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Summary

Memory mapping has traditionally been an important optimization problem for

high-performance parallel systems. Today, these issues are increasingly affecting

a much wider range of platforms. Several techniques have been presented to solve

bank conflicts and reduce memory access latency but none of them turns out to

be generally applicable to different application contexts. One of the ambitious

goals of this Thesis is to contribute to modelling the problem of the memory

mapping in order to find an approach that generalizes on existing conflict-avoiding

techniques, supporting a systematic exploration of feasible mapping schemes. A

short summary of each Chapter follows.

• Chapter 1 contains a general introduction about the High Performance

Computing context and about new challenging issues like the the gap

between the memory performance and the compute performance. The

methodologies used to cope with such problems for some classes of ap-

plications are described.

• Chapter 2 presents some technical knowledge on the Single Instruction Mul-

tiple Data architectures. Particular attention is placed on the memory

subsystem and on what are the current hardware mechanisms to manage

the competition and the coalescence of the accesses in memory. The goal

of this Chapter is to introduce the Bank Conflicts Problem related to the

scratch-pad memories. This is the main problem that the techniques pre-

sented in the next chapters attempt to solve. In addition, an overview of

two programming models for SIMD architectures also are presented in this

Chapter.

• Chapter 3 is focused on the polyhedral transformation approach used to

find a transformation matrix able to solve the bank conflicts. The goal

of this Chapter is to build a model able to capture the distribution of a

vii
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generic matrix over the banks and to create a function which maps all the

points of a matrix in the right bank and identifies if some conflicts occur.

Then, using a transformation matrix, it is possible to solve the conflicts. A

real application of the transformation on a Kernel that performs a matrix

multiplication is presented in order to show the results obtained in terms

of time and power consumption.

• Chapter 4 is devoted to the Integer Linear Programming approach that

generalizes on existing conflict-avoiding techniques, supporting a system-

atic exploration of feasible mapping schemes, particularly including those

that do not involve any memory waste. The approach presented in this

Chapter can be roughly divided in three main phases: the generation of

the solutions space, the derivation of an access function and the filtering

of SIMD feasible solutions. In the first phase the IPL model expresses the

thread/bank/iteration correspondences point-wise in order to find all the

feasible solutions for the bank conflicts problem. In the second phase the

feasible solutions founded by the ILP model are represented in a matrix

form in order to derive a modified access function. In the final phase all

the modified access functions are filtered in order to select only the SIMD

feasible solutions. Simulations on different kernels validate the approach

presented in this Chapter, along with a comparison with state-of-the-art

methods.

• Chapter 5 discusses the main contributions, remarks, and proposals for

possible future developments of the results presented in the manuscript.

Some ideas to investigate new lines of research related to SIMT architectures

optimizations, also in terms of power consumption, are detailed.
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Chapter 1

Introduction

1.1 The End of Dennard‘s Era

Nowadays, the computer industry, in order to cope with the various changes

caused by technological and architectural advances, must take into account sev-

eral key compromises. For decades, microprocessor architect designers have fo-

cused on increasing the density of transistors within the single chip in order to

increase their computational performance. The turning point was in 2005 when

the limits of the law proposed by Robert H. Dennard came to light as shown in

Figure 1.1. Dennard’s law is very related to that of Moore which is the number of

transistors inside a chip, doubled almost every 18 months. Dennard claims that

even the voltage necessary to power the chip could be properly scaled, in such a

way as to make the power dissipated by the chip constant. Therefore, if every

18 months the number of transistors inside the chip doubled, it also doubled its

characteristics of energy efficiency. However, Dennard did not take several factors

into account:

• You can not set the voltage under a minimum threshold below which the

chip does not work properly. The blocking of this scaling meant that the

power dissipated by the chip was no longer constant and this led to the

generation of a new problem called ”dark silicon”, an under-utilization of

the transistors present inside the chip [25]. Since the maximum power dis-

sipated by a chip with constant dimension is fixed, if the active transistors

increase within it, this threshold will be overcome sooner or later, leading

to chip breakage. The manufacturers then were forced to keep ”off” most

of the transistors (sometimes even 60%) to avoid this problem;
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Figure 1.1: Dennard Scaling.

• The phenomenon of leakage currents, which is the current that were gen-

erated when the electrons, by tunnel effect, were able to overcome the

insulating layer of CMOS transistors that, between the various production

processes, became increasingly thinner. This phenomenon not only led to

the increase of chip energy consumption, but also to the increase of its tem-

perature and therefore, additional energy to dissipate excessive heat must

be spent.

Thus, while Moore’s law continues to apply today, Dennard’s law came to a halt

in 2005 when it faced an increase in performance per watt by a factor of only 1.2

rather than 2.8 expected. Hence the need to have to create new architectures,

focus on parallelism and start thinking about energy efficiency as the true per-

formance metric. This explains the shift to the multiple-core and the subsequent

many-core ideas. The new architectures like FPGA, DSP and GPUs, introduced

more challenging issues, then as now: interconnections, shared memory, coopera-

tion, load balancing, dependency, synchronization and last but not least, ways for

programmers to write applications that exploit the increasing number of proces-

sors without loss in needed time or quality. Therefore, in contrast with the past,

the reduction of the power consumption is currently a fundamental challenge and

2



it is becoming critical across all segments of computing, from the end-users who

want ever longer battery life and lower weight and size for their laptops, tablets

and smart-phones, to the data centres, whose power demands and cooling costs

continue to rise.

1.2 High Performance Computing and Heteroge-
neous Systems

High Performance Computing (HPC) is a fundamental pillar of modern science.

From predicting weather, to discovering new cancer treatments, to finding new

energy sources, researchers use large computing systems to simulate and predict

our world. Artificial Intelligence extends traditional HPC by allowing researchers

to analyse large volumes of data for rapid insights where simulation alone cannot

fully predict the real world. Data scientists are taking on increasingly complex

challenges with Artificial Intelligence. From recognizing the speech to train vir-

tual personal assistants in order to converse naturally to detect lanes on the road

and obstacles in order to train self-driving cars. Solving these kinds of problems

requires training exponentially more complex deep learning models in a practical

amount of time. To deliver these new features, programmer productivity is an-

other essential element to consider. It must be easy for software developers to tap

into new capabilities by using powerful programming models in order to create

new powerful algorithms and avoid to re-write legacy code for an ever expanding

number of different platforms. Most of the applications demanding higher speeds

at a bounded power consumption exhibit a high level of data parallelism. The key

factor to achieve higher throughput and improve the power efficiency profile was

the exploitation of massive data parallelism employing Graphics Processing Units

(GPUs), Field Programmable Gate Array (FPGA) and Digital Signal Processors

(DSPs). To fully exploit the capabilities of parallel execution units, it was essen-

tial for computer system designers to think different. They re-architected com-

puter systems to tightly integrate the disparate compute elements on a platform.

Consequently all computing systems are gradually becoming heterogeneous, from

mobile devices to supercomputers. Heterogeneous computing provides a coopera-

tive paradigm leading to a separation of the application load in different portions.

Serial and latency sensitive portion is handled by the CPUs and highly parallel

one is demanded to a specific accelerator like the GPU which become ever more

powerful and approach the general-purpose parallel computing world with a very

interesting power efficiency profile Figure 1.2. This is why heterogeneous com-

3



Figure 1.2: Heterogeneous Systems Architecture

puting, which brings together the best of both CPUs, GPUs and DSPs worlds,

is essential to get more powerful system with a better power efficiency profile.

In the last few months we have also seen the emergence of heterogeneous sub-

systems. Just think about the latest NVIDIA GPU architecture called Turing

that includes CUDA Cores dedicated for floating point operations, Tensor Cores

for AI acceleration and RT Cores for real-time ray tracing algorithms, all in a

one chip.

As mentioned before, the rapid evolution of this context has not only impacted

on the architectural choices, but has led to the need to create new programming

models that take full advantage of the new hardware capabilities. ARM and In-

tel has implemented new SIMD instruction set fore their microprocessors (NEON

and AVX respectively) and NVIDIA with other manufacturer have introduced

new programming models like CUDA, OpenCL and OpenACC. NVIDIA GPUs

and the CUDA programming model employ an execution model called SIMT

(Single Instruction, Multiple Thread). SIMT extends Flynn’s Taxonomy of com-

puter architectures, which describes four classes of architectures in terms of their

numbers of instruction and data streams. One of Flynn’s four classes, SIMD (Sin-

gle Instruction, Multiple Data) is commonly used to describe architectures like

GPUs. But there is a subtle but important difference between SIMD and SIMT.

In a SIMD architecture, each instruction applies the same operation in parallel

across many data elements. SIMD is typically implemented using processors with

vector registers and execution units; a scalar thread issues vector instructions that

execute in SIMD fashion. In a SIMT architecture, rather than a single thread is-

suing vector instructions applied to data vectors, multiple threads issue common

4



instructions to arbitrary data. The benefits of SIMT for programmability led

NVIDIA’s GPU architects to coin a new name for this architecture, rather than

describing it as SIMD. NVIDIA GPUs execute warps of 32 parallel threads using

SIMT, which enables each thread to access its own registers, to load and store

from divergent addresses, and to follow divergent control flow paths. The CUDA

compiler and the GPU work together to ensure the threads of a warp execute

the same instruction sequences together as frequently as possible to maximize

performance.

1.3 More Power is not enough!

In the just described context, the advance towards an always existed wall has

passed almost noiselessly. The advent of heterogeneous and many-core computing

exacerbates the gap between the processor and memory performance, the so called

memory wall shown in Figure 1.3. Therefore, finding solutions to the memory

wall is a crucial step to achieve the HPC target of human brain computing,

otherwise known as exascale computing. The memory performance does not

affect only the overall performance of the systems, but also impact on its energy

performance. In particular, looking at today’s GPUs, the power contribution of

data movement compared to processing can be as high as 85%.

This scenario presents new challenges for the memory infrastructure from

the memory controller to the on-chip and off-chip design, the interconnection,

caching, coherency etc. It is meaningful to underline that talking about memory

performance can be misleading if not explicitly related to one of the two dimen-

sions along which it extends: bandwidth and latency. The two concepts are not

always directly related and a correct performance evaluation must be described

along them to well understand pros and cons of new technologies. For instance,

the newest technological innovation of 3D-stacked DRAM, benefits bandwidth-

hungry HPC applications that show an high level of memory parallelism, but it

is not expected to break the memory wall as claimed [66]. In this context, the

on-chip memory has increased in importance and complexity along with the ad-

vances in processor performance, to offload the larger but slower memories and

to allow processing units to fastly communicate. This means that an efficient use

of this precious resource would lead to lowered elapsed time for more complex al-

gorithms employing them. These include scratch-pad memory in GPUs [85] (e.g.

shared memory in NVIDIA devices), as well as dedicated on-chip memory banks

in FPGAs, which can be possibly customized based on the application needs

[16]. Such facilities are critical both for performance and energy consumption
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Figure 1.3: The Unbreakable Memory Wall

[3] and are normally organized in a multi-banked structure, potentially enabling

parallel data accesses to some regions of the address space. For these reasons,

this work focuses its experimental phases on the on-chip scratch-pad memory

pointing out some bottlenecks. In fact, when a resource is shared by multiple

cores some problems could arise: the contention could generate conflicts and, a

memory designed to give a high bandwidth serving multiple requests in parallel,

could be accessed inefficiently, causing performance decreasing for the applica-

tion. In addition, in some architecture like GPUs, the shared memory may be a

limiting factor for the number of threads that can run concurrently, because of

the inability to completely exploit the available resources.

Since the actual literature does not provide efficient solutions to efficiently

reorganize conflictual access patterns, this work aims to mathematically describe

the mapping problem and the related implications. Moreover, it presents some

optimization techniques that, in some cases, do not involve extra memory and

can decrease or eliminate multi-banked memory conflicts, in order to overcame

the aforementioned problems and make the most of hardware performance.

1.4 Methodology

As mentioned before, this work aims to mathematically describe the memory

mapping problem in order to determine some source code optimization that

increase the system performance also in terms of performance per watt. This

amounts to identify data layout transformations in order to:

• speed up the loading and storing of the data in the various memories,

6



Figure 1.4: The Polyhedral Approach

• decrease the communication and synchronization time between the various

cores, and

• make the assignment of the different tasks to the various architectures of

the system more efficient.

Contextualizing the research problem in the field of source code optimizations

for GPUs, the first promising analytical model is certainly the polyhedral one

which allows a very smooth and streamlined transformation of the data layout.

The polyhedral model is a mathematical model that provides a powerful math-

ematical abstraction to describe the possible transformations on grafted cycles,

seeing each iteration as a whole point in a well-defined space called polyhedron.

Thanks to this it is possible to use the linear algebra and linear programming

tools to optimize the grafted cycles and to obtain improvements both on the

location of the data and on the parallelization of the latter (see Figure 1.4).

Unfortunately, this model can only be applied to a certain category of data

that represent a small percentage of those treated by the scientific community. In

addition, some of the solutions obtained with this approach resulted in worsen-

ing system performance as they wasted shared memory and thence limiting the

number of threads that can run concurrently on the GPUs.

So bearing that in mind, I started researching on which were the memory

access patterns most used by the HPC applications. The result of this research

is a pattern that I called Transpose Like. In this pattern, store operations are

performed row-wise while load operations are performed column-wise, or vice

versa. Because of the finite number of banks in the local memory, different

store/load operations can incur conflicts. The approach used on this pattern aims

at gaining a deeper understanding of conflict-avoiding techniques, resulting in a

formulation of the problem that allows zero conflicts and zero memory overheads

under most circumstances. In particular, the proposed methodology relies on
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an Integer Linear Programming (ILP) model to describe the problem in terms

of linear conditions ensuring optimal bank mapping strategies. I also propose

a method for enumerating the solution space exhaustively and evaluating each

solution based on the code complexity induced by the scheme.

The first Sections of the Chapters 3 and 4 briefly introduce the research

context, the motivations, and the main objectives of each investigated research

topic. Whereas, the corresponding last Sections are focused on the explanation

of the methodology, the main scientific results and contribution of each Chapter.
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Chapter 2

Technical Background

2.1 Introduction

The clock-frequency race, driven by Moore’s law, came to a sudden halt at around

2005. Since then, the semiconductor industry has settled on two main trajectories

for designing microprocessor. The multi-core trajectory seeks to maintain the ex-

ecution speed of sequential programs while moving into multiple cores. A current

exemplar is the recent Intel Core i7TM microprocessor, which has four proces-

sor cores, each of which is an out-of-order, multiple instruction issue processor

implementing the full x86 instruction-set, supporting hyper-threading with two

hardware threads and is designed to maximize the execution speed of sequential

programs. In contrast, the many-core(many-threads) trajectory focuses more on

the execution throughput of parallel applications. An exemplar are the NVIDIA

graphics processing units (GPUs) with more od 20.000 threads, executing in a

large number of simple, in-order pipelines.

Many-core processors, especially the GPUs, have led the race of floating-

point performance since 2005. As of 2012, the ratio between many-core GPUs

and multi-core CPUs for peak floating-point calculation throughput is about 10

to 1 [48]. The motivations behind this trend are mainly related to the power

consumption and the power dissipation that made the pursue of ever higher

clock-frequency technologically and economically not sustainable. This is why

many hardware vendors decided to move or start to produce massively multi-

core chips, such as Tilera, Intel, Google etc. When designing and implementing

a multi-core processor, there are different architectural challenges to consider. In

fact, the multiple cores concept is not trivial, as it involves some challenges to be
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addressed such as how the individual cores should communicate with each other

and the outside world, and how the memory should be handled.

In the sections below are presented some technical knowledges on the new

multi-, many-core architectures.

2.2 Memory and Data Movement

The design of a multiple-core architecture involves considerations about inter-core

communication mechanisms. Historically [76] this problem has been addressed

employing a common bus shared by all processors. The shared medium also fa-

cilitated the implementation of cache coherency. But when the number of cores

increases the bus solution begin to show its weaknesses because, even though

it is cheap and easy to implement it does not scale very well. Latencies and

bandwidth per core quickly becomes a critical issue. Newer and emerging mech-

anisms such as multiple ring buses and switched on-chip networks are emerging

and are becoming more and more common, due to lower power consumption,

higher bandwidth or both [14, 15]. Continuing to increase the number of cores

on a chip, the communication networks will face an ever increasing scalability

problem and power-consumption constraints.

Memory interface is a crucial component of any high-performance processor

and Multi-core processors are no exception. Modern high-end chips present the

memory controller onto the chip and separated from the I/O-interfaces, to in-

crease the memory bandwidth and to enable parallel access to both I/O devices

and memory. Particular attention need to be paid to the Dynamic Random

Access Memory (DRAM) controllers, because the development trend focuses on

providing increased throughput rather than low latency. To leverage the so called

row-locality, accesses are combined in such a way as to best utilize open pages

and avoid unnecessary switching of DRAM pages so DRAM request schedulers

do not maintain a FIFO ordering of requests from processors to the DRAM, in

other words sequential consistency is not ensured. Some DRAM considerations

related to an NVIDIA GPU DRAM controller are exposed later in Section 2.4.2.

Within the context of many-core architectures, the memory infrastructure

must be designed to better exploit the computational resources and hide long

latencies due to off-chip memory accesses. In order to achieve this objective,

modern architectures might have a new layer of communication between the

processor cores, namely a shared memory, which can provide a way to interchange

data at different speed levels. Shared memory can be on-chip or off-chip. In the

first case, the shared memory is a kind of scratch-pad memory that can be used as
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a user-managed data cache for data interchange, such as in NVIDIA GPUs. When

shared memory resides on-chip, related traffic has a much higher bandwidth than

off-chip memory. In the second case, for example, a slow big memory is shared

among all the cores and its efficiency becomes a primary issue to argue about.

Since the cores can use one or two levels of own cache memory, ensure that every

core has always the exact same view of a shared location is a not trivial challenge.

But this is not the only point to worry about, because specific stride access

patterns can badly utilize the available memory, thus wasting bandwidth. More

considerations related to an on-chip GPU scratch-pad memory are exposed in

Section 2.4.2 Some multi- and many-core are distributed shared memory (DSM)

systems implementing the illusion of a shared memory by using the message

passing. These contexts provide many challenges to the hardware and compiler

designers in order to obtain an abstraction of a common and consistent shared

memory [62].

2.3 Hardware Multi-threading

Hardware multi-threading is a mechanism through which a core could support

multiple thread contexts in hardware, so that multiple threads can share the

resources of a single processor in an overlapping way in order to better utilize

the available resources. To allow this mechanism, the processor must keep the

state of each thread and be able to switch to another thread when, for example,

one of them stalled because of high latency operations. The hardware context

switch must be fast, it cannot require hundreds or thousands processor cycles as

in process switch. The two main approaches to hardware multi-threading [36]

are:

• Fine-grained multi-threading switches between threads on each instruction,

resulting in interleaved execution of multiple threads. Each clock cycle any

threads stalled are switched in favour of eligible threads. A disadvantage of

this approach is that the single thread performance could be slowed down,

since an eligible thread could not execute until another thread stalls.

• Coarse-grained multi-threading switches threads only on costly stalls, such

as last-level cache misses. Unlike the fine-grained approach, this one much

less likely slows down the execution of the single thread. But there is a

disadvantage compared to the other approach in that it does not overcome

throughput losses mainly due to shorter stalls.
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A variation on hardware multi-threading is provided by simultaneous multi-

threading (SMT). This approach uses the resources of a multiple-issue processor

to exploit thread-level parallelism. SMT processors often have more functional

unit parallelism available than most single threads can effectively use. Without

many changes to the processor architecture, SMT requires few main additions:

the ability to fetch instructions from multiple threads per clock-cycle and a larger

register file to hold data from multiple threads. Using register renaming and dy-

namic scheduling multiple instructions from independent threads can be issued.

2.4 Modern architectures

This section provides a ten-thousand-foot view of the Intel Xeon PHI architec-

tures, of the Graphics Processing Units and of the new Tensor Processing Units.

Heterogeneous System on Chip (SoC) designs containing general purpose cores

and domain-specific acceleration hardware are ever more employed to face the

new challenges provided by the increasing demand of processing. They provide

programmable computation for some portions of the application and hardware ac-

celeration for specific-domain tasks. Treating specific portions of the application

with hardware accelerators can provide significant speed-ups in specific-domain

compared to software implementations. Moreover, they give a considerable bet-

ter profile of the power consumption. This section focuses in greater details on

Nvidia GPUs architecture as they have been extensively studied to present the

performance implications of the problem showed in Section 2.4.2 and to evaluate

the impact of the new mapping technique proposed in Chapter 3 and Chapter 4.

