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Introduction 

 

The last two decades have witnessed rapid developments in –omics 

technologies which enable the study of biological and disease processes in a high 

throughput manner. Among the -omics approaches, genomics and the related 

bioinformatic methods have emerged as most popular applications able to accelerate 

science discoveries in basic research and drug discovery and therapeutics.  

Genomics is an interdisciplinary field of science focusing on the structure, function, 

evolution, mapping, and editing of genomes (Wikipedia, url: 

https://en.wikipedia.org/wiki/Genomics). Over the years, the field of genomics has 

undergone several revolutions. Prior to the advent of Next Generation Sequencing 

(NGS), genomics was limited to the characterization of single disease-associated genes 

(e.g. Huntington disease, cystic fibrosis, cancer) or to the study of small genomes (e.g. 

bacteria, viruses). As physical mapping with large-insert clones became possible, the 

subcloned fragments of large genomes could be sequenced as individual projects, and 

their finished sequences combined together to reconstruct the sequence of entire 

chromosomes. Using this approach and beginning from 1985, in 2003 the Human 

Genome Project was able to complete the sequence of the DNA in the human genome 

(I. H. G. S. Consortium et al., 2001; Venter et al., 2001), thus providing a basic 

platform for the development of new technologies. In the same period, other large 

genomes, including those of model organisms, were also decoded (M. G. S. 

Consortium et al., 2002; R. G. S. P. Consortium et al., 2004; Myers et al., 2000). 

Hybridization-based methods such as microarrays exploited the information gained 
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from genome projects to develop rapid, high throughput assays to allow the 

measurement of genetic variation, gene expression and chromatin binding, which 

spread rapidly in all fields of research. Most recently, these methods were quickly 

replaced by NGS, which allows similar studies to be conducted with much higher 

sensitivity and in an unbiased whole-genome and –transcriptome fashion. As a result, 

sequencing has become an essential and obligatory tool and not only for biologists.  

In the early days of NGS, the initial focus of every genomic scientist was on the de-

novo assembly of novel genomes for species that were never sequenced before. These 

efforts led to the completion of many novel genomic sequences which include even 

large genomes of mammals and plants. In the case of de-novo assembly, the genomic 

sequence is built from scratch without the use of an existing scaffold. Advances in 

sequencing technology have recently led to a dramatic increase in speed and 

throughput capacity, and a sharp reduction in costs. These improvements enabled the 

shift from de-novo to re-sequencing of entire genomes from additional individuals of 

species already sequenced. In the case of re-sequencing, short reads can be aligned to 

reference genomes as a substrate for variation discovery or gene expression analysis. 

Re-sequencing applications provide the scientific community with an unprecedented 

opportunity to address fundamental evolutionary questions, as well as to extend the 

use of sequencing to population genetic studies to infer ancient population history. The 

availability of new data types given by an always increasing number of NGS 

applications continues to engage and excite the computational biology community 

working on software development and on the analysis of new data types generated to 

solve complex biomedical problems.  
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In this context, the main objective of my research was to explore different biological 

systems to identify new molecular signals through the development and 

implementation of genomic and bioinformatic methods. This objective was 

accomplished by participating to three different research projects where I applied 

genomic and bioinformatic solutions to different areas of biology: genome 

composition, organization and regulation, malaria biology, and cancer. The first 

chapter provides an introduction to the main technology and biology concepts explored 

in my research, while the following three chapters describe in details the research work 

conducted during my studies.  
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Chapter I 

 

Next Generation Sequencing applications for research: a 

genomics (r)evolution. 

 

The use of sequencers as molecule-counting devices is immensely popular. 

DNA sequencers are capable of sequencing large numbers of different DNA fragments 

in parallel in a single reaction. In general, NGS experiments consist of 4 phases: 

sample collection, template generation, sequencing reactions and detection, and data 

analysis. All the sequencing methods monitor the sequential addition of nucleotides to 

immobilized and spatially arrayed DNA templates in more or less similar ways, but 

mostly differ in how the templates are generated and interrogated to obtain the 

sequences (Linnarsson, 2010). Figure 1 shows a basic workflow for NGS analysis 

(Rizzo & Buck, 2012).  

The range and the scope of DNA sequencing applications is very broad and largely 

depends on the biological questions to address in the study (Figure 1). Normal and 

diseased tissues can be used as source for the extraction of nucleic acids in a whole 

genome or targeted experiment. Among the most popular applications, whole genome 

sequencing starts from genomic DNA as input and can be applied to human genetics 

and evolution studies for the detection of genome-wide genetic variations like Single 

Nucleotide Polymorphims (SNPs), Insertion and Deletions (InDels), large genomic 

rearrangements (e.g. large deletions, duplications, insertions, inversions or 
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translocations), and even DNA repeats like Short Tandem Repeats (STRs). Whole 

genome sequencing can also provide information on cancer and disease-associated 

mutations, which makes it a key application in the field of precision medicine. 

Alternatively to the whole genome, whole-exome sequencing can be used for 

sequencing all of the known exons of protein-coding genes in a genome (known as the 

“exome”). This method also starts from genomic DNA and consists of a first step to 

select only the subset of DNA that encodes proteins (the “exons”) and a second step 

to sequence the selected exonic DNA using any high-throughput sequencing 

technology.   

Transcriptome sequencing starts from either total RNA or enriched RNA fractions. 

This application is based on shotgun sequencing of either full-length or 3′ ends of 

cDNA, and is used to reveal the presence, quantity and structure of RNA in a biological 

sample under specific conditions (Wang, Gerstein, & Snyder, 2009). Compared to 

hybridization-based RNA quantification methods such as microarrays, sequencing-

based transcriptome detection can quantify gene expression with low background, high 

accuracy and high levels of reproducibility within a large dynamic range. In addition, 

transcriptome sequencing does not require an existing genome sequence and can detect 

mutations, splice variants and fusion genes that cannot be detected by microarrays. 

Among the library preparation methods available, the standard poly(A)+ enrichment 

provides a comprehensive, detailed, and accurate view of polyadenylated RNAs. 

However, on samples of suboptimal quality ribosomal RNA depletion and exon 

capture methods have recently been reported as better alternatives (S. Schuierer et al., 

2017).  
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ChIP-sequencing is widely used to analyze protein-DNA interactions for epigenetic 

studies. It combines chromatin immunoprecipitation (ChIP) with massively parallel 

DNA sequencing to identify binding sites of DNA-associated proteins, and can be used 

to precisely map global binding sites for any protein of interest. ChIP sequencing offers 

higher resolution and more precise and abundant information in comparison with 

array-based ChIP-on-chip. Likewise ChIP-seq for the genomic DNA, RIP-Sequencing 

identifies the binding sites of proteins to the RNA within RNA-protein complexes 

extracted through immunoprecipitation with antibodies targeting the protein of 

interest. After RNase digestion, the RNA fragments protected by protein binding are 

extracted, reverse-transcribed to cDNA and sequenced.  

The above-listed NGS applications, and in general all the methods shown in Figure 1, 

generate nucleic acids (e.g. genomic DNA, immunoprecipitated DNA, total RNA, 

enriched RNA fractions) that in the case of RNA need to be converted into double-

stranded DNA (dsDNA) to proceed with the library preparation. These dsDNA 

fragments are subsequently converted into a “library” of sequencing templates, 

through standard steps of fragmentation, size selection, and adapter ligation. 

Fragmentation allows to break the DNA templates into smaller “sequenceable” 

fragments, which are then “size-selected” to enrich for fragments of a size range that 

is compatible with the sequencing platform’s specifications. The ligation of platform-

specific primers (or adapters) to the ends of the library fragments is used to enable 

priming for downstream amplification (e.g. clustering generation) and the sequencing 

reactions. Depending on the NGS technology used, a library is either sequenced 

directly or is amplified then sequenced (e.g. cluster generation via bridge 

amplification). Template generation also serves to spatially separate and immobilize 
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DNA fragment populations for sequencing, typically by attachment to solid surfaces 

(e.g. a flow cell) or beads. This allows the downstream sequencing reaction to operate 

as millions of microreactions carried out in parallel on each spatially distinct template.   
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Figure 1. Basic workflow for NGS experiments. 

 
Source: Rizzo and Buck, Cancer Prevention Research, 2012. 
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Bioinformatics: turning data into knowledge. 

Driven by the rapid introduction of high-throughput sequencing in biological 

research, data generation has shifted to become faster and cheaper while data have 

been growing in complexity, diversity, and volume. This poses an important challenge 

to those research institutes that are not adequately prepared for the storage and for the 

high-performance computing analysis of “big data” and are required to access the 

external cloud computing to scale up to extra informatics capacity. Moreover, 

investing in the training of the next generation of scientists on “data science” 

disciplines is becoming fundamental for all research centers nowadays. 

Bioinformatics is an interdisciplinary field that develops methods, databases, and 

software for the management, analysis and interpretation of biological data. As 

important as techniques to produce the NGS data are, bioinformatic approaches are 

equally critical for the successful analysis of those data. Many analytical approaches 

depend on the digital nature of NGS data, which depends on how the individual DNA 

fragments of the library are prepared prior to the sequencing reaction (e.g. targeted or 

whole genome). These fragments can be sequenced either as single-read or paired-end 

reads (e.g. originating from both ends of the molecule) to generate the raw data used 

for downstream analysis (Figure 1). The description of the standard RNA-seq 

workflow can serve as an example of how bioinformatics is applied to NGS data 

analysis. 

The main goal of a standard RNA-seq experiment is to identify differentially expressed 

genes between two or more groups of biological samples. To this purpose, an end-to-

end gene-level RNA-Seq differential expression workflow include four major steps 
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such as quality control, alignment, quantification and identification of differentially 

expressed genes (Figure 2). First, raw NGS reads undergo quality assessment and 

filtering. Second, the quality-filtered reads in Fastq format are aligned against 

reference sequences (e.g. genome or transcriptome). The choice of the right reference 

genome and annotation is key for the success of the downstream analysis. Third, 

expression estimates are derived from the aligned reads to obtain the gene expression 

counts. For baseline expression, gene counts, which represent the total number of reads 

aligned to each gene, can be further transformed into Counts Per Million (CPM; 

normalization by total number of mapped reads per sample) or Fragments per Kilobase 

of exon per Million of fragments mapped (FPKM; further normalization by effective 

gene length). Fourth, for differential analysis, these count estimates are used to identify 

differentially expressed genes, usually by computing fold changes and P-values 

(Figure 2). The bioinformatic community has been very proficient in the development 

of software tools for the analysis of RNA-seq gene expression data. Tophat2 (Kim et 

al., 2013) and STAR (Dobin et al., 2013) are among the most popular aligners; EQP 

(Sven Schuierer & Roma, 2016), htseq-count (Anders, Pyl, & Huber, 2015), 

featureCounts (Liao, Smyth, & Shi, 2014) and Cufflinks2 (Trapnell et al., 2012) are 

used for the quantification step for the generation of gene counts. DESeq2 (Love, 

Huber, & Anders, 2014) and Cuffdiff (Trapnell et al., 2012) are used for the differential 

gene expression analysis.  
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Figure 2. The major steps of a standard RNA-seq workflow.  
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Use of public resources for integrative data analysis. 
 
  

Over the last decades, the scientific community has generated an immense 

amount of genomic data that is now deposited in large public repositories and available 

to other scientists wanting to conduct further analyses. For instance, reference genome 

sequences and annotation files can be accessed in genomic repositories like the 

“Ensembl Genome database” developed by the European Bioinformatics Institute 

(EBI) and the Wellcome Trust Sanger Institute in UK  (Zerbino et al., 2018), the 

“UCSC Genome Browser” hosted at the University of Santa Cruz in California (Casper 

et al., 2018), and the “Genome Portal” of the Joint Genome Institute (JGI) (Nordberg 

et al., 2014), or even in species-specific repositories as for instance “PlasmoDB” which 

is a genome database for the genus Plasmodia useful to study the biology of the malaria 

parasites (Aurrecoechea et al., 2009).  

Likewise, there has been a multitude of NGS experimental datasets deposited in the 

public domain which provides unprecedented opportunities for computational 

scientists to explore biology by data integrative approaches. For instance, the NCBI 

Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) (Leinonen, 

Sugawara, & Shumway, 2011) and the European Nucleotide Archive (ENA, 

https://www.ebi.ac.uk/ena) (Leinonen, Akhtar, et al., 2011) are major public 

repositories hosting sequencing data generated by individual scientists or large 

consortia. In addition, for human relevant datasets, the database of Genotypes and 

Phenotypes (dbGAP, https://www.ncbi.nlm.nih.gov/gap) hosts and distributes the data 

and results from studies that have investigated the interaction of genotype and 
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phenotype in humans (Tryka et al., 2014); similarly, the recent European Genome-

phenome Archive (EGA, https://ega-archive.org) enables the archiving and sharing of 

all types of personally identifiable genetic and phenotypic data resulting from 

biomedical research projects (Lappalainen et al., 2015). Large scale sequencing 

projects that are led by public or private consortia routinely share their datasets in one 

or more of these repositories. Examples related to cancer studies are provided by The 

Cancer Genome Atlas Research Network Atlas (TCGA, 

https://cancergenome.nih.gov) (Gao et al., 2013; Hutter & Zenklusen, 2018), the 

Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle) 

(Barretina et al., 2012), and the Catalogue Of Somatic Mutations In Cancer (COSMIC, 

https://cancer.sanger.ac.uk/cosmic) (Forbes et al., 2017). The sequencing results 

generated by these large cancer projects, for instance, could be compared with the 

sequencing information from 53 non-diseased tissue sites across nearly 1000 

individuals obtained by the Genotype-Tissue Expression (GTEx) project (The GTEx 

Consortium, 2013).  

Data sharing is more and more considered good practice in computational biology to 

ensure research reproducibility. To enhance data reusability, the scientific community 

has been working on making the data FAIR, e.g. Findable, Accessible, Interoperable, 

and Reusable according to the FAIR principles (Wilkinson et al., 2016). For the same 

reason, scientific journals often require deposition of raw sequencing data and 

downstream results in public repository. This means that other scientists may access 

these data and materials in the future to conduct further research on these subjects. 

Integrative data analysis is an emerging field of study that investigates strategies, 

algorithms and implementations of combining data from different sources and applies 
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systems biology approaches in solving complex biomedical problems. Genomics, 

transcriptomics, proteomics and metabolomics are being combined in a systems 

biology approach to understand the biological system as a whole rather than focusing 

on individual factors. Being at the core of this new discipline, genomics approaches 

are now converging rapidly through the use of next-generation sequencing which 

enables, via a single technology, the acquisition of large datasets on genetic markers, 

epigenetic markers, transcriptome profiles, translational profiling, as well as 

relationships amongst these. The integration of such genomic datasets with proteomic 

and metabolomic data require the development of novel approaches for meta-analysis. 

Multi-omics studies are highly promising but also challenging as profound coordinated 

efforts in bioinformatics and biostatistics are required to connect the individual factors. 

One major challenge is represented by the heterogeneity of data formats that are 

generated by the different omic- technologies. Integration of more than two different 

omics data formats is still not routine and requires optimized software tools together 

with well-trained computational scientists to generate comprehensible workflows for 

the analysis of big data.  
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Diatoms: a biological model for regulatory genomics. 

 

Marine diatoms are unicellular photosynthetic algae and a key phytoplankton 

group in the ocean (Armbrust, 2009). They play a fundamental role in global carbon 

cycles as they are estimated to be responsible for about 20% of global primary 

productivity (Armbrust, 2009; Smith et al., 2015). Diatoms have played a decisive role 

in the ecosystem for millions of years for the enormous amount of oxygen they 

generate on earth and for being the most important sources of biomass in oceans. These 

single-celled organisms are being studied in several commercial and industrial 

applications for the production of carbon-neutral fuels, pharmaceuticals, foods, 

biomolecules, nanomaterials, and for the bioremediation of contaminated water 

(Bozarth, Maier, & Zauner, 2009). Diatom cells are surrounded by a silica wall known 

as a “frustule” made up of two valves called “thecae”, that typically overlap one 

another. Based on the shape of their frustule diatoms are classified into: 1) Centrales, 

centric diatoms that are radially symmetrical; 2) Pennales, pennate diatoms that are 

bilaterally symmetrical (Armbrust, 2009). The frustules of death diatoms sink to the 

bottom of the oceans and decomposes into diatomite, a remnant material that is used 

commercially as filters, mineral fillers, insulation material, insecticide, anti-caking 

agents, or fine abrasive. These simple eukaryotic organisms are of interest to many 

biologists for their extraordinary capacity to rapidly adapt to new environments. They 

represent an unique evolutionary model for investigating the role of genomic 

sequences in evolution (Russo, Annunziata, Sanges, Ferrante, & Falciatore, 2015).  
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The study described in Chapter II exemplifies the application of genomics and 

bioinformatics to the study of short tandem repeats (STRs) in diatoms. Specifically, it 

provides an alternative to the classical view of evolution in which changes occur via 

the accumulation of single point mutations by extending it to the inclusion of 

additional mechanisms that allow for the rapid gain, loss, and rearrangement of 

significant portions of the genome for instance through dynamic expansion or  

contraction of short repetitive sequences. These dynamic modifications of the genomes 

are truly fascinating as they enable simple organisms like protists to evolve rapidly in 

response to environmental changes, accounting for their wide dissemination in the 

biosphere. The study identified and characterized STR sequences in all the diatom 

genomes sequenced so far, including the Pennate diatoms Phaeodactylum tricornutum 

(Bowler et al., 2008), Pseudo-nitzschia multistriata (Basu et al., 2017) and 

Fragilariopsis cylindrus (Mock et al., 2017), and the centric diatom Thalassiosira 

pseudonana (Armbrust et al., 2004) (Figure 3). Results show, for the first time, that 

these genomes are enriched in triplet repeats that are mostly located in gene regulatory 

regions like promoters. 
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Figure 3. Marine diatoms sequenced to date. 
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Understanding the biology of the sleeping malaria parasite. 

 

Malaria is a life-threatening disease transmitted to humans through the bite of 

an infected Anopheles mosquito carrying the Plasmodium parasite. More than 100 

species of Plasmodium have been identified so far, of which only four have long been 

recognized to infect humans: P. falciparum, P. vivax, P. ovale and P. malariae.  

At the beginning of the parasite life cycle, female mosquitoes take blood meals to carry 

out egg production (Figure 4). Once injected in the human skin, the sporozoites rapidly 

leave the injection site and migrate through the bloodstream to the liver, where they 

invade hepatocytes and develop into the growing liver stage, the “schizonts”. P. vivax 

and P. Ovale, however, can form dormant liver stages called “hypnozoites” that can 

re-activate months or years later giving rise to clinical malaria (relapses) without being 

exposed to new infectious mosquito bites. The schizonts parasites grow and multiply 

first in the liver cells and then in the red blood cells. When growing inside these cells 

the parasites destroy them, releasing daughter parasites called “merozoites” that 

continue the cycle by invading other cells. Malaria symptoms (like fever, headache, 

nausea, vomiting, abdominal pain, diarrhea, among others) are caused by the blood 

stage parasites. In the blood stream the parasites enter the asexual cycle. There the new 

forms termed “gametocytes” can be picked up by a female Anopheles mosquito during 

a new blood meal to start another cycle of growth and multiplication in the mosquito. 

Thus the mosquito acts as a vector carrying the disease from one human to another. 
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P. vivax is the major cause of malaria outside of Africa with an estimated 13.8 

million malaria cases globally in 2015 (World Health Organization (WHO), 2015). 

Eradication of vivax malaria will only be feasible if effective and well-tolerated 

therapies kill hypnozoites and hence prevent disease relapse. Recently, the FDA 

approved tafenoquine as a radical cure therapy and prophylactic for P. vivax malaria 

infection (Frampton, 2018). This represents a significant advance in the field as 

tafenoquine is administered as a single dose regimen, which is a very important 

improvement for patient compliance when compared to the 14-day long drug regimen 

of its closely related predecessor primaquine. Like primaquine, tafenoquine cannot be 

administered to patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency, 

a common genetic disorder in malaria endemic countries, due to serious adverse side-

effects and life-threatening drug-induced hemolysis (Mazier, Rénia, & Snounou, 2009; 

Wells, Burrows, & Baird, 2010). For this reason, new drugs are urgently needed to 

achieve malaria elimination.  

The second study presented in Chapter III describes the application of genomics and 

bioinformatics for the transcriptomic analysis of the malaria hypnozoites. Using a 

combination of genetically engineered fluorescent P. cynomolgi parasites (the P. vivax 

sister parasites displaying identical biology in the monkeys), in vitro liver stage 

culture, cell-sorting and RNA-seq, primary monkey hepatocytes were profiled six and 

seven days after infection with the Plasmodium parasites to investigate the hypnozoite 

biology. The analysis of the sequencing data revealed that hypnozoites have a reduced 

transcriptional rate and express a lower number of genes compared to schizonts, the 

hepatic forms of the developing parasite. While the schizonts express 91% of the 

Plasmodium cell pathways, the hypnozoites globally repress the gene expression to a 
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minimum number of biological pathways that allow only the maintenance of the basic 

cellular functions necessary for its survival in the host hepatocyte. This data set and 

the analyses carried out represent a precious resource for the discovery of new vaccines 

and effective treatments to combat malaria. 
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Figure 4. Malaria parasite life cycle. 
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Hepatocellular carcinoma: the third leading cause of cancer 

deaths worldwide. 

 

Representing more than 90% of all primary liver malignancies, hepatocellular 

carcinoma (HCC) is one of the few cancer types with rising incidence and mortality. 

This cancer occurs primarily in patients affected by chronic liver disease and cirrhosis. 

Although still under investigation, it is hypothesized that hepatic stem cells are the 

cells that give rise to this disease. Available treatments include only three approved 

systemic agents, namely sorafenib and regorafenib (both kinase inhibitors) and 

nivolumab (immune checkpoint inhibitor). Despite the extensive genomic and 

transcriptomic characterization of the features and diversity of HCC, there is still a 

urgent need for the identification of novel therapeutic targets in HCC and of robust 

biomarkers of response to therapy. 

Cancer is a genetic disease caused by accumulation of DNA mutations and epigenetic 

alterations leading to uncontrolled cell proliferation and tumor formation. Genes 

involved in liver metabolism, Wnt and p53 signalling have been shown to be 

recurrently altered in HCC (Ahn et al., 2014; Ally et al., 2017; Fujimoto et al., 2012; 

Guichard et al., 2012; Hutter & Zenklusen, 2018; Schulze et al., 2015). CTNNB1 (β-

catenin) and TP53 (p53) are the most frequently mutated protein-coding genes, both 

mutated in 20–40% of HCC patients (Ahn et al., 2014; Ally et al., 2017; Fujimoto et 

al., 2012; Guichard et al., 2012; Hutter & Zenklusen, 2018; Schulze et al., 2015). TP53 

is also the most frequently mutated gene in human cancer (Kandoth et al., 2013) 
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(Figure 5). The p53 protein modulates multiple cellular functions, including 

transcription, DNA synthesis and repair, cell cycle arrest, senescence and apoptosis 

(Vogelstein, Lane, & Levine, 2000). Mutations in TP53 can abrogate these functions, 

leading to genetic instability and progression to cancer (Vogelstein et al., 2000). 

The third study, presented in Chapter IV, exemplifies the use of genomics and 

bioinformatics to discover new molecular signals in the patients affected by 

hepatocellular carcinoma and bearing mutations in the TP53 gene. Taking advantage 

of the public RNA-seq data sets from The Cancer Genome Atlas (TCGA), the study 

defines the spectrum of the TP53 somatic mutations in HCC patients and its 

association with clinicopathologic features. Four distinct subsets of TP53 mutations, 

each characterized by specific molecular signals, were identified from 373 HCC cases. 

Patients with TP53 mutations had worse survival than patients with wild-type TP53. 

The study indicated that some genetic heterogeneity of the TP53 mutation exists in 

HCC cancer and that mutations in TP53 should be considered for the molecular 

characterization of HCC.  
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Figure 5. The 127 Significantly Mutated Genes (SMGs) from 20 cellular processes in cancer 

identified in 12 cancer types. 
 

Source: Kandoth et al, Nature, 2013. 
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Chapter II 

 
Short tandem repeats are enriched in promoters of diatom 
genes 
 

 

Abstract  

 

To date, short tandem repeats (STRs) remain understudied in lower eukaryotes. Here, 

we present the first genome-wide survey of STRs in four marine diatom genomes, 

including the pennate diatoms Phaeodactylum tricornutum, Pseudo-nitzschia 

multistriata and Fragilariopsis cylindrus and the centric diatom Thalassiosira 

pseudonana. For the first time we discover that the most common STRs in diatom 

genomes are triplets, of which AAC is the most abundant. We found that over 75% of 

STRs are located in non-coding regions, particularly in promoters and in intronic 

regions. AAC is the most frequent repeat in the promoters of all diatom species, while 

AGT and ACT are copious only in P. multistriata promoters and TATA-box like DNA 

motifs (like AAT and ATT) only in F. cylindrus promoters. The presence of these 

repeats in diatom promoters might lead, in the cases of their expansion, to the gain of 

regulatory motifs upstream of the TSS or to their loss in cases of reduction. These 

sequences have therefore the capability to modulate gene expression. This dataset is a 

valuable resource to investigate transcriptional regulation in lower eukaryotes. 
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Introduction 

 

Tandem repeats are an abundant class of genomic sequences that mutate faster 

than the surrounding genome (Lynch et al., 2008; Richard, Kerrest, & Dujon, 2008). 

At each cell division, these unstable genomic elements may change in the number of 

repeat units during DNA replication. These sequences, formerly-thought of as junk 

DNA, became of age as they are used as genomic markers and DNA fingerprints, are 

involved in human disease, and are linked to the evolution of coding and regulatory 

regions (Gemayel, Vinces, Legendre, & Verstrepen, 2010). Tandem repeats are 

composed of a short DNA motif, the so-called repeat unit, that is repeated several times 

head-to-tail. Based on the size of the repeat unit (or period size), tandem repeats are 

classified into microsatellites (unit size <10nt; also known as short tandem repeats, 

STRs) or minisatellites (unit size ³10nt). Microsatellites are the most prevalent types 

of repeats (Ellegren, 2004; Gemayel et al., 2010).  

Recent studies have shown that STRs are ubiquitous and abundant in higher eukaryotic 

genomes (Gemayel et al., 2010). They occupy 3% of the human genome and are 

mainly located in coding regions and in gene expression regulatory regions like 

promoters (Sawaya et al., 2013). STRs located in such functional regions can modulate 

phenotypes via expansion or contraction of their repeat units thus potentially leading 

to an evolutionary advantage (Iii, Hammock, Hannan, & King, 2008) or even the onset 

of human diseases (Campuzano et al., n.d.; Day JW, n.d.; Gijselinck et al., 2012; 

Maclean, Warne, & Zajac, 1996; Orr & Zoghbi, 2007; Richard et al., 2008; Sawaya et 

al., 2013; Tabolacci, Palumbo, Nobile, & Neri, 2016).  
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STRs have also been observed in promoters of other eukaryotic genomes including 

single-celled organisms like yeast (Vinces, Legendre, Caldara, Hagihara, & 

Verstrepen, 2011) and complex organisms like birds (Abe & Gemmell, 2016), dogs 

(Eo et al., 2016), monkeys (Ohadi M, Valipour E, Ghadimi-Haddadan S, Namdar-

Aligoodarzi P & Kowsari A, Rezazadeh M, Darvish H, 2014) or humans (Sawaya et 

al., 2013). Vinces et al. found that STRs can affect gene expression by acting as 

nucleosome inhibitory sequences that maintain an open chromatin structure in specific 

regions of the promoter (Vinces et al., 2011). These authors propose a possible role of 

tandem repeats as nucleosome positioning elements in eukaryotes (Vinces et al., 2011). 

Similarly, Sawaya et al. described that STRs are abundant in human promoters, often 

highly conserved, and enriched near the transcriptional start sites (TSS) of key 

regulatory genes involved in growth and development. These authors suggest that 

promoter STRs have the potential to affect promoter function by generating mutations 

in regulatory elements, which may ultimately lead to variation in phenotypes (Sawaya 

et al., 2013). Finally, Sonay et al. showed that tandem repeats have taken an 

evolutionary role in gene expression differences in human and ape grape populations 

since genes with tandem repeats had higher expression divergence than genes without 

repeats, in the following order of decreasing divergence: repeats in 3’UTR, exons, 

promoters, 1st intron, and other introns (Sonay et al., 2015). While these findings 

highlight the potential contribution of STRs to evolution, they mostly refer to studies 

in higher eukaryotes. However, it remains still unknown whether STRs are also present 

and possibly control gene expression in simpler eukaryotic organisms like protists.  

Diatoms are unicellular photosynthetic algae and a key phytoplankton group in the 

contemporary ocean (Vardi, Thamatrakoln, Bidle, & Falkowski, 2009). These species 
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played a decisive role in the ecosystem for millions of years as one of the foremost set 

of oxygen synthesizers on earth and as one of the most important sources of biomass 

in oceans (Armbrust, 2009). Diatoms are used in commercial and industrial 

applications as the carbon neutral synthesis of fuels, pharmaceuticals, health foods, 

biomolecules, materials relevant to nanotechnology, and bioremediators of 

contaminated water (Bozarth, Maier, & Zauner, 2009). These single-celled organisms 

show extraordinary adaptation capacities to rapidly changing environments and 

therefore represent an important evolutionary model for investigating the role of 

tandem repeats in evolution (Russo, Annunziata, Sanges, Ferrante, & Falciatore, 

2015). Here we provide the first genome-wide survey of STRs in diatoms. Using an 

in-house bioinformatic workflow, we identified STRs in the four diatom genomes 

sequenced to date.  

 

Methods 

 

Identification of short tandem repeats in diatom genomes 

 

For the identification of STRs in whole genomes, we gathered genome FASTA 

files and annotation GTF files of the four diatoms listed in Table 1. The P. tricornutum 

and T. pseudonana reference files were retrieved from the Protists Ensembl database 

(http://protists.ensembl.org/) (Kersey et al., 2016); the F. cylindrus genome was 

obtained from the Joint Genome Institute (JGI) Genome Portal 

(http://genome.jgi.doe.gov) (Nordberg et al., 2014); finally, the P. multistriata 
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reference genome was recently sequenced at our institute (Basu et al., 2017). Diatom 

genomes were interrogated for the presence of STRs using the Phobos software version 

3.3.12 (Mayer, 2007) with default options except for minUnitLen=2 to exclude 

homopolymer repeats and outputFormat=3 to generate the one-per-line tabular 

format. The software selected STRs with a minimum length of 8 bp and a unit size of 

at least 2 (e.g. from 4 dinucleotides, 3 trinucleotides and 2 tetranucleotides). We wrote 

a Perl script to parse this output and to summarize STR features such as the 

chromosomal location, repeat size, copy number, alignment score, consensus and 

sequence. As a quality control, we visually inspected examples of tandem repeats from 

P. tricornutum and T. pseudonana using the Ensembl genome browser (Kersey et al., 

2016). In addition, the presence of specific STRs (e.g. CCTAAC repeats known to be 

located at the telomere regions) was confirmed using Ensembl karyotype plots to 

assess the correctness of our analysis. GTF files from the four diatoms were used as 

the source to annotate the repeats. For each STR, we used intersectBed from the 

BEDTools suite (Quinlan & Hall, 2010) to verify if it overlapped a promoter region 

defined as 500 bp upstream of the transcriptional start site (promoter-TSS), a gene 

exon (exon), a gene intron (intron), or none of the above features (intergenic). The 

STR occurrences were then normalized by the size of the feature as annotated in the 

reference genomes. Finally, we used genomecov from the BEDTools suite to compute 

the coverage of the repeat features in the region surrounding the gene TSS. The 

distribution plots presented in this article were generated with scripts written in the R 

language (R Core Team, 2013).  
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Identification of short tandem repeats in diatom promoters 

 

An in-depth analysis was carried out in promoter regions of each diatom 

genome. Here, we defined promoters as the sequences of the 500 bp upstream of each 

gene TSS, collected in the same orientation with respect to the coding strand of the 

related gene. Each promoter sequence was then randomized to obtain 1,000 random, 

shuffled sequences. In each randomization, the sequence of the promoter was shuffled 

so that we maintained the same base composition and length but created a non-

biologically meaningful sequence. Promoter and shuffled sequences were inspected 

for the presence of STRs by running Phobos version 3.3.12 (Mayer, 2007) using the 

options reportUnit=1 to conduct a strand-specific analysis, minUnitLen=2 to exclude 

homopolymer repeats, and outputFormat=3 to generate the one-per-line output format 

that is easier to parse. As in the genome-wide analysis, the software selected STRs 

with a minimum length of 8 bp and a unit size of at least 2 (e.g. from 4 dinucleotides, 

3 trinucleotides and 2 tetranucleotides). To assess the statistical enrichment of STRs 

in promoters, the occurrences of each STR were counted in both the real and the 

randomized data sets, and the corresponding statistics were calculated. Calculations 

based on the shuffled promoters represent the 'expected' frequencies of the STRs based 

solely on the nucleotidic composition and were used to calculate the Z-scores, while 

the calculations based on real promoters represent the 'observed' occurrences. 

Functional enrichment analysis was conducted performing the Fisher exact test 

comparing for each class the proportion of class specific genes in the total set of 

annotated genes with the proportion of class specific genes in the set associated to the 
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specific promoters. P-values were corrected using the Benjamini and Hochberg (BH) 

method. 

A similar strand-specific STR analysis was performed for the genomic regions 

surrounding the gene TSS to generate the metagene plots shown in Figure 4. 
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Results 

 

Diatom genomes are enriched in triplet repeats 

 

To generate a comprehensive catalogue of STRs in marine diatoms, we 

surveyed the genomes of four different species: i) the centric diatom Thalassiosira 

pseudonana, ii) the pennate diatom Phaeodactylum tricornutum, iii) the psychrophilic 

diatom Fragilariopsis cylindrus, and iv) the neurotoxin domoic acid-producing 

pennate diatom Pseudo-nitzschia multistriata. We found that the total number of STRs 

varies enormously among the species, ranging from a minimum of 51,042 sequences 

in P. tricornutum to a maximum of 472,979 in F. cylindrus (Table 1). Not surprisingly, 

we found that the total number of STRs increases with the genome size (Table 1). 

Over 86% of the STRs are perfect, pure repeats. In order to verify the correctness of 

our predictions, we searched for and confirmed the presence of CCTAAC repeats that 

are normally located at the telomere regions of each chromosome. From the STR 

analysis we gathered the full list of diatom repeats along with their chromosomal 

location, repeat size, copy number, alignment score, consensus and sequence.  
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 Phaeodactylum 
Tricornutum 

Thalassiosira 
Pseudonana 

Pseudo-
nitzschia 

multistriata 

Fragilariopsis 
cylindrus 

Genome ASM15095v2, Feb 
2010 

ASM14940v2, May 
2014 Psmu1.4, Jul 2015 CCMP1102 v1, 

Nov 2008 

  Length 27,568,093 32,437,365 59,304,822 80,540,407 

  Scaffolds 89 64 1,099 271 

  GC % 47.46 45.59 45.48 38.92 

  Genes 12,392 11,870 12,008 37,171 

  Source Ensembl Ensembl Internal JGI 

     

STRs perfect imperfect perfect imperfect perfect imperfect perfect imperfect 

  Di-nucleotide 5,101 270 7,210 430 8,526  649 26,629 4,047 
  Tri- 14,263 824 40,617 3,198 65,289 9,390 169,655 27,268 
  Tetra- 7,769 423 10,380 634 22,745 2,416 49,622 5,416 
  Penta- 7,203 262 11,482 624 26,711 3,998 50,793 7,420 
  Hexa- 11,564 466 21,260 955 40,328 6,422 85,833 14,930 
  Hepta- 1,635 65 3,838 202 10,030  904 13,734 1,551 
  Octa- 573 40 796 135 2,546  385 5,055  732 
  Nona- 394 40 795 80 2,958  845 6,842 1,840 
  Deca- 100 50 120 22  896  353 1,141  471 
  Total  
   (%) 

4,602  
(95.2) 

2,440  
(4.8) 

96,498 
(93.9) 

6,280  
(6.1) 

180,029 
(87.7) 

25,362 
(12.3) 

409,304 
(86.6) 

63,675 
(13.4) 

     
Total STRs 51,042 102,778 205,391 472,979 

Total STRs 
per genome 
length (kb) 

 
1.85 

 
3.17 

 
3.46 

 
5.87 

 

Table 1. Summary of short tandem repeats detected in diatom genomes. 
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Typically, STRs can vary in the size and in the number of copies of their repeat units. 

For the first time, we report that the most common STRs found in diatoms are DNA 

motifs with a repeat unit of 3 or 6 bases (Table 1; Fig. 1A). Triplet repeats alone 

account for almost one-third of the total STR sequence set (from 29.6 % in P. 

tricornutum to 42.6 % in T. pseudonana); while, together, triplets and hexaplets 

represent more than half of the repeat set. Most of the diatom STRs have up to 5 repeat 

copies, and only a small fraction more than 6 and up to 146 (P. tricornutum: 4.1%; T. 

pseudonana: 4.2%; P. multistriata: 7.7%; F. cylindrus: 13.2%) (Fig. 1B). In all species 

inspected, around half of the STRs has 3 repeat copies (Fig. 1B).  
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Figure 1. Characterization of STRs in diatom genomes. A) STR Distribution by Unit Size;  

B) STR Distribution by Repeat Number. 
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The sequence AAC is the most frequent repeat with a total of 61,199 occurrences 

across all diatoms. AAC occupies the first position in T. pseudonana and in F. 

cylindrus, and the second position in P. tricornutum and in P. multistriata (Table 2). 

This result extends our previous findings that the genome of F. cylindrus is enriched 

in CAA repeats (equivalent to AAC) (Mock et al., 2017). The second most prevalent 

repeat in diatoms is AAG, which is at the second position in T. pseudonana, at the 

third position in P. tricornutum and in P. multistriata, and at the fourth position in F. 

cylindrus, with a total of 43,987 occurrences collectively. Along with repeats that are 

highly frequent in all diatoms, we also found repeats that are at the top position in one 

species only. For instance, ACG is at the first position in P. tricornutum, but at the 

fifth position in P. multistriata and at the sixth position in T. pseudonana and in F. 

cylindrus. Likewise, ACT is at the first position in P. multistriata, but at the fifth, 

eighth and ninth positions in F. cylindrus, T. pseudonana and P. tricornutum, 

respectively. Finally, the AAT repeat is at the third position in F. cylindrus with 32,063 

occurrences but at the very last position in P. tricornutum, T. pseudonana and P. 

multistriata. Taken together our results indicate for the first time that diatom genomes 

are highly enriched in triplet repeats. 
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Table 2. Triplet STRs identified in diatom genomes. 

 Unit Number 
of STRs 

Avg Repeat 
Number 

StdDev Repeat 
Number 

Phobos 
total score 

P. tricornutum  ACG 2,851 3.51 0.86 20,176 
AAC 2,435 3.86 1.94 19,352 
AAG 2,293 3.34 0.78 15,418 
AGC 1,510 3.33 0.65 10,274 
CCG 1,395 3.28 0.55 9,236 
ACC 1,378 3.45 0.85 9,659 
ATC 1,179 3.37 0.87 8,034 
AGG  902 3.36 0.77 6,177 
ACT 781 3.69 1.93 5,750 
AAT 363 3.25 0.62 2,382 

T. pseudonana AAC 9,118 3.94 3.11 72,909 
AAG 6,817 3.43 0.85 47,302 
AGG 6,379 3.56 1 45,831 
ATC 5,925 3.55 0.97 42,873 
AGC 4,336 3.67 1.21 33,056 
ACG 4,336 3.63 0.99 32,016 
ACC 4,149 3.61 1.02 30,461 
ACT 1,337 4.03 7.38 10,229 
CCG 903 3.43 0.71 6,359 
AAT 515 3.17 0.38 3,313 

P. multistriata ACT 16,239 5.29 6.01 175,874 
AAC 12,845 4.42 3.94 116,914 
AAG 9,469 3.58 1.25 67,358 
AGC 8,276 4.07 2.27 68,513 
ACG 6,746 4 1.73 54,984 
ACC 5,838 3.65 1.55 43,735 
AGG 5,507 3.58 1.45 40,123 
ATC 4,288 3.71 3.56 32,075 
CCG 3,371 3.49 0.8 23,949 
AAT 2,100 3.51 1.42 14 847 

F. cylindrus AAC 36,801 4.56 2.24 344,162 
ATC 33,137 4.42 2.24 296,677 
AAT 32,063 4.12 1.96 265,976 
AAG 25,408 4.09 1.78 210,149 
ACT 18,782 4.28 1.88 166,747 
ACG 17,029 4.37 1.92 155,388 
AGC 14,541 4.55 2.22 139,321 
ACC 10,979 4.01 1.51 91,488 
AGG 6,609 3.96 1.54 54,975 
CCG 1,574 3.7 1.06 12,133 
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STRs are abundant in diatom promoters and introns 

 

To further characterize the repeat sequence set, we examined its distribution 

with respect to the genomic features by determining the occurrences of STRs in exons, 

introns, promoters (i.e. the 500 nucleotides upstream of gene TSS features) and 

intergenic regions. We identified highest occupancy in “promoter-TSS” regions in all 

species with the exception of F. cylindrus where STRs are slightly more abundant in 

introns (Fig. 2A). Through the visual inspection of the 20,000 nucleotides centered 

around the TSS of all diatom genes, we confirmed that STRs are preferentially located 

in promoters (Fig. 2B). We also noted that the density of STRs decreases near the gene 

TSS in all species (Fig. 2B). As second category after promoters-TSS, we found a high 

number of STRs in diatom “introns” (Fig. 2A). Further analyses indicated that STRs 

are significantly over-represented in the first introns of genes of T. pseudonana (BH-

FDR adjusted p-value = 2.85 E-14), P. multistriata (BH-FDR adjusted p-value =1.38 

E-13) and F. cylindrus (BH-FDR adjusted p-value = 1.16 E-12), and to some extent of 

P. tricornutum (BH-FDR adjusted p-value = 0.15). Instead there was no significant 

enrichment in the other introns (e.g. BH-FDR adjusted p-value = 1 in non-first introns 

of all diatom species). Finally, after promoters and introns, STRs occupy “exons” as 

third category, and “intergenic regions” as fourth and last category (Fig. 2A). Taken 

together these results show that STRs are very abundant in promoters and introns of 

diatoms and that they generally present the following decreasing order of occupancy: 

promoter-TSS, introns, exons, and intergenic regions.  
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Figure 2. Distribution of STRs in annotated regions. A) Number of STRs located in exons, introns, 
promoter-TSS and intergenic regions. Values are normalized by feature size and reported in kilobases 

(kb). B) STR Distribution within the 20kb region surrounding gene TSS features. 
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Diatom promoters are enriched in AAC repeats 

 

To investigate whether the strong signal in promoters was determined by one 

or more DNA repeat motifs, we refined our search in the 500 bp upstream of each TSS. 

We compared the STR occurrences found in each promoter sequence against those 

measured in a set of 1,000 shuffled sequences to assess the significance of the 

enrichment (Fig. 3A). Over two-thirds of diatom promoters harbor at least one STR, 

ranging from 68.3% promoters in P. tricornutum to 93.5% in F. cylindrus. Like for the 

genome-wide analysis, triplet repeats are very abundant also in promoters representing 

almost one third of the STRs (42,944 out of 147,843 total promoter STRs) (Fig. 3B); 

however, while triplets are the top class in T. pseudonana and in F. cylindrus 

promoters, tetra- and penta-nucleotide repeats are respectively more abundant than 

triplets in P. tricornutum and in P. multistriata promoters (Fig. 3B). Among triplets, 

AAC is the most frequent motif in P. tricornutum, in T. pseudonana and in F. cylindrus 

with a clear and sharp peak before the TSS (Fig. 3C), but not in P. multistriata where 

AGT is at the top (Fig. 3C). Among tetraplets, the top repeats are ACGT in P. 

multistriata, AGCT in P. tricornutum, AAAT in F. cylindrus and AAAC in T. 

pseudonana. The latter is also abundant in F. cylindrus. Among pentaplets, ACCGT 

and ACGGT are most abundant in P. multistriata with 1,512 counts overall (Fig. 3C), 

while other top frequent pentaplets are ACCCT in P. tricornutum, AACAC in T. 

pseudonana and AAAAC in F. cylindrus (Fig. 3C). 
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Figure 3. STR analysis in diatom promoters. A) Selection of promoters for STR analysis. B) 
Distribution of promoter-STRs by Unit Size. 3) Distribution around the TSS features of most frequent 
tri-, tetra- and penta-promoter STRs. 
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We further examined the promoter STRs focusing only on triplets. Hierarchical 

clustering analysis of STR occurrences indicated two similarity groups, with P. 

tricornutum, T. pseudonana and F. cylindrus on one side and P. multistriata alone on 

the other (Fig. 4). For comparison, we obtained similar results on tetraplets. AAC is 

the most statistically over-represented triplet in promoters (BH-FDR adjusted p-value 

= 0 in all diatoms) with a total of 6,088 occurrences (Fig. 4). This motif is at the top 

position in P. tricornutum, in T. pseudonana and in F. cylindrus but only third in P. 

multistriata. The relative distribution of AAC in the 4,000 nucleotides around the TSS 

confirms the strong enrichment in promoters of P. tricornutum, T. pseudonana and F. 

cylindrus (Fig. 3C; Fig. 4).  

 

Figure 4. Heatmap representation of triplet repeat occurrences found in promoters. Rows represent all 
possible triplet repeats; columns represent all the diatom species under investigation. For each species 
(e.g. within each column), a white-to-red color gradient shows the number of STR occurrences (white 
= zero STRs; dark red = highest number of repeat occurrences found in that specific species). 
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Other triplets were highly frequent only in one or two species. For instance, we found 

a specific enrichment of A[CG]T motifs in P. multistriata: AGT was first in P. 

multistriata but fifth, eleventh and eighteenth in P. tricornutum, F. cylindrus and T. 

pseudonana; ACT was second in P. multistriata but sixth, eighth and seventeenth in 

P. tricornutum, F. cylindrus and T. pseudonana. The AGT and ACT motifs together 

account for one-third of all triplets located in P. multistriata promoters (Fig. 4). As 

additional example, GTT was second in P. tricornutum and in T. pseudonana, fourth 

in P. multistriata, but only ninth in F. cylindrus (Fig. 4). Finally, several T and A rich 

motifs were extremely abundant in F. cylindrus promoters (Fig. 4): AAT was second 

in F. cylindrus but ninth in P. multistriata and twentieth in both P. tricornutum and T. 

pseudonana, AAG was fourth in F. cylindrus but eleventh, thirteenth and fifteenth in 

T. pseudonana, P. tricornutum and P. multistriata, and ATT was sixth in F. cylindrus 

but tenth, eighteenth and nineteenth respectively in P. multistriata, P. tricornutum and 

T. pseudonana. Interestingly, we found AAT and ATT triplets significantly 

represented in F. cylindrus promoters (ATT: 1,806 observed vs 564.6 expected with 

BH-FDR adjusted p-value = 0, and AAT: 2,844 observed vs 748.9 expected with BH-

FDR adjusted p-value = 0) and P. multistriata promoters (ATT: 182 observed vs 163.4 

expected with BH-FDR adjusted p-value = 0.066, and AAT: 202 observed vs 165.8 

expected with BH-FDR adjusted p-value = 0.0033), but not in P. tricornutum 

promoters (ATT: 64 observed vs 112.18 expected with BH-FDR adjusted p-value = 1, 

and AAT: 42 observed vs 112.91 expected with BH-FDR adjusted p-value = 1) and T. 

pseudonana promoters (ATT: 93 observed vs 90.4 expected with BH-FDR adjusted p-
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value = 0.41, and AAT: 88 observed vs 110.8 expected with BH-FDR adjusted p-value 

= 0.90).  

Taken together, we conclude that AAC is by far the most prevalent repeat motif in 

diatom promoters, although AGT and ACT are the most abundant triplets in P. 

multistriata promoters (whereas AAC is only third) and AAT and ATT (i.e. TATA-

box like DNA motifs) are very frequent in F. cylindrus promoters. 
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Discussion 

 

The current study presents the first genome-wide catalogue of short repetitive 

elements in lower eukaryotes such as marine diatoms. Because repetitive sequences 

are more difficult to detect using standard high-throughput sequencing technologies 

(Bahlo et al., 2018), the study of short tandem repeats (STRs) has been so far neglected 

compared to the one of single nucleotide polymorphisms (SNPs) and short insertions 

and deletions (InDels). As a result, our collective knowledge of variations in STRs 

remains scarce.  

Recent studies indicated that STRs are located both in genes and in non-coding regions 

(Gemayel et al., 2010; Sawaya et al., 2013). In higher eukaryotic genomes, STRs are 

also found in promoters (Sawaya et al., 2013). The repetitive nature of these sequences 

might induce strand-splippage events in DNA replication resulting in mutations in the 

number of repeats with possible effects on the phenotype. In this light, expansion or 

contraction of promoter STRs might affect gene expression through several possible 

mechanisms: they can form transcription factor binding sites (Contente, Dittmer, 

Koch, Roth, & Dobbelstein, 2002), can alter spacing between regulatory elements 

(Rockman & Wray, 2002), or modulate epigenetics via DNA methylation (Quilez et 

al., 2016). These unstable repetitive elements in promoters are very important as they 

may facilitate evolutionary changes in phenotypes (Gemayel et al., 2010). 

The advent of high-throughput sequencing technologies has enabled the development 

of novel genomic resources. The genome sequences of four marine diatom species 

have been released for public use in recent years. The small genomes of Thalassiosira 
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pseudonana and Phaeodactylum tricornutum were the first ones to be sequenced and 

provided an unprecedented wealth of information about diatom biology and their 

evolution (Armbrust, 2009; Bowler et al., 2008). In addition, the genome sequences of 

Fragilariopsis cylindrus and Pseudo-nitzschia multistriata have recently provided 

insights into genome evolution of diatom species that are adapted to live in extreme 

conditions of the sea ice in the Southern Ocean (Basu et al., 2017; Mock et al., 2017).  

Our genome-wide analysis reveals for the first time that the genomes of these 

unicellular photosynthetic eukaryotes are rich in triplet repeats that are mostly located 

in non-coding regions, particularly in promoters. This finding is novel and is confirmed 

in all four diatoms regardless of their genome size. Promoter repeats are very abundant 

within the 500 nucleotides upstream of the gene TSS features and comprise over-

represented DNA motifs. Overall, AAC is the most statistically over-represented 

triplet in promoters. This motif is at the top position in P. tricornutum, in T. 

pseudonana and in F. cylindrus but only third in P. multistriata. Noteworthy, AGT 

and ACT are the most abundant triplets in P. multistriata promoters, while AAT and 

ATT (TATA-box like DNA motifs) are also very frequent in F. cylindrus promoters.  

We hypothesize that the significant enrichments of STRs in the promoters of diatoms 

might be important for the regulation of transcription. Based on this assumption, we 

are currently testing some of these genomic elements to understand if different number 

of copies of the simple repeats into STRs might modulate transcriptional levels. From 

what we are learning from the sex locus of Pseudo-nitzschia multistriata it is evident 

that STRs are at least linked to specific gene expression (Russo et al, in revision). In 

order to prove the molecular function of these hypothetic regulatory sequences, we 



 60 

selected promoters of genes of interest for a modular cloning analysis in 

Phaeodactylum tricornutum cells (Table 3).  

 

Promoter ID Gene ID, Description STR 
Star
t  

STR 
End  

Uni
t 
Size 

Repeat 
Numbe
r 

Repeat 
Unit 
 

Perfectio
n 

32_76837_77337_+ Phatr3_J50610, Predicted protein  342 436 3 31.667 AAC 100 

bd_31x35_90668_91168_
+ 

Phatr3_EG02359, MPDC (mevalonate 
diphosphate decarboxylase) 

415 457 2 21.5 CT 97.674 

bd_31x35_90668_91168_
+ 

Phatr3_EG02359, MPDC (mevalonate 
diphosphate decarboxylase) 

461 481 2 10.5 AC 95.238 

bd_31x35_90633_91133_- Phatr3_EG02362, POLA (DNA 
polymerase) 

10 52 2 21.5 AG 97.674 

bd_31x35_90633_91133_- Phatr3_EG02362. POLA (DNA 
polymerase) 

450 490 3 13.333 AAC 92.5 

 

Table 3. Promoter STRs selected for modular cloning analysis. 

 

 

First, we chose the promoter of the gene Phatr3_J50610 which is perhaps the most 

important for several reasons: 1) it contains the longest STR with the repeat AAC 

which also very significant in many other diatom species, therefore testing this 

promoter might give us useful information on STRs in diatoms in general; 2) it is long 

and there are variations in its length reported in Ensembl which means that there exists 

several alleles and therefore it could be easy to validate the regulatory activity of the 

reference sequence as well as of the other alleles. Second, the promoter of the 

gene Phatr3_EG02362 which is annotated as DNA polymerase gene and has a STR of 

decent length. Third, the promoter of the gene Phatr3_EG02359 which is annotated as 

the mevalonate diphosphate decarboxylase (MPDC), a gene involved in the isoprenoid 

synthesis, and has a STR of good size. It is also important to note that these two genes, 

Phatr3_EG02362 and Phatr3_EG02359, are located in the same genomic region and 

positioned head-to-head. The intergenic region between these two head-to-head genes 

is also of interest for the several reasons: 1) it is rather small and therefore easily to 
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handle in the lab; 2) one of the genes should be expressed in many conditions at high 

levels (POLA) while the other should be more finely regulated; 3) in the case in which 

STRs have a regulatory function we do not know whether the strand is important in 

the directing the transcription and this region could be helpful in understanding; 4) it 

contains more than one type of STRs. In conclusion, this region is small but complex, 

and it would give us different information compared to the promoter region of the 

Phatr3_J50610 gene which is simpler.  
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Appendix. Code Example: tandem_repeat_analysis.pl 

#! /usr/bin/perl -w 
 
=head1 NAME 
 
=head1 SYNOPSIS 
 
  perl tandem_repeat_analysis.pl [-s species_name] [-g genome_FASTA] [-a 
annotation_GTF] [-c chr_sizes] [-nc_rna] [-cds] [-d source] [-force] [-h help] 
 
=head1 DESCRIPTION 
 
This script identifies and annotates tandem repeats from an entire genome sequence.  
 
It requires a genomic sequence in FASTA format and related annotation in GTF format. 
 
Typical usage is as follows: 
 
  % perl tandem_repeat_analysis.pl -s Phaeodactylum_tricornutum -g 
Phaeodactylum_tricornutum.ASM15095v2.29.dna.toplevel.fa -a 
Phaeodactylum_tricornutum.ASM15095v2.29.gtf -c Phaeodactylum_tricornutum.chrsizes.txt 
   
=head2 Options 
 
The following options are accepted: 
 
 --s=<species name> Specify the species name. 
 
 --g=<genome fasta> Specify genome sequence in FASTA format. 
 
 --a=<annotation gtf> Specify annotation file name if any. GTF format is required. 
 
 --c=<chr sizes>    Provide a file containing chromosome sizes 
 
 --nc_rna    Consider ncRNAs, if defined. 
 
 --cds                 Build TSS, TTS and promter features using CDS coordinates 
(instead of gene), if defined. 
 
 --d=<source>  Source (ensembl, jgi or internal). 
 
 --force    Re-load annotation. 
 
 --help   This documentation. 
 
=head1 AUTHOR 
 
Guglielmo Roma 
 
guglielmo.roma@gmail.com 
 
=cut 
 
use Cwd 'abs_path'; 
use File::Basename; 
my ($name,$path,$suffix) = fileparse(abs_path($0)); 
require $path."../conf/conf.pl"; 
 
use strict; 
use warnings; 
use Getopt::Long qw( :config posix_default bundling no_ignore_case ); 
use Pod::Usage; 
use Data::Dumper; 
 
# Configuration variables 
 
my %conf =  %::conf; 
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my $debug = $conf{'global'}{'debug'}; 
my $tmp_dir = $conf{'default'}{'tmp_dir'}; 
my $genomes_dir = $conf{'default'}{'genomes_dir'}; 
my $bioinfo_dir = $conf{'default'}{'bioinfo_dir'}; 
my $results_dir = $conf{'default'}{'results_dir'}; 
my %species_hash = %{$conf{'species'}}; 
 
my $PHOBOS = $conf{'PHOBOS'}{'command_genome'}; 
my $MaxPeriod = $conf{'PHOBOS'}{'MaxPeriod'}; 
 
# Functions declarations 
 
=pod 
   
 SCRIPT 
  
=cut 
 
my $USAGE = "perl tandem_repeat_analysis.pl [-s species_name] [-g genome_FASTA] [-a 
annotation_GTF] [-c chr_sizes] [-nc_rna] [-cds] [-d source] [-force] [-h help]"; 
 
my ($species_name, $genome_fasta, $annotation_gtf, $chr_sizes, $cds, $nc_rna, $force, 
$source, $show_help); 
 
&GetOptions(      
   'species_name|s=s' => \$species_name, 
   'genome_fasta|g=s' => \$genome_fasta, 
   'annotation_gtf|a=s' => \$annotation_gtf, 
   'chr_sizes|c=s'  => \$chr_sizes, 
                 'source|d=s'       => \$source, 
   'nc_rna'   => \$nc_rna, 
   'cds'                  => \$cds, 
   'force'   => \$force, 
   'help|h'          => \$show_help 
   ) 
  or pod2usage(-verbose=>2); 
pod2usage(-verbose=>2) if $show_help; 
 
# Considers user-specified options - if provided  
if ($species_name && $genome_fasta && $annotation_gtf && $chr_sizes && $source) { 
 # Overwrites default options from the configuration file 
 undef(%species_hash); 
 $species_hash {$species_name} {'genome_FASTA'} = $genome_fasta; 
 $species_hash {$species_name} {'annotation_GTF'} = $annotation_gtf; 
 $species_hash {$species_name} {'chrsizes'} = $chr_sizes; 
        $species_hash {$species_name} {'source'} = $source; 
} 
 
# Dies, if users did not specify a species of interest in either command line or the 
config file 
die "You must specify a species name, a genome FASTA file, and an annotation file\n 
Use -h for help" 
   if (!%species_hash); 
 
$cds=0 if(!$cds); 
 
$debug && print STDOUT "Debugging species hash:\n"; 
$debug && print STDOUT Dumper %species_hash; 
$debug && print STDOUT "\n"; 
 
#my $tmp_bed = $tmp_dir."/bed"; 
#mkdir($tmp_bed or die "$!"); 
 
foreach $species_name (keys %species_hash) { 
 $genome_fasta = $species_hash{$species_name}{'genome_FASTA'}; 
 $annotation_gtf = $species_hash{$species_name}{'annotation_GTF'}; 
 $chr_sizes = $species_hash{$species_name}{'chrsizes'}; 
      $source = $species_hash{$species_name}{'source'}; 
 
 $debug && print STDOUT "Species: $species_name\n"; 
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 $debug && print STDOUT "FASTA: $genome_fasta\n";   
 $debug && print STDOUT "GTF: $annotation_gtf\n";   
 $debug && print STDOUT "CHRSizes: $chr_sizes\n";   
 $debug && print STDOUT "Source: $source\n"; 
 
 # Creates a result folder for each species 
 my $now_string = localtime; 
 $now_string =~ s/\W/_/g; 
 my ($gender, $species) = split/["_","."]/, $genome_fasta; 
 my $short_species_name = lc(substr($gender, 0, 1).".".$species); 
 my $result_path = $results_dir.$short_species_name."_".$now_string; 
 mkdir($result_path) or die "$!"; 
 chdir($result_path) or die "$!"; 
 
 # Executes PHOBOS 
 my $TR_result_file=join('.', $genome_fasta, "dat"); 
 print ("$PHOBOS $genomes_dir/$genome_fasta $result_path/$TR_result_file\n"); 
 system ("$PHOBOS $genomes_dir/$genome_fasta $result_path/$TR_result_file"); 
  
 # Parses PHOBOS output and lists TRs in BED format 
 print ("perl $path/perl/parsing_dat.pl $result_path/$TR_result_file\n"); 
 system ("perl $path/perl/parsing_dat.pl $result_path/$TR_result_file"); 
  
 # Generates TR distribution plots 
 print ("awk '{if(\$4)print \$4}' $result_path/$TR_result_file".".txt | sort -n 
>  $result_path/$TR_result_file".".txt.sort\n"); 
 system ("awk '{if(\$4)print \$4}' $result_path/$TR_result_file".".txt | sort -n 
>  $result_path/$TR_result_file".".txt.sort"); 
 print "R --slave --args $result_path/$TR_result_file".".txt.sort \"Distribution 
of Tandem Repeats ($gender $species)\" $MaxPeriod < $path/R/draw_TR_dist.r\n"; 
 system ("R --slave --args $result_path/$TR_result_file".".txt.sort 
\"Distribution of Tandem Repeats ($gender $species)\" $MaxPeriod < 
$path/R/draw_TR_dist.r"); 
 
 # removing the header line 
 print ("sed 1d $result_path/$TR_result_file.bed > 
$result_path/$TR_result_file.nh.bed\n"); 
 system ("sed 1d $result_path/$TR_result_file.bed > 
$result_path/$TR_result_file.nh.bed"); 
 
 # Annotates non-redundant TRs 
 my $annotate_cmd = "perl $path/annotate.pl -f 
$result_path/$TR_result_file.nh.bed -a $genomes_dir/$annotation_gtf -c 
$genomes_dir/$chr_sizes "; 
 $annotate_cmd .= " --nc_rna" if ($nc_rna); 
 $annotate_cmd .= " --force" if ($force); 
 $annotate_cmd .= " --cds" if ($cds); 
 $annotate_cmd .= " --source $source" if ($source); 
 print STDOUT ($annotate_cmd."\n"); 
 system ($annotate_cmd); 
 
 $debug && print "\nTandem repeat analysis for $species_name complete!\n"; 
} 
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Appendix. Code Example: annotate.pl 

#! /usr/bin/perl -w 
 
=head1 NAME  
 
  annotate.pl 
 
=head1 SYNOPSIS 
 
  perl annotate.pl [-f feature_BED] [-a annotation_GTF] [-c chr_sizes] [-nc_rna] [-
cds] [-so source] [-force] [-h help] 
 
=head1 DESCRIPTION 
 
This script i) creates promoter, TSS and TTS annotation features, ii) annotates 
features of interest provided in BED format using the annotation features. 
 
Typical usage is as follows: 
 
  % perl tandem_repeats/scripts/annotate.pl -f features.bed -a species.gtf -c 
species.chrsizes.txt --nc_rna --force --source ensembl 
   
=head2 Options 
 
The following options are accepted: 
 
 --f=<feature bed> Specify file with genomic features. "6 fields" BED format 
required. 
 
 --a=<annotation gtf> Specify annotation file name if any. GTF format is required. 
 
 --c=<chr sizes>    Provide a file containing chromosome sizes. 
 
 --nc_rna    Consider ncRNAs, if defined. 
 
 --cds                 Build TSS, TTS and promter features using CDS coordinates 
(instead of gene), if defined. 
 
 --source   Annotation source (ensembl, jgi or internal). 
 
 --force    Re-load annotation. 
 
 --help   This documentation. 
 
=head1 AUTHOR 
 
Guglielmo Roma 
 
guglielmo.roma@gmail.com 
 
=cut 
 
use Cwd 'abs_path'; 
use File::Basename; 
my ($name,$path,$suffix) = fileparse(abs_path($0)); 
require $path."../conf/conf.pl"; 
 
use strict; 
use warnings; 
use Getopt::Long qw( :config posix_default bundling no_ignore_case ); 
use Pod::Usage; 
use Data::Dumper; 
use File::Spec::Functions qw(catfile rootdir); 
use List::Util qw[min max]; 
use File::Temp qw/ :POSIX /; 
 
# Configuration variables 
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my %conf =  %::conf; 
my $debug = $conf{'global'}{'debug'}; 
my $promoter_sizes = $conf{'global'}{'promoter_sizes'}; 
my %promoter_sizes = %{$promoter_sizes}; 
my $transcript_feature_types = $conf{'global'}{'transcript_feature_types'}; 
my %transcript_feature_types = %{$transcript_feature_types}; 
my @transcript_feature_types = values %transcript_feature_types; 
 
# Functions declarations 
 
=pod 
   
 SCRIPