) and functions Fi : Ui × R→ R (the reduced payoff functions) such

that for each player i ∈ N :

fi(xi, x−i) = Fi(xi, g(x))

for xi ∈ Ui and for all x ∈ U (see [2], [3], [18]).

The game Γ = 〈N , (Ui)i∈N , (fi)i∈N 〉 is called additively separable aggregative

if there exists a continuous and additively separable function g : U → R (the

aggregator) and functions li : R→ R and functions mi : Ui → R such that for

each player i ∈ N :

fi(xi, x−i) = li(g(x)) +mi(xi)

for xi ∈ Ui and for all x ∈ U (see [2]).



Preliminaries 39

Recall that a function g : U → R is additively separable if there exist

strictly increasing functions H : R → R and h1, . . . hN : Ui → R such that

g(x) = H
(∑

i∈N hi(xi)
)

for all x ∈ U (see [35]). Obvious examples of additively

separable functions are given by the sum g(x) =
∑

i∈N xi and the mean

g(x) = N−1
∑

i∈N xi. Moreover, Constant Elasticity of Substitution (CES)

function, i.e. g(x) = (α1x
β
1 + · · ·+αNx

β
N )

1
β with U ⊆ RN

+ and β, α1, . . . αN > 0,

and Cobb-Douglas function, i.e. g(x) =
∏

i∈N x
αi
i with α1, . . . , αN > 0, are

additively separable functions 4.

We deal in the following with aggregative games

Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉

where g is the aggregator that is additively separable and Fi(xi, g(x)) are real

valued functions defined on Ui×R for any i ∈ N , which are the reduced payoffs.

Let us give the definition of equilibrium:

Definition 2.14. Let

Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉

be an aggregative game. Then x∗ = (x∗1, . . . , x
∗
N) is a pure Nash equilibrium if

for any i ∈ N ,

x∗i ∈ argmaxxi∈UiFi(xi, g(xi, x
∗
−i)).

If x∗ is an equilibrium, then an equilibrium aggregate is Q ≡ g(x∗). If there

exist the smallest and the largest equilibrium aggregate, these are denoted by

Q∗ and Q∗, respectively.

Let us introduce the reduced best-reply correspondence

BRi(x−i) = B̃Ri(
∑
j 6=i

hj(xj))

4For the CES function hi(xi) = αix
β
i (with xi ≥ 0) and H(z) = z

1
β . For the Cobb-Douglas

function hi(xi) = αilog(xi) and H(z) = exp(z) (with xi > 0).
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that is the best reply correspondence of player i that depends on the aggregate

of the other players
∑

j 6=i hj(xj). Let us now fix an aggregate i.e. a value in

the aggregator’s domain, Q ∈ G ≡ {g(x) : x ∈ U}. Since Q = g(x) ⇐⇒∑
j 6=i hj(xj) = H−1(Q)− hi(xi), we can find the set of best-replies for player i

as

Bi(Q) ≡ {xi ∈ Ui : xi ∈ B̃Ri(H
−1(Q)− hi(xi))}.

Bi : G→ 2Ui is called backward reply correspondence of player i. If we consider

a value Q for which Q = g(x∗) and x∗ ∈ Bi(Q) for all i, lead to an equilibrium.

Thus, introducing Z : G→ 2G such that Z(Q) ≡ {g(x) ∈ G : xi ∈ Bi(Q)∀i ∈

N}, Q is an equilibrium aggregate if and only if Q ∈ Z(Q).

Given these notions, it is useful to recall two existence results obtained in [2].

In order to give the first result, let us introduce the following definition:

Definition 2.15. An aggregative game Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉 is said to

be a nice aggregative game if:

• the aggregator g is twice continuously differentiable;

• each strategy set Ui is compact and convex, and every payoff func-

tion fi(x) = Fi(xi, g(x)) is twice continuously differentiable and pseudo-

concave in the player’s own strategies5;

• for each player, the first-order conditions hold whenever a boundary

strategy is a best response, i.e., DxiFi(xi, g(x)) = 0 whenever xi ∈ ∂Ui
and (v − xi)TDxiFi(xi, g(x)) ≤ 0 for all v ∈ Ui.

Thus, under convexity assumptions, the following holds:

5A differentiable function fi(xi, x−i) is pseudo-concave in xi if for all xi, x
′
i ∈ Ui

(x′i − xi)TDxifi(xi, x−i) ≤ 0⇒ fi(x
′
i, x−i) ≤ fi(xi, x−i),

(see [67]).
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Theorem 2.8 ([2]). Let Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉 be a nice aggregative

game. Then, there exists an equilibrium x∗ ∈ U and also the smallest and

largest equilibrium aggregates Q∗ and Q∗.

The second useful result is another existence result, obtained without

any assumption of convexity, but with assumption of supermodularity and

decreasing differences.

Definition 2.16. The game Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉 is an aggregative game

with strategic substitutes if it is aggregative, strategy sets are lattices and each

player’s payoff function fi(xi, x−i) is supermodular in xi and exhibits decreasing

differences in xi and x−i.

Theorem 2.9 ([2]). Let Γ = 〈N , (Ui)i∈N , (Fi)i∈N , g〉 be an aggregative game

with strategic substitutes. Then, there exists an equilibrium x∗ ∈ U and also

the smallest and largest equilibrium aggregates Q∗ and Q∗.

If moreover, we consider a parametric aggregative game

Γt = 〈N , (Ui)i∈N , (Fi)i∈N , g, t〉

where, denoting by T a state space, t ∈ T is a particular state of the world,

which is an exogenous parameter, and, for any i ∈ N , fi : U × T → R is the

payoff function of player i, we can give the following definition:

Definition 2.17. The game Γt = 〈N , (Ui)i∈N , (fi)i∈N , t〉 is called aggregative

if there exists a continuous and additively separable function g : U → R (the

aggregator) and functions Fi : Ui × R× T → R (the reduced payoff functions)

such that for each player i ∈ N :

fi(xi, x−i, t) = Fi(xi, g(x), t)

for xi ∈ Ui, for all x ∈ U and for all t ∈ T (see [2], [3], [18]).
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In this parametric context, if x∗(t) is an equilibrium, then an equilibrium

aggregate, given t, is Q(t) ≡ g(x∗(t)). If there exist the smallest and the largest

equilibrium aggregate, these are denoted by Q∗(t) and Q∗(t), respectively. Thus

Theorems 2.8, 2.9 can be restated in the following way:

Theorem 2.10 ([2]). Let Γt = 〈N , (Ui)i∈N , (Fi)i∈N , g, t〉 be a nice aggregative

game for any t ∈ T . Then, there exists an equilibrium x∗(t) ∈ U and also

the smallest and largest equilibrium aggregates Q∗(t) and Q∗(t). Moreover,

Q∗ : T → R is a lower semicontinuous function and Q∗ : T → R is an upper

semicontinuous function.

Theorem 2.11 ([2]). Let Γt = 〈N , (Ui)i∈N , (Fi)i∈N , g, t〉 be an aggregative

game with strategic substitutes for any t ∈ T . Then, there exists an equilibrium

x∗(t) ∈ U and also the smallest and largest equilibrium aggregates Q∗(t) and

Q∗(t). Moreover, Q∗ : T → R is a lower semicontinuous function and Q∗ :

T → R is an upper semicontinuous function.

2.7 Partial Cooperative Games

In various practical situations the interaction between agents can be a mixture

of non-cooperative and cooperative behaviour. Considering a N -person game,

partial cooperation between a portion of players that sign a cooperative agree-

ment is firstly studied in [64] for symmetric potential games, assuming that the

non-cooperators’ reaction set, given by the solution of non-cooperators’ Nash

equilibrium problem, is a singleton.

In [65] and [66] an extention of the partial cooperation framework to certain

games is presented. In these games the non-cooperating players select from

multiple best replies. In [66] symmetric aggregative games are considered and

it is assumed that the non-cooperators coordinate on the symmetric Nash

equilibrium that yields the highest payoff to them, and, thus, do not consider
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any non-symmetric Nash equilibrium that, possibly, might result in higher

payoff for all. In [65], on the other hand, it is assumed that the non-cooperators

coordinate on the Nash equilibrium with the greatest or lowest strategy vector,

irrespective of the payoff attained by the non-cooperators in this equilibrium.

Mallozzi and Tijs′ assumptions are inapplicable to most strategic situations.

However, at the same time they are hard to do away with. As long as the

game is symmetric, identical strategies will lead to identical payoffs. Hence,

the choice of a strategy that maximizes individual payoffs in the coalition of

cooperators also maximizes joint payoffs if we assume that all members of

the coalition of cooperators select the same strategy. Hence, cooperation is

sustainable without payoff sharing as long as cooperation yields higher payoffs

compared to the purely non-cooperative situation in which a Nash equilibrium

outcome is attained, provided it exists. If the game is not symmetric, however,

the selection of the same strategy by the coalition of cooperators need not

confer identical payoffs to all members of the group. In [15] the symmetric

assumption is bypassed assuming that the coalition of cooperators can choose

a strategy that maximizes its joint payoffs. Moreover they assume that the

coalition of cooperators is risk-averse and chooses a maximin strategy. Hence,

if there are multiple best replies given a strategic agreement of the coalition

of cooperators, then the coalition of cooperators takes into account only the

worst possible outcome.

Let us remark that in the context of partial cooperative games, two kinds of

solution concept can be considered: the partial cooperative Nash equilibrium

and the partial cooperative leadership equilibrium.

For more details on the partial cooperative Nash equilibrium, see [15].

Here, we focus on the second kind of equilibrium founded on the idea that

the coalition of cooperators has a strategic leadership position with respect to

the non-cooperators. Thus, the non-cooperators find the best reply to the other
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players’ actions and the coalition of cooperators anticipates the non-cooperators’

best reply selection.

Let us formalize the definition of partial cooperative leadership equilibrium,

recalling also an existence result for it (see [15]), using similar conditions to

the Nash theorem in [79] .

Given a N -person normal form game Γ = 〈N , (Ui)Ni=1, (fi)
N
i=1〉, let us fix

k ∈ {0, . . . , N}, called level of cooperation, let us suppose that k players

cooperate and let us denote C = {N − k + 1, . . . , N} the set of cooperators

and C = {1, . . . , N − k} the complement of C i.e. the set of non-cooperators.

Denote by xC = (xN−k+1, . . . , xN) ∈
∏N

i=N−k+1 Ui and xC = (x1, . . . , xN−k) ∈∏N−k
j=1 Uj. The game Γ =

〈
C,C, (Ui)i∈C , (Uj)j∈C , (fi)i∈C , (fj)j∈C

〉
is called

partial cooperative game.

In order to explicitely introduce the leader-follower equilibrium concept,

for any xC ∈
∏N

i=N−k+1 Ui denote Γx
C

N−k = 〈C,
∏N−k

j=1 Uj, ω
xC 〉 the normal form

game, called conditional partial cooperative game, given by player set C of

non-cooperators whose strategy set is Uj and who have conditional payoff

function ωx
C

j (xC) :
∏N−k

j=1 Uj → R defined as

ωx
C

j (xC) = fj(x
C , xC).

The set of the conditional game’s Nash equilibria is denoted by NExC ⊂∏N−k
j=1 Uj.

Assuming that NExC 6= ∅, in order to select one Nash equilibrium among

followers, as previously anticipated, we assume that cooperators are pessimistic

in the sense that the coalition of the cooperators, the leader, supposes that the

followers’ (non-cooperators) choice is the worst for herself and select a maxmin

strategy. Thus, let us introduce

f(xC) = min
xC∈NE

xC

N∑
i=N−k+1

fi(x
C , xC)
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and

Ũ = {x̃C ∈
N∏

i=N−k+1

Ui : f(x̃C) = max
xC∈

∏N
i=N−k+1 Ui

f(xC)}.

Definition 2.18. An action tuple (xC∗ , x
C
∗ ) ∈

∏N−k
j=1 fj ×

∏N
i=N−k+1 fi is a

partial cooperative leadership equilibrium for the game Γ if xC∗ ∈ Ũ and

xC∗ ∈ arg min
xC∈NE

xC∗

N∑
i=N−k+1

fi(x
C , xC∗ ).

In this context the following holds:

Theorem 2.12 ([15]). Assume that

• all action sets Ui for i ∈ C and Uj for j ∈ C are non-empty, compact

and convex subset of an Euclidean space;

• all payoff functions fi for i ∈ C and fj for j ∈ C are continuous on the

space of action tuple
∏

i∈C Ui ×
∏

j∈C Uj;

• for every non-cooperator j ∈ C the payoff function fj is quasi-concave on

Uj.

Then the game Γ admits at least one partial cooperative leadership equilibrium.



Chapter 3

Multi-Leader Multi-Follower

Aggregative Uncertain Games

In this chapter, we generalize the multi-leader multi-follower equilibrium concept

for the class of aggregative games (see [18], [41], [98]), namely games where

each player’s payoff depends on his own actions and an aggregate of the actions

of all the players.

We present the multi-leader multi-follower equilibrium model under uncer-

tainty, assuming an exogenous uncertainty affecting the aggregator, and some

existence results for the stochastic resulting game are obtained in the smooth

case of nice aggregative games, where payoff functions are continuous and

concave in own strategies, as well as in the general case of aggregative games

with strategic substitutes. Applicative examples, such as the global emission

game and the teamwork project game, are illustrated. For more details see [54].

We point out that our results hold for the general class of aggregative

games and generalize the ones obtained by De Miguel and Xu (see [24]) and by

Nakamura (see [77]) for the Cournot oligopoly games. Moreover, we briefly dis-

cuss the experimental evaluation based on the Sample Average Approximation

(SAA) method (see [44]) for the global emission game.
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We present the model in Section 3.1, then we study it in the smooth case

in Section 3.2 and in the strategic substitutes case in Section 3.3, providing

existence theorems and examples.

3.1 The model

We consider a M +N -player aggregative game where M players (leaders) have

the leadership in the decision process: they commit a strategy knowing the best

reply of other N players (followers) who are involved in a non-cooperative Nash

equilibrium problem. Here, M,N ∈ N0 = {0, 1, 2, . . . }; if M or N is equal to

zero, the game turns out to be a non-cooperative Nash equilibrium problem.

We suppose that there is a shock in the game that hits the payoff functions

of both leaders and followers that is represented by a continuous random

variable ξ : Ω→ R on a probability state space (Ω,Σ,P). Of course, we obtain

different payoffs for every realization of the random variable ξ and, thus, by the

distribution of ξ, we can characterize the uncertainty in the payoff functions.

Thus, let us consider the following aggregative normal form game

Γ =
〈
M+N , (Ui)Mi=1, (Vj)

N
j=1, (li)

M
i=1, (fj)

N
j=1, g, (Ω,Σ,P), ξ

〉
where:

• M = {1, . . . ,M}, with M fixed number of leaders and N = {1, . . . , N}

with N fixed number of followers;

• for every i ∈M, Ui ⊆ R+ is the finite-dimensional strategy set of leader

i and, for every j ∈ N , Vj ⊆ R+ is the finite-dimensional strategy set of

follower j;

• denoted by U =
∏M

i=1 Ui and V =
∏N

j=1 Vj, g : U × V → R is the
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aggregator function which is additively separable i.e.

g(x, y) = H

( M∑
i=1

xi +
N∑
j=1

yj

)
= H(X + Y ),

where x = (x1, . . . , xM ) with xi ∈ Ui, ∀i = 1, . . . ,M and y = (y1, . . . , yN )

with yj ∈ Vj, ∀j = 1, . . . , N and H : R → R is a strictly increasing

function;

• (Ω,Σ,P) is a probability state space, where any ω ∈ Ω represents some

state of the world;

• ξ : Ω→ R is a stochastic variable on the probability state space (Ω,Σ,P);

• for every i ∈ M and for every j ∈ N , li : Ui × R × R → R and

fj : Vj×R×R→ R are payoff functions respectively of leader i and follower

j, tipically described as li(xi, g(x, y), ξ(ω)) = li(xi, H(X + Y ), ξ(ω)) and

fj(yj, g(x, y), ξ(ω)) = fj(yj, H(X + Y ), ξ(ω)).

The jth follower chooses his strategy after observing the realization of the

shock and the strategies chosen by all the leaders and he will keep the aggregate

quantity of the leaders and the quantity of the other followers fixed. Thus, for

a fixed x ∈ U and ξ(ω) ∈ R, the followers solve a Nash equilibrium problem:

(3.1) maxyj∈Vjfj(yj, H(X + yj + Y−j), ξ(ω))

for any j = 1, . . . , N , where Y−j =
∑

k 6=j yk and X =
∑M

i=1 xi is the aggregate

leaders’ committed strategy.

The ith leader chooses his strategy knowing the payoff function only in distri-

bution since the shock ξ(ω) is not realized yet. Moreover, since he acts simultane-

ously with all other leaders, he must take into account that the strategies of other

leaders, x−i ∈ U−i =
∏

k 6=i Uk, are fixed and, since he acts before every follower,

he must also consider the reaction of the followers to the aggregate leaders’ strat-

egy that is a solution to problem 3.1, i.e. y1(H(X, ξ(ω))), . . . , yN(H(X, ξ(ω))).
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Then, if Y (H(X, ξ(ω))) =
∑N

j=1 yj(H(X, ξ(ω))), any leader considers the ex-

pectation with respect to ξ(ω) of his profit li(xi, H(X + Y (H(X, ξ(ω)))), ξ(ω))

and solves the problem:

(3.2) maxxi∈UiE[li(xi, H(xi +X−i + Y (H(xi +X−i, ξ(ω)))), ξ(ω))],

where E denotes expectation with respect to the random variable ξ and X−i =∑
k 6=i xk.

In the following, U and V are assumed to be compact and each fj : Vj×R×

R→ R is assumed to be upper semicontinuous on Vj × R× R and continuous

in R× R, and analogously each li : Ui × R× R→ R is assumed to be upper

semicontinuous on Ui × R× R and continuous in R× R.

Suppose now that the followers’ problem 3.1 has a unique solution.

Definition 3.1. A multi-leader multi-follower equilibrium with aggregate un-

certainty (MLMFA equilibrium) is an M +N -tuple

(x?1, . . . , x
?
M , y1(H(X?, ·)), . . . , yN(H(X?, ·))),

such that

(3.3) E[li(x
?
i , H(X? + Y (H(X?, ξ(ω)))), ξ(ω))] =

maxxi∈UiE[li(xi, H(xi +X?
−i + Y (H(xi +X?

−i, ξ(ω)))), ξ(ω))]

for any i = 1, . . . ,M , where

(3.4)

yj(H(X?, ξ(ω))) ∈ argmaxyj∈Vjfj(yj, H(X? + yj + Y−j(H(X?, ξ(ω)))), ξ(ω))

for any j = 1, . . . , N and (y1(H(X?, ξ(ω))), . . . , yN(H(X?, ξ(ω)))) is the Nash

equilibrium among followers given the aggregate leaders’ strategy and the

realized shock ξ(ω).
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The given definition generalizes to aggregative games the multiple-leader

Stackelberg equilibrium given by De Miguel and Xu in the case of a Nash–

Cournot oligopoly game (see [24]).

Herein, we suppose that ξ(ω) is a continuous random variable on the state

space Ω with density function ρ(t), with T supporting set. Thus we can rewrite,

for t ∈ T , the normal form game Γ as〈
M+N , (Ui)Mi=1, (Vj)

N
j=1, (li)

M
i=1, (fj)

N
j=1, g, t

〉
where the leaders’ and the followers’ payoff functions are rewritten in the

following way:

(3.5) E[li(xi, H(X + Y (H(X, ξ(ω)))), ξ(ω)) =∫
T
li(xi, H(xi +X−i + Y (H(xi +X−i, t))), t)ρ(t)dt

for any i ∈M and for t ∈ T and

fj(yj, g(x, y), t) = fj(yj, H(X + yj + Y−j), t)

for any j ∈ N and for t ∈ T .

Remark 3.1. If ξ : Ω→ R is a discrete random variable i.e., ξ(Ω) is finite or

countable, ξ(Ω) = {t1, . . . , th, . . . }, the leaders’ payoff functions are defined by

(3.6) E[li(xi, H(X + Y (H(X, ξ(ω)))), ξ(ω)) =∑
h

li(xi, H(xi +X−i + Y (H(xi +X−i, th))), th)p(th)

for i = 1, . . . ,M , where p(th) = P(ξ(ω) = th) i.e the probability that the

realization of the random variable is th, for any h ∈ N.

Remark 3.2. In the deterministic case, when M = N = 1, the model corre-

sponds to the classical Stackelberg Leader–Follower problem (see [100]). The

case M = 1 and N ≥ 1 has been introduced in the oligopolistic market context

in [94], [95] and studied from a computational point of view in [52], where it

has been called MPEC, and it has been applied in other several contexts, for

example in transportation in [68].
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3.2 The Regular Case

In order to prove the existence and uniqueness of the follower Nash equilibrium

and the existence of a multi-leader multi-follower equilibrium with aggregate un-

certainty, we will use the following assumptions, already presented in literature

(see [2], [19]).

Assumption 3.1. The aggregative game

〈
M+N , (Ui)Mi=1, (Vj)

N
j=1, (li)

M
i=1, (fj)

N
j=1, g, t

〉
is an aggregative nice game for every t ∈ T i.e.,

• the aggregator g is twice continuously differentiable;

• every strategy set Ui and Vj for i = 1, . . . ,M and j = 1, . . . , N is compact

and convex;

• the payoff functions li(xi, g(x, y), t) and fj(yj, g(x, y), t) are twice contin-

uously differentiable and pseudo-concave in the player’s own strategy for

all i = 1, . . . ,M and for all j = 1, . . . , N ;

• Dxili(xi, g(x, y), t) = 0 whenever xi ∈ ∂Ui and (v−xi)Dxili(xi, g(x, y), t) ≤

0 ∀v ∈ Ui and Dyjfj(yj, g(x, y), t) = 0 whenever yj ∈ ∂Vj and (u −

yj)Dyjfj(yj, g(x, y), t) ≤ 0 ∀u ∈ Vj for all i = 1, . . . ,M and for all

j = 1, . . . , N (that means that the first-order conditions hold whenever a

best response is on the boundary).

Remark 3.3. By using these assumptions on li, for all i = 1, . . . ,M , and

the theorem of differentiation under the integral sign, it also follows that the

expected payoff functions E[li(xi, H(X + Y (H(X, ξ(ω)))), ξ(ω))] satisfy the

Assumption 3.1 for any i = 1, . . . ,M .

Now let us give another assumption on the followers’ side.
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Let us introduce for any t ∈ T and j = 1, . . . , N the marginal profit that

we can denote by

πj(yj, H(X+Y ), t) := D1fj(yj, H(X+Y ), t)+D2fj(yj, H(X+Y ), t)
∂H

∂yj
(X+Y ),

where D1fj =
∂fj
∂yj

and D2fj =
∂fj
∂H

.

Assumption 3.2. If (yj, H(X+Y )) satisfies yj < H(X+Y ) and the marginal

profit πj(yj, H(X + Y ), t) = 0, then

(i)
∂πj
∂yj

< 0,

where
∂πj
∂yj

= D11fj(yj, H(X+Y ), t)+2D12fj(yj, H(X+Y ), t) ∂H
∂yj

(X+Y )+

D22fj(yj, H(X + Y ), t) ∂H
∂yj

(X + Y ) +D2fj(yj, H(X + Y ), t)∂
2H
∂y2j

(X + Y );

(ii) yj
∂πj
∂yj

+H(X + Y )
∂πj
∂H

< 0.

Note that (i) corresponds to the law of diminishing marginal utility, while

(ii) is assumed in order to obtain that the share functions are strictly decreasing

and so to ensure the uniqueness of the followers’ Nash equilibrium (see [19]).

Example 3.1. (see [24]). An oligopolistic situation with M + N firms that

supply an homogeneous product non-cooperatively is given. M leader firms

announce their quantities in U1, . . . UM and the rest of the N firms react by

choosing a Cournot–Nash equilibrium in V1, . . . , VN . We consider:

• Ui and Vj for all i = 1, . . . ,M and for all j = 1, . . . , N are compact

subsets of R+ 1;

• the aggregator is the sum of the strategies i.e., g(x, y) = X + Y ;

• given an exogenous random variable ξ(ω), which represents the market

size based on a state space Ω describing the preferential fluctuations for

the product under consideration, the payoff function for every leader i is

E[li(xi, X + Y (X, ξ(ω)), ξ(ω))] =

1Ui and Vj are subsets of R+ with capacity limits.
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∫
T
xip(xi +X−i + Y (xi +X−i, t), t)ρ(t)dt− Ci(xi),

where p is the inverse demand function that depends on the aggregate

quantity and the random variable ξ(ω) and Ci is the ith leader’s cost

function, with p and Ci for all i = 1, . . . ,M being twice continuously

differentiable functions;

• the payoff function for every follower j is

fj(yj, X + Y, t) = yjp(X + yj + Y−j, t)− cj(yj),

where cj is the jth follower’s cost function, that is twice continuously

differentiable, and t is the realization of the random variable.

In [24] this framework is used to model competition in the Telecommunication

Industry, proposing a computational approach for finding equilibria for this

market.

Remark 3.4. Note that Assumptions 3.1 and 3.2 hold for Example 3.1.

Fixing x = (x1, . . . , xM ), for any t ∈ T , we consider the reduced aggregative

game
〈
N , (Vj, fj)Nj=1, g, t

〉
.

Theorem 3.1. (Existence of an MLMFA Equilibrium) Under Assump-

tions 3.1 and 3.2, the following hold:

(i) there exists an equilibrium (y1(H(X, t)), . . . , yN(H(X, t))) ∈ V i.e., this

N-tuple satisfies 3.4 with X =
∑M

i=1 xi;

(ii) denoted by Q(x, t) = g(x, y1(H(X, t)), . . . , yN(H(X, t))), which is called

an equilibrium aggregate given t and given x, there exist the smallest and

largest equilibrium aggregates with respect to t, while x is fixed, denoted

by Q∗(x, t) and Q∗(x, t), respectively;
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(iii) Q∗ : U×T → R is a lower semicontinuous function ∀x and Q∗ : U×T →

R is an upper semicontinuous function ∀x;

(iv) the equilibrium (y1(H(X, t)), . . . , yN(H(X, t))) is unique.

Proof. The result (i) is obtained easily, applying Kakutani’s fixed point theorem.

In fact, the best-reply correspondences will be upper hemicontinuous and have

convex values, since by Assumption 3.1 fj ∀j = 1, . . . , N are quasi-concave

functions (because pseudo-concavity implies quasi-concavity).

Points (ii) and (iii) follow straightforwardly from Theorem 2.10.

Point (iv) follows from [19] because of Assumption 3.2.

Remark 3.5. By points (ii) and (iv), it follows that Q∗(x, t) = Q∗(x, t) =

Q(x, t) and so, by point (iii), we can conclude that the function Q : U ×T → R

is a continuous function.

Theorem 3.2. Under Assumptions 3.1 and 3.2, there exists an MLMFA equi-

librium.

Proof. The existence follows from Theorem 3.1, Remark 3.3 and Theorem

2.10.

Example 3.2. (Global Emission Game)

We assume that there are four countries, indexed by h, h ∈ {1, . . . , 4}, which

production and consumption generates emissions eh ≥ 0 of a global pollutant

as an output. The pollutant is global in the sense that we assume pollution

as a public bad and that individual emissions impose negative externalities

on all other countries. We assume that, among these countries, two countries,

namely countries i, with i ∈ {1, 2}, have commitment power and thus they

act as leaders in a two-stage game, with countries j, with j ∈ {3, 4}, acting as

followers. Assume that a shock hits the payoff functions. This shock could be,

for example, caused by a disaster event that generates an exogenous pollutant

and we represent it by a random variable ξ.
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Thus let us consider the game〈
4, (Ui, li)

2
i=1, (Vj, fj)

4
j=3, g, (Ω,Σ,P), ξ

〉
,

where

• fixing emax > 0, Ui = [0, emax] for i = 1, 2, Vj = [0, emax] for j = 3, 4;

• denoting by e = (e1, e2, e3, e4) the vector of strategies, g(e) =
(∑4

h=1 eh

)2

;

• (Ω,Σ,P) is a probability state space, where any ω ∈ Ω represents some

state of the world;

• ξ : Ω→ R is a continuous random variable on the probability state space

(Ω,Σ,P) with uniform distribution ρ(t) = 1
T
∀t ∈ [0, T ] (T > 0).

Let us consider α,β > 0. Then,

• for any t ∈ [0, T ], the payoff functions for the followers are

fj(ej, g(e), t) = αej −
e2
j

2
− β

2
(e1 + e2 + e3 + e4 + t)2

for j = 3, 4;

• the payoff functions for the leaders are

E[li(ei, g(e), ξ(ω))] = αei −
e2
i

2
− β

2

∫ T

0

[
(e1 + e2 + e3 + e4 + t)2

] 1

T
dt

for i = 1, 2.

Fixing (e1, e2) and t, the followers choose the unique symmetric Nash

equilibrium

e3(e1, e2) = e4(e1, e2) =
α− β(e1 + e2 + t)

1 + 2β

with α ≥ β(2emax + T ). Thus, the leaders maximize, with respect their own

strategy, the following payoff function:

E[li(ei, g(e), ξ(ω))] = αei −
e2
i

2
− β

2

∫ T

0

[(e1 + e2 + 2α + t

1 + 2β

)2] 1

T
dt,
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and the MLMFA equilibrium is

(e∗1, e
∗
2, e
∗
3, e
∗
4) =

=
(2α(1 + 2β)2 − β(4α + T )

2[(1 + 2β)2 + 2β]
,
2α(1 + 2β)2 − β(4α + T )

2[(1 + 2β)2 + 2β]
,

(1 + 2β)2(α− βt− 2αβ) + 2β(α− βt+ 2αβ) + β2T

[(1 + 2β)2 + 2β](1 + 2β)
,

(1 + 2β)2(α− βt− 2αβ) + 2β(α− βt+ 2αβ) + β2T

[(1 + 2β)2 + 2β](1 + 2β)

)
,

∀t ∈ [0, T ], ∀β > 0 and ∀α ≥ β(2emax + T ).

This model corresponds to a global emission game in the context of an IEA

(International Environmental Agreement) under the Stackelberg assumption

(see [1], [28]), where leaders are signatory countries and followers are non-

signatory countries, in a non-cooperative strategic game.

Note that Assumptions 3.1 and 3.2 are satisfied for this game and Theorems

3.1 and 3.2 hold.

Remark 3.6. It is possible to use the classical algorithm called Sample Average

Approximations method (SAA) (see, for example, [44]) to give a computational

evaluation of the MLMFA equilibrium. It is based on the use of a sample of

ξ(ω) rather than the distribution of the random variable ξ(ω). .

Let ξ1, . . . , ξk be an independently and identically distributed (i.i.d.) random

sample of k realizations of the random variable ξ(ω). We approximate the ith

leader’s decision problem by the following SAA problem:

maxxi∈Uiφ
k
i (xi, X−i) :=

1

k

k∑
h=1

li(x1, . . . , xi, . . . , xM , ξ
h),

where, for simplicity, we denote li(x1, . . . , xi, . . . , xM , ξ
h) = li(xi, H(xi +X−i +

Y (H(X, ξh))), ξh).
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If (xk1, . . . , x
k
M ) satisfies φki (x

k
i , X

k
−i) = maxxi∈Uiφ

k
i (xi, X

k
−i) for i = 1, . . . ,M ,

then (xk1, . . . , x
k
M ) is called a multi-leader multi-follower equilibrium with aggre-

gate uncertainty of the SAA problem (MLMFA-SAA equilibrium).

If we introduce the function

L(x, z, ξh) :=
M∑
i=1

li(x1, . . . , zi, . . . , xM , ξ
h)

and the function

φk(x, z) :=
1

k

k∑
h=1

L(x, z, ξh),

then xk = (xk1, . . . , x
k
M) is an MLMFA-SAA equilibrium if and only if

φk(x
k, xk) = maxz∈Uφk(x

k, z).

Note that, if we consider L(x, z, ξ(ω)) :=
∑M

i=1 li(x1, . . . , zi, . . . , xM , ξ(ω))

and φ(x, z) := E(L(x, z, ξ(ω)), it is straightforward to see that the vector

x∗ = (x∗1, . . . , x
∗
M) is an MLMFA equilibrium if and only if

φ(x∗, x∗) = maxz∈Uφ(x∗, z).

Example 3.3. (Computational Evaluation) In the Global Emission Game

we have that

l1(z1, x2, ξ(ω)) = αz1 −
z2

1

2
− β

2

(z1 + x2 + 2α + ξ(ω)

1 + 2β

)2

and

l2(x1, z2, ξ(ω)) = αz2 −
z2

2

2
− β

2

(x1 + z2 + 2α + ξ(ω)

1 + 2β

)2

and so

L(x, z, ξ(ω) = α(z1 + z2)− (z2
1 + z2

2)

2
− β

2

(z1 + x2 + 2α + ξ(ω)

1 + 2β

)2

−

−β
2

(x1 + z2 + 2α + ξ(ω)

1 + 2β

)2

.
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With the method proposed above, for a fixed k, we can compute an MLMFA-

SAA equilibrium, maximizing over z ∈ U the function φk(xk, z):

xk = (xk1, x
k
2) =

( α(1 + 2β)2

(1 + 2β)2 + 2β
− 2αβ

(1 + 2β)2 + 2β
− β

∑k
h=1 ξ

h

k[(1 + 2β)2 + 2β]
,

α(1 + 2β)2

(1 + 2β)2 + 2β
− 2αβ

(1 + 2β)2 + 2β
− β

∑k
h=1 ξ

h

k[(1 + 2β)2 + 2β]

)
.

In order to investigate the convergence of a sequence of MLMFA-SAA

equilibria for k → +∞, let us note that L(x, z, ξ(ω)) is a Lipschitz continuous

function. Thus, in this case, we can easily obtain that φk(x, z) converges to

φ(x, z) uniformly and, with a probability of one, the sequence {xk} converges

to the unique MLMFA equilibrium x∗.

3.3 A More General Case in an Optimistic

View

In the previous section, we have considered that the payoff functions are twice

continuously differentiable; in this section, we want to avoid this assumption,

and, in order to obtain results on the existence of an MLMFA equilibrium in

this more general framework, we need an assumption taken from [2].

Assumption 3.3. The aggregative game〈
M+N , (Ui)Mi=1, (Vj)

N
j=1, (li)

M
i=1, (fj)

N
j=1, g, t

〉
is an aggregative game with strategic substitutes for any t ∈ T , i.e.,

• every strategy set Ui and Vj for i = 1, . . . ,M and j = 1, . . . , N is a lattice;

• for all i = 1, . . . ,M and for all j = 1, . . . , N the payoff functions

li(xi, g(x, y), t) and fj(yj, g(x, y), t) are supermodular in the player’s own

strategy and exhibit decreasing differences in xi and X−i and in yj and

Y−j, respectively, for any t ∈ T .
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For any x = (x1, . . . , xM) and for any t ∈ T , we consider the reduced

aggregative game
〈
N , (Vj, fj)Nj=1, g, t

〉
.

Theorem 3.3. Under Assumption 3.3, the following hold:

(i) there exists an equilibrium (y1(H(X, t)), . . . , yN(H(X, t))) ∈ V i.e., this

N-tuple satisfies 3.4;

(ii) there exist the smallest and largest equilibrium aggregates denoted by

Q∗(x, t) and Q∗(x, t), respectively;

(iii) Q∗ : U ×T → R is a lower semicontinuous function and Q∗ : U ×T → R

is an upper semicontinuous function.

Proof. This result is an immediate consequence of Theorem 2.11.

This theorem gives us the existence of a Nash equilibrium among followers

but not the uniqueness of it. Thus, in principle, there are multiple equilibria

denoted by NE(X, t). We can consider a selection of the correspondence

(X, t)⇒ NE(X, t), namely, a function

λ : (X, t)→ (yλ1 (H(X, t)), . . . , yλN(H(X, t))),

in order to choose a profile in the set of the possible Nash equilibria of the

followers.

We suppose that li(xi, g(x, y), t) = li(xi, H(X + Y ), t) is increasing in the

second variable i.e., the aggregator g. Since H is a strictly increasing function,

li(xi, H(X + Y ), t) is increasing in the aggregate of strategies. By Theorem 3.3,

the equilibria aggregates are ordered from the smallest one to the largest one

and we assume that the leaders adopt the max-selection (in line with [65]) i.e.,

(ymax1 (H(X, t)), . . . , ymaxN (H(X, t))),
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such that
∑N

j=1 y
max
j (H(X, t)) = Y ∗(x, t), and they take into account the

following functions:

li(xi, g(x, Y ∗(x, t)), t) = li(xi, H(X + Y ∗(x, t)), t),

and they solve a Nash equilibrium problem.

Remark 3.7. By integral’s monotonicity and by Assumption 3.3, the function

E[li(xi, H(X + Y ∗(x, t)), t)] is supermodular in the player’s own strategy and

exhibits decreasing differences in xi and X−i, for all i = 1, . . . ,M and for any

t ∈ T .

Remark 3.8. In the case of multiple followers’ responses, the max-selection

corresponds (for M = 1) to the so-called strong Stackelberg–Nash solution or

optimistic Stackelberg–Nash solution (see [11], [46], [48], [81]).

Theorem 3.4. If Assumption 3.3 holds and if li(xi, g(x, y), t) is an increasing

function in the aggregator, then there exists an MLMFA equilibrium.

Proof. Since Assumption 3.3 holds, then Theorem 3.3 holds, and, since the

function li(xi, g(x, y), t) is increasing in the aggregator, using the max-selection,

we can consider the reduced aggregative game
〈
M, (Ui, li)

M
i=1, g, t

〉
, where li =

li(xi, H(X + Y ∗(x, t)), t) ∀i = 1, . . . ,M , which is an aggregative game with

strategic substitutes. Considering the functions E[li(xi, H(X + Y ∗(x, t)), t)],

for any i = 1, . . . ,M , by Remark 3.7 and using Theorem 2.11, the result is

proved.

Example 3.4. (Teamwork Project)

Three agents must each complete a task and they form a team. Each

agent’s task is critical to the success of the team’s project, i.e. to the agents’

common project, in the sense that if everyone is successful in his individual

project, the team’s project succeeds, otherwise it fails. Let us denote by sh,

with h ∈ {1, 2, 3} the probability that agent h succeeds in his own task. We
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assume that agent 1 has commitment power and thus he acts as leader in a

two-stage game, with agents 2 and 3 as followers.

Let us suppose that the payoff functions of both leader and followers depend

on own strategies and the probability of joint success i.e. s1s2s3. Moreover,

we assume that a shock hits the payoff function in a way that, if the joint

probability is sufficiently high, i.e. if the team is in himself close to succeed, the

payoff of each player is weakly affected by the external shock, while, if the joint

probability is sufficiently low, i.e. if the team is close to fail, the payoff of each

player is strongly negatively affected by the external shock. Let us represent

this shock by a random variable ξ. Thus let us consider the game〈
3, (U1, l1), (Vj, fj)

3
j=2, g, (Ω,Σ,P), ξ

〉
,

where

• U1 = [0, 1], Vj = [0, 1] for j = 2, 3;

• denoted by s = (s1, s2, s3) the vector of strategies, g(s) =
∏3

h=1 sh;

• (Ω,Σ,P) is a probability state space, where any ω ∈ Ω represents some

state of the world;

• ξ : Ω→ R is a continuous random variable on the probability state space

(Ω,Σ,P) with uniform distribution ρ(t) = 1 ∀t ∈ [0, 1].

Then,

• for any t ∈ [0, 1], the payoff functions for the followers are

fj(sj, g(s), t) = (s1s2s3)1+t

for j = 2, 3;

• the payoff function for the leader is

E[l1(s1, g(s), ξ(ω))] = E
[
(s1s2s3)1+ξ(ω) −

(
s1 +

1

4

)4]
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=

∫ 1

0

(s1s2s3)1+tdt−
(
s1 +

1

4

)4

.

Fixing s1 and t, the followers’ Nash equilibria are

NE(s1, t) =

{(0, 0), (1, 1)} ifs1 6= 0,

[0, 1]2 ifs1 = 0.

By using the max-selection, the leader considers (s∗2, s
∗
3) = (1, 1) and so he

maximizes, with respect to his own strategy, the following payoff function:

E
[
s

1+ξ(ω)
1 −

(
s1 +

1

4

)4]
=

∫ 1

0

s1+t
1 dt−

(
s1 +

1

4

)4

=

s1(s1 − 1)

logs1

−
(
s1 +

1

4

)4

.

It can be proved that there exists sM ∈ [0, 1] where this function has a

positive maximum.

This model corresponds to the Teamwork project with multiple task (see

[26], [41]).

Note that Assumption 3.3 is satisfied in this game, and, since l1 is an

increasing function in the aggregator g(s) =
∏3

h=1 sh, Theorems 3.3 and 3.4

hold.



Chapter 4

Common Pool Resources Games

and Social Purpose Games as

classes of Aggregative Games

In literature, many common games in industrial organization, public economics

and macroeconomics are aggregative games: among them, we mention Cournot

and Bertrand games, patent races, models of contests of fighting and model

with aggregate demand externalities.

Moreover, also a lot of environmental games present an aggregative structure

like pollution games or water resource games, for which the aggregation function

usually is the summation of strategies. Thus, in this chapter, we examine

two particular environmental games, viewed and studied as aggregative games,

namely an investment game in Common-Pool Resources and, after introducing a

particular class of aggregative games called Social Purpose Games, a withdrawal

game of a water resource.

In Section 4.1 we describe an investment decision making situation for a

CPR using an aggregative normal form game. For this game we investigate the

existence question of Nash equilibrium solution, that describes situations where
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agents act in a non-cooperative way. Two types of results are given, with or

without convexity-like assumptions. Moreover, in the special case of quadratic

return functions, the game is also studied under uncertainty, i.e. when the

possibility of a natural disaster with a given probability is considered in the

model.

In Section 4.1.1 we describe our model, introduce two different kinds of equilib-

rium, the non-cooperative and the cooperative ones, and show the existence of

such equilibria. Then, we apply these concepts in the context of Environmental

Economics where the return functions are quadratic and in which, for example,

players could be countries that chose the level of investment into green poli-

cies, in order to be more environmentally friendly (see [90] and the references

therein). In Section 4.1.2 we introduce a threshold investment and we study

the resulting game with aggregative uncertainty, computing and comparing the

non-cooperative and the cooperative equilibria. For more details see [57].

In Section 4.2, following the literature of additively separable aggregative

games and in line with the asymmetry considered in [70], we introduce a class

of non-cooperative games, called Social Purpose Games, for which the payoff

of each player depends separately on his own strategy and on a function of

the strategy profile, the aggregation function, which is the same for all players,

weighted by an individual benefit parameter which enlightens the asymmetry,

between agents, towards the social part of the benefit. The two parts of the

payoff function represent respectively the individual and the social benefits.

In Section 4.2.1 we introduce the class of Social Purpose Games for which we

show that they have a potential and we prove existence results for the Nash

equilibrium and the Social Optimum. In Section 4.2.2 we show an existence

result of a coalition leadership equilibrium and we prove a stability result,

depending on the weights affecting the aggregation function. An application to

a water resource game is illustrated ([12], [47], [83]). For more details see [33].
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4.1 Common-Pool Resources: an Equilibrium

Analysis

4.1.1 Investment in a CPR

In order to describe an investment decision making situation for a Common-Pool

Resource let us consider the following normal form game Γ =
〈
N , (Ui)Ni=1, (fi)

N
i=1

〉
where:

• N = {1, . . . , N}, with N the fixed number of players that can access to

the CPR;

• for any i ∈ N , Ui = [0, e] is the strategy set for player i, where e is the

initial endowment that each player can invest in the CPR or in an outside

activity;

• denoted by U =
∏N

i=1 Ui, fi : U → R is the payoff function of player i for

any i ∈ N .

In line with [31] and [32], let us denote by ω > 0 the marginal payoff of the

outside activity and by xi ∈ [0, e] the quantity invested by player i in the CPR.

In order to explicitly write the payoff function for each player i, let us introduce

a twice continuously differentiable function G : [0, Ne] → R that depends

on the aggregate invested quantity in the CPR, i.e.
∑N

i=1 xi, and that is a

concave function such that G(0) = 0 and G′(0) > ω. This function represents

the aggregate return to the investment in the CPR and so the assumption

G′(0) > ω is nothing but an incentive constraint since it means that initially

the marginal return to the investment in the CPR is greater than the marginal

payoff that everyone achieves if he invests in an outside activity (see [32]).

Note that, for any i ∈ N , if player i decides to invest part of his endowment in

the CPR he will obtain a certain payoff ω(e− xi) plus the return of investment
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in the CPR, G(
∑N

i=1 xi), multiplied by the share that is for him, i.e. xi/
∑N

i=1 xi,

while if he decides to not invest in the CPR he will obtain a payoff ωe. So, let

x = (x1, . . . , xN) be a vector of players’ investment, then for any i ∈ N , the

payoff of player i is given by

(4.1) fi(x1, . . . , xN) = ω(e− xi) +
xi∑N
i=1 xi

G(
N∑
i=1

xi).

Since G(0) = 0 and G′(0) > 0, mathematically 0 is a zero of order one for the

function G and so G(
∑N

i=1 xi) =
∑N

i=1 xiH(
∑N

i=1 xi) with H : [0, Ne]→ R such

that H(0) 6= 0 and H is twice continuously differentiable1. So, for any i ∈ N ,

we can rewrite the payoff function of player i, in terms of average aggregate

return H(
∑N

i=1 xi), in the following way:

(4.2) fi(x1, . . . , xN) = ω(e− xi) + xiH(
N∑
i=1

xi).

Let us explicitely note that, in the context of CPR, the function G(
∑N

i=1 xi) is

the production function and H(
∑N

i=1 xi) is the average production function (see

[32]). In the context of Environmental Economics, if the considered strategies

are emissions, the function G(
∑N

i=1 xi) represents the damage cost function

and H(
∑N

i=1 xi) its average (see [13], [42]).

Since G is a concave function we can easily obtain, by using Lagrange’s theorem,

that

(4.3) G′(
N∑
i=1

xi) <
G(
∑N

i=1 xi)∑N
i=1 xi

that means that the output elasticity is less then zero.

Using inequality 4.3, one can check that H ′(
∑N

i=1 xi) < 0 so H is a strictly

decreasing function.

1This is a technical construction that allows us to have more manageable payoff functions,

in order to prove equilibria existence results.
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In addition, we assume that the following inequality holds:

(4.4) H ′(
N∑
i=1

xi) +
N∑
i=1

xiH
′′(

N∑
i=1

xi) < 0.

Inequality 4.4 is satisfied if H is a linear function, if H is a differentiable concave

function or if it is a differentiable convex function with additional assumptions

(for example H(t) = (t− k)2, with k > 2Ne).

Remark 4.1. Note that inequality 4.4 cannot be derived by concavity of func-

tionG. In fact, concavity ofG implies that 2H ′(
∑N

i=1 xi)+
∑N

i=1 xiH
′′(
∑N

i=1 xi) ≤

0 and, as already noted, that H ′(
∑N

i=1 xi) < 0. These two implications together

do not imply 4.4.

Remark 4.2. Inequality 4.4 has been already used in the context of an

oligopolistic market analysis by Okuguchi (see [82]) and by Sheraly-Soyster-

Murphy (see [94]) for computing Stackelberg-Nash-Cournot equilibria, suppos-

ing that p′(Q) +Qp′′(Q) < 0. Namely, in both cases the function H is nothing

but the inverse demand function p(Q) i.e. the price at which consumers will

demand and purchase a quantity Q.

Let us give an interpretation of assumption 4.4. Let us consider one player,

namely player i, that has to face the average production function H(·). This

player invests quantity xi while the other players’ aggregate investment is∑
j 6=i xj. Player i’s revenue is xiH(xi +

∑
j 6=i xj) and so his marginal revenue

is H(xi +
∑

j 6=i xj) + xiH
′(xi +

∑
j 6=i xj). The rate of change of his marginal

revenue with an increase in the other players’ aggregate investment is

(4.5) H ′(xi +
∑
j 6=i

xj) + xiH
′′(xi +

∑
j 6=i

xj),

by computing the derivative of the marginal revenue H(xi+
∑

j 6=i xj)+xiH
′(xi+∑

j 6=i xj) with respect to
∑

j 6=i xj.
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Suppose that
∑

j 6=i xj > 0 and H ′′(xi +
∑

j 6=i xj) ≤ 0, then

H ′(xi +
∑
j 6=i

xj) + xiH
′′(xi +

∑
j 6=i

xj) < 0

since H ′(xi +
∑

j 6=i xj) < 0.

Suppose that
∑

j 6=i xj > 0 and H ′′(xi +
∑

j 6=i xj) > 0, then

H ′(xi +
∑
j 6=i

xj) + xiH
′′(xi +

∑
j 6=i

xj) ≤

H ′(xi +
∑
j 6=i

xj) + (xi +
∑
j 6=i

xj)H
′′(xi +

∑
j 6=i

xj) < 0

since inequality 4.4 holds.

Finally, if we suppose that
∑

j 6=i xj = 0, it’s straightforward to obtain the same

result.

So 4.4 implies that, for any level of investment xi chosen by player i, his

marginal revenue is decreasing when the aggregate investment made by all

other players is increasing.

Note that, since G′(0) = H(0) > ω and H(·) is a strictly decreasing function,

if the aggregate investment made by all the players significantly increases then

the return due to the investment in the CPR becomes negative. Thus the

players would be discouraged to move forward with their investments in CPR.

The N players can act non-cooperatively, looking for the so called CPR

equilibrium, or cooperatively, looking for the so called fully cooperative CPR

equilibrium ([17]).

The non-cooperative approach as well as the cooperative one are taken into

account in CPR, Public Goods, Oligopolies, R&D models (see [14], [22], [29],

[32]) and, in case of equilibrium uniqueness in both the approaches, the two

kinds of equilibria are compared.

Definition 4.1. A fully cooperative CPR equilibrium, CPREc, is an N -tuple
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(xc1, . . . , x
c
N) such that, for each player i ∈ N , xci solves the following problem:

xci ∈ argmaxxi∈Ui
N∑
j=1

fj(x
c
1, . . . , x

c
i−1, xi, x

c
i+1, . . . , x

c
N).

Remark 4.3. Note that
∑N

i=1 fi(x1, . . . , xN) = ωe − ω
∑N

i=1 xi + G(
∑N

i=1 xi)

is a continuous function on U = [0, e]N so, applying Weirstrass theorem, there

exists a symmetric fully cooperative CPR equilibrium.

If the agents involved in this CPR management behave in a non-cooperative

way, they solve a Nash equilibrium problem and we call the resulting Nash

equilibrium CPR equilibrium (CPRE).

The following result guarantees the existence of CPR equilibria in a differ-

entiable payoffs framework.

Theorem 4.1. (Existence) Let H be a twice continuously differentiable func-

tion such that H(0) 6= 0 and H ′(
∑N

i=1 xi) < 0. Suppose that inequality 4.4

holds. Then there exists a symmetric CPRE.

In order to prove this result, let us first give the following lemma:

Lemma 4.1. Let H(·) be the twice differentiable function considered before and

let us assume that inequality 4.4 holds. Then, for each fixed X−i =
∑

j 6=i xj ≥ 0,

the function K(xi) = xiH(xi + X−i) is a strictly concave function of xi over

xi ≥ 0.

Proof. First of all let us remind that, since G is a concave function, H(·) is a

strictly decreasing function.

Let us show that

K ′′(xi) = 2H ′(xi +X−i) + xiH
′′(xi +X−i) < 0

for each X−i ≥ 0.

Let us suppose H ′′(xi +X−i) ≤ 0, then K ′′(xi) < 0 since H ′(xi +X−i) < 0.
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Conversely, let us suppose H ′′(xi +X−i) > 0. So

K ′′(xi) ≤ 2H ′(xi +X−i) + (xi +X−i)H
′′(xi +X−i) <

H ′(xi +X−i) + (xi +X−i)H
′′(xi +X−i)

and, since inequality 4.4 holds, we have proved the result.

Proof. (Theorem 4.1) Since Lemma 4.1 holds, then, for any i ∈ N , fi(x) is a

strictly concave function in xi. So fi(x) is a quasi-concave function in xi and

since, for any i ∈ N , fi(x) is continuous and the strategy set Ui is non-empty

closed and compact, then a symmetric CPR equilibrium exists (see [75]) .

Remark 4.4. (Non differentiable case). It may happen that the H function

is kinked in some level (or levels) of aggregation, due to a different increasing

rate of the aggregate return, for example:

H(t) =

a− t if t ≤ X̄

a− (t+X̄)
2

if t > X̄

In this case, in order to obtain an existence result, it is possible to prove

that the game has a potential structure. In fact, in the case in which the

considered function H is continuous, we can define a function P : U → R such

that

P (x1, . . . , xN) := x1 . . . xN · (H(
N∑
i=1

xi)− ω)

and we can easily prove that it is a potential function for the game Γ. Thus,

denoting by CPR(Γ) the set of all possible CPR equilibria of Γ, we have that

maxx∈UP ⊆ CPR(Γ) and so, there exists at least one CPR equilibrium.

Remark 4.5. The natural question that may raise is about the economic

interpretation of this potential function that is what the investors in the CPR

are trying to jointly maximize. As Monderer and Shapley point out in the

context of Cournot games (see [73]), we do not have an answer to this question.
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However, in this case the only thing we care about is that the mere existence of

a potential function helps the players to reach an equilibrium in a easier way.

We have then the following theorem.

Theorem 4.2. (Existence) If H is a continuous function, then there exists

a CPRE.

Let us explicitly remark that the differentiability assumption is a condi-

tion useful in several computational procedures ([17]), so sometimes the first

existence result has to be considered by using differentiable payoff functions.

4.1.2 Quadratic return under uncertainty

In literature there are several papers dealing with cooperative as well as non-

cooperative approach to game theoretical models involving Environmental

Economics (see, for example[1], [7], [28], [69] and the references therein). A

huge quantity of environmental problems, such as climate change, loss of

biodiversity, ozone depletion, the widespread dispersal of persistent pollutants

and many others, involves the commons (for example forests, energy, industries,

water and so on). In numerous situations the considered payoff functions are

quadratic functions. Then, in this section we deal with a quadratic return

payoff function case.

As done in [32], let us consider the function

G(t) = at− bt2

with a, b > 0 and G′(0) = a > ω.

In this case, H(t) = a− bt and for all i ∈ N , the payoff function becomes

fi(x1, . . . , xN) = ω(e− xi) + xi[a− b(x1 + · · ·+ xN)]
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that represents the welfare of player i that comprises benefits from investment,

deriving from production and consumption of goods, and damages caused by

the aggregate investment.

Following a non-cooperative approach, we can easily show that the CPR

equilibrium is an N -tuple (x∗1, . . . , x
∗
N) with

x∗i = min
{ a− ω
b(N + 1)

, e
}

for each player i ∈ N .

Instead, following a cooperative approach, the fully cooperative CPR equilib-

rium is an N -tuple (xc1, . . . , x
c
N) with

xci = min
{a− ω

2bN
, e
}

for each player i ∈ N .

Comparing the two kinds of equilibrium, we can check in a straightforward way

that for each player i ∈ N ,

xci ≤ x∗i

and so, cooperating, each player can invest less in the CPR.

In the case of Environmental Economics, sometimes it may happen a disaster

event that implies a loss in the payoff of any agent. The disaster can have

natural causes (earthquakes, floods, ...) or it may be due to human harm.

In both cases investments in the management of resources are very useful.

Suppose that a loss is considered in the payoff if the investment is lower than a

given upper bound. More precisely, we suppose that there exists a threshold

investment, denoted here by X, that is a random variable since it depends on

the probability of a disaster involving the CPR. In line with [7], we suppose

that if the aggregate investment is sufficiently large, the payoff functions do not

change with respect to the case without uncertainty, otherwise, if the aggregate

investment is relative low, every player suffers a loss.
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In order to explicitly write the payoff functions, let us fix X ∈ (0, Ne), the

critical level, and a constant L ≥ 0, that represents the loss value. Thus, in the

case where G(t) = at− bt2, the payoff functions are

f̂i(x1, . . . , xN) =

ω(e− xi) + xi[a− b(
∑N

i=1 xi)] if
∑N

i=1 xi ≥ X

ω(e− xi) + xi[a− b(
∑N

i=1 xi)]− L if
∑N

i=1 xi < X

As in Section 4.1.1, the N players can act either non-cooperatively, looking

for a so called CPR equilibrium under uncertainty, or cooperatively, looking for

a so called fully cooperative CPR equilibrium under uncertainty.

The uncertainty is about the threshold X: in particular, let us assume that the

threshold investment is distributed uniformly, i.e. with probability distribution

function

f(X) =
1

Ne

with X =
∑N

i=1 xi ∈ [0, Ne] and so the corresponding cumulative distribution

function is

F (X) = P(X ≤ X) =
X

Ne

with X ∈ [0, Ne].

If players use a non-cooperative approach, each of them will maximize the

expectation of his own payoff function that is

E(f̂i) = ω(e− xi) + xi(a− bX)− L(1− F (X)) =

= ω(e− xi) + xi(a− bX)− L
(

1− X

Ne

)
and we can easily show that the CPR equilibrium under uncertainty is a N -tuple

(x∗1, . . . , x
∗
N) with

x∗i = min
{ a− ω
b(N + 1)

+
L

beN(N + 1)
, e
}
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∀i ∈ N .

If players decide to cooperate they will maximize the expectation of the joint

payoff function that is

E(f̂ c) = Nωe− ωX +Xa− bX2 − LN(1− F (X)) =

= Nωe− ωX +Xa− bX2 − LN
(

1− X

Ne

)
.

In this other frame, we can easily show that the fully cooperative CPR equilib-

rium (in this case each payoff is strictly concave in its decision variable) under

uncertainty is a N -tuple (xc1, . . . , x
c
N) with

xci = min
{a− ω

2bN
+

L

2bNe
, e
}

∀i ∈ N .

We note that the CPR and the fully cooperative CPR equilibria are identical

in the case in which N = 1. When N ≥ 2, if we suppose that L < (a− ω)e, we

can easily show that

xci ≤ x∗i

and so, only with a minor disaster, if players decide to cooperate, they can

invest less in the CPR.

If agents have additional informations on the variability of X, the threshold

investment, then one can also consider different probability distributions, leading

to different results.

Summing up, given Γ = 〈N , (Ui)Ni=1, (fi)
N
i=1〉 with N players, Ui = [0, e]

strategy set of player i, for any i ∈ N , and fi(x) = ω(e−xi)+xi

(
a−b

∑N
i=1 xi

)
,

a, b > 0, payoff function of player i, for any i ∈ N ,

• in the deterministic case, given the CPR equilibrium (x∗1, . . . , x
∗
N ) and the

fully cooperative CPR equilibrium (xc1, . . . , x
c
N), xci ≤ x∗i for any i ∈ N ;

• in the stochastic case, in which a threshold random variable investment

is considered, given (x∗1, . . . , x
∗
N ) CPR equilibrium under uncertainty and
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(xc1, . . . , x
c
N ) fully cooperative CPR equilibrium under uncertainty, xci ≤ x∗i

for any i ∈ N if L < (a− ω)e.

4.2 Social Purpose Games

4.2.1 Class and properties

Let us consider the following normal form game Γ =
〈
N , (Ui)Ni=1, (fi)

N
i=1

〉
where:

• N = {1, . . . , N}, with N the fixed number of players involved in the

game;

• for any i ∈ N , Ui = [0, Q] where Q > 0;

• denoted by U =
∏N

i=1 Ui = [0, Q]N , fi : U → R is the payoff function of

player i for any i ∈ N .

In order to explicitely write the payoff function for each player i ∈ N , let us

consider α = (α1, . . . , αN) ∈ RN
++ a given vector of positive weights such that

0 < α1 ≤ · · · ≤ αN , where each αi represents an individual benefit parameter

of player i. Moreover, let us consider a function H : R→ R common for each

player and functions hi, gi : [0, Q] → R for each i = 1, . . . , N . Denoting by

x = (x1, . . . , xN) a strategy profile, the player i’s payoff function is

fi(x) = αiH
( N∑
i=1

hi(xi)
)
− gi(xi),

that depends separately on player i’s own strategy, throught the term gi(xi)

that represents the individual benefit of player i, and on the common term

H
(∑N

i=1 hi(xi)
)

that represents the social benefit, since it depends on the

aggregation of strategies, weighted by the individual benefit parameter, αi, that

measures the importance that player i gives to the social part of the payoff with

respect to the individual part, given by gi(·), and thus allows for asymmetry
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of public benefit across agents. Recalling Definition 2.13, the game Γ is an

additively separable aggregative game with li(g(x)) = αiH
(∑N

i=1 hi(xi)
)

and

mi(xi) = −gi(xi). The game Γ is called Social Purpose Game.

Remark 4.6. Recall that, given the strategy set Ui = [0, Q] for each player

i ∈ N , in Abatement Emission Games the payoff function of player i is given

by

fi(qi, Q) =
b

N

(
aQ− 1

2
Q2
)
− c

2
q2
i

with, calling ei the emission level of player i, qi = Q − ei is the abatement

quantity of player i, Q =
∑N

i=1 qi and a, b, c > 0 (see [25]) and that in Public

Good Provision Games the payoff function of player i is given by

fi(qi, Q) = Gi(Q) + Pi(qi)

with Gi : R → R and Pi : Ui → R with, given m, p > 0, Pi(qi) = m − pqi

i.e. the payoff function of each player depends separately on the quantity of

private good that he consumes in a linear way but also on all the gifts to the

public good made by all individuals (see [9]). Note that the class of Abatement

Emission Games and the class of Public Good Provision Games differ only in

the cost term which is quadratic for Abatement Emission Games and linear for

Public Good Provision Games.

Thus Abatement Emission Games and Public Good Provision Games are

included in the class of Social Purpose Games if αi = 1 for any i ∈ N . In fact

in Abatement Emission Games H
(∑N

i=1 qi

)
= b

N

(
aQ− 1

2
Q2
)

(with hi identity

functions for any i ∈ N ) and gi(qi) = c
2
q2
i , while in Public Good Provision

Games H
(∑N

i=1 qi

)
= Gi(Q) (with hi identity functions for any i ∈ N ) and

gi(qi) = m− pqi.

In the following proposition we show that each Social Purpose Game is a

weighted potential game with weights αi for any i ∈ N :
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Proposition 4.1. A Social Purpose game is a weighted potential game and

the α-potential is given by P (x) = H
(∑N

i=1 hi(xi)
)
−
∑N

i=1
1
αi
gi(xi).

Proof. Let us prove the result checking that the definition of weighted potential

game holds true. For every xi, yi ∈ Ui and x−i = (x1, . . . , xi−1, xi+1, . . . , xN) ∈

UN−1
i we have that:

fi(yi, x−i) − fi(xi, x−i) = αiH(hi(yi) +
∑

j 6=i hj(xj)) − gi(yi) − αiH(hi(xi) +∑
j 6=i hj(xj)) + gi(xi) = αi

(
H(hi(yi) +

∑
j 6=i hj(xj)) −

1
αi
gi(yi) − H(hi(xi) +∑

j 6=i hj(xj))+
1
αi
gi(xi)

)
= αi

(
H(hi(yi)+

∑
j 6=i hj(xj))−

1
αi
gi(yi)−

∑
j 6=i

1
αj
gj(xj)−

H(hi(xi)+
∑

j 6=i hj(xj))+
1
αi
gi(xi)+

∑
j 6=i

1
αj
gj(xj)

)
= αi(P (yi, x−i)−P (xi, x−i)).

Using tools from potential games theory, let us prove the existence of a

Nash equilibrium for this class of games.

Proposition 4.2. If H is an upper semicontinuous, increasing and concave

function, hi is a continuous and concave function for any i ∈ N , gi is a lower

semicontinuous and convex function for any i ∈ N , then there exists a Nash

equilibrium xNE = (xNE1 , . . . , xNEN ) of Γ. If moreover H, hi, for any i ∈ N ,

and gi, for any i ∈ N , are continuously differentiable and either H is strictly

concave or gi are strictly convex for all i ∈ N , then there exists a unique Nash

equilibrium.

Proof. SinceH is increasing and concave and each hi is concave, H
(∑N

i=1 hi(xi)
)

is concave. Moreover −gi is concave, thus the potential function P is concave.

Since H is upper semicontinuous, hi continuous and gi lower semicontinuous,

the potential function P is upper semicontinuous. Then there exists a maximum

of P and thus, since for a weighted potential game argmaxP ⊆ NE, where

NE is the set of Nash equilibria, there exists at least one Nash equilibrium.

If moreover H, hi and gi are continuously differentiable then P is continuously
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differentiable and if either H is strictly concave or gi are strictly convex for all

i ∈ N then P is strictly concave thus there exists a unique Nash equilibrium.

Remark 4.7. In the case in which the involved functions are continuously

differentiable the Nash equilibrium is solution of

∇P (x1, . . . , xN) =

=
(
H ′
( N∑
i=1

hi(xi)
)
h′1(x1)−g

′
1(x1)

α1

, . . . , H ′
( n∑
i=1

hi(xi)
)
h′N(xN)−g

′
N(xN)

αN

)
= 0.

Remark 4.8. Note that
g′i(x

NE
i )

αih′i(x
NE
i )

is equal for all i ∈ N . In the case in which

hi is the identity function for any i ∈ N , this invariant is given by
g′i(x

NE
i )

αi
.

Proposition 4.3. In the assumptions of Proposition 4.2, there exists a Social

Optimum xSO = (xSO1 , . . . , xSON ) of Γ. If moreover either H is a strictly concave

function or or gi are strictly convex for all i ∈ N , the Social Optimum is

unique.

Proof. In our assumptions, the social profit function

S(x1, . . . , xN) :=
N∑
i=1

Πi = H(
N∑
i=1

hi(xi))−
∑N

i=1 gi(xi)

α

where α =
∑N

i=1 αi, is continuous and concave over [0, Q]N thus, applying

Weirstrass theorem, there exists a social optimum. If either H is strictly

concave or gi are strictly convex for all i ∈ N , the social profit is strictly

concave, thus the social optimum is unique.

Remark 4.9. If the involved function are continuously differentiable, the social

optimum solves

∇S(x1, . . . , xN) =

=
(
H ′
( N∑
i=1

hi(xi)
)
h′1(x1)−g

′
1(x1)

α
, . . . , H ′

( N∑
i=1

hi(xi)
)
h′N(xN)−g

′
N(xN)

α

)
= 0.

Remark 4.10. For any x ∈ U , P (x) ≤ S(x).
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Let us firstly consider the case in which hi are the identity functions. We

can compare the aggregate Nash equilibrium strategies, i.e.
∑N

i=1 x
NE
i , and the

aggregate Social optimum strategies, i.e.
∑N

i=1 x
SO
i , as follows:

Proposition 4.4. Let functions H and gi, for any i ∈ N , be continuously

differentiable and let functions hi, for any i ∈ N , be the identity functions. If

the function H ′ is decreasing in
∑N

i=1 xi and the functions g′i are positive and

increasing in xi for any i ∈ N , then
∑N

i=1 x
NE
i ≤

∑N
i=1 x

SO
i .

Proof. Let us suppose by contradiction that
∑N

i=1 x
NE
i >

∑N
i=1 x

SO
i . Since H ′ is

decreasing in
∑N

i=1 xi, then H ′
(∑N

i=1 x
NE
i

)
≤ H ′

(∑N
i=1 x

SO
i

)
. Since Remarks

4.7 and 4.9 hold true, then, for some i ∈ N ,
g′i(x

NE
i )

αi
≤ g′i(x

SO
i )

α
.

Since α =
∑N

i=1 αi > 0 and g′i is positive, then
g′i(x

NE
i )

α
<

g′i(x
NE
i )

αi
≤ g′i(x

SO
i )

α
.

Thus, since g′i is increasing in xi, we obtain that xNEi ≤ xSOi . Similarly, we can

show that xNEj ≤ xSOj for any j ∈ N − {i}, thus
∑N

i=1 x
NE
i ≤

∑N
i=1 x

SO
i .

Remark 4.11. We can easily generalise the previous result to the case in

which functions hi for any i ∈ N are not the identity functions, assuming that

g′i(·)
h′i(·)

are increasing functions in xi for any i ∈ N .

This assumption simply means that, an increase of player i’s strategy turns

to produce more impact on the individual function, i.e. gi, rather than on the

function through which player i’s strategy is measured by the society, i.e. hi.

As soon as we suppose that functions gi for any i ∈ N are concave and

function H is convex, we lose the property ensured by Proposition 4.4:

Example 4.1. Consider Γ = 〈2, [0, 1], {fi}2
i=1〉 where fi(x1, x2) = (x1+x2)2

2
−

4
(
xi − x2i

2

)
for any i ∈ {1, 2}. It results that (xNE1 , xNE2 ) = (2

3
, 2

3
) and

(xSO1 , xSO2 ) = (1
2
, 1

2
). Thus xNE1 + xNE2 = 4

3
> xSO1 + xSO2 = 1.

We want now to compare each component of the Nash equilibrium with the

corresponding component of the Social Optimum.
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Proposition 4.5. Let us suppose that assumptions of Proposition 4.4 with g′i

strictly increasing in xi hold and that
g′1(·)
α1
≤ · · · ≤ g′N (·)

αN
, then xNEi ≤ xSOi for

any i ∈ N .

Proof. Let us suppose by contradiction that it exists j ∈ N such that xNEj >

xSOj and xNEh ≤ xSOh for any h ∈ N − {j}. Since g′j is strictly increasing , then
g′j(x

NE
j )

αj
>

g′j(x
SO
j )

αj
. Two cases are possible:

• Take h > j.

Since Remarks 4.7 and 4.9 hold true and αh ≥ αj, it follows that

g′h(x
NE
h )

αh
>
g′h(x

SO
h )

αj
≥ g′h(x

SO
h )

αh
.

Since g′h is strictly increasing, then xNEh > xSOh .

• Take h < j.

Since Remark 4.7 holds true and since the invariant is increasing in i, it

follows that

g′h(x
NE
h )

αh
=
g′j(x

NE
j )

αj
>
g′j(x

SO
j )

αj
≥ g′h(x

SO
h )

αh
.

Since g′h is strictly increasing, then xNEh > xSOh .

Remark 4.12. If
g′1(·)
α1h′1(·) ≤ · · · ≤

g′N (·)
αNh

′
N (·) , the previous result can be generalized

to the case in which functions hi, for any i ∈ N , are not the identity functions.

Example 4.2. (A water resource game) We consider a game with N > 3

players. The player set is as usual given by N = {1, . . . , N}. Each player

has a strategy set given by the non-negative real line R+ and typical strategic

selection for player i ∈ N is denoted by xi > 0 that represents the amount of

water that player i decides to not withdraw from a water basin, in order to

preserve the water resource.
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Given a strategic tuple x = (x1, . . . , xN ) ∈ RN
+ , the payoff function of player

i ∈ N is defined by

(4.6) fi(x) = αi
∑
j∈N

xj − x2
i

depending on the total remaining quantity in the basin, weighted by αi > 0

that is a benefit parameter, and on the cost that each player i incurs for not

withdrawing it. We assume throughout, without loss of generality, that the

players are ordered in their payoff parameter with 0 < α1 6 α2 6 · · · 6 αN .

Moreover, throughout the following analysis we define

(4.7) A =
∑
j∈N

αj > 0

Every player i ∈ N is supposed to select a best response to the strategies

selected by all other players in the game. Hence, every player i ∈ N maximizes

his payoff fi(x), where x−i is assumed to be given.

First order conditions are determined as

(4.8)
∂fi
∂xi

= αi − 2xi ≡ 0

Therefore, the Nash equilibrium is determined as

(4.9) xNEi = 1
2
αi and fNEi = fi

(
xNE1 , . . . , xNEN

)
= αi

4
(2A− αi) > 0.

Collectively all players optimize the total payoff given by f =
∑

i∈N fi =

A
∑

i∈N xi −
∑

i∈N x
2
i over all strategies. This results in first order conditions

with for every i ∈ N :

(4.10)
∂f

∂xi
= A− 2xi ≡ 0

Thus, the social optimum is determined for every i ∈ N as

(4.11) xSOi = 1
2
A and fSOi = fi

(
xSO1 , . . . , xSON

)
= A

4
(2αin− A) .
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We remark that

fSOi > 0 iff αi >
A

2N

meaning that, if the weight of player i is sufficiently large, he gives high value

to the social part and thus his profit is positive joining the grand coalition, i.e.

the coalition made by all the players.

4.2.2 Endogenous emergence of collaboration in partial

cooperative games

Given a N -person normal Social Purpose Game Γ =
〈
N , (Ui)Ni=1, (fi)

N
i=1

〉
, let

us fix the level of cooperation k ∈ {0, 1, . . . , N}. Thus let us suppose that k

players cooperate and let C = {N −k+1, . . . , N} be the set of cooperators and

C = {1, . . . , N} be the set of non-cooperators. Following the literature of partial

cooperation (see [15], [16], [64]), given the definition of partial cooperative

leadership equilibrium recalled in Section 2.7, let us prove an existence result

for the partial cooperative game Γ =
〈
C,C, (Ui)i∈C , (Uj)j∈C , (fi)i∈C , (fj)j∈C

〉
,

following the results obtained in [15].

Proposition 4.6. Let Γ =
〈
C,C, (Ui)i∈C , (Uj)j∈C , (fi)i∈C , (fj)j∈C

〉
be a partial

cooperative Social Purpose game where, fixed the level of cooperation k ∈

{0, 1, . . . , N}, C = {N − k + 1, . . . , N} is the set of cooperators and C =

{1, . . . , N} is the set of non-cooperators. Assume that H is concave increasing

and continuous on R, h1, . . . , hN are identity functions, g1, . . . , gN are convex

and continuous on [0, Q]. Then there exists a partial cooperative leadership

equilibrium of Γ.

Before proving this proposition, let us prove that the following hold:

Lemma 4.2. Suppose that assumptions of Proposition 4.6 hold true. Then

the correspondence E :
∏N

i=N−k+1 Ui → 2
∏N−k
j=1 Uj that maps xC into E(xC) =

NExC ⊂
∏N−k

j=1 Uj is non-empty, compact valued and upper hemicontinuous.
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Proof. In our assumptions, Proposition 4.2 holds, thus for any xC ∈
∏N

i=N−k+1 Ui,

NExC 6= ∅ i.e. E is non-empty.

Let
(
xCp

)
p∈N

a sequence such that xCp → xC . Let us take xCp ∈ NExCp such that

xCp → xC . Since xCp ∈ NExCp we have

αjH
(N−k∑
j=1

xCip +
N∑

i=N−k+1

xCip

)
− gj(xCjp) ≥

≥ αjH
(
x
′C
j +

∑
l 6=j

xClp +
N∑

i=N−k+1

xCip

)
− gj(x

′C
j )

for any j ∈ C and for any x
′C
j ∈ Uj.

If p→ +∞ by continuity we obtain

αjH
(N−k∑
j=1

xCj +
N∑

i=N−k+1

xCi

)
− gj(xCj ) ≥

≥ αjH
(
x
′C
j +

∑
l 6=j

xCl +
N∑

i=N−k+1

xCi

)
− gj(x

′C
j )

for any j ∈ C and for any x
′C
j ∈ Uj. Thus xC ∈ NExC i.e. E is closed valued.

Thus NExC is a closed set for any xC and it is compact since NExC ⊂
∏N−k

j=1 Uj

and
∏N−k

j=1 Uj is compact.

Every closed correspondence with compact codomain is upper hemicontinuous.

Proof. (Proposition 4.6) Each payoff function fi for i ∈ C and fj for j ∈ C

is continuous and quasi-concave thus, since Lemma 4.2 holds true, applying

Theorem 2.12 there exists at least one PCE.

Remark 4.13. These results can be extended to the general case in which

functions hi for any i ∈ N are not the identity functions, assuming that they

are continuous and concave.
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Remark 4.14. Denoting by xPC = (xPC1 , . . . , xPCN ) the partial cooperative

leadership equilibrium and giving C the cooperative coalition, in the same

assumptions of Proposition 4.4, we obtain that
∑

i∈C x
NE
i ≤

∑
i∈C x

PC
i . More-

over, in the same assumptions of Proposition 4.5, we obtain that xNEi ≤ xPCi

for any i ∈ N .

Given the existence of a partial cooperative leadership equilibrium, the

next objective is to address the following research question: is there a way to

endogeneously determine the number of cooperators in a partial cooperative

framework? In order to give an answer to this question, we are going to use

the stability notion. More precisely, to establish the number of players of a

stable coalition, we refer the notions of internal and external stability (see [23]).

The basic idea is that a coalition is stable if none inside has an incentive to

defect and none outside has an incentive to join in.

Thus, given h ∈ N a generic player of the game Γ, let us denote by fh(C)

his payoff function if he joins the coalition of cooperators and by fh(NC) his

payoff function if he does not join the coalition. Let us recall the following:

Definition 4.2. ([23]) A coalition C of k players is

• internal stable iff fi(C) ≥ fi(NC) for any i ∈ C

• external stable iff fj(NC) ≥ fj(C) for any j ∈ N \ C

Proposition 4.7. The configuration with C = {1, . . . , N − k} and C = {N −

k + 1, . . . , N} is stable if and only if

αN−k+1 >
gN−k+1(xPCN−k+1)− gN−k+1(xNEN−k+1)

H
(
x+ xPCN−k+1

)
−H

(
x+ xNEN−k+1

)
and

αN−k <
gN−k(x

PC
N−k)− gN−k(xNEN−k)

H
(
x+ xPCN−k

)
−H

(
x+ xNEN−k

) ,
where x =

∑
i∈C x

PC
i +

∑
j∈C x

NE
j .
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Remark 4.15. Note that, avoiding the case in which the first cooperator

and the last non-cooperator are indifferent between being cooperator or non-

cooperator, i.e. the case in which in Partial Cooperation and in Nash equilibria

they pick the same strategy, the right hand-side of both disequalities are positive.

In fact H is an increasing function and also gi is increasing for any i ∈ N since

g′i is positive and Remark 4.14 holds.

We do not consider the case in which xNEi = xPCi .

Proof. To check the internal stability of the coalition of cooperators C we

let h = N − k + 1 be the marginal player of C as introduced above. Then we

can compare the payoffs of this player if he cooperates with C or acts as a

non-cooperator. Indeed, if he cooperates he receives payoff

fh(C) = αhH
(∑
i∈C

xPCi + xPCh +
∑
j∈C

xNEj

)
− gh(xPCh )

and if he does not cooperate with C he receives

fh(NC) = αhH
(∑
i∈C

xPCi + xNEh +
∑
j∈C

xNEj

)
− gh(xNEh ).

Internal stability requires now that fh(C) > fh(NC). This is equivalent to

αhH
(∑
i∈C

xPCi + xPCh +
∑
j∈C

xNEj

)
− gh(xPCh ) >

> αhH
(∑
i∈C

xPCi + xNEh +
∑
j∈C

xNEj

)
− gh(xNEh )

which is equivalent to the first condition in the assertion.

For the external stability of the configuration as indicated, let h = N − k

be the marginal non-cooperator. Again we can compare the payoffs of player h

if he cooperates with C or acts as a non-cooperator. Indeed, if he cooperates

he receives payoff

fh(C) = αhH
(∑
i∈C

xPCi + xPCh +
∑
j∈C

xNEj

)
− gh(xPCh )
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and if he does not cooperate with C he receives

fh(NC) = αhH
(∑
i∈C

xPCi + xNEh +
∑
j∈C

xNEj

)
− gh(xNEh ).

External stability now requires that fh(NC) > fh(C), which is equivalent to

αhH
(∑
i∈C

xPCi + xNEh +
∑
j∈C

xNEj

)
− gh(xNEh ) >

> αhH
(∑
i∈C

xPCi + xPCh +
∑
j∈C

xNEj

)
− gh(xPCh )

which is equivalent to the second condition of the assertion.

Partial cooperation in water resource game

Let us now show an application of these results to the game considered in the

Example 4.2. Let C = {N−k+1, . . . , N} ⊂ N be the coalition of 2 6 k 6 N−1

cooperators with the highest preference for the generated benefits in this game.

The non-cooperators are now the players in C = {1, . . . , N −k} with the lowest

preference for the collectively generated benefit.

Every non-cooperator j ∈ C now selects a best response to all other players’

strategies. Hence,

xPCj = 1
2
αj for every j ∈ C.

The cooperators in C determine their strategies collectively to maximise their

collective payoff fC =
∑

i∈C fi. This results into

xPCi = 1
2
AC = 1

2

N∑
i=N−k+1

αi for every i ∈ C.

Hence, in the partial cooperative equilibrium we have that∑
h∈N

xPCh = 1
2
AN\C + k

2
AC(4.12)

fPCj = αj
(

1
2
AN\C + k

2
AC
)
− 1

4
α2
j for every j ∈ N \ C(4.13)

fPCi = αi
(

1
2
AN\C + k

2
AC
)
− 1

4
A2
C for every i ∈ C(4.14)
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In the following proposition we endogenously determine the coalition of

cooperators:

Proposition 4.8. The configuration with N \ C = {1, . . . , N − k} and C =

{N − k + 1, . . . , N} is stable if and only if

(4.15) αN−k+1 >
AC

1 +
√

2(k − 1)

as well as

(4.16) αN−k <
AC√

2k
.

Proof. Let h = N − k + 1 be the marginal player of C as introduced above. If

he cooperates he receives payoff

fh(C) = αh
(

1
2
AN\C + k

2
AC
)
− 1

4
A2
C

and if he does not cooperate with C he receives

fh(NC) = αh
(

1
2
AN\C + 1

2
αh + k−1

2
AC\h

)
− 1

4
α2
h.

Internal stability requires now that fh(C) > fh(NC). This is equivalent to

αh
2
kAc − 1

4
A2
C > αh

(
αh
2

+ k−1
2

(A− αh)
)
− 1

4
α2
h

or

A2
C − α2

h < 2αhAC + 2(k − 2)α2
h

or

A2
C − 2αhAC + α2

h = (AC − αh)2 < 2(k − 1)α2
h

This is equivalent to

AC − αh <
√

2(k − 1)αh

which is equivalent to the first condition in the assertion.
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Let h = N − k be the marginal non-cooperator. If he cooperates he receives

payoff

fh(C) = αh
(

1
2
(AN\C − αh) + k+1

2
(AC + αh)

)
− 1

4
(AC + αh)

2

and if he does not cooperate with C he receives

fh(NC) = fPCh = αh
(

1
2
AN\C + k

2
AC
)
− 1

4
α2
h.

External stability now requires that fh(NC) > fh(C), which is equivalent to

k
2
αhAC − 1

4
α2
h > αh

(
k
2
αh + k+1

2
AC
)
− 1

4
(AC + αh)

2

or

A2
C + 2αhAC > αh

[
k+1

2
AC + k

2
αh − k

2
AC
]

= αh
(

1
2
AC + k

2
αh
)

which is equivalent to A2
C > 2kα2

h. This implies the external stability stated in

the assertion of the proposition.

Next we consider an example that illustrates the main conclusion of the propo-

sition.

Example 4.3. Consider a game with 7 players, i.e., N = {1, 2, 3, 4, 5, 6, 7}.

Using the notation introduced above the next table summarises the findings

and various equilibria.

In this example we order the players such that α1 > α2 > · · · > α7 and we

introduce

Ak =
k∑
i=1

αi.

By applying the test formulated in the proposition we identify that C = {1, 2}

is the unique stable coalition of cooperators for the given parameter values in

the table. The partial cooperative equilibrium reported in the table below is

founded on this selection:
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i 1∗ 2∗ 3 4 5 6 7 Sum

αi 8 7 7 7 7 5 1 A = 42

Ak 8 15 22 29 36 41 42

Ak√
2k

5.66 7.5 8.98 10.25 11.38 11.84 11.23

xNEi = αi
2

4 3.5 3.5 3.5 3.5 2.5 0.5 21

fNEi 152 134.75 134.75 134.75 134.75 98.75 20.75

xSOi = A
2

21 21 21 21 21 21 21 147

fSOi 735 588 588 588 588 294 −294

xPCi 7.5 7.5 3.5 3.5 3.5 2.5 0.5 28.5

fPCi 171.75 143.25 187.25 187.25 187.25 136.25 28.25

The conclusions of the proposition are confirmed. In particular, the unique

stable coalition of cooperators is determined to be C = {1, 2}. Indeed, the

payoff of both players in C are improvements compared to the Nash equilibrium

payoffs: fPC1 = 171.75 > fNE1 = 152 and fPC2 = 143.25 > fNE2 = 134.75.

On the other hand, adding player 3 to C would result in an optimal cooperative

strategy of x1 = x2 = x3 = 1
2
A3 = 11 and a partial cooperative equilibrium

payoff of f1 = 223 and f2 = f3 = 180 < fPC3 = 187.25.



Chapter 5

Conclusions

In this thesis some aspects of the class of Aggregative Games have been inves-

tigated, firstly developing the theory of multi-leader multi-follower aggregate

equilibrium under uncertainty, secondly doing an equilibrium analysis for a

Common-Pool Resource aggregative game and finally presenting the class of

Social Purpose Games, with an application to a withdrawal water resource

game.

Some possible further directions of research are the following:

• in the context of CPR games, since the main problem arising is the

overuse control of the CPR, we suppose that there is a social planner

who, knowing that the total investment in the social optimum profile

is higher than the total investment in the non-cooperative equilibrium

profile (see Section 4.1), proposes a taxation scheme in order to lead the

investors’ decision toward the social optimum, by looking for a map that

maximizes the social welfare. Starting from this applicative example, we

will introduce the concept of Mean Inverse Stackelberg strategy and we

will explain a new methodology, based on Calculus of Variations, that

allows to solve an Inverse Stackelberg model which is in general a problem

very difficult to solve, cause it involves functions’ composition (see [84],
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[85]). This results are going to be presented in [55];

• in a dynamic context, we consider a two-player pollution game that

represents the interaction between two countries, namely developed and

developing ones. We allows for adaptation measures that consist in the

set of actions that prevent or decrease the adverse effects of accumu-

lated pollution. The development of each country is measured by the

level of capital that it owns. The developed country invests in capital

and in adaptation while the developing one invests firstly in capital and

then, after having reached a certain threshold level of development, also

in adaptation. We will characterize and compare the cooperative and

non-cooperative solutions, supposing that the information structure is

feedback, that is adaptation and investment in capital are state-dependent,

with the state being defined as a four-dimensional vector (t, P,K1, K2)

with t time, P pollution stock and K1, K2 respectively developing coun-

try’s and developed country’s capital stock. This results are going to be

presented in [71];

• the results presented in Section 4.2 for the class of Social Purpose Games,

that is a particular class of Aggregative Games, could be generalized

to the case of Fully Aggregative Games (see [20]), namely aggregative

additively separable games for which the aggregative term in the payoff

function of each player is weighted by a function of the corresponding

player’s strategy. Among others, examples of Fully Aggregative Games

are given by contests and fighting game, Cournot game and pollution

control game.
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