2.4.1 Intel Many Integrated Core (MIC)

The Intel Many Integrated Core Architecture is a many-core processor and co-

processor based on the Intel Architecture. MIC architecture combines many Intel

CPU cores into a single chip to address highly parallel workloads in HPC, machine

learning, financial and engineering contexts. Knights Landing is the current, sec-

ond generation (x200) of Xeon Phi coprocessors, the brand name used for all MIC

architecture based products. This generation is available as either a processor or

a coprocessor. The main reason that pushed Intel to extend Xeon Phi first gener-

ation coprocessors to become processors is related to some limitations including

limited memory size and PCIe transfers back and forth with a host processor.

Basically Xeon Phi Knights Landing (hereinafter Knights Landing) is a proces-

sor trapped into a co-processor body [41]. Unlike GPUs, these products show
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Figure 2.1: A Xeon Phi Processor.

Figure 2.2: Knight Landing ISA compared to the Xeon processors.

a greater flexibility in that they do not need to rely on particular programming

models (like Nvidia CUDA) or subsets of standards like (such as OpenMP), as

they supports all the features of C,C++, Fortran, OpenMP, etc. The following

section describes the latest generation of Xeon Phi Knights Landing.

Knights Landing. Knights Landing is a many-core processor designed to

deliver massive thread and data parallelism working on parallel workloads. It

does not strictly need a host processor, as it can boot a stock operating system,

thus getting rid of the limitations imposed by the PCIe data transfers. A Knights

Landing product is manufactured in 14nm process and provide up to 72 cores. It

introduces a new memory architecture providing two types of memory, MCDRAM

and DDR and the new Advanced Vector Extensions 512 (AVX-512). The same

code written for a Xeon Phi can also be compiled for standard Xeon processors.

Figure 2.2 shows a comparison between the Xeon processors and Knights Landing

ISAs.

Knights Landing architecture is based on the concept of tile. A basic overview

is provided by Figure 2.3, where there are 38 tiles replicated, even if at most 36
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Figure 2.3: Block diagram of Knights Landing processor architecture.

of them are active. Each tile is internally composed of two cores, two vector-

processing units (VPUs) per core and a 1MB of L2 cache shared between the two

cores, as shown in Figure 2.4. This means that each Knights Landing comprises

up to 72 cores and 144 VPUs. Thanks to AVX instructions, the Knights Landing

can explain all the potential of the VPUs. More details and considerations about

AVX are presented in Section 2.6. Each core comes form an Intel Atom pro-

cessor adapted to target the high performance computing. Some features were

included such as support for four hyper-threads per core, higher L1 and L2 cache

bandwidths, support for AVX-512, larger L1 cache etc. Nonetheless the new core

supports all legacy x86 and x86-64 instructions. A Knight Landing core supports

up to four hardware contexts using hyper-threading.

Inter-tile communication is possible thanks to a 2D-mesh interconnect, that

also provides links to and from L2 caches other than that inside the tile, memory,

PCIe. It is organized in such a way that traffic sent off the edge tile is folded upon

the same tile. The mesh interconnect employs a MESIF cache-coherent protocol

to keep all the L2 caches coherent. A distributed tag directory structure provides

the tracking of the lines owned by each L1 and L2 cache. The caching/home

agent (CHA) module of Figure 2.4 is demanded to hold and handle a portion of

this distributed tag directory structure, as well as the channel through which the

tile connects with the mesh. When a memory address is requested, the tile first

query the local cache to know if data is available there. If not, it needs to query

the CHA module of another tile. If the requested memory address is not cached,
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Figure 2.4: Block diagram of a single tile.

the responsible tile will request it to the memory controller associated with that

address. It’s clear that the developer should meet the needs of his application in

the cleverest and efficient way. Knights Landing support the developer in getting

more control on how cache data is handled, providing 3 different clustering modes:

All-to-All, Quadrant/Hemisphere and sub-NUMA-4/sub-NUMA-2 (SNC-4/SNC-

2). These modes are selectable from the BIOS at boot time. Below is presented

a brief overview for each of the clustering modes.

• All-to-All: the default cluster mode where the whole memory address is

uniformly distributed across all the CHAs.

• Quadrant/Hemisphere: the whole tiled-structure is subdivided into four

quadrants or two hemispheres. The quadrant configuration guarantees that

the memory addresses served by a memory controller are mapped only to

CHAs of the quadrant it is associated with. The hemisphere mode operates

in a similar way as it divides the tiled-structure in two hemispheres.

• SNC-4/SNC-2: the whole tiled-structure is subdivided again into smaller

quadrants or hemispheres. Unlike the previous configurations, this one

exposes the quadrants or the hemispheres as NUMA nodes.

Note that, unless in quadrant/hemisphere mode each memory type is UMA, tech-

nically the latencies vary across the mesh. However, in this case it is not possible

to change the latency based on the choice of the memory location deterministi-

cally. Therefore they need to be considered UMA. Using the SNC-2/SNC-4 mode

the latency is lower when accessing near memory devices, that within the same
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Figure 2.5: MCDRAM functioning modes.

quadrant, and higher when accessing memory of different quadrants. The authors

of [41] describe the SNC-4 mode as well suited for MPI NUMA aware applica-

tions that utilize four or a multiple of four ranks per Knights Landing. Exposing

these features and providing the developer a way to change the configuration

offer a greater flexibility in choosing the hardware configuration that better meet

the application needs. On the other hand, the developer has to pay attention in

choosing among the different configurations, as not all of them perfectly suit the

application needs. Some of them could even decrease the performance. Knights

Landing processor has two types of memory:

• Multi-Channel DRAM (MCDRAM): a high bandwidth, low capacity (up

to 16GB) stacked DRAM comprising multiple channels vertically connected

by means of through-silicon-vias (TSVs). All the channels can be accessed

in parallel resulting in a higher throughput. Eight MCDRAM devices, each

of 2 GB, are integrated on-package and controlled by a proper memory

controller named EDC. This kind of memory introduces more flexibility

from the developer point of view, as it provides three different functioning

modes that can be selected at boot. It can be configured as a third level

cache for DDR (cache mode), as a distinct NUMA memory (flat mode) or

as an hybrid memory node (that is a combination of the two) as shown in

Figure 2.5.

• DDR: resides outside of the Knights Landing package and offers high-

capacity memory (up to 384GB). As shown in Figure 2.3, there are six

memory channels controlled by two DDR4 memory controllers, one per

side, so that each controller is associated with 3 channels.

Figure 2.3 also shows the presence of a PCIe block providing two x16 and

one x4 lanes serving as masters. Some configurations of Knights Landing use the

2 x16 lanes to connect the Omni-Path Fabric resident on-package, thus leaving

the x4 lanes for external devices and providing two Omni-Path ports out of the

package.

16



2.4.2 GPU

Graphics Processing Units or GPU are specialized processors with hundred of

parallel computing units used in combination with CPU to accelerate scientific,

analytic, engineering and consumer applications. GPUs are currently employed

in many energy-efficient datacenters, government labs, universities and small and

medium business around the world and also in many other domains e.g. drones,

robots and cars. Although the increasing diffusion, as already stated GPUs are

not designed to replace CPUs. Therefore, an application developer can employ

a heterogeneous execution model to implement massively parallel and compute

intensive portions of an application, device code, on the GPU and serial portions,

host code, on the CPU. An application executing on a heterogeneous platform

is typically initialized by the CPU. With computational intensive applications,

program sections often exhibit a rich amount of data parallelism. GPUs are

used to accelerate the execution of this portion of data parallelism. NVIDIA is

one of the leaders in GPUs supply in end-user and high performance computing

markets. Its offer provides powerful solutions for visual computing and HPC and

is now contributing to the deep-learning and automotive worlds with properly

designed hardware such as:

• NVIDIA DGX-1 a deep learning supercomputer in a box;

• NVIDIA DRIVE PX series, combining deep learning, sensor fusion and

surround vision to provide a complete autonomous driving platform.

For these and many other reasons GPUs are significantly contributing to obtain

better performance in many different domains and need to be described. The

following section provides an overview of the NVIDIA GPU architecture deepen-

ing some fundamental mechanism useful for the purposes of this thesis, namely

everything related to the memory infrastructure.

Overview

NVIDIA provides several GPU models according to different architectural solu-

tions. The large amount of GPGPUs provided by NVIDIA is commonly grouped

on a compute capability basis. The compute capability of a device specifies its

features and resources, e.g. the number of the so called CUDA cores per mul-

tiprocessor, the number of special function unit, the amount of available shared

memory and so on. A common heterogeneous system employing one or multiple

GPUs has the aspect depicted in Figure 2.6. The PCIe link certainly provides

less bandwidth compared to that used from both CPU and GPU to connect with
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Figure 2.6: Link between CPU and one or more GPUs.

their own memory. The situation is compounded when using multiple GPUs with

a PCIe switch.

GPU Processing Resources

In this section, the description of the resources follows the NVIDIA jargon and

gives a feel of the scale of the available resources. A GPU compute device is char-

acterized by a high number of CUDA corers. For example, the Pascal NVIDIA

Titan X has 3584 CUDA cores, while a GTX 1080 has 2560 CUDA cores. Each

of them has a pipelined 32 bit integer arithmetic logic unit (ALU) and floating

point unit (FPU). The CUDA cores are grouped in Streaming Multiprocessors

(SMs) (20 in a GTX 1080), each of which is able to execute blocks of threads.

Each SM also comprises:

• Load/Store units to calculate source and destination addresses for the

threads.

• Special Function Units (SFUs). Pipelined units used to execute transcen-

dental instructions such as sin, cosine, square root etc.

• Warp scheduler. One or more instances depending on the architecture gen-
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eration, for instance Maxwell architecture provides 4 warp schedulers per

SM. It is basically an hardware unit used to issue instructions to the eligi-

ble threads. A set of 32 threads is called warp. The warp scheduler plays

an important role in a GPU architecture, as it is responsible to select the

warps that have their data ready to process in order to hide the latency

related to the memory accesses. Therefore, the more warps can be sched-

uled, the more the memory latency can be hidden. But this concept will

be extensively explained in the following sections.

• On-chip memory. Depending on the generation, the developer is able to par-

tition it between L1 cache and scratch-pad memory, named shared memory

in NVIDIA jargon. GTX 1080 provides 96 KB of shared memory and 48

KB of L1 cache storage.

• Register file. A chunk of memory used by the threads of the SM. There is

zero wait time on this memory. It amounts to 256 KB for the GTX 1080.

A GPU device consists of a certain number of SMs sharing a common off-chip

memory area of L2 cache and a slower bigger off-chip memory named global

memory. GTX1080 has 2048 KB of L2 cache and 8GB of GDDR5X RAM.

As stated few lines above, the warp scheduler represents an important block

of the whole architecture. An important role is also played by the GigaThread

Scheduler, that is a global scheduler that distributes thread blocks to the SM warp

schedulers. The memory hierarchy will be deepened in the following section.

GPU Memory Subsystem

One of the most important aspect of GPU performance is the memory subsystem.

As stated in the first line of this section, the heterogeneous computing employing

GPUs platform needs to execute massive parallel workloads, therefore, very high

transfer rate to and from the memory system is needed. This leads to very strong

requirements for the GPU memory subsystem, to supply which, the characteris-

tics listed below are necessary:

• They need a very large number of pins to send data between the GPU and

its memory devices. The memory system is organized such as a memory

array comprising many DRAM chips to exploit the parallelism and provide

a wide data bus width.

• They need to be fast. To maximize the data transfer rate, aggressive sig-

nalling techniques are employed.
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Figure 2.7: Example of partitioned memory.

• They try to use every available clock cycle to transfer data to or from

memory array. Therefore, GPUs don’t care about latency, such as CPUs,

rather they aim to maximize throughput and utilization efficiency.

• Compression techniques are used, both lossy and lossless, to convey as much

data as possible.

• Hierarchical cache organization and work coalescing structures are used to

reduce the effective off-chip memory traffic and to ensure high efficiency

while transferring to and from memory array.

DRAM considerations

GPU design must take into account DRAM chips characteristics to achieve the

enormous throughput requested by graphic and highly parallel computing appli-

cations. Even if memory is perceived as a monolithic structure, DRAM chips

are internally arranged as multiple banks, each of which comprises a power-of-2

number of rows and each row contains a power-of-2 number of bits. Several clock

cycles are required to access a piece of data within a DRAM and the most part of

them are needed to activate a row. But once a row is activated, the bits included

in it are accessible with less clock cycles. GPUs have many different sources

20



Row Number Bank Channel Byte in a Page

32 21 20 17 16 13 12 0

Figure 2.8: DRAM addressing scheme.

of memory traffic, generating uncorrelated memory access requests, in contrast

with the favourite access pattern for DRAMs. Therefore, the memory controller

design is crucial to get better performance. A naive design solution could lead

to the employment of different traffic queues for different banks. Each queue

could wait for enough memory requests directed to an open row to join as much

requests as possible in a single request to efficiently use the memory system, be-

fore switching to a new row. Although this solution could increase row-locality,

average latency related to each request will increase too. Therefore, the actual

GPU design provides a partitioned memory, with each partition controlled by

an independent memory controller and one or more DRAM devices as shown in

Figure 2.7. A practical example of this architecture can be deepened in patent

in patent [77]. This scenario also needs a way to interleave addresses among the

partitions to achieve theoretical N × one − partition performance. The chosen

interleaving can benefit or harm the bandwidth of some applications, therefore

the choice of the stride between two consecutive partitions became crucial. It

typically amounts to few hundred of bytes as also stated in patent [24]. Memory

subsystem does not ensure sequential consistency. The order of memory read

or write to the same address in a thread program is preserved, but the order of

accesses to different addresses may not be preserved. The DRAM world opens

some other issues related to the protection besides the performance. In fact, the

knowledge of the aforementioned features is also important when thinking about

the mapping scheme from the physical address space to the specific DRAM lo-

cation. To explain in more details how a mapping could have place and to give

a dimension to the considerations suppose a physical addressing space of 4GB

(32-bit) as example. A possible address mapping of physical address to DRAM

is depicted in Figure 2.8.

• Bits 12-0 identify a byte within a 8KB page (213 = 8192byte = 8KB);

• Bits 16-13 identify which one of the 16 memory channels the system will

use for this address;

• Bits 20-17 identify which one of the 16 banks has to be accessed to get the

data.
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Figure 2.9: Minimalist Open-Page and the permutation-based page interleaving
schemes.

• Bits 32-21 identify which row within a bank has to be accessed.

The bits within the channel field serve to subdivide the banks among the

DRAM modules in order to increase the bandwidth. The channel field is placed

there with a clever purpose: it allows the spread of sequential accesses on different

channels thus increasing the parallelism. In some cases a channel hashing has

been employed. This is the case of Ivy Bridge architectures, where the channel

selection is based on multiple address bits[40], in order to allow a more even

distribution of memory accesses across channels. A memory bank can serve

one request at a time. Any other access directed to the same bank need to

wait until the previous access has been completed, thus causing a bank conflict.

Conversely, accesses directed to different banks can proceed in parallel, for this

reason the bank number change earlier than the row number, as the address

increases. Generally the bank, column and row numbers are properly organized

to minimize the so called bank thrashing, namely a continuous change of a specific

row in a bank. This is a fundamental question, as bank trashing can cause

significant problems, such as the row hammering problem, that is the repeated

activation of two rows. It can lead the memory cells to leak their charge and

altering the content of nearby memory rows.

A malicious software knowing the address mapping strategy (net of other
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mechanism employed before the physical address-DRAM mapping) could cause

many serious troubles in economic and healthy way. The row-hammer bug be-

longs to the Zero-day vulnerabilities and has been studied by the Zero-Project

of Google in [70] and [46]. A zero-day vulnerability is basically known as a

”zero-day” because it is not publicly reported or announced before becoming ac-

tive, preventing the software’s author to create patches or advise workarounds to

mitigate against its actions. The literature provides different address mapping

schemes such as the Minimalist Open-Page scheme [44] and the Permutation-

based page interleaving scheme depicted in Figure 2.9. Suppose a large vector

accessed each time at a relatively high distance from the previous one. In this

case a solution to prevent bank thrashing is to XOR the lower part of the row

number with the bank number. With the previous mapping scheme the address

X and X + 256K would fall in the same bank but at different rows. This situation

could be avoided XORing parts of the starting address. From the afore described

considerations results that it is important to know how to handle similar prob-

lems in GPUs and in general, in many-core/heterogeneous systems, where the

memory wall is still up.

The row-hammer bug is indicative of a dependence on the access pattern. This

means that the latter could also provide better or worse performance depending

on the couple (mapping-scheme, access-pattern), because a fixed access pattern

can better exploit the bandwidth than another. But the main problem is that the

context of general-purpose computing provides many different applications, each

with its own access pattern. What would benefit the application performance is

to have the chance to always select a good couple. However this kind of solution

raises new issues such as:

• if the access pattern changes during the execution how the mapping could

be changed to face the new pattern?

• how is possible to detect a change in the access pattern?

• if a feasible and efficient solution can change the access pattern how the

previously placed date would be affected? It would require a data migra-

tion?

A dissection of the main problem and of the related issues is reported in [32],

where the access pattern detection is executed with an array of counters tracking

the change rate of each bit of the requested address and generating a new mapping

scheme based on it. When it comes to the change of the access pattern during the

execution of a specific application, the authors propose a data migration solution

23



Figure 2.10: NVIDIA Tesla P100.

and a reboot-based solution. The first involving the migration of all the previously

placed data, thus involving some kind of a mechanism to track the dirtiness of

a location, The second based on the reboot to change the mapping scheme and

replace data. Given the heterogeneous nature of the wide range of applications

access pattern, none of the proposed solution can be a priori discarded. The

same data migration problem raises when coming to problems related to the

power consumption of the memory infrastructure. As patented by Apple in [35]

the memory address space can be partitioned across different memory mapping

functions. The memory controller may use a first memory mapping function

when a first number of memory banks is active and a second memory mapping

function when a second number is active. When one of the memory banks is

to be deactivated, the memory controller may copy data from only the memory

bank that is to be deactivated to the active remainder of memory banks.

From a technological point of view modern GPUs rely on Graphics Double

Data Rate (GDDR) to achieve a high bandwidth. As the DDR main memory

standards, GDDR memory device standards are set by the Joint Electron De-

vice Engineering Council (JEDEC). The most recent generation of the GDDR

standard is GDDR5X. JEDEC specifies 512Mb, 1Gb, 2Gb, 4Gb, 8Gb and 16Gb

densities [19]. Unlike DDR memory devices, GDDRs support wide bus up to

512bit. GDDR5X generation is characterized by a 8n pre-fetching architecture.

This means that a single write or read access is burst oriented: an access starting

at a selected 4-byte location on a 32-bit wide link consists of a 256bit long data

transfer corresponding to a total of eight 32bit data words. With the introduction
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of the 3D stacked memory, also the GPU design can benefit of a higher band-

width. Consequently, NVIDIA started to embed these kind of memories within

the newest platforms, such as in Tesla P100 [63], shown in Figure 2.10.

NVIDIA GPU Memory System

As already stated in the previous sections, NVIDIA GPU memory subsystem

is structured in a hierarchical way. Each one of the different types of memory

of the GPU has a specific use, limitations and performance profile. A typical

heterogeneous application is composed of a section of code through which data

to be processed is first transferred from the host memory to the device memory.

Then, the threads can access their portion of data on a thread ID and/or block ID

basis. This memory is called global memory and is typically implemented with

off-chip dynamic random access memory (DRAM), which tends to have a very

long access time as well as a low access bandwidth (hundred of clock cycles). Since

many workloads need very high load and store operation latencies, a faster and

high-bandwidth memory could improve the application performance. But, as it

is well known, it can cost too much to have low-latency memories. So, with a well

designed memory model data can be properly placed to get optimal performance.

The design of a memory model often relies on the concepts of locality. Indeed, a

common application does not access always arbitrary data. Instead, they often

satisfy the principle of spatial or temporal locality, respectively space related

and time related locality. The memory hierarchy is based on the aforementioned

principles. Therefore, different levels of the hierarchy provide different latencies,

bandwidth and capacities in order to abstract a large and low-latency memory.

The memory model exposed by CUDA is characterized by the following kind of

memories:

• Registers;

• Cache L1/L2;

• Shared memory;

• Local memory;

• Constant memory;

• Texture memory;

• Global memory.
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From them, the L1 and L2 caches are the only not programmable memo-

ries.

Registers

Registers are the fastest level of the memory hierarchy. Typically the au-

tomatic variable of a kernel without no other qualifier is stored in a register.

Registers are allocated per thread, so the variables are private to each thread.

But they are shared among all the threads, so there is an hardware limit to the

number of registers available per thread. For instance a Kepler architecture pro-

vides up to 255 registers per thread. The limit does not prevent an application

to use more threads, the key is to spill over to local memory the excess regis-

ters, precisely with a register spilling operation. In order to have low-latencies

for as much accesses as possible, the frequently accessed variables are placed in

registers.

Local memory

All the variables that do not fit in the registers area can be allocated into a

local memory. So this memory space also holds the spilled registers. Although

the name might suggest such a private and fast memory, the local memory area

resides in the same physical location as global memory. In terms of elapsed time

to load or store from/in a local memory location it means a high latency and low

bandwidth access. The local memory is typically managed by the compiler which

decides to place data there when belonging to large local structure or when even

if not so large, the arrays can not be indexed with values known at compile-time.

Shared memory

Shared memory is local to each cooperative thread array (CTA) or thread

block and only visible to the threads within it. Its lifetime coincides with the

CTA lifetime, i.e. it is created together with the CTA and destroyed when it

terminates. To place variables in shared memory they need to be accompanied

by the shared attribute. Shared memory resides on-chip, therefore, related traffic

has a much higher bandwidth than off-chip global memory. It can be thought

as on-chip scratch-pad memory that can be used as a user-managed data cache

or as a mechanism for fast data interchange between threads of the same CTA,

that could also enable memory coalescing. To achieve high memory bandwidth

for concurrent accesses, shared memory is divided into equally sized banks simul-

taneously accessible. A memory load/store access of n addresses that covers k

distinct banks can proceed with a higher bandwidth, k times higher than a single

bank bandwidth. A memory access request of n addresses mapped to the same
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memory bank, leads to bank conflicts and the memory accesses will be serialized,

because the hardware splits a conflicting memory request into separate conflict-

free requests. When this scenario occurs the effective bandwidth unavoidably

decreases. Moreover, when all threads of a warp, request the same address, all

memory accesses will address the same bank, but this case results in a broad-

cast rather than a serialization. To increase effective bandwidth and minimize

bank conflicts, it is important to know how shared memory addresses map to

memory banks. If each bank is 32bit wide, successive 32bit words will map to

successive banks. NVIDIA Kepler architecture has introduced a double mapping

scheme for shared memory. Indeed, the application developer has the ability to

configure it to work in four-bytes or eight-bytes mode as will be better covered in

Section 2.4.2. Another degree of freedom for application developer is brought by

the partitioning size of shared memory against L1 cache. On device of compute

capability 2.x and 3.x the available on-chip memory can be partitioned between

L1 cache and shared memory. For devices of compute capability 2.x two avail-

able settings split the 64KB on-chip memory as 48KB shared memory / 16KB

L1 cache or 16KB shared memory / 48KB L1 cache. Newer architecture, like

Maxwell removed this degree of freedom increasing the available shared mem-

ory size. Each SM has a fixed amount of shared-memory that will be subdivided

among all the thread blocks. Therefore, if each thread block uses too much of this

resource the number of simultaneously active warps can decrease, thus causing

degraded performance. This scenario represents a limiting factor shared memory

condition. The course of this thesis will explain some instances of this scenario,

pointing out the possible solutions.

Global memory

Global memory resides off-chip in device memory and is the largest and slow-

est of the hierarchy. Any thread of any SM can access the global memory, as it

has a global scope and lifetime. Concurrent accesses to global memory from mul-

tiple threads are not automatically synchronized to avoid them to concurrently

modify the same location, so it needs to be carefully managed. As already stated

global memory resides off-chip, namely it refers to an external DRAM memory

space which is not local to any one of the physical SMs. Global memory is ac-

cessed via 32byte, 64byte or 128bytes transactions. When the threads of a warp

execute an instruction that accesses global memory, the hardware can coalesce

the memory accesses in one or more transactions analysing the size of the word

accessed by each thread and the distribution of the memory addresses related to

each request (More details in Section 2.4.2). Suppose a 32-words memory access
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Figure 2.11: Memory model exposed by CUDA.

request arrives with each word of 4 bytes, if the addresses are naturally aligned

and sequentially arranged the hardware will coalesce the whole 128byte-access

request in a single transaction. If the addresses are arranged in a 128byte stride

pattern, the hardware will generate 32 memory transactions of 128bytes each,

to satisfy the initial request. This way will lead to a decreased bandwidth by

a factor of 32 because all the words but the one effectively requested, represent

wasted bandwidth.

The analysis and optimization of the global memory access pattern is crucial

to reach better exploitation of the available bandwidth and to prevent SMs to

wait while the memory request are served. Even if the number of simultaneously

executing threads is very high, global memory long latencies are not always tol-

erable. In fact, an application could exhibit a traffic congestion in the global

memory access paths that prevents all but few threads from execute, leaving

some or most of the streaming multiprocessors idle. This scenario points out

the importance of having an efficient access pattern to the global memory to get

better performance.

Caches

The caches are the only not programmable memory of a GPU memory model.
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As shown in Figure 2.11 the L1 caches are local to each SM. While the L2 cache

is shared among all SMs. The whole L2 cache is split in hierarchy is depicted

in different slices of L2 cache. Both L1 and L2 caches are used in combination

with local and global memory accesses, including register spills. On devices of

compute capability 2.x and 3.x, local memory and global memory accesses are

always cached in L1 and L2. Instead, on devices of compute capability 5.x, local

memory and global memory accesses are always cached in L2. However, this

memory model provides that only memory load can be cached, while memory

store operations cannot be cached. As stated in [52], the cache replacement

policy does not follow a Last Recently Used (LRU) rule and properly written

micro-benchmarks can give the specific cache replacement policy. Each SM also

offers a read-only constant cache and a read-only texture cache used to hide the

latency of accessing a device memory space, thus improving the performance

experienced in read operations. In Figure 2.12 is shown the memory architecture

of a NVIDIA GTX 970. There are 4 memory partitions each comprising two

DRAM memory controllers (MC) and two slices of L2 cache. The whole L2 cache

space is shared among all the SMs through a crossbar interconnection to allow any

SM to connect to any L2 cache slice. The obscured SMs and L2 slice belong to the

floor sweeping technique, used to produce functionally acceptable processing units

(GPU o CPU o DSP), that would otherwise be production waste, because of some

sort of manufacturing faults. When the essential functionalities are not impacted

the processing unit can be salvaged and used as totally functioning unit, although

with reduced functionalities or capabilities. A manufacturing faults could occur

in partition circuitry. This means that the presence of multiple partitions gives

the opportunity to save some otherwise manufacturing waste, compared to a

single bigger partition. This flexibility provides more work and complexity to the

memory management unit (MMU), which must be able to withstand and handle

a manufacturing fault [24].

Shared Memory Bank Conflicts Considerations

As mentioned before, mainly for performance purpose, shared memory is divided

in banks, which can be accessed in a parallel way from all the threads in a warp.

The number of banks is strictly dependent from the architecture. In Kepler

architecture, and only in this architecture, the number of banks is 32 and each

bank have a word of 8 bytes. In the other architecture, each bank have a word of

4 byte and data are cyclically distributed over the bank only with 4-byte access

shown below. Data allocated in the shared memory are cyclically distributed

over the banks in two ways:
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Figure 2.12: GTX 970 memory architecture.

• 4-byte access : Successive 4-byte words go to successive banks. We must

think that we have 32 banks, 4-byte wide. If the data that we use is 8 bytes

wide, the access mode became the 8-byte access.

• 8-byte access: : Successive 8-byte words go to successive banks. We can

compute easily in which bank a data is stored in this way:

– (8 B word index) mod 32;

– (4 B word index) mod 32 ∗ 2;

– ((byte address) mod 32 ∗ 8.

The Figure 2.13 shows an example of data mapping on shared memory with

both modalities. In this example the data are 4B-word index and, for simplicity,

we use only for 4 banks.

The access mode can affect the performance of the kernel. Sometimes an

access-mode, rather than the other, can avoid a critical problem like the bank

access conflict discussed below.

Allowing all the threads in a warp to fetch data in parallel from this kind of

memory can lead to great performance improvements, but is not quite easy to

extract high throughput without managing it carefully and in an explicit way.

There are three main working modalities for the shared memory which guar-

antee great performances:
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Figure 2.13: Comparing Bank Modes Mapping. In the left side we have the
4-byte access. In the right side we have the 8-byte access.

• Unicast: In this modality each thread in a warp tries to access a different

location stored in a different bank.

• Multicast: One or more groups of threads in a warp try to access the

same location stored in one of the banks. The other threads perform a

unicast-style access.

• Broadcast: Every thread in a warp will access exactly the same location,

obviously stored in the same bank.

This three working modalities are guaranteed from the presence of an inter-

connection network which links the core of a Streaming Multiprocessor to the

shared memory. Using this interconnection network and performing one of these

access patterns, data can be retrieved without any latency as they were stored

in the registers. If the pattern is different from the ones described above, shared

memory’s performances decrease highly.

Performing a Unicast / Multicast or Broadcast access pattern leads to a full

utilisation of the shared memory, with maximum bandwidth and minimum la-

tency. In the case in which 2 or more threads in a warp try to access to different

words stored in the same bank, the interconnection network is no more able to

provide right data to all the threads in parallel. This situation, called bank

conflict, is the main problem related to the use of the shared memory.

If two threads try to access different words stored in the same bank, a 2-way

bank conflict appears.

If three threads try to access different words stored in the same bank, a 3-way

bank conflict appears, and so on. The worst case is when all 32 threads in a warp
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Figure 2.14: Unicast Access. No bank conflict

Figure 2.15: Unicast Access. No bank conflict

try to access different words stored in the same bank. In this case a 32-way bank

conflict appears. This kind of conflicts will be solved applying a serialisation of

the accesses.

This serialisation in a 2-way scenario leads to double the latency and can

increase the power consumption in a considerable way.The figures below show

the bank conflict problem.

Figure 2.16: Multicast Access. No bank conflict

32



Figure 2.17: 2-way bank conflict.

Figure 2.18: 3-way bank conflict.

Coalescing Unit by NVIDIA

As previously described, the global memory space is the slowest one of the mem-

ory hierarchy. Even if the memory hierarchy and the available massive parallelism

manage to hide a significant portion of the total latency due to a global memory

access, all its accesses need to be carefully handled since each access cost about

400 clock cycles. To perform highly-efficient coalesced memory transfers, parallel

processing unit have to execute memory access operations to large, contiguous

blocks of memory on aligned block boundaries. If a given thread group accesses a

block of memory aligned to a multiple of the memory fetch size, and each thread

accesses a single portion of the block, then a single coalesced memory transfer

could be performed. Otherwise, a non-coalesced memory transfer will be executed

for each not conform access. In order to keep a lean programming model and to

break down the time spent optimizing the code, the details of the hardware map-

ping are hidden to the developer. NVIDIA thought to a more flexible solution

providing the hardware infrastructure needed to handle different requests coming

from the application. The solution proposed by NVIDIA is named coalescing unit

and target the bandwidth issue related to the global memory accesses. Basically,

whenever the alignment, size and contiguity conditions are met, the hardware
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can perform a coalescing operation to improve memory bandwidth and reduce

the overhead related to the load/store instructions. In NVIDIA GPUs transac-

tions directed to the global memory are coalesced on a per-warp basis. Below is

described the algorithm used to coalesce memory requests on Tesla Generation

hardware [83].

1. Find the active thread with the lowest thread ID and locate the memory

segment that contains that thread’s requested address. The segment size

depends on the word size: 1-byte requests result in 32-byte segments; 2-

byte requests result in 64-byte segments; and all other requests result in

128-byte segments.

2. Find all other active threads whose requested address lies in the same seg-

ment.

3. If possible, reduce the segment transaction size to 64 or 32 bytes.

4. Carry out the transaction and mark the services threads as inactive.

5. Repeat steps 1–4 until all threads in the half-warp have been serviced.

This section explain with more details the method [64] adopted by a coalescing

unit and the steps above summarized. Later in this section a more practical view

of the related hardware is presented [61]. The execution of a memory instruction

by a thread group generates a request going to a core interface module. Suppose,

as shown in Figure 2.19, the memory access request come from a group of 16

threads each with a unique thread ID from the set 0..F and each specifying its

own memory address. Suppose a system with capabilities such that the minimum

memory fetch size is 32 bytes and the maximum memory fetch size is 128 bytes.

The coalescing unit is able to combine multiple access request into one request

per block. Once an application request arrives to the memory core interface,

it look up a pending request table (PRT) shown in Figure 2.20 to identify an

available pending request entry.

The PRT may be stored in any memory area the core interface is allowed to

access, for example in the register file. In order to satisfy each application re-

quest, the core interface assigns, tracks, and routes the data in the corresponding

pending request table entry. Obviously each application request can be served

with multiple memory access request. But the coalescing unit aims to identify

and exploit any opportunity to generate combined memory accesses to serve more

than a single thread request. However, each active thread contributing to a single

application request is serviced by a single memory access request. As shown in
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Figure 2.19: Memory access request from 16 threads.

Figure 2.20: Pending request table.

Figure 2.20 the PRT contains a PRT entry numbered 11 and representing an ap-

plication request where for each thread the thread ID and an offset are reported.

For example, thread F of PRT entry 11, has an offset 16. Each PRT entry also

includes a number tracking how many pending memory access requests are to

be completed by the memory interface. In other words, when the core interface

generates a memory access request and transmits it to the memory interface, the

core interface increments by one the number of pending memory access requests

in the corresponding PRT entry. Once the memory interface has served a mem-

ory access request, the core interface decrements by one the same number. A

memory access request is characterized by:

• a pending request table entry ID (PRT entry ID);

• a thread mask;

• a base address;

• a request size.

When the access request come back to the memory core interface it is needed

to track from which one of the application request it started. The PRT entry
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ID handle this issue. The thread mask indicates the thread IDs in the pending

request table entry that are serviced by the issued memory access request. When

the core interface detect a zero pending memory access requests number for a

specific PTR entry, it satisfies the corresponding application request and makes

the particular PTR entry available for a new application request. The key oper-

ation to exploit any opportunities to generate efficient accesses is to cluster the

requests into one or more sets based on the proximity of the requested addresses.

This means that the core interface divides the whole set of requested addresses

into non-overlapping memory regions. Each memory region is aligned to a mul-

tiple of the memory fetch size and has a dimension of the maximum memory

address. A memory region may contain one or more of the requested addresses.

In the worst case it satisfies only one request, while in the best case all of the

addresses fall in the same region.

Example. Looking at Figure 2.19 the thread with ID 0 requests to access

the location placed at byte 272. Considering a memory fetch size and a maxi-

mum memory request size of 128 bytes, the request address falls into the memory

region starting from byte 256 and finishing to byte 384(384 − 256 = 128). Sim-

ilarly thread with ID 2 requests the location placed at byte 300 and falls in the

same memory region of thread 0. Since no other access requests fall in the afore-

mentioned region, the core interface groups the threads 0 and 2 into a single

set.

The way the threads should be grouped together is not fixed by the patent,

which allows any feasible fashion. For instance, the core interface could look

for the lowest numbered thread as starting point. Then it selects a memory

region for that address and look up the other thread requested addresses falling

in the same memory region. If any it groups together that threads, marks them as

inactive and prepares a memory access request for the memory interface including

a thread mask to identify the threads to be satisfied by that request. Each

prepared request is initially sized at the maximum fetch size and starts from a

base address computed to align the memory region to the fetch size. This means

that if a memory region of 128 bytes satisfies only one thread, there would be an

high amount of wasted memory. Thus, a further optimization allows to resize the

memory fetch size to better suit the effectively requested addresses. If the core

interface detects that the memory access addresses are spreaded within the lower

half or the upper half of the memory region, then it halves the memory region.

The core interface continues to halve the size until the minimum fetch size is

reached. Then it look up the next active thread with the lowest thread ID and

goes on grouping and sending requests to the memory interface until there are
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no other active threads. Coming back to the Example 2.4.2, the memory request

associated to the region 256-384 may satisfy thread 0 and thread 2 requests with

just the lower half 256-320. The resulting memory region cannot be halved again

keeping the two requested addresses, so a 64bytes request with 256 as base address

will be issued. As shown in Figure 2.20, for each thread stored in the PRT entry

11, there is an offset. This value is computed as

offset = requestedaddress− baseaddress

after the corresponding memory region has been associated. For instance, the

value computed for thread 0 corresponds to 16 = 272 − 256 as shown in Fig-

ure 2.20. This way in combination with the thread mask it is easy to route

forward (stores) and back (loads) the memory access requests. The core inter-

face may set up a crossbar for the threads designated by the thread mask and

with the PRT entry offsets. Since many application requests arrive to the core

interface, it must be able to handle them even when the corresponding memory

access request replies are interleaved among different application requests. In

other words, the core interface may receive a completed request belonging to a

particular PRT entry, then one belonging to a different PRT entry, some of them

could complete an application request, all in an interleaved way. Under these

conditions core interface is able to determine on a per-access request basis if it

corresponds to a PRT entry or another by means of the PRT entry ID carried

by each request. When the same address is requested in load mode by many

threads of a thread group, the core interface might handle the collision by issuing

a single memory access. Conversely, in case of store conflicts the core interface

might prefer one thread write operation and discard all the other. For example,

the highest numbered thread could be allowed to write. The method just ex-

posed can be realized in a GPU architecture as in Figure 2.21. The Streaming

Multiprocessor Controller (SMC) is meant to coalesce memory requests coming

from different parallel processing threads. The parallel processing threads exe-

cute in a well known SM architecture. The SMC issues memory requests to the

Memory Access Unit (MAU) on the behalf of the SM. As previously stated the

coalescing unit need to track the application-level request and other information,

therefore, a Register File module is included in each SMC. Further, a Tracking

Logic Module and a Memory Request Coalesce Logic complete the architecture

of an SMC.
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Figure 2.21: Block diagram used to coalesce global memory accesses.

Figure 2.22: Google’s Tensor Processing Unit.

2.4.3 Tensor Processing Unit

A tensor processing unit (TPU) is an Artificial Intelligence accelerator application-

specific integrated circuit (ASIC) developed by Google specifically for neural net-

work machine learning [67] (see Figure 2.22).

The Tensor Processing Unit was announced in 2016 at Google I/O. The chip

has been specifically designed for Google’s TensorFlow framework, a symbolic

math library which is used for machine learning applications such as neural net-

works [2].

Google has used TPUs for Google Street View text processing, and was able

to find all the text in the Street View database in less than five days. In Google

Photos, an individual TPU can process over 100 million photos a day. Compared
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to a graphics processing unit, it is designed for a high volume of low precision

computation (e.g. as little as 8-bit precision) with higher IOPS per watt, and

lacks hardware for rasterisation/texture mapping.

2.5 Compute Unified Device Architecture
(CUDA)

CUDA is a general-purpose parallel computing platform and programming model

introduced by NVIDIA in 2007. Its main objective was to enable the developer to

exploit the parallel compute engine of NVIDIA GPUs. The CUDA platform is ac-

cessible in different ways: through CUDA-accelerated libraries (cuDNN, cuBLAS,

MAGMA), compiler directives, application programming interfaces, and exten-

sions for programming languages, including C, C++, Fortran, Java and Python.

CUDA C extends C by allowing the programmer to define C functions, called

kernels and executed N times in parallel by N different CUDA threads, thus

enabling heterogeneous programming. This means that with CUDA the devel-

oper can implement a parallel algorithm as easily as he write C programs. With

CUDA the applications can transparently scale their parallelism to GPUs with

different numbers of cores thanks to the abstraction provided by the programming

model: a hierarchy of thread groups, shared memories and barrier synchroniza-

tion. This way the application can rely on a runtime system, which is the only

one to know the real physical available resources, to enable the scaling to different

architectures. CUDA provides two API levels for managing the GPU device and

organizing threads. In a program a kernel is defined using the global declaration

specifier as shown below:

g l o b a l void kernelName ( i n t ∗ A, f l o a t ∗ B , . . . ){
// k e r n e l co d e

}

With the triple angle brackets “<<< ... >>>” syntax the developer is able to

launch a CUDA kernel specifying the number of CUDA threads to employ. Each

thread that executes a kernel gets a specific and unique thread ID. This informa-

tion is accessible within the kernel through built-in variables. As stated before,

CUDA is based on three main abstractions: a hierarchy of thread groups, shared

memories, and barrier synchronization. As shown in Figure 2.23, a Grid is com-

posed of a number of Thread Blocks, each thread block is composed of Thread.

Next to each element of the thread hierarchy is reported the correspondent acces-
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sible element of the memory hierarchy. From the latter, two memories need to be

highlighted: global memory and shared memory. The first one is analogous to the

CPU system memory. The second is similar to the concept of scratch-pad mem-

ory, as shared memory can be directly managed by the user. With CUDA the

programmer is able to partition the problem into coarse sub-problems that can

be solved independently in parallel by blocks of threads, and each sub-problem

into finer pieces that can be solved cooperatively in parallel by all threads within

the block. But there is a limit to the number of threads per block. On current

GPUs, a thread block may contain up to 1024 threads. Therefore, when a ker-

nel is executed with multiple equally-shaped thread blocks, the total number of

launched threads is equal to the number of threads per block times the number of

blocks. The blocks are also organized in one-, two- or three-dimensional grid so

completing the thread hierarchy. This hierarchy makes possible that a compiled

CUDA program can execute on any number of multiprocessors and only the run-

time system needs to know the physical multiprocessor count. As shown in the

introduction to this section, a GPU act as a device and has its own memory, just

as the host has its own system memory. As different entities, the two memories

are organized in different ways and through the CUDA runtime the programmer

can allocate device memory, release device memory, and transfer data between

the host memory and device memory or employ the unified memory feature in-

troduced with CUDA 6, which offloads the developer to explicitly copy data to

and from the GPU. The CUDA programming model exposes an abstraction of

memory hierarchy from the GPU architecture where each GPU device has a set

of different memory types used for different purposes.

2.6 Advanced Vector Extensions

Intel R©Advanced Vector Extensions (AVX) introduces 256-bit vector processing

capability. The Intel AVX instruction set extends 128-bit SIMD instruction sets

by employing a new instruction encoding scheme via a vector extension prefix

(VEX). Intel AVX also offers several enhanced features beyond those available

in prior generations of 128-bit SIMD extensions. FMA (Fused Multiply Add)

extensions enhances Intel AVX further in floating-point numeric computations.

FMA provides high-throughput, arithmetic operations cover fused multiply-

add, fused multiply-subtract, fused multiply add/subtract interleave, signed-

reversed multiply on fused multiply-add and multiply-subtract. Intel AVX2 pro-

vides 256-bit integer SIMD extensions that accelerate computation across integer

and floating-point domains using 256-bit vector registers. A complete list of in-
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Figure 2.23: The thread and shared memory hierarchy provided by CUDA.

trinsic that you can use for programming with MMX/SSE and AVX Extensions

are on-line1.

2.7 Intel AVX Overview

Intel AVX introduces the following architectural enhancements:

• Support for 256-bit wide vectors with the YMM vector register set.

• 256-bit floating-point instruction set enhancement with up to 2X perfor-

mance gain relative to 128-bit Streaming SIMD extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support

three-operand syntax and to simplify compiler vectorization of high-level

language expressions.

• VEX prefix-encoded instruction syntax support for generalized three-operand

syntax to improve instruction programming flexibility and efficient encod-

ing of new instruction extensions.

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Figure 2.24: 256-Bit Wide SIMD Register.

• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load

and computational operation semantics) are not restricted to 16-byte or

32-byte memory alignment.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy

128-bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost

all legacy 128-bit SIMD instructions have AVX equivalents that support three

operand syntax. 256-bit AVX instructions employ three-operand syntax and

some with 4-operand syntax.

2.7.1 256-Bit Wide SIMD Register Support

Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7

in operating modes that are 32-bit or less, YMM0-YMM15 in 64-bit mode). The

lower 128-bits of the YMM registers are aliased to the respective 128-bit XMM

registers. Legacy SSE instructions (i.e. SIMD instructions operating on XMM

state but not using the VEX prefix, also referred to non-VEX encoded SIMD

instructions) will not access the upper bits beyond bit 128 of the YMM registers.

AVX instructions with a VEX prefix and vector length of 128-bits zeroes the

upper bits (above bit 128) of the YMM register.
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2.7.2 Instruction Syntax Enhancements

Intel AVX employs an instruction encoding scheme using a new prefix (known as

“VEX” prefix). Instruction encoding using the VEX prefix can directly encode a

register operand within the VEX prefix. This support two new instruction syntax

in Intel 64 architecture:

• A non-destructive operand (in a three-operand instruction syntax): The

non-destructive source reduces the number of registers, register-register

copies and explicit load operations required in typical SSE loops, reduces

code size, and improves micro-fusion opportunities.

• A third source operand (in a four-operand instruction syntax) via the upper

4 bits in an 8-bit immediate field. Support for the third source operand is

defined for selected instructions (e.g. VBLENDVPD, VBLENDVPS, PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction

as:

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as:

VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate

byte.

Note SIMD instructions supporting three-operand syntax but processing only

128-bits of data are considered part of the 256-bit SIMD instruction set exten-

sions of AVX, because bits 255:128 of the destination register are zeroed by the

processor.

2.7.3 VEX Prefix Instruction Encoding Support

Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32

instruction encoding format. Instruction encoding using the VEX prefix provides

the following capabilities:

• Direct encoding of a register operand within VEX. This provides instruction

syntax support for non-destructive source operand.

• Efficient encoding of instruction syntax operating on 128-bit and 256-bit

register sets.
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• Compaction of REX prefix functionality: The equivalent functionality of

the REX prefix is encoded within VEX.

• Compaction of SIMD prefix functionality and escape byte encoding: The

functionality of SIMD prefix (66H, F2H, F3H) on op-code is equivalent to

an op-code extension field to introduce new processing primitives. This

functionality is replaced by a more compact representation of op-code ex-

tension within the VEX prefix. Similarly, the functionality of the escape

op-code byte (0FH) and two-byte escape (0F38H, 0F3AH) are also com-

pacted within the VEX prefix encoding.

• Most VEX-encoded SIMD numeric and data processing instruction seman-

tics with memory operand have relaxed memory alignment requirements

than instructions encoded using SIMD prefixes.

VEX prefix encoding applies to SIMD instructions operating on YMM registers,

XMM registers, and in some cases with a general-purpose register as one of the

operand. VEX prefix is not supported for instructions operating on MMX or x87

registers.

If in a program there are some SSE intrinsic, a modern compiler

can substitute these intrinsic with a modern AVX instructions, auto-

matically.

A complete list of VEX and VEX.256 instructions are in [39].

2.8 Overview of AVX2

AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instruc-

tions with 256-bit numeric processing capabilities. AVX2 instructions follow the

same programming model as AVX instructions. In addition, AVX2 provide en-

hanced functionalities for broadcast/permute operations on data elements, vector

shift instructions with variable-shift count per data element, and instructions to

fetch non-contiguous data elements from memory.

2.8.1 AVX2 and 256-bit Vector Integer Processing

AVX2 promotes the vast majority of 128-bit integer SIMD instruction sets to

operate with 256-bit wide YMM registers. AVX2 instructions are encoded using

the VEX prefix and require the same operating system support as AVX. Gener-

ally, most of the promoted 256-bit vector integer instructions follow the 128-bit
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lane operation, similar to the promoted 256-bit floating-point SIMD instructions

in AVX.

Newer functionalities in AVX2 generally fall into the following categories:

• Fetching non-contiguous data elements from memory using vector-index

memory addressing. These “gather” instructions introduce a new memory-

addressing form, consisting of a base register and multiple indices specified

by a vector register (either XMM or YMM). Data elements sizes of 32 and

64-bits are supported, and data types for floating-point and integer elements

are also supported.

• Cross-lane functionalities are provided with several new instructions for

broadcast and permute operations. Some of the 256-bit vector integer in-

structions promoted from legacy SSE instruction sets also exhibit cross-lane

behaviour, e.g. VPMOVZ/VPMOVS family.

• AVX2 complements the AVX instructions that are typed for floating-point

operation with a full compliment of equivalent set for operating with 32/64-

bit integer data elements.

• Vector shift instructions with per-element shift count. Data elements sizes

of 32 and 64-bits are supported.

2.9 Accessing YMM Registers

The lower 128 bits of a YMM register is aliased to the corresponding XMM

register. Legacy SSE instructions (i.e. SIMD instructions operating on XMM

state but not using the VEX prefix, also referred to non-VEX encoded SIMD

instructions) will not access the upper bits (255:128) of the YMM registers. AVX

and FMA instructions with a VEX prefix and vector length of 128-bits zeroes

the upper 128 bits of the YMM register. Upper bits of YMM registers (255:128)

can be read and written by many instructions with a VEX.256 prefix. XSAVE and

XRSTOR may be used to save and restore the upper bits of the YMM registers.
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Chapter 3

Polyhedral Model Approach

3.1 Introduction

A mathematical background on some matrix forms are provided in this chapter.

The Section ?? and Section 3.4 are focused, respectively, on Hermite Normal Form

(HNF) and Smith Normal Form (SNF) because are used to check the injectivity

property, subsequently, in Section 3.7. Also the Euclid’s algorithm is mentioned

because the algorithms that compute the SNF and the HNF use it to compute the

greatest common divisor. In the Section 3.8 is also exposed a formal procedure

derived to avoid the bank conflicts, problem that is described in Section 2.4.2.

The purpose of the procedure is to build a model able to capture the distribution

of a generic matrix over the banks and, also, able to modify this configuration.

In order to achieve this result there is a need to create a function which maps all

the points of a matrix in the right bank, then a need to identify if some conflicts

occur and then, using a transformation matrix, solve them. For this purpose the

results of A. Darte [20] are used.

Memory mapping has traditionally been an important optimization problem

for high-performance parallel systems [21]. Today, these issues are increasingly

affecting a much wider range of platforms. In fact, many medium/high-end em-

bedded systems are now based on parallel compute architectures while, at the

opposite end of the spectrum, large datacenters currently play a central role for

popular cloud-based applications, with a whole range of new disparate challenges,

from architecture optimization to security as well as work-flow management and

validation [65, 71, 57, 56]. Although here we are fundamentally interested in the

embedded architecture level, all such platforms are characterized by inherently
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the same issue concerning the memory infrastructure organization, i.e. the fact

that, at the low-level, they are based on non-uniform memory access (NUMA)

which, depending on the application access patterns, may be critical to the over-

all performance. In fact, the NUMA model reflects a scenario where multiple

independent processing cores/nodes with local memory modules are connected

by some form of interconnect, causing the access time to depend on the loca-

tion relative to the processor placing the access operation [34]. A closely related

concept, distributed shared memory (DSM), is a form of memory architecture

where physically separate memories can be addressed as one logically shared

address space. DSM systems combine the best features of shared-memory and

distributed-memory machines. They support the convenient shared-memory pro-

gramming model on scalable distributed-memory hardware, exposing a simpler

abstraction for data passing to the application programmer. Furthermore, many

distributed parallel applications execute in phases, where each computation phase

is preceded by a data-exchange phase. The time needed for the data-exchange

phase is often dictated by the throughput limitations of the communication sys-

tem. Distributed shared memory algorithms typically move data on demand as

they are being accessed, eliminating the data-exchange phase, spreading the com-

munication load over a longer period of time, and allowing for a greater degree

of concurrency. Also, the total amount of memory may be increased proportion-

ally, reducing paging and swapping activity [51, 73]. However, although many

DSM systems have been proposed and implemented (see Bal et al. [4], Bershad

et al. [7], Chase et al. [10], Dasgupta et al. [23], Fleisch and Popek [29], Li and

Hudak [51], Minnich and Farber [54], and Kirk L. Johnson et al. [42]), achieving

good performance on DSM systems for a sizeable class of applications has proven

to be a major challenge [9]. One of the key problems in building an efficient soft-

ware DSM system is to reduce the amount of communication needed to keep the

distributed memories consistent. Often, the proposed solutions result in a trade-

off between performance and consistency models, with the aim of enhancing the

concurrency available in the distributed shared memories [38]. Another problem

is to avoid access conflicts to physically different memory banks from multiple

threads/processes running concurrently. This problem can impact greatly the

performance of the system, especially in distributed systems, since it causes seri-

alized accesses and a significant interconnect overhead. A large number of works

addressed this problem, e.g. Das et al. [22] considered the star-template access on

two specific host topologies, tori and hypercubes, enabling conflict-free mappings

using an optimal or provably good number of memory modules. Monchiero et

al. [55] propose a mechanism for data allocation on a distributed shared mem-
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ory space, dynamically managed by an on-chip hardware memory management

unit. Sung et al. [75] present automatic data layout transformation as an effec-

tive compile-time performance optimization for memory-bound structured grid

applications.

In order to compare the results of the methodology presented in this Chapter

to those of the methodologies expressed in the works mentioned above, in Sec-

tion 3.7.2 is presented a real application of the transformation on a Kernel that

performs a matrix multiplication that is an operation almost always present in

real workloads. The results obtained, in terms of power consumption and some

limitations of this technique are also presented in Section 3.8.

3.2 Introduction to Number-Theoretic Notions

Theory of numbers is mainly based on integer being divisible by other integers.

The standard notation is the following:

b | a⇒ ∃k ∈ Z : a = kb

If b | a, a is a multiple of b and b is a divisor of a. Every integer a is

divisible by 1 and itself and these two divisors are called trivial divisors. Other

divisors of a are instead called factors. Any integer divides the integer set in

two subsets, the multiples of this integer and the others. The division theorem

helps to subdivide the integers in these distinct sets.

Theorem 1. For any integer a and any positive integer n, there are unique

integers q and r such that:

0 ≤ r < nand a = qn+ r

where

q = b anc is called quotient and r = a mos n is the remainder.

�
So another definition for divisor can be provided as follows:

n | a if and only if amodn = 0

Moreover, according to the remainder value, all the integers can be divided in

n equivalence classes. These classes are also called equivalence class module

n and can be formally defined as:
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[a]n = a+ kn | k ∈ Z

In order to indicate that two integers have the same remainder module n, or

that equivalently belong to the same equivalence class, the following notation is

used:

amodn ≡ bmodn⇒ a ≡ bmodn

This notation is read as a is congruent or equivalent to b module n. a 6=
bmodn means that the remainders of a

n and b
n are different.

The notation below is instead used to refer to the set of the equivalence classes:

Zn = [a]n : 0 ≤ a ≤ n− 1

Just to simplify is useful to modify this notation and use instead of the form

above, one representative integer for each class:

Zn = 0, 1, ..., n− 1

Each class is so represented by the minimum positive integer that belongs to

a class. A divisor shared between a and b is called common divisor of a and b.

The largest of all the common divisors is called greatest common divisor and

is usually indicate with gcd(a, b). Another useful way to define the gcd derives

from the following theorem.

Theorem 2. Given a and b not zero integers, gcd(a, b) is the smallest positive

element of the set

{ax+ by : x, y ∈ Z}

of linear combinations of a and b.

�
Modular arithmetic is based on congruence notion, given above. In abstract

algebra a modulo over a ring is a generalisation of a vector space over a field.

A module is an additive abelian group. So, modular arithmetic from a formal

point of view is the arithmetic of any homomorphic image of the ring of integers.

Given any image R of Z there is an integer n such that R is isomorphic to the

ring Zn. Operations +, · in the ring Z can be defined as operations over the ring

Z. Then the result has to be divided by n and the remainder is the real result in

the ring Zn. Formal definition of module:

Given a ring A, M a left A-module is an abelian group (M,+) in which is

defined an operation A × M →M such that:
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• a(v + w) = av + a ∀a ∈ A, v, w ∈M

• (a+ b)v = av + bv ∀a, b ∈ A, v ∈M

• (ab)v = a(bv) ∀a, b ∈ A, v ∈M

A right A-module is defined in the same way with an operation M × A→M

in which a and b are right written. If and only if A is commutative, left and right

module notation are equal. When A is a field, the module is a proper vector space.

In this way, module can be seen as a generalisation of vector space concept over

a ring and not over a field as usual. Not all the modules have a basis, if a module

has a base is called free module. Exactly as an homomorphism between vector

spaces in linear algebra is represented by a matrix, in the module theory an

homomorphism between free modules is formalised as a matrix.

3.3 Hermite Normal Form

An m × n matrix M = (mi,j) with only integer coefficients is in Hermite Normal

Form HNF if there exists r ≤ n and a strictly increasing map f from [r+ 1, n] to

[1,m] satisfying the two following properties:

• For r + 1 ≤ j ≤ n, mf(j),j ≥ 1,, mi,j = 0 if i > f(j) and 0 ≤ mf(k),j ≤
mf(k),k if k < j

• The first r columns of M are equal to 0

In the case the matrix is squared m = n and det(M) 6= 0, M is in HNF if it

satisfies the following conditions:

• M is an upper triangular matrix, mi,j = 0 if i > j

• ∀i mi,i > 0

• ∀j > i 0 ≤ mi,j < mi,i

In m 6= n case, a matrix M in HNF has the following shape:
0 0 ... 0 ∗ ∗ ... ∗
0 0 ... 0 0 ∗ ... ∗
...

...
. . .

...
...

. . .
. . .

...
0 0 ... 0 0 ... 0 ∗
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If m = n a matrix in HNF has the following shape:
∗ ∗ ... ∗
0 ∗ ... ∗
...

. . .
. . .

...
0 ... 0 ∗


In the same way is possible to define the LHNF Left Hermite Normal Form, in

which the roles of the row and the column are exchanged.

So looking at the case in which the matrix is squared, m = n and det(M) 6= 0,

M is in LHNF if it satisfies the following conditions:

• M is an lower triangular matrix, mi,j = 0 if i < j

• ∀i mi,i > 0

• ∀i > j 0 ≤ mi,j < mi,i

and it assumes the following shape:
∗ 0 ... 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ · · · ∗ ∗


3.3.1 Existence and uniqueness of HNF

Theorem 3. Let A be an m × n matrix with coefficients in Z. Then there

exist a unique m × n matrix B = (bi,j) in HNF of the form B = AU with

U ∈ GLn(Z), where GLn(Z) is the group of matrices with integer coefficients

which are invertible, i.e. whose determinant is equal to ±1.

�
Note that although B is unique, the matrix U will not be unique as well. The

matrix H created extracting from B the non-zero column is the Hermite Normal

Form of the matrix A:

H = HNF (A)

If m = n we can simply the problem stating that H = AU , where matrix

is an upper triangular one (lower triangular for LHNF) and U is a uni-modular

matrix. Also in this case H is unique but not U The proof of this theorem is

provided as an algorithm by Henri Cohen in [17].
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3.4 Smith Normal Form

An n× n matrix is in Smith Normal Form (SNF) if S is a diagonal matrix with

non negative integer coefficients such that si+1,i+1|si,i ∀i < n, where x|y means

that x divides y.

Theorem 4. Let A be an n× n matrix with coefficients in Z and |A| 6= 0, then

exists a unique matrix in Smith Normal Form S such that S = UAV , with U and

V elements of GLn(Z).

�
Defining the element over the principal diagonal of S as elementary divisors

of the matrix A, the theorem can be restated as:

A = Q1


d1 0 · · · 0

0 d2
. . .

...
...

. . .
. . . 0

0 · · · 0 dn

Q2

with di+1|di i < n and where Q1 = U−1 and Q2 = V −1

This formulation is equivalent to the Elementary Divisor Theorem over a Princi-

pal Ideal Domain (PID). Also in this case the proof is provided by Henri Cohen

in [17] as an algorithm.

3.5 Euclid’s Algorithm

Both the HNF and the SNF algorithms rely on a modified version of the standard

Euclid’s algorithm to compute the gcd of two integer values. In this section is

reported the standard Euclid’s algorithm and then the extended one. In the

relative subsection is also explained the need for the extension and what is the

output of the modified version.

3.5.1 Standard Euclid’s Algorithm

The standard Euclid’s algorithm, given two integer numbers, returns in output

the gdc, greatest common divisor, of the inputs. The gdc is the largest positive

integer that divides both the integers without leaving a remainder. Different

solutions are proposed to the problem, using both recursive that iterative version.

In the following code, a recursive version is reported:
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Algorithm 1 Euclid’s algorithm

1: procedure Euclid(a, b)
2: if a = b then
3: return b
4: else
5: return Euclid(b, a mod b)
6: end if
7: end procedure

This algorithm is based on the following theorem:

Theorem 5. For any non negative integer a and any positive integer b gcd(a, b) =

gcd(b, amod b)

�
The proof of this can be found in Cormen [18].

3.5.2 Euclid’s Extended Algorithm

This extended version of the Euclid’s algorithm compute a pair of coefficients

that satisfy the Bezout’s identity, also called Bezout’s lemma, a basic theorem in

the theory of numbers. Let a and b be non-zero integers and d = gcd(a, b) their

greatest common divisor, there exist a pair of integer (x, y) such that:

ax+ by = d

The couple (x, y) is not unique but a pair can be determined extending the

Euclid’s algorithm without any extra cost.

The pseudo code is reported below:

3.6 Formalisation of the conflict problem

First of all, we need a formal way to capture the allocation of data to the mem-

ory banks. The cyclic scheme described in the previous section 2.4.2 can be

expressed through an allocation function σ [20], associating each index of an ar-

ray element with the corresponding bank. In general, the set of banks may have

a dimensionality equal to p, so that:

σ
(−→
l
)

: Zn → D
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Algorithm 2 Extended Euclid’s algorithm

1: procedure Extended Euclid(a, b)
2: if b = 0 then
3: return (a, 1, 0)
4: else
5: (d’,x’,y’) = Extended Euclid(b, a mod b)
6: (d,x,y) = (d’,y’,x’- ba, bcy)
7: return (d, x, y)
8: end if
9: end procedure

where D ⊂ Zp, returns a p-dimensional bank index associated with a mem-

ory location of coordinates
−→
l within an n-dimensional data array. A sufficiently

general formalisation of data partitioning enabling a closed mathematical treat-

ment relies on modular mapping functions [20], where σ is expressed as σ
(−→
l
)

=.

M·
−→
l mod−→m. M is a p × n integer matrix, −→m is p-dimensional array of integer

moduli, and the modulo operation is component-wise. Modular mappings can

change the dimensionality of the data address. For example, choosing −→m with

some components equal to 1 effectively reduces the dimensionality of the bank

index, because the corresponding equation will always yield the same value, i.e.

0.

In our case, we regard the physical banks making up the GPU shared memory

as a linear array, hence p = 1. Assume that we have a bi-dimensional array to

allocate and let

[
x
y

]
be the indices of its elements. The mapping problem can

thus be expressed as:

Bank(x, y) = M ·
[
x
y

]
mod−→m

where −→m is in fact mono-dimensional and coincides with the number of avail-

able banks, denoted banks. The constant banks depends on the specific GPU

architecture. For instance, banks = 32 for the NVIDIA GPUs family.

An example of matrix M is:

Bank(x, y) =
[

1 N
]
·
[
x
y

]
mod banks

where N is equal to the size of the array along the x dimension. The Table 3.1

provides an example for a 52×52 array, highlighting the cyclic scheme followed by
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data allocation. Below we summarise the procedure used to address the problem

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 51

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 19

1 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 . . . 7

2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 . . . 27

3 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 15
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...

51 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 15

Table 3.1: Abstract of a 52× 52 array.

of bank conflicts. In essence, avoiding conflicts requires the threads of a warp

to access different banks. Associate each thread with a bi-dimensional identifier

(tx, ty)–a typical occurrence in GPU programming– and, for now, assume each

thread (tx, ty) needs to access element (x, y) such that x = tx and y = ty. As we

are looking into a single warp there is no need to introduce block identifiers (as

intended in CUDA). As an example, a 2 × 16 warp accessing the previous array

clearly incurs bank conflicts, as highlighted in the following Table 3.2.

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 51

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 19

1 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 . . . 7

2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 . . . 27

Table 3.2: Example of a conflict.

The repetition of the values 0, 1, 2, 3 causes here a 2-way conflict. To avoid

conflicts, no repetitions must occur in the rectangular domain. Equivalently, the

access function corresponding to the memory reference in the threads must be

injective in the rectangular domain covered by the warp.

3.7 Find an injective transformation

The results presented in this work apply to affine static control parts (SCoPs),

i.e., code segments in performance-critical loops where loop bounds, conditionals,

and subscripts of memory references are affine functions of the surrounding loop

iterators and of constant parameters possibly unknown at compile-time. For
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each reference to an array A in the loop nest, call memory access function a

correspondence F (−→v ) : Zd → Zn, associating each element of A with a value

of the iteration vector −→v , which is the vector having as elements the indices of

the loop nest containing the reference. Since the subscripts in SCoP code are

affine functions, F can always be expressed as F = F·−→v + −→c , where F is an

n× |−→v | matrix and −→c is a constant displacement. We consider in this work the

class of transformations to SCoP code that change the memory access function

by multiplying its expression by a matrix T:

T =

[
a b
c d

]
which equivalently results in changing the layout in memory of the locations

concurrently accessed by the threads in a warp. A new allocation can be defined

as:

Bank(x, y) =
[

1 N
]
·
[
a b
c d

]
·
[
x
y

]
mod banks =

[
a+ c ·N b+ d ·N

]
·
[
x
y

]
mod banks

Matrix M can now be written as

M =
[
a+ c ·N b+ d ·N

]
In case the transformation matrix T results in an injective function over the

rectangular domain identified by the dimension of a warp, the transformation

ensures conflict-free accesses. The proof of this statement will be shown in the

next section. The procedure can be easily extended to the general case where

thread (tx, ty) does not access (x, y) (i.e. x = tx and y = ty) but instead it

contains a generic affine access defined as

[
x y

]
=

[
f00 f01
f10 f11

]
·
[
tx ty

]
The bank accessed by the the thread is given by

Bank(x, y) =
[
a+ c ·N b+ d ·N

]
·
[
f00 f01
f10 f11

] [
tx
ty

]
mod banks

and the injectivity of the transformation can be checked by the same proce-

dure shown next. Notice that the elements of matrix M = F · T are defined
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up to a modulo reduction. Precisely, the elements of the ith row of the matrix

are defined up to a reduction modulo mi, the ith element of vector −→m. This

obviously ensures an upper bound to the number of different transformations to

search, which can thus be finitely enumerated. Indeed, the access transforma-

tion normally increases the maximum address touched be the memory reference.

Thus, because of the limited size of the physical shared memory, the set of values

of the transformation matrix T can take on is usually lower than the number of

different transformations. Nevertheless, the enumeration of feasible matrices T

still ensures a reasonable degree of freedom for finding collision-free transforma-

tions in most cases, as shown be the experimental evaluation presented in the

next section.

For each feasible matrix T, we then check the injectivity of the corresponding

transformation by applying the procedure described above. Indeed, more than

one choice for T can yield conflict-free accesses. After searching the available

allocation choices, we thus rank equivalent solutions based on second-order effects

impacting the efficiency of the generated code, particularly the additional cost in

terms of integer operations required by address computation because of the F ·
T product found in the transformed accesses. In fact, in case the original access

did not contain any integer operations (e.g. A[ty][tx], corresponding to access

matrix F =

[
f00 f01
f10 f11

]
=

[
1 0
0 1

]
), while the transformed access does (e.g.

A[c*tx+d*ty][a*tx+b*ty]), the new statement would require a few additional

integer instructions. While the impact of these instructions may be marginal

compared to the conflict effect, it might have some non-negligible effect on the

overall execution time.

An initial access has the form A[f10*tx+f11*ty][f00*tx+f01*ty] and re-

quires the compiler to compute

(f10 · tx + f11 · ty) ·N + (f00 · tx + f01 · ty)

where N is the size of a row in array A. The number of required integer

additions and multiplications varies according to the elements of the access matrix

F. The transformed access will assume the form

A[c*(f10*tx+f11*ty)+d*(f00*tx+f01*ty)]

[a*(f10*tx+f11*ty)+b*(f00*tx+f01*ty)].

The number of additions and multiplications is usually (but not necessarily)

larger, depending on the values of the elements of F and T. Clearly, a larger

number of elements equal to 0 or 1 in T tends to make the overhead smaller.
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Based on the values of the elements in F and T, our approach associates a

rank value with each potential solution computed as the total number of integer

additions and multiplications. Among the allocation solutions minimizing the

amount of bank conflicts, we choose one of those that reach the minimum rank

value.

3.7.1 Check transformation property

In order to check if the transformation T is injective, we apply the methodology

developed in [20] by A. Darte. In this methodology, M is matrix and not a vector.

Also −→m is a vector and not a simple scalar as we shown in Section 3.7.

Without loss in generality, now define M:

M =

[
0 1
1 N

]
· T

and −→m: [
1
32

]
This changes are needed only to prove the injectivity property, in order to

compute the SNF and the HNF , shown at beginning of this chapter, correctly.

The results shown in Section 3.7 are still correct. In general, define the modulus

vector −→m and the boundary vector
−→
b . The definition of vector −→m depends on the

architecture, while vector
−→
b depends on the organization of the thread warp. In

general, −→m and
−→
b do not necessarily need to coincide, as long as

∏
mi =

∏
bi.

Define the following matrices:

Θ = diag(mi)

and

Θ = diag

∏
j 6=i

mi


Compute the product Θ·M and then its Smith Normal Form S(Θ ·M), i.e. a

diagonal matrix such that Θ ·M = Q1 · (Θ ·M) ·Q2, where each element along the

diagonal divides the subsequent one, and Q1 and Q2 are integer matrices with

determinant equal to 1. Define the following matrix:

S′ = diag

(
d

gcd(si, d)

)
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where d = det(Θ) =
∏
mi and derive matrix G = Q−12 S′. The procedure

to verify whether matrix M (associated with a shared memory reference after

transforming the code) is actually injective consists in enumerating all the distinct

n! Left Hermite Normal Form (LHNF) of G obtained by permuting the rows and

checking if at least one of these has its diagonal coinciding with vector
−→
b , which

thus ensures the absence of bank conflicts.

3.7.2 Example: A transformation which does not avoid
bank conflicts

Assuming a 52×52 matrix so N = 52. We want prove that without applying any

transformation, a 2-way bank conflict occurs. This is equal to select the matrix

T as:

T =

[
1 0
0 1

]
So the matrix that we want check the injectivity is

M =

[
0 1
1 52

]
· T =

[
0 1
1 52

]
the modulus vector −→m is: [

1
32

]
and the boundary vector

−→
b is: [

2
16

]
Now using a Matlab script that compute all the matrices

Θ =

[
1 0
0 32

]
Θ =

[
32 0
0 1

]
Θ ·M =

[
0 32
1 52

]
and th SNF of Θ ·M :

S =

[
1 0
0 32

]
Q−12 =

[
1 52
−1 −51

]
and:

S′ =

[
32 0
0 1

]
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finally:

Q−12 · S′ =

[
−1632 32
−52 1

]
Now we compute all the n! = 2! = 2 LHNF of this matrix:

H1 =

[
4 0
3 8

]
H2 =

[
1 0
12 32

]
So the transformation T is not injective in the rectangular domain 2 × 16

but results injective in the rectangular domain 8 × 4. Let’s check in a graphical

way that the result of the procedure is equal to the real situation in the shared

memory shown in Table 3.1. As highlighted by the red cells, T is not injective

in the rectangular domain 2 × 16. Instead, as shown in Table 3.3, there are no

conflict in a rectangular domain 8 × 4. T is injective in this domain.

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 51

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 19

1 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 . . . 7

2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 . . . 27

3 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 15

4 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 . . . 3

5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . . 23

6 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 . . . 11

7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 . . . 31
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...

51 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 15

Table 3.3: No conflict on regular domain 8 × 4

3.7.3 Example: A transformation which avoids bank con-
flicts

Assuming the same precondition of the example above, we can define another

transformation which will be proved as injective.

T =

[
2 1
0 1

]
So the matrix that we want check the injectivity is
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M =

[
0 1
1 52

]
· T =

[
0 1
2 53

]
the modulus vector −→m is: [

1
32

]
and the boundary vector

−→
b is: [

2
16

]
Now using a Matlab script that compute all the matrices

Θ =

[
1 0
0 32

]
Θ =

[
32 0
0 1

]
Θ ·M =

[
0 32
2 53

]
and th SNF of Θ ·M :

S =

[
1 0
0 64

]
Q−12 =

[
2 53
−3 −79

]
and:

S′ =

[
32 0
0 1

]
finally:

Q−12 · S′ =

[
−2528 96
−53 2

]
Now we compute all the n! = 2! = 2 LHNF of this matrix:

H1 =

[
1 0
6 32

]
H2 =

[
2 0
−5 16

]
So the transformation T is injective in the rectangular domain 2 × 16.

Remark. Since all the n! LHNF of G are obtained by permuting the rows of

G itself, also the LHNF resulting, must be exchanged with the same permutation

(see Example 1 in [20]). So, in this case, if we use the rows× columns notation,

we have that the transformation T is injective in this two rectangular domains:

32 × 1 and 2 × 16. Table 3.4 and Table 3.5 show this clearly. If we use the

Cartesian coordinates (x, y) notation, the domain is reversed.
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x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 51

0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 . . . 6

1 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 . . . 27

2 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 . . . 16
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...

51 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 . . . 21

Table 3.4: T is injective in a regular domain 2 × 16.

3.8 Experimental Validation

An example in which applying a transformation leads to an improvement over

power consumption is the matrix multiplication algorithm. In mathematics, ma-

trix multiplication is a binary operation that takes a pair of matrices, and pro-

duces another matrix. On the other hand, matrices are arrays of numbers, so

there is no unique way to define ”the” multiplication of matrices. As such, in

general the term ”matrix multiplication” refers to a number of different ways

to multiply matrices. However, the most useful definition can be motivated by

linear equations and linear transformations on vectors, which have numerous ap-

plications in applied mathematics, physics, and engineering. This definition is

often called the matrix product. In words, if A is an n×m matrix and B is an

m × p matrix, their matrix product A · B is an n × p matrix, in which the m

entries across the rows of A are multiplied with the m entries down the columns

of B [
a11 a12
a21 a22

]
·
[
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]
where:

c11 = a11 · b11 + a12 · b21
c12 = a11 · b12 + a12 · b22
c21 = a21 · b11 + a22 · b21
c22 = a21 · b12 + a22 · b22

Computing matrix products is both a central operation in many numerical al-

gorithms and potentially time consuming, making it one of the most well-studied

problems in numerical computing. Various algorithms have been devised for com-

puting C = A · B, especially for large matrices. A common strategy to improve

algorithm performances is to split the matrices into blocks called tiles. A tile is
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x/y 0 1 . . . 52

0 0 2 . . . 6

1 21 23 . . . 27

2 10 12 . . . 16

3 31 1 . . . 5

4 20 22 . . . 26

5 9 11 . . . 15

6 30 0 . . . 4

7 19 21 . . . 25

8 8 10 . . . 14

9 29 31 . . . 3

10 18 20 . . . 24

11 7 9 . . . 13

12 28 30 . . . 2

13 17 19 . . . 23

14 6 8 . . . 12

15 27 29 . . . 1

16 16 18 . . . 22

17 5 7 . . . 11

18 26 28 . . . 0

19 15 17 . . . 21

20 4 6 . . . 10

21 25 27 . . . 31

22 14 16 . . . 20

23 3 5 . . . 9

24 24 26 . . . 30

25 13 15 . . . 19

26 2 4 . . . 8

27 23 25 . . . 29

28 12 14 . . . 18

29 1 3 . . . 7

30 22 24 . . . 28

31 11 13 . . . 17

.

..
.
..

.

..
. . .

.

..

51 15 17 . . . 21

Table 3.5: T is injective in a regular domain 32 × 1.
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Figure 3.1: Example of Matrix Multiplication.

a block of data of a fixed squared dimension. In order to use the shared mem-

ory to improve performance, tiles are usually stored inside this kind of memory.

Multiple threads in the same block access shared data.

Figure 3.2 shows how a matrix can be divided in tiles.

3.8.1 Methodology application

Starting from an algorithm which performs a matrix multiplication, it is possible

to prove that just solving the problem of the injectivity of the transformation T

for a single warp, leads to avoid the bank conflicts all over the algorithm. Just

for simplicity, but without loss of generality, it is considered only what happens

inside a single tile of dimensions 52 × 52.

So in the code below, WIDTH = 52.

s h a r e d double AS[ 2 7 0 4 ] ;
s h a r e d double BS [ 2 7 0 4 ] ;

// Ca l cu la t e the row index o f the C element and A
int Row = blockIdx . x∗blockDim . x+threadIdx . x ;

// Ca l cu la t e the column index o f C an B
int Col = blockIdx . y∗blockDim . y+threadIdx . y ;

i f ( (Row < WIDTH) && ( Col < WIDTH) ) {
double Cvalue = 0 ;
// each thread computes one element o f the

b l o c k sub−matrix
#pragma u n r o l l

for ( int k = 0 ; k < WIDTH; k++)
Cvalue += AS [ (Row∗WIDTH)+k ]∗BS [ k∗

WIDTH+Col ] ;
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Figure 3.2: A Tile example.

C[Row∗WIDTH+Col ] = Cvalue ;
}

we can choose to solve the problem just selecting a specific access performed

by a warp. In this case, for example, we define a warp of 32 × 1 threads.

Remark. In reality we can define a block, not a warp. But if the block is

composed by only 32 threads, then, we are defining the shape of the warp too.

Without applying any transformation, the banks acceded by the warp can be

reported in the Table 3.6.

As shown in Table 3.6, in the matrix AS we have a 4-way conflict. Instead in

the matrix BS we have a broadcast access, that is all 32 thread access at same

bank. This does not cause a conflict. A transformation to solve the conflicts in

the matrix AS for this warp is:

T =

[
2 1
0 1

]
This transformation leads to a modified Table 3.7:

The snippet code that produce this transformation is presented below:

s h a r e d double AS[ 2 8 0 5 ] ;
s h a r e d double BS [ 2 7 0 4 ] ;
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x/y 0 1 . . . 51

0 0 1 . . . 19

1 20 21 . . . 7

2 8 9 . . . 27

3 28 29 . . . 15

4 16 17 . . . 3

5 4 5 . . . 23

6 24 25 . . . 11

7 12 13 . . . 31

8 0 1 . . . 19

9 20 21 . . . 7

10 8 9 . . . 27

11 28 29 . . . 15

12 16 17 . . . 3

13 4 5 . . . 23

14 24 25 . . . 11

15 12 13 . . . 31

16 0 1 . . . 19

17 20 21 . . . 7

18 8 9 . . . 27

19 28 29 . . . 15

20 16 17 . . . 3

21 4 5 . . . 23

22 24 25 . . . 11

23 12 13 . . . 31

24 0 1 . . . 19

25 20 21 . . . 7

26 8 9 . . . 27

27 28 29 . . . 15

28 16 17 . . . 3

29 4 5 . . . 23

30 24 25 . . . 11

31 12 13 . . . 31

.

..
.
..

.

..
. . .

.

..

51 28 29 . . . 15

·

x/y 0 1 . . . 51

0 0 1 . . . 19

1 20 21 . . . 7

2 8 9 . . . 27

3 28 29 . . . 15

4 16 17 . . . 3

5 4 5 . . . 23

6 24 25 . . . 11

7 12 13 . . . 31

8 0 1 . . . 19

9 20 21 . . . 7

10 8 9 . . . 27

11 28 29 . . . 15

12 16 17 . . . 3

13 4 5 . . . 23

14 24 25 . . . 11

15 12 13 . . . 31

16 0 1 . . . 19

17 20 21 . . . 7

18 8 9 . . . 27

19 28 29 . . . 15

20 16 17 . . . 3

21 4 5 . . . 23

22 24 25 . . . 11

23 12 13 . . . 31

24 0 1 . . . 19

25 20 21 . . . 7

26 8 9 . . . 27

27 28 29 . . . 15

28 16 17 . . . 3

29 4 5 . . . 23

30 24 25 . . . 11

31 12 13 . . . 31

.

..
.
..

.

..
. . .

.

..

51 28 29 . . . 15

Table 3.6: Banks Access on Matrix Multiplication problem. The matrix on the
left is AS. The matrix on the right is BS.
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// Ca l cu la t e the row index o f the C element and A
int Row = blockIdx . y∗blockDim . y+threadIdx . y ;

// Ca l cu la t e the column index o f C an B
int Col = blockIdx . x∗blockDim . x+threadIdx . x ;

i f ( (Row < WIDTH) && ( Col < WIDTH) ) {
double Cvalue = 0 ;
// each thread computes one element o f the

b l o c k sub−matrix
#pragma u n r o l l

for ( int k = 0 ; k < WIDTH; k++)
Cvalue += AS [ (Row∗53)+k ∗2 ]∗BS [ k∗

WIDTH+Col ] ;
C[Row∗WIDTH+Col ] = Cvalue ;

}

This transformation solves the conflicts problem, but at the cost of increasing

the number of arithmetic operations to be done and the amount of shared memory

to allocate. This last point can lead to a serious problem that will be discussed

in the next section.

Remark. For this example we set the shared memory access mode to 8-byte.

3.8.2 Environment set-up

This section presents the set-up used to carry out the experimental evaluation of

the above optimization techniques and collect performance data from a physical

platform. It consist in an Host PC where there is a WMware Virtual Machine

with Ubuntu 14.04 and the JetPack installed on it. In this environment NVIDIA

Nsight is used to write CUDA code and after compile and running, in remote, on

Jetson TK1. On the same machine there is also a Windows Operating System

with Digilent WaveForms application installed on it that is used as data logger.

The data are collected by the Digilent Analog Discovery suitably connected

on the R5C11 resistor through the channel one wire probes. In fact, according

to the Jetson data-sheets, it is possible measure the power consumption of the

board measuring the voltage across this resistor with a resistance of 0.05 ohm. In

Figure 3.3 is highlighted the R5C11 resistor. Figure 3.4 shows the real system.

3.8.3 Results

In this section transformation results are reported. Using the system described

in the previous section, it is possible to evaluate the impact of the transformation
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Figure 3.3: R5C11 resistor.

Figure 3.4: Real System.
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x/y 0 1 . . . 51

0 0 2 . . . 6

1 21 23 . . . 27

2 10 12 . . . 16

3 31 1 . . . 5

4 20 22 . . . 26

5 9 11 . . . 15

6 30 0 . . . 4

7 19 21 . . . 25

8 8 10 . . . 14

9 29 31 . . . 3

10 18 20 . . . 24

11 7 9 . . . 13

12 28 30 . . . 2

13 17 19 . . . 23

14 6 8 . . . 12

15 27 29 . . . 1

16 16 18 . . . 22

17 5 7 . . . 11

18 26 28 . . . 0

19 15 17 . . . 21

20 4 6 . . . 10

21 25 27 . . . 31

22 14 16 . . . 20

23 3 5 . . . 9

24 24 26 . . . 30

25 13 15 . . . 19

26 2 4 . . . 8

27 23 25 . . . 29

28 12 14 . . . 18

29 1 3 . . . 7

30 22 24 . . . 28

31 11 13 . . . 17

.

..
.
..

.

..
. . .

.

..

51 15 17 . . . 21

·

x/y 0 1 . . . 51

0 0 1 . . . 19

1 20 21 . . . 7

2 8 9 . . . 27

3 28 29 . . . 15

4 16 17 . . . 3

5 4 5 . . . 23

6 24 25 . . . 11

7 12 13 . . . 31

8 0 1 . . . 19

9 20 21 . . . 7

10 8 9 . . . 27

11 28 29 . . . 15

12 16 17 . . . 3

13 4 5 . . . 23

14 24 25 . . . 11

15 12 13 . . . 31

16 0 1 . . . 19

17 20 21 . . . 7

18 8 9 . . . 27

19 28 29 . . . 15

20 16 17 . . . 3

21 4 5 . . . 23

22 24 25 . . . 11

23 12 13 . . . 31

24 0 1 . . . 19

25 20 21 . . . 7

26 8 9 . . . 27

27 28 29 . . . 15

28 16 17 . . . 3

29 4 5 . . . 23

30 24 25 . . . 11

31 12 13 . . . 31

.

..
.
..

.

..
. . .

.

..

51 28 29 . . . 15

Table 3.7: Banks Access on Matrix Multiplication problem. The matrix on the
left is AS. The matrix on the right is BS.
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Figure 3.5: Power Measurements Report.

over power consumption and execution time. Figure 3.5 shows the results taken

using the Analog Discovery.

The instrument does not allow to distinguish the consumption, in terms of

watt, of the two versions. In fact both versions reach a value about equal to

0.80W., but it is possible appreciate that the execution time is drastically re-

duced. Figure 3.6 shows that the optimized kernel takes about 5 seconds, instead

to non-optimized takes 6.5 seconds.

It means that the optimized kernel consumes about 0.80W×5 s ' 4 J , instead

to non-optimized consumes about 0.80W × 6.5 s ' 5.2 J . A difference of 1.2 J ,

or better, the 23% less. As mentioned in the previous section, the transformation
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Figure 3.6: Comparison of execution times.
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solves the conflicts problem, but at cost of increasing the arithmetic operations

to be done and the amount of shared memory to allocate. Table 3.8 shows the

differences, in terms of number of instructions, executed by the two kernels.

Kernel Number of Instructions

MatMul 52 Optimized 28.070.952

MatMul 52 No Optimized 27.030.952

Table 3.8: Comparison of the number of instructions.

A difference of 1.040.000 instructions, or better, the 3.84% more.

This situation is also visible by analysing the PTX files of the two kernels

. v i s i b l e . entry Z16matrixmul kernelPd (
. param . u32 Z16matrixmul kernelPd param 0

)
{

. r eg . pred %p<11>;

. r eg . s32 %r<36>;

. r eg . f64 %fd<9>;
// demoted v a r i a b l e
. shared . a l i g n 8 . b8

Z16matr ixmul ke rne lPd$ cuda loca l var 37761 33 non const AS
[ 2 1 6 3 2 ] ;

// demoted v a r i a b l e
. shared . a l i g n 8 . b8

Z16matr ixmul ke rne lPd$ cuda loca l var 37762 33 non cons t BS
[ 2 1 6 3 2 ] ;

cvta . shared . u32 %r24 ,
Z16matr ixmul ke rne lPd$ cuda loca l var 37761 33 non const AS

;
mul . l o . s32 %r25 , %r3 , 52 ;
add . s32 %r26 , %r25 , %r35 ;
s h l . b32 %r27 , %r26 , 3 ;
add . s32 %r28 , %r24 , %r27 ;
ld . f64 %fd5 , [%r28 ] ;
cvta . shared . u32 %r29 ,

Z16matr ixmul ke rne lPd$ cuda loca l var 37762 33 non cons t BS
;

mul . l o . s32 %r30 , %r35 , 52 ;
add . s32 %r31 , %r30 , %r4 ;
s h l . b32 %r32 , %r31 , 3 ;
add . s32 %r33 , %r29 , %r32 ;
ld . f64 %fd6 , [%r33 ] ;
mul . f64 %fd7 , %fd5 , %fd6 ;
add . f64 %fd8 , %fd8 , %fd7 ;
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. v i s i b l e . entry Z16matrixmul kernelPd (
. param . u32 Z16matrixmul kernelPd param 0

)
{

. r eg . pred %p<11>;

. r eg . s32 %r<37>;

. r eg . f64 %fd<9>;
// demoted v a r i a b l e
. shared . a l i g n 8 . b8

Z16matr ixmul ke rne lPd$ cuda loca l var 37761 33 non const AS
[ 2 2 4 4 0 ] ;

// demoted v a r i a b l e
. shared . a l i g n 8 . b8

Z16matr ixmul ke rne lPd$ cuda loca l var 37762 33 non cons t BS
[ 2 1 6 3 2 ] ;

cvta . shared . u32 %r24 ,
Z16matr ixmul ke rne lPd$ cuda loca l var 37761 33 non const AS

;
mul . l o . s32 %r25 , %r3 , 53 ;
mul . l o . s32 %r26 , %r36 , 2 ;
add . s32 %r27 , %r25 , %r26 ;
s h l . b32 %r28 , %r27 , 3 ;
add . s32 %r29 , %r24 , %r28 ;
ld . f64 %fd5 , [%r29 ] ;
cvta . shared . u32 %r30 ,

Z16matr ixmul ke rne lPd$ cuda loca l var 37762 33 non cons t BS
;

mul . l o . s32 %r31 , %r36 , 52 ;
add . s32 %r32 , %r31 , %r4 ;
s h l . b32 %r33 , %r32 , 3 ;
add . s32 %r34 , %r30 , %r33 ;
ld . f64 %fd6 , [%r34 ] ;
mul . f64 %fd7 , %fd5 , %fd6 ;
add . f64 %fd8 , %fd8 , %fd7 ;

The first PTX is related to the non-optimized kernel, the second one to that

optimized. The two PTX are identical , except for a single instruction. In fact,

The PTX related to the optimized kernel have a mul.lo.s32 more at line 15. As

for the amount of memory to allocate, the optimized kernel requires 808 bytes

more, or better the 3.73% more. It may seem not much, but this amount can

cause side effects, as shown in the next section. In terms of performance per watt,

the kernel executes 56.243.200 floating point operations in double precision. So,

for the non-optimized kernel we have a value of 10.816 MFLOPS/watt, instead to

optimized one have a value of 14.0608 MFLOPS/watt. We have an increase of 30%

with this transformation.

74



3.8.4 Fallacies and Pitfalls

Figure 3.7 shows that the Shared Memory can be a limiting factor. In fact, if

each block requires a lot of shared memory, the GigaThread cannot run many

blocks concurrently on the same SMX.

This can cause a drastic degradation of performance. In the case shown in

the Figure 3.7, only for 0.477 KB of memory more, the GigaThread can run only

two blocks concurrently instead of three like in the normal case. A block means

32 threads in less that run concurrently. In some experiments, we noticed that

the optimized kernel takes about 118 ms, instead to non-optimized takes 82 ms.

Fortunately, tools like Visual Profiler are able to check the limiting factors and

to propose a solution to the problem. There are many other fallacies and pitfalls

related to occupancy, access memories, block-sizing and more. Many of these are

discussed in [78] and in the next Chapter 4.

3.9 Conclusion

In this work just one way to optimise heterogeneous computing performance was

explored. A lot of other improvements can be realised in order to reduce in

different ways the power consumption of this huge family of devices and most

of them have already been examined. Just think of the Unified Memory tech-

nique developed by NVIDIA or studies on global memory misaligned accesses,

true Achilles’ heel of this kind of architectures. Focusing on the bank conflicts

problem can be seen as a small piece in a limitless uncharted field. The main goal

of this Chapter was to highlight that energy optimisation is a great challenge and

should be taken into account in particular when high parallel computing devices

are used. Nowadays compilers are not able to provide automatically energy-aware

optimised code, but this is the only reasonable level in which great improvement

scan be achieved, delegating to a programmer this type of optimisations works

just in a strong skilled academic world. In order to provide high energy improve-

ments researches should focus their work to make as transparent as possible the

required code transformations. This work, according to the formal methodology,

is just a step in this direction, but should be extended to consider more aspects

that can guarantee better performance. In fact, it is limited by many factors

that allow the application only to few problems. Main results presented want to

highlight the strong existent relationship between the access pattern to the mem-

ory, the shared memory bank conflicts and the power consumption. It was also

proved how the access patterns can cause an increase or decrease of execution
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Figure 3.7: Limiting Factor: Shared Memory.
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time. A methodology based on Z-modules, Left Hermite Normal Form and Smith

Normal Form has been proved to be effective to provide improvements over these

two aspects.

Improvements can also get from the hardware side. NVIDIA themselves, with

the new architecture Maxwell states to increase the performance per watt metric

by a factor 2x compared to the Kepler architecture used in this work [33]. Also

AMD ATI, with their new concept of memory, the High Bandwidth Memory

(HBM), say they can improve the bandwidth per watt metric by a factor 3x and

can take the 94% less surface area for a chip of 1 GB of memory, compared to

the GDDR5 [72].
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Chapter 4

Integer Linear Programming
Approach

4.1 Introduction

In the previous chapter the polyhedral approach was presented, also highlight-

ing its limits. In fact, the previous approach can be applied only to a certain

category of data that represent a small percentage of those treated by the scien-

tific community. In addition, some of the solutions obtained with this approach

resulted in worsening system performance as they wasted shared memory and

thence limiting the number of threads that can run concurrently on the GPUs

as shown in Section 3.8.4. The approach proposed in this chapter generalizes

on existing conflict-avoiding techniques, supporting a systematic exploration of

feasible mapping schemes, particularly including those that do not involve any

memory waste.

As a motivational example, an algorithm computing the bi-dimensional Dis-

crete Cosine Transform (2D-DCT) used to implement a JPEG compression [80,

49] has been chosen. The algorithm processes 8 × 8 blocks of pixels. The trans-

formation is applied to each row and column of the block, since the 2D-DCT

is separable. The result is an 8 × 8 transform coefficient array in which the

(0, 0) element (top-left) is the DC, i.e., zero-frequency component and entries

with increasing vertical and horizontal index values represent higher vertical and

horizontal spatial frequencies. The kernel consists of four cycles that load and

store data from/to a shared multi-banked memory. Two of these cycles per-

form loads and stores row-wise, while the other two column-wise, and each in-
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Figure 4.1: Basic cyclic memory mapping scheme (assuming four banks).
Column-wise accesses cause a four-way bank conflict, highlighted in red.

stance accesses simultaneously eight memory locations. Figure 4.2a shows a pos-

sible snippet of code targeting an SIMT architecture, assuming eight threads

to be effectively used in parallel for processing a single block in the 2D-DCT

algorithm. Of course, in a system offering more parallelism, multiple groups

of eight threads could be possibly run simultaneously to process several inde-

pendent blocks. Notice that the code snippet uses a CUDA syntax, although

the conflict problem only depends on the inherent transpose-like structure of

the code and would arise with any SIMT accelerator relying on a multi-banked

local shared memory, as highlighted in the introductory section. Some basic

techniques are available to solve the bank conflict problem. The code in Fig-

ure 4.2b shows the simplest of these, named memory padding. The difference

between the original code and the transformed one lies only in line 1. The origi-

nal line is shared int matrix f[NUM THREADS][8], whereas shared int

matrix f[NUM THREADS][9] is the transformed one.

In fact, the padding technique allocates extra memory in order to change

memory mapping and avoid conflicts, as depicted in Figure 4.3. However, this

extra memory request can lead to decreased performance in some situations, es-

sentially because the size of the available shared memory may become a limiting

factor constraining the actual number of threads that can be mapped to the same

compute unit, as highlighted in the introduction. As an example, such effect is

highlighted in Figure 4.4 for the case of an NVIDIA device. In NVIDIA termi-

nology, the shared memory can be a limiting factor for the Occupancy metric [1]

in such situation.

This work proposes a methodology for exploring conflict-free memory map-

ping schemes, focusing on a recurrent access pattern in many performance-critical

applications, which we called Transpose-Like. In this pattern, store operations
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 1. __shared__ int matrix_f[NUM_THREADS][8];
  ...
 9. if (globalindex < NUM_YUV * NUM_BLOCK_PER_IMAGE * 8){
  //store data on shared memory from global memory
 10. for (int y = 0; y < 8; y++)
 11.  matrix_f[offset*y + sh_x][sh_y] = img[globalindex + (y*NUM_THREADS)];
  ...
  //load data from shared memory
  ...
  //store data on shared memory
  ...
  //load data from shared memory and store it on global memory
 28. for (int y = 0; y < 8; y++)
 29.  dest[globalindex + (y*NUM_THREADS)] = matrix_f[offset*y + sh_x][sh_y];

(a)

 1. __shared__ int matrix_f[NUM_THREADS][9];
  ...
 9. if (globalindex < NUM_YUV * NUM_BLOCK_PER_IMAGE * 8){
  //store data on shared memory from global memory
 10. for (int y = 0; y < 8; y++)
 11.  matrix_f[offset*y + sh_x][sh_y] = img[globalindex + (y*NUM_THREADS)];
  ...
  //load data from shared memory
  ...
  //store data on shared memory
  ...
  //load data from shared memory and store it on global memory
 28. for (int y = 0; y < 8; y++)
 29.  dest[globalindex + (y*NUM_THREADS)] = matrix_f[offset*y + sh_x][sh_y];

(b)

Figure 4.2: (a) The original code of the DCT algorithm. This cycle stores an
8× 8 block of data, row-wise, in a shared multi-banked memory. After that, the
same data are loaded column-wise. (b) With memory padding an extra column
of shared multi-banked memory is allocated and all conflicts are solved.
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Figure 4.3: Memory Padding technique. This technique solves all conflicts but
wastes memory.

are performed row-wise while load operations are performed column-wise, or vice

versa. Because of the finite number of banks in the local memory, different

store/load operations can incur conflicts. A specific example is depicted in Fig-

ure 4.1 where the elements of a 4 × 4 matrix are cyclically partitioned on 4

scratch-pad memory banks. When a load operation tries to retrieve elements

{0, 4, 8, 12} from memory, a four-way bank conflict occurs.

Existing programming practices for reducing or avoiding conflicts, like padding,

involve limited modifications to the code but incur some memory overhead. The

approach taken by this work aims at gaining a deeper understanding of conflict-

avoiding techniques, resulting in a formulation of the problem that allows zero

conflicts and zero memory overheads under most circumstances. In particular,

the proposed methodology relies on an Integer Linear Programming (ILP) model

to describe the problem in terms of linear conditions ensuring optimal bank map-
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Figure 4.4: Elapsed Time of different configurations of a DCT kernel running on
an NVIDIA Jetson TK1. In the last two configurations, the padding technique
leads to decreased performance.

ping strategies. A method for enumerating the solution space exhaustively and

evaluating each solution based on the code complexity induced by the scheme is

also proposed.

The technique is demonstrated through a set of real benchmarks based on

a prototype tool-chain which embodies a tool-kit for linear programming prob-

lems and matrix manipulation. The benchmarks, including six kernels with a

Transpose-Like memory access pattern, exhibit significant performance improve-

ments compared to previous techniques in the literature.

In Section 4.2 a mathematical background on the Integer Linear Programming

was presented. Section 4.3 and Section 4.4 are related to the methodology that

is applied to a real case study in Section 4.5.

4.1.1 Related Works

Several techniques have been presented to solve bank conflicts and reduce memory

access latency. The simplest one is Memory Padding, presented by NVIDIA for

the multi-banked scratch-pad memories included in their GPUs [1, 13]. This

technique solves bank conflicts in many cases by simply using an extra empty

column in shared memory. While effective and simple, this technique has the

disadvantage of wasting shared memory and this can cause problems in certain
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situations as shown in [84].

Koji Nakano et al in [58, 43] present two memory machines models, the Dis-

crete Memory Machine (DMM) and the Unified Memory Machine (UMM), which

reflect the essential features of the shared memory and the global memory of

NVIDIA GPUs. They used a Graph-Colouring technique in order to implement

a conflict-free permutation algorithm on these models. As in our approach, they

perform the bipartite graph colouring off-line, but unlike our solution, they must

use extra data structures in the kernel code, in order to implement the technique.

In other words, like the padding technique, they waste shared memory. The same

authors in [60, 59] introduce another memory machine model, the Super Discrete

Memory Machine (SDMM), an extended version of the DMM, which supports a

super warp with multiple warps. On this model they implement a new technique

called random address shift that uses a vector of random numbers in order to

perform a shift of the elements in shared memory and avoid conflicts. As the pre-

vious technique, the random address shift technique must use extra scratch-pad

memory in order to store data structures (the vector of random numbers in this

case).

A.H. Khan et al. in [45] analysed the Matrix Transpose problem and provided

a solution to solve bank conflicts on a NVIDIA Fermi GPU shared memory.

This solution resembles one of the mapping schemes identified by our exploration

approach, the AMM technique, although it is focused only on a Matrix Transpose

problem and it is implemented specifically on NVIDIA Fermi GPUs.

A. Cilardo and L. Gallo in [16] analysed the problem of automated memory

partitioning for emerging architectures, such as reconfigurable hardware plat-

forms, which provide the opportunity of customizing the memory architecture

based on the application access patterns. They present a technique that relies on

the Z-polyhedral model for program analysis and adopts a partitioning scheme

based on integer lattices that generates a solution space for the bank mapping

problem, ensuring asymptotically zero memory waste or, as an alternative, an

efficient approach ensuring arbitrarily small waste.

In [30] the authors analyse a sampling rate conversion kernel on GPGPU

architectures and investigate the problem of avoiding shared memory bank con-

flicts. Unlike our work, the authors do not modify the data layout of input and

output arrays but they exploit the computational structure of the convolution

filtering operation to modify the algorithm and avoid bank conflicts.

In [50] the authors propose a data centric way to optimize shared memory

usage on GPUs. They design a pragma extension of OpenACC so as to convey

data management hints from programmers to compiler and propose optimization
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techniques to expose higher memory and instruction level parallelism. Unlike our

work, the authors focused on OpenACC pragma development and the techniques

used to avoid conflicts are well known in literature, except for the one called

Thread Remap that resembles our AMM technique.

The authors in [12] present PORPLE, a portable engine that enables a new

way to solve the data placement problem. It consists of a mini specification

language, a source-to-source compiler, and a runtime data placer. The language

allows an easy description of a memory system; the compiler transforms a GPU

program into a form amenable to runtime profiling and data placement; the

placer, based on the memory description and data access patterns, identifies on

the fly appropriate placement schemes for data and places them accordingly. This

work is not focused on multi-bank memories.

The work in [11] presents a similar approach, albeit focused on DRAM mem-

ories rather than multi-bank memories. The authors present an automatic tool

that analyses GPU kernels code and provides a data layout transformation in or-

der to improve memory coalescing accesses. Kim et al. [47] present CuMAPz, a

tool to analyse the memory performance of a CUDA program, which can help de-

velopers to explore several ways to use global and shared memory, estimate their

performance, and thereby optimize the program. Sung et al. in [75, 74] propose

DL, a practical GPU data layout transformation system that increases DRAM

performance using a new data structure called Array-of-Structure-of-Tiled-Array

(ASTA). Unlike our work, all these tools are not focused on multi-bank memories

and use more code and data structures in order to improve performance.

Z. Wang et al. in [81] present a compiler-based approach to automatically gen-

erate optimized OpenCL code from data parallel OpenMP programs for GPUs.

This approach leverages existing transformations, especially data transforma-

tions, to improve performance on GPU architectures and uses automatic machine

learning to build a predictive model to determine if it is worthwhile to run the

OpenCL code on the GPU or OpenMP code on the multi-core host.

4.2 Integer Linear Programming Background

This section briefly reviews a few mathematical concepts and results that are

essential for the formulation of the approach.

Vectors x1, · · · , xk are called affinely independent if there do not exist λ1, · · · , λk ∈
R such that λ1x1 + · · ·+ λkxk = 0 and such that the λi are not all equal to 0.

Vectors x1, · · · , xk are called linearly independent if there do not exist λ1, · · · , λk ∈
R such that λ1x1 + · · · + λkxk = 0 and λ1, · · · , λk = 0 and such that the λi are
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not all equal to 0.

A subset C of Rn is convex if λx+ (1−λ)y belongs to C ∀ x, y ∈ C and each

λ with 0 ≤ λ ≤ 1. A convex body is a compact convex set [69].

The convex hull of a setX ⊆ Rn, denoted by conv.hullX, is the smallest convex

set containing X. Then: conv.hullX = {λ1x1 + · · · + λkxk | k ≥ 1, x1, · · · , xk ∈
X,λ1, · · · , λk ∈ R+, λ1 + · · ·+ λk = 1}.

For any X ⊆ Rn and x ∈ conv.hullX, there exist affinely independent vectors

x1, · · · , xk in X with x ∈ conv.hullX {x1, · · · , xk} [8].

A subset H of Rn is called an affine halfspace if H =
{
x | cTx ≤ δ

}
, for some

c ∈ Rn with c 6= 0 and some δ ∈ R. If δ = 0, then H is called a linear halfspace

[68].

A subset C of Rn is called (convex) cone if C 6= ∅ and λx+µx ∈ C whenever

x, y ∈ C and λ, µ ∈ R+. The cone generated by a set X of vectors is the smallest

cone containing X.

A cone C is polyhedral if there is a matrix A such that C = {x | Ax ≤ 0}.
Equivalently, C is polyhedral if it is the intersection of finitely many linear half-

spaces. Results of [26, 28, 53, 82] imply that a convex cone is polyhedral if and

only if it is finitely generated, where a cone C is finitely generated if C = coneX

for some finite set X.

A subset P of Rn is called polyhedron if there exists an n×m matrix A and

a vector b ∈ Rm (for some m > 0) such that P = {x | Ax ≤ b}. So P is a

polyhedron if and only if it is the intersection of finitely many affine halfspaces.

If P = {x | Ax ≤ b} holds, we say that Ax ≤ b determines P. Any inequality

cTx ≤ δ is called valid for P if cTx ≤ δ holds for each x ∈ P .

A subset P of Rn is called polytope if it is the convex hull of finitely many

vectors in Rn.

A function f(x1, x2, · · · , xk) of x1, x2, · · · , xk is a linear function if and only if

for some set of constants c1, c2, · · · , ck, f(x1, x2, · · · , xk) = c1x1+c2x2+· · ·+ckxk.

For any linear function f(x1, x2, · · · , xk) and any number b, the inequalities

f(x1, x2, · · · , xk) ≤ b and f(x1, x2, · · · , xk) ≥ b are linear inequalities. If an

inequality can be rewritten as a linear inequality then it is one. Thus, x1 + x2 ≤
3x3 is a linear inequality because it can be rewritten as x1 + x2 − 3x3 ≤ 0. Even

x1/x2 ≤ 4 is a linear inequality because it can be rewritten as x1−4x2 ≤ 0. Note

that x1/x2 + x3 ≤ 4 is not a linear inequality, however.

For any linear function f(x1, x2, · · · , xk) and any number b, the equality

f(x1, x2, · · · , xk) = b is a linear equality.

A system Ax ≤ b is called feasible (or solvable) if it has a solution x. Feasibility

of a system Ax ≤ b of linear inequalities ic characterized by Farkas’ Lemma
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[27, 53]: Ax ≤ b is feasible ⇐⇒ yT ≥ 0 for each y ≥ 0 with yTA = 0T . This

theorem has three variants:

• Ax = b has a solution x ≥ 0⇐⇒ yT b ≥ 0 for each y with yTA ≥ 0T .

• Ax ≤ b has a solution x ≥ 0⇐⇒ yT b ≥ 0 for each y ≥ 0 with yTA ≥ 0T .

• Let Ax ≤ b be a feasible system of inequalities and let cTx ≤ δ be an

inequality satisfied by each x with Ax ≤ b. Then for some δ′ ≤ δ, the

inequality cTx ≤ δ′ is a non-negative linear combination of the inequalities

in Ax ≤ b.

linear programming, abbreviated to LP, concerns the problem of maximizing

or minimizing a linear function over a polyhedron P. Example are:

max
{
cTx | Ax ≤ b

}
and min

{
cTx | x ≥ 0, Ax ≥ b

}
Given an m-vector, b = (b1, b2, · · · , bm)T , an n-vector, x = (x1, x2, · · · , xn)T ,

and an m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


of real numbers.

A possible LP problem can be: maximize cTx = c1x1 + c2x2 + · · · + cnxn
subject to the constraints Ax ≤ b or:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

×

x1
x2
...
xn

 ≤

b1
b2
...
bm


The duality theorem of linear programming says [79, 31]: Let A be a matrix

and b and c be vectors. Then

max
{
cTx | Ax ≤ b

}
= min

{
yT b | y ≥ 0, yTA = cT

}
if at least one of these two optima is finite.

The polyhedron P is called the feasible region, depicted in Figure 4.5, and any

vector in P a feasible solution. If the feasible region is non-empty, the problem is
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called feasible, and infeasible otherwise. The function x −→ cTx is called objective

function or the cost function. Any feasible solution attaining the optimum value

is called an optimum solution. Every LP has a vertex of the polyhedron P that

is an optimum solution, as shown in Figure 4.5.

A vector x ∈ Rn is called integer if each component is an integer, i.e.,

if x belongs to Zn. Many combinatorial optimization problems can be de-

scribed as maximizing a linear function cTx over the integer vectors in some

polyhedron P = {x | Ax ≤ b}. So this type of problems can be described as:

max
{
cTx | Ax ≤ b;x ∈ Zn

}
. Such problems are called integer linear program-

ming, or ILP, problems. They consist of maximizing a linear function over the

intersection P ∩ Zn of a polyhedron P with the set Zn of integer vectors. No

polynomial-time algorithm is known to exist for solving an integer linear pro-

gramming problem in general. In fact, the general integer linear programming

problem is NP-complete. However, for special classes of integer linear program-

ming problems, polynomial-time algorithms have been found. These classes often

come from combinatorial problems [69].

A polyhedron P is called an integer polyhedron if it is the convex hull of

the integer vectors contained in P. So a polytope P is integer if and only if each

vertex of P is integer. If a polyhedron P = {x | Ax ≤ b} is integer, then the linear

programming problem max =
{
cTx | Ax ≤ b

}
has an integer optimum solution

if it is finite.

A matrix A is called totally unimodular if each square submatrix of A has

determinant equal to 0, +1, or -1. Let A be a totally unimodular m× n matrix

and let b ∈ Zn. Then the polyhedron P := {x | Ax ≤ b} is integer. It follows

that each linear programming problem with integer data and totally unimodular

constraint matrix has integer optimum primal and dual solutions [68, 37]. This

important result is useful for our work that use only integer data and an unimod-

ular constraint matrix to model the problem described later in this article.

ILP and Z-Polyhedron can be used to describe execution information of pro-

gram loop nests, especially the the affine Static Control Parts (SCoPs) code,

that is defined as a maximal set of consecutive statements, where loop bounds

and conditionals are affine functions of the surrounding loop iterators and the

parameters [5, 6]. This pattern is common in a wide range of High Performance

Computing and scientific program kernels. However, a more accurate analysis of

the main scientific kernels like Matrix Multiplication, Convolution, LU Decom-

positions etc., shows that the most common memory access pattern is a row-wise

storing in memory and subsequently, a column-wise loading from the memory, or

vice versa. This pattern is clearly subject to the problem of the bank conflicts
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Figure 4.5: (a) A feasible region. This region is bounded by the constraints
x1 + 2x3 ≤ 4; −x1 + x2 ≤ 1; 4x1 + 2x2 ≤ 12. (b) The intersection of two
hyperplane defined by the constraints of a ILP model. The red line highlight all
the feasible solutions.
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Figure 4.6: A linearised matrix with elements from 0 to 15 that are cyclically
mapped to the four-banked memory. A quad-thread application accesses a shared
memory area column-wise throughout four iterations to load four elements con-
tiguously placed in a shared memory area. In this case, there is a four-way bank
conflict.

if the whole addresses space is cyclically mapped on different banks. Therefore,

this work is focused on this specific kind of problems and in order to solve the

conflict problem, a set of linear constraints can be applied directly to memory

access function.

Let ~i = (i1, i2, · · · , in)T the iteration vector of a loop nest, where ik is the

kth loop index and n is the innermost loop, the memory access function F (~i) :

Zn −→ Zd characterizes each reference to an array A with dimensionality d, in

the loop nest. This function associates each value of the iteration vector ~i with a

unique cell of array A. The set of integer points (memory locations) accessed by

a certain reference in a statement S is bounded by the affine access function F,

creating a Z−polyhedron.

4.3 Problem Formulation

This work essentially aim to capture a situation where a multi-banked local

(shared in the NVIDIA jargon) memory has B banks, each hosting N mem-

ory locations, and a number of simultaneous memory accesses are generated by

each of the threads in a multi-threaded application. For example, an application

may need to access a matrix column-wise throughout I iterations, and each of

its T threads accesses T elements resident in a contiguous memory area. The

addressing space is cyclically mapped across the B memory banks, as depicted

in Figure 4.6, and a T -way conflict arises.
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To support a general treatment of the above effects, in this section a few

preliminary definitions and notations are introduced, similar to those used in [16]

for handling the case of statically predictable nested loops.

Formally, each iteration of such nested loops can be represented by a vector ~v,

including the ordered sequence of iterators used in the nested loop. For example,

a two-level nested loop looking like

for(int j= ... ) {

for(int k= ... ) {

...

}

}

will have each inner iteration instance represented by ~v = (j, k)
T

.

For each memory access in each statement, this work focuses on access func-

tions that can be represented as linear functions in the form F (~v) = ~m = A·~v+~c,

where ~m denotes a certain location in a multi-dimensional memory space. For

example, a memory access in a statement looking like

value=mat[j+1][2*j+k-2];

corresponds to an access function F (~v) represented by A =

[
1 0
2 1

]
and ~c =[

1
−2

]
. Furthermore, call MF (~v) the set of memory locations simultaneously ac-

cessed by the threads executing a certain memory access F in instance ~v. Accesses

that conflict on the same memory bank may cause parallel instances to be serial-

ized, introducing a considerable performance bottleneck. Ideally, if the memory

references contained in MF (~v) are mapped to independent physical banks, then

full parallelization can be achieved. As an example, consider Figure 4.6. Assume

to have a 4 × 4 matrix with integer elements from 0 to 15 that are cyclically

mapped to the four-banked memory and consider a transpose operation. A quad-

thread application accesses a shared memory area column-wise throughout four

iterations to load four elements contiguously placed in a shared memory area. As

highlighted by the red rectangle, the columns of the matrix are mapped to the

same bank, causing a four-way bank conflict.

In order to define a suitable cost function, this work introduces the concept of

conflict count C, identifying the maximum number of distinct memory locations

in MF (~v) mapped to the same bank. This work also introduces the concept of

wasted memory count WM, identifying the number of values ~m that are never
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taken by M(~v) because of the conflict-avoiding technique, resulting in unused

memory locations. Our purpose is to achieve:∑
~v

C(~v) = 0 (4.1)

∑
~v

WM(~v) = 0 (4.2)

where (4.1) means that no bank conflicts occur and (4.2) means that the parti-

tioned arrays are perfectly placed with no holes in the memory allocation.

Given a multidimensional array A to be allocated to the shared memory banks,

the partitioning choice can be expressed by two integer linear functions f (~m)

and g (~m) [16]. Function g (~m) identifies the physical bank to which location ~m

is actually mapped, whereas f (~m) is the address in that bank. The problem can

be decomposed in:

• a bank mapping problem, which consists in finding a suitable function g (~m)

that assigns all used locations to existing banks and yields a zero conflict

count C, and

• a storage minimization problem, which consists in finding a suitable func-

tion f (~m) that avoids colliding assignments within the same bank and

yields a zero wasted memory WM .

4.4 Space exploration

As highlighted in the introductory section, the main aim of this work is to support

the systematic exploration of mapping solutions ensuring zero memory waste

(WM = 0). The starting point is a d-dimensional data structure to be mapped

to a set of physical banks where they will be accessed by a given number of threads

in a given number of iterations. In order to ensure a comprehensive coverage of

possible mapping choices, we:

• developed a parametric Integer Linear Programming (ILP) model express-

ing individual thread/bank/iteration correspondences, with suitable con-

straints limiting the search space to feasible solutions that, moreover, avoid

conflicts with no memory waste;

• defined a condition used to filter out the solutions returned by the ILP

model, in order to select only those that are implementable in an SIMT

architecture.
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Figure 4.7: A memory mapping problem with NTH = NBK = 4 and eight
iterations

To reduce the search space and make the exploration manageable, the problem

has been restricted to the cases where the number of parallel threads NTH is equal

to the number of banks NBK . In fact, this is the more constrained search problem

among those that actually allow conflict-avoid solutions (i.e., those where NTH ≤
NBK). Furthermore, it is possible observe that, by their nature, transpose-like

programs have repetitive patterns, such that after having accessed all k = NTH =

NBK banks in k iterations, the k threads can start over following the same

pattern as well as the same behaviour in terms of bank conflicts. As an example,

Figure 4.7 shows a memory mapping problem with NTH = NBK = 4 and eight

iterations. In the fifth iteration we clearly have the same access pattern as the

first iteration. As a consequence, for the analysis it is possible assume k =

NTH = NBK = NIT , where NIT is the number of iterations analysed for the

mapping problem, and we can assume that, for programs requiring more than k

overall iterations, the behaviour in terms of memory accesses is periodic along

the iteration axis by a period k.

4.4.1 Generation of the solution space

As mentioned above, the proposed ILP model expresses the thread/bank/iter-

ation correspondences point-wise. To this aim, this work introduces a decision

variable xt,b,i, defined as follows:
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xt,b,i = 1 if thread t accesses bank b in iteration i

xt,b,i is binary

t ∈ [1, NTH ], b ∈ [1, NBK ], i ∈ [1, NIT ]

The cardinality of the decision variable, n = k3, is large but still manageable

for a realistic architecture. For example, many GPU devices have k = 32 shared

memory banks and parallel threads.

As the final step to create the ILP model, there is the need to express in terms

of linear equalities the conditions making a mapping choice actually feasible:

1. A given thread can access a given bank only in one iteration.

NIT∑
i=1

xt,b,i = 1 ∀ t ∈ [1, NTH ] , ∀ b ∈ [1, NBK ]

With these k2 constraints it ensures that a thread can access a bank only

in one iteration, but in the same iteration multiple threads can access the

same bank and a thread can be associated with multiple banks in a single

iteration. This situation is depicted in Figure 4.8a.

2. In a given iteration, a given thread can only access one bank.

NBK∑
b=1

xt,b,i = 1 ∀ t ∈ [1, NTH ] , ∀ i ∈ [1, NIT ]

With these k2 constraints it ensures that a thread can access a single bank

in a given iteration, but in the same iteration, multiple threads can access

the same bank and a thread can access the same bank in multiple iterations.

A possible result of the first two constraints is depicted in Figure 4.8b.

3. In a given iteration, a given bank can be only accessed by one thread.

NTH∑
t=1

xt,b,i = 1 ∀ b ∈ [1, NBK ] , ∀ i ∈ [1, NIT ]
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Figure 4.8: (a) The first constraint guarantees that a thread accesses a bank only
in one iteration; (b) The enforcement of constraints 1 and 2 guarantees that each
thread accesses, throughout all iterations, a distinct bank; (c) The enforcement
of all constraints guarantees that all threads access all banks and there are not
bank conflicts.

With these k2 constraints it ensures that there are not bank conflicts, but

a thread can access the same bank and it can access multiple banks in the

same iteration. A possible result of all constraints is depicted in Figure 4.8c.

In order to reduce the solution space and the exploration time, one can fix

the assignment for the first bank, without loss of generality, as the remaining

solutions can be obtained with column permutations.

xt,1,i = 1 ∀t ∈ [1, NTH ] , ∀i ∈ [1, NIT ] ∧ t = i

Below the complete ILP model:
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minimize

(
NTH∑
t=1

NBK∑
b=1

NIT∑
i=1

xt,b,i

)

subject to :

NIT∑
i=1

xt,b,i = 1 ∀ t ∈ [1, NTH ] , ∀ b ∈ [1, NBK ]

NBK∑
b=1

xt,b,i = 1 ∀ t ∈ [1, NTH ] , ∀ i ∈ [1, NIT ]

NTH∑
t=1

xt,b,i = 1 ∀ b ∈ [1, NBK ] , ∀ i ∈ [1, NIT ]

xt,1,i = 1 ∀t ∈ [1, NTH ] ∀i ∈ [1, NIT ] ∧ t = i

xt,b,i is binary

4.4.2 Deriving transformed memory access functions

Based on the enforced constraints, all feasible solutions of the ILP model guar-

antee that
∑

~v C(~v) = 0 and
∑

~vWM(~v) = 0. What changes across solutions is

how complex the memory access function F (~v) is in the transformed code, pos-

sibly resulting in more effort needed for index computation and thus decreased

performance.

To drive the generation of the modified access function, there is the need

to represent a solution. This can be achieved by using a mapping matrix Sn

where rows represent the threads, columns represent the iterations, and each

cell contains the bank index accessed by the corresponding thread/iteration. An

example is shown below.

Sn =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3


For instance, here thread 2 accesses bank 3 during iteration 2. Interpreting cell

values as bank indices and the columns as the iterations of the loop facilitates

the construction of a memory access function. In fact, we must simply subtract
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each column in Sn from the following one modulo k, meaning that if we obtain a

negative value we need to add k.

This matrix representation clarifies this transformation:

Sn =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 →


+1 +1 +1
+1 +1 −3
+1 −3 +1
−3 +1 +1

 →

(if values are < 0 add k) → St =


1 1 1
1 1 1
1 1 1
1 1 1


Each element of St is used in the new memory access function f(~v). In this

case, each thread just increments the index by one during each iteration of the

loop. Therefore, if thread 2 accesses bank 2 in the first iteration, it accesses bank

3 in the second iteration, bank 4 in the third, and finally bank 1 in the fourth

iteration. Notice that a modulo operation must be performed to implement a

correct memory access function. From the first column of the Sn matrix and the

full St matrix, it is possible to implement a correct memory access function as

shown in Figure 4.9, where i is the thread index, j is the iteration index, and p

is the matrix width. Thus, the transformation is simply j → (i + j) mod p. As

shown in the first column of the Sn matrix, the first bank index of each thread is

equal to thread index itself, causing index i to appear in the transformed access

function. Since in St each thread increments the access index by one in each

iteration, we must simply add j to I in order to complete the transformation.

for(int j = 0; j < p; j++)

t = mem[i][j];

⇓

for(int j = 0; j < p; j++)

t = mem[i][(i + j)%p];

Figure 4.9: An example of a simple access function transformation
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4.4.3 Filtering for SIMT feasible solutions

The constraints expressed by the ILP model are not sufficient to capture the

SIMT condition, which essentially requires that the same code, including the

computation of the access function, is executed for all threads, i.e., all threads

execute the same instruction and there is no need to introduce divergence to

compute individual memory offsets as a consequence of a particular mapping

choice. This condition can be directly captured by the structure of the St matrix

and can be readily verified by simply checking the rows of the matrix. In fact,

the following condition

St[i][j] = St[i+ 1][j] ∀ i, j

guarantees that the solution is an SIMT feasible solution, as it results in the same

access function for all threads (i.e. the rows in St).

As an example, the solution

Sn =


1 4 3 2
2 3 4 1
3 2 1 4
4 1 2 3

 → St =


3 3 3
1 1 1
3 3 3
1 1 1


is a feasible solution, but it would require thread divergence on an SIMT archi-

tecture. To take the SIMT condition into account, the flow includes a check on

the solutions generated by the ILP model, filtering out those mapping choices

that do not meet the SIMT condition.

4.5 A detailed case study

To demonstrate the approach, a prototype tool-chain was built, depicted in Fig-

ure 4.10. Two well known software suites was used to implement the approach:

1. FICO R©Xpress Optimization Suite1, a powerful suite of optimization tools.

Using the Mosel language allows us to describe the ILP model and solve it

by enumerating every feasible solution.

2. MATLAB R©R2016b2 to process matrix data.

1http://www.fico.com/en/products/fico-xpress-optimization-suite
2https://mathworks.com/products/matlab.html
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First, the number of threads, banks, and loop iterations must be define in the

Mosel script. This script is executed by Xpress, that generates all Sn feasible

solutions. Subsequently, the MATLAB script, which receives the same inputs of

the Mosel script, parses all Sn matrices generated previously, in order to obtain

the St matrices. The MATLAB script also performs a filtering on solutions in

order to extract only SIMT feasible solutions. Once the matrices Sn and St are

derived, the programmer can generate a new memory access function as described

in Section 4.4.2.

Based on the above tool-chain, this section provides a step-by-step illustration

of the approach with real-world programs selected from two well-known bench-

mark suites. The NVIDIA Jetson TK13 and an NVIDIA Jetson TX24 boards

have been chosen as the test architectures. However, as already pointed out ear-

lier, it is possible notice that the proposed exploration technique applies to any

multi-banked scratch-pad memory in accelerators that rely on an SIMT architec-

ture, possibly including non-GPU devices, e.g. FPGA-implemented accelerators.

For the detailed case study presented here, k = 4 in the Mosel script. The

script returns 24 feasible solutions Sn. Since the Jetson TK1 and TX2 are SIMT

Embedded GPUs, also the MATLAB script has been used, with the same inputs,

in order to filter the solutions. There are only four SIMT feasible solutions:

S1
n =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 ; S2
n =


1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

 ;

S3
n =


1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

 ; S4
n =


1 4 2 3
2 1 3 4
3 2 4 1
4 3 1 2

 ;

while their corresponding St matrices are:

S1
t =


1 1 1
1 1 1
1 1 1
1 1 1

 ; S2
t =


3 3 3
3 3 3
3 3 3
3 3 3

 ;

3http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
4https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-

modules/?section=jetsonDevkits
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Figure 4.10: The prototype tool-chain used in our approach

S3
t =


1 2 3
1 2 3
1 2 3
1 2 3

 ; S4
t =


3 2 1
3 2 1
3 2 1
3 2 1



4.5.1 Adaptive Modular Mapping and Inverse Adaptive
Modular Mapping
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Figure 4.11: (a) Adaptive Modular Mapping technique. This memory mapping
scheme solves all conflicts and does not waste memory. (b) Inverse Adaptive
Modular Mapping technique.

The first one, S1
n,t is the simplest one since each thread accesses a contiguous

memory area starting at a fixed bank, corresponding to its own index, then

accessing the subsequent location at each step in a cyclic fashion. I call this

99



mapping scheme Adaptive Modular Mapping (AMM). The AMM mapping

scheme was already shown in Figure 4.11a. Assume to have a generic N -bank

memory system and a total of M threads with an M -way conflict as in Listing 4.1.

The Adaptive Modular Mapping scheme can be applied as shown in the code of

Listing 4.2.

__shared__ int shmem[M][N];

int index = threadIdx.x;

for(int i = 0; i < N; i++)

shmem[index ][i] = some value;

Listing 4.1: Original Code

__shared__ int shmem[M][N];

int index = threadIdx.x;

for(int i = 0; i < N; i++)

shmem[index ][( index + i)%N] = some value;

Listing 4.2: AMM Technique

where:

• % denotes the modulo reduction operator;

• shmem with the CUDA shared keyword declares a memory shared among

the threads of a block.

• ThreadIdx is a built-in CUDA keyword that returns the thread index.

A complementary mapping scheme S2
n,t, Inverse AMM (IAMM) can be ex-

tracted from the one just described, by simply accessing the physically preceding

bank, instead of the subsequent one. Figure 4.11b shows the resulting mapping

scheme.

4.5.2 Triangular Based Mapping and Inverse Triangular
Based Mapping

The mapping scheme S3
n,t can be thought of as an incremental summation across

the banks. Thread 1 accesses location 1 at iteration 1. Then it moves to bank 2

at iteration 2, adding 1 to the previous bank index. At iteration 2 it adds 2 to

the previous bank index to reach bank 4. Finally, it adds 3 to the previous bank

index to reach, cyclically, bank 3. Obviously, each thread has a different starting
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Figure 4.12: (a) Triangular Based Mapping technique. (b) Inverse Triangular
Based Mapping technique.

bank, which depends on its index. The application of this mapping scheme is

just the one depicted in Figure 4.12a. I call this mapping scheme Triangular

Based Mapping (TBM). Looking at the progression, it turns out that there is a

dependence on the previously accessed location. The mapping scheme regulating

the access to a generic location k can be formulated with the following recursive

equation:

T (k) = k + T (k − 1)

where T (1) = 1 and T (0) = 0. Then, the resulting value will be reduced modulo

the row width (the number of banks in this case). It can be easily recognized that

each access can be computed with the summation of the first N numbers prior

to the location to be accessed, modulo-reduced on a cyclic basis. As an example,

if the fourth location of thread 1 needs to be accessed, then the effective location

to be accessed will be:(
index+

3∑
i=1

i

)
mod 4 =

(
1 +

3∑
i=1

i

)
mod 4 =

(1 + (1 + 2 + 3)) mod 4 = 7 mod 4 = 3

The above described mapping scheme can be easily transformed by solving the

recursive equation or by just transforming the summation factor. Suppose that

the thread denoted by index needs to access its K-th location in a W -wide row.

According to the mapping scheme, it will access

matrix[index][K]⇒

(
index+

K∑
i=1

i

)
mod W
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As it is well known, the sum of the first N natural numbers or N -th partial sum

is given by the following expression

N∑
i=1

i =

(
N × (N + 1)

2

)
The numbers generated by the N -th partial sums are also called triangular num-

bers, a name used here also for the corresponding mapping scheme. From the

above calculation, it turns out that the mapping scheme can be rewritten as

follows

matrix[index][K]⇒
(
index+

K × (K + 1)

2

)
mod W

A simple application of the TBM technique is shown in Listing 4.3.

__shared__ int shmem[M][N];

int index = threadIdx.x;

for(int i = 0; i < N; i++)

shmem[index ][( index + (i * (i + 1)/2))%N] =

some value;

Listing 4.3: TBM Technique

S4
n,t is a complementary mapping scheme. We call this scheme Inverse TBM

(ITBM). This mapping is depicted in Figure 4.12b.

4.5.3 Environment Set-up

This section presents the set-up used to carry out the experimental evaluation of

the above optimization techniques and collect performance data from a physical

platform. A suite of kernels has been properly selected to set a scenario where

the conditions mentioned in Section 4.3 are met.

We use two systems as test-bench. The first one includes a host PC running

an Oracle VirtualBox Virtual Machine with Ubuntu 14.04, with 4 cores, 8 GB of

RAM and the JetPack 2.3 (CUDA 6.5) installed on it. The second one includes a

host PC running an Oracle VirtualBox Virtual Machine with Ubuntu 16.04, with

4 cores, 8 GB of RAM and the JetPack 3.2 (CUDA 9.0) installed on it. In these

environments, NVIDIA Nsight Eclipse Edition is used to write CUDA code and,

then, to compile and remotely run it on a Jetson TK1 and TX2 development

boards which, as mentioned earlier, are SIMT Embedded GPUs with a scratch-

pad memory composed by 32 independent banks. The memory and the processor
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Kernel Suite Description

DCT CUDA SDK
/ CUSTOM

This kernel performs a Discrete Cosine Transform.
All accesses in global memory are coalesced, there are
bank conflicts, register pressure is high, and arith-
metic operations are medium.

Transpose CUDA SDK This kernel computes a matrix transpose operation.
All accesses in global memory are coalesced, there are
bank conflicts, register pressure is high, and arith-
metic operations are low.

Convolution Col CUDA SDK This kernel computes a convolution through matrix
columns. All accesses in global memory are coa-
lesced, there are bank conflicts, register pressure is
high, and arithmetic operations are low.

Convolution Row CUDA SDK This kernel computes a convolution through matrix
rows. The accesses in global memory are not coa-
lesced, there are bank conflicts, register pressure is
high, and arithmetic operations are low.

Lud Perimeter RODINIA This kernel performs an LU factorization on a ma-
trix perimeter. All accesses in global memory are
coalesced, there are bank conflicts, register pressure
is high, and arithmetic operations are low.

Lud Diagonal RODINIA This kernel performs an LU factorization on a ma-
trix diagonal. All accesses in global memory are coa-
lesced, there are bank conflicts, the register pressure
is high, and arithmetic operations are low.

Table 4.1: Kernels used to test our techniques

frequency of the Jetson TK1 are fixed to 792 MHz and 804 MHz, respectively, in

order to reduce measurement errors. The GPU and the processor frequency of

the Jetson TX2 are fixed to 1302 MHz and 2000 MHz, respectively, in order to

reduce measurement errors.

Six kernels are used to test the mapping techniques introduced above. The

kernels are summarized in Table 4.1.

4.5.4 Metrics

In order to evaluate the performance of the mapping schemes on the kernels

presented earlier, these metrics were considered:

• Dataset Size: it is expressed in MB. It represents the amount of data
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processed by the kernel. The NVIDIA Jetson TK1 has 2 GB of DDR3

DRAM, while the TX2 has 8 GB of LPDDR4.

• CUDA Block Size: denotes the number of threads that compose a CUDA

block. On the NVIDIA Jetson TK1 and TX2 the maximum number of

threads per block is 1024. The optimal number of threads that compose

a CUDA block is kernel dependent and remains unchanged between the

different techniques.

• Resident CUDA Blocks: represents the number of CUDA blocks run-

ning, simultaneously, on the GPU. On the NVIDIA Jetson TK1 the maxi-

mum number of resident threads per multiprocessor (SM) is 2048 and the

maximum number of resident CUDA blocks is 16. The Jetson TK1 has

one SM. The Jetson TX2 has two SM, the maximum number of resident

threads per multiprocessor (SM) is 2048 and the maximum number of resi-

dent CUDA blocks is 32. CUDA Block Size, Registers, and Shared Memory

can affect this metric. The more resources are requested by a CUDA block,

the less CUDA blocks can run simultaneously on the GPU.

• Registers: denotes the number of registers used by each thread. On the

NVIDIA Jetson TK1 and TX2 the maximum number of registers per thread

is 255. This metric is kernel dependent and the optimal value is selected

by the compiler.

• Shared Memory: indicates the amount of shared (scratch-pad) memory

used by the kernel, expressed in KB. The NVIDIA Jetson TK1 has 48 KB

of shared memory. The NVIDIA Jetson TX2 has 64 KB of shared memory.

This metric is kernel dependent and can be affected by the memory mapping

scheme selected.

• Shared Memory Efficiency: is expressed in percentage. It denotes how

many data are loaded or stored on scratch-pad memory in a row. The

NVIDIA Jetson TK1 has 32 independent banks, each 8-byte wide. This

means that a 100% efficiency occurs when 32 × 8 bytes of data are loaded

or stored to the shared memory in a row and no bank conflict occurs. Notice

that all six kernels use 4-byte integers and the maximum shared memory

efficiency, when there are not conflicts, is 50%. The NVIDIA Jetson TK1

has 32 independent banks, each 4-byte wide.

• N-Way Conflicts: denotes the number of occurring bank conflicts.
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• GPU Occupancy: is expressed in percentage. It denotes the number of

threads running, simultaneously, on the GPU. CUDA Block Size, Registers,

and Shared Memory can affect this metric.

• Execution Time: is expressed in milliseconds. The execution times are

shown in Figure 4.13 and in Figure 4.14.

4.5.5 Results on the Jetson TK1 board

The results are summarized in Table 4.2. Notice that shared memory is a limiting

factor for the performance of all kernels. This means that an increment of shared

memory usage leads to a decrease of CUDA Blocks and GPU Occupancy metrics.

In fact, since the padding technique uses more shared memory than the other

schemes, the Resident CUDA Blocks metric is lower and consequently also the

GPU Occupancy metric decreases. This can lead to an increase of the execution

time, as in the DCT kernel. Padding, AMM, and TBM solve all bank conflicts,

but AMM and TBM use more registers than the other techniques. This is not

a problem, since registers are not a limiting factor for the performance of the

kernels. The TBM technique must perform more arithmetic operations in order

to compute memory access indices and in Convolution Col and Lud Perimeter

kernels have a higher execution time than padding, as shown in Figure 4.13.

The Convolution Row kernel is the only one with non-coalesced global memory

accesses. In this case, a higher utilization of the compute units by the TBM

technique leads to a better execution time.

4.5.6 Results on the Jetson TX2 board

The results are summarized in Table 4.3. Notice that the NVIDIA Jetson TX2

board has 8 GB of LPDDR4 RAM and this allows us to increase the dataset of

each kernel. The Jetson TX2 board has 64 KB of shared memory and for this rea-

son the shared memory is not a limiting factor for the performance of all kernels

(for DCT Kernel registers are the limiting factor). Since the padding technique

uses more shared memory than the other schemes, the Resident CUDA Blocks

metric is lower and consequently also the GPU Occupancy metric decreases. This

can lead to an increase of the execution time, as in the Transpose kernel. This

is not true for Lud Perimeter kernel. In fact, in this case, the extra memory re-

quired by the padding technique does not reduce the Resident CUDA Blocks as

the result of the integer division 64\12 and 64\12.125 is 5 in both cases. Padding,

AMM, and TBM solve all bank conflicts, but AMM and TBM use more regis-
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Parameters Mapping DCT Transpose Convolution
Col

Convolution
Row

Lud
Perime-
ter

Lud
Diago-
nal

Dataset Size (MB) All 664.06 256 256 256 1024 1024

CUDA Block Size All 128 256 128 64 64 64

Resident CUDA Blocks

Native 12 3 6 6 4 3

Padding 11 2 5 5 3 2

AMM 12 3 6 6 4 3

TBM 12 3 6 6 4 3

Registers

Native 19 23 33 32 36 34

Padding 19 23 33 32 36 34

AMM 32 30 33 41 36 35

TBM 32 28 41 49 36 35

Shared Memory (KB)

Native 4 16 8 8 12 16

Padding 4.125 16.25 8.125 8.125 12.125 16.25

AMM 4 16 8 8 12 16

TBM 4 16 8 8 12 16

Shared Memory Efficiency

Native 25% 3% 1.56% 3.12% 8.54% 4.52%

Padding 50% 50% 50% 50% 50% 50%

AMM 50% 50% 50% 50% 50% 50%

TBM 50% 50% 50% 50% 50% 50%

N -way Conflicts

Native 4 -way 32 -way 32 -way 16 -way 16 -way 20 -way

Padding None None None None None None

AMM None None None None None None

TBM None None None None None None

GPU Occupancy

Native 73.04% 36% 36% 18% 12% 9%

Padding 67.03% 24% 24% 14% 9% 6%

AMM 73.04% 36% 36% 18% 12% 9%

TBM 73.04% 36% 36% 18% 12% 9%

Table 4.2: Results on the Jetson TK1 board.

ters than the other techniques. This is not a problem, since registers are not a

limiting factor for the performance of the kernels except for DCT kernel. The

TBM technique must perform more arithmetic operations in order to compute

memory access indices and in Convolution Col and Lud Perimeter kernels have

a higher execution time than padding as shown in Figure 4.14. The Convolution

Row kernel is the only one with non-coalesced global memory accesses. In this

case, a higher utilization of the compute units by the TBM technique leads to a

better execution time.

4.5.7 Energy consumption on the Jetson TX2 board

By using the Texas INA Monitor installed on the NVIDIA Jetson TX2 board,

it was possible to measure the GPU energy consumption when the kernels are
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Figure 4.13: Execution times on the Jetson TK1 board.

executed on that board. The results are shown in Figure 4.15. It is possible

notice that solving shared memory conflicts reduce the energy consumption and

this metric is not only correlated to kernel execution time. In fact, the kernel

Transpose with padding technique has a higher execution time than the native

technique as shown in Figure 4.14 but it requires less energy. The AMM tech-

nique, in the case where the conditions of our technique are satisfied, requires less

energy than padding technique. Since the TBM technique requires many arith-

metic operations in order to compute memory access indices, it also consumes

more energy than other techniques except for the naive one.
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Figure 4.14: Execution times on the Jetson TX2 board.

4.6 Conclusions and future developments

This work addressed the impact of local memory optimization techniques in ac-

celerators relying on an SIMT architecture. The emphasis was on the multi-bank

organization of the on-chip scratch-pad memory, where the whole shared address-

ing space is partitioned in a cyclic way and is potentially subject to an access

conflict problem leading to decreased performance. The approach, based on an

Integer Linear Programming model, explores the solution space in order to find

memory mapping schemes that avoid bank conflicts and memory waste.

The results were demonstrated with a number of kernels through a prototype

tool-chain and a detailed step-by-step case study described in this chapter along

with some comparisons with different approaches found in the literature. The

results pointed out a significant impact of the specific mapping choice adopted
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Parameters Mapping DCT Transpose Convolution
Col

Convolution
Row

Lud
Perime-
ter

Lud
Diago-
nal

Dataset Size (MB) All 1638 1024 1024 1024 1024 1024

CUDA Block Size All 128 256 512 256 64 64

Resident CUDA Blocks

Native 16 4 2 2 5 4

Padding 15 3 1 1 5 3

AMM 12 4 2 2 5 4

TBM 12 4 2 2 5 4

Registers

Native 25 32 32 32 32 32

Padding 24 32 32 32 32 32

AMM 37 32 32 40 32 32

TBM 37 32 48 48 32 32

Shared Memory (KB)

Native 4 16 32 32 12 16

Padding 4.125 16.25 32.5 33 12.125 16.25

AMM 4 16 32 32 12 16

TBM 4 16 32 32 12 16

Shared Memory Efficiency

Native 30% 6.1% 3.1% 3.12% 6.2% 6%

Padding 100% 100% 100% 100% 100% 100%

AMM 100% 100% 100% 100% 100% 100%

TBM 100% 100% 100% 100% 100% 100%

N -way Conflicts

Native 4 -way 32 -way 32 -way 16 -way 16 -way 20 -way

Padding None None None None None None

AMM None None None None None None

TBM None None None None None None

GPU Occupancy

Native 96.83% 47% 49.7% 23.2% 15.5% 12.4%

Padding 90.50% 35.5% 41.7% 21.4% 15.4% 9.1%

AMM 71.90% 46.6% 48% 24.3% 15.4% 12.5%

TBM 72.3% 46.3% 48% 23.7% 15.4% 12.5%

Table 4.3: Results on the Jetson TX2 board.

as a result of this analysis.

As a part of future work, it is possible to automate the entire process, from

the discovery of the mapping scheme to the source code transformation. This can

be achieved by implementing a parser which applies the scheme chosen by the

user before the compilation process. Furthermore, instead of making the mapping

transformation explicit in the code, a different possibility is to insert an ad-hoc

hardware component that routes the memory requests to the corresponding banks

by computing the mapping dynamically, a solution that is feasible in hardware

reconfigurable accelerators, e.g. based on FPGA technologies. I thus, consider

the automated generation of such hardware memory access manager as a potential

future development of this work.
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Figure 4.15: Energy consumption.
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Chapter 5

Conclusion

5.1 Main Contribution

The main results on this Thesis are related to solving bank conflicts problem

deriving a feasible memory mapping function. In particular, new strategies for

explore the solution space and generate feasible memory mapping functions for

SIMT architectures are proposed.

• Regarding the polyhedral transformation approach, the contribution is re-

lated to the application of A. Darte’s results to the SIMT architectures in

order to be able to make considerations also from an energy standpoint. A

methodology based on Z-modules, Left Hermite Normal Form and Smith

Normal Form has been proved to be effective to provide improvements on

SIMT architecture performance also in terms of power consumption. In

addition, the results obtained prove that there exists a strong relationship

between the access pattern to the memory, the shared memory bank con-

flicts and the power consumption. Numerical tests confirm the validity of

the approach on a SIMT architecture like the NVIDIA Jetson TK1.

• The approach, based on an Integer Linear Programming model, that ex-

plores the solution space in order to find memory mapping schemes that

avoid bank conflicts and memory waste is proposed in this manuscript. This

approach differs from the others because it also takes into account the waste

of memory to derive a feasible memory access function. The results were

demonstrated with a number of kernels through a prototype tool-chain and

a detailed step-by-step case study along with some comparisons with differ-

111



ent approaches found in the literature. The results pointed out a significant

impact of the specific mapping choice adopted as a result of this analysis.

Performance considerations, also in terms of power consumption are made

on a NVIDIA Jetson TX2 board.

5.2 Future Research

Several ideas to improve the obtained results, and to investigate future lines of

research, are detailed in the following.

• The proposed approach based on the polyhedral transformation only high-

lights that energy optimisation is a great challenge and should be taken

into account in particular when high parallel computing devices are used.

Nowadays compilers are not able to provide automatically energy-aware

optimised code, delegating to a programmer this type of optimisations. In

order to provide high energy improvements researchers should focus their

work to make the required code transformations as transparent as possi-

ble. This work, is just a step in this direction, but should be extended to

consider more aspects that can guarantee better performance. In fact, it is

limited by many factors that allow the application only to few problems.

Improvements can also come from the hardware side. NVIDIA themselves,

with the new Maxwell architecture, claims it can increase the performance

per watt metric by a factor 2x compared to the Kepler architecture used in

this work [33].

• As a part of future work related to the ILP approach, it is possible to auto-

mate the entire process, from the discovery of the mapping scheme to the

source code transformation. This can be achieved by implementing a parser

which applies the scheme chosen by the user before the compilation process.

Furthermore, instead of making the mapping transformation explicit in the

code, a different possibility is to insert an ad-hoc hardware component that

routes the memory requests to the corresponding banks by computing the

mapping dynamically, a solution that is feasible in hardware reconfigurable

accelerators, e.g. based on FPGA technologies.
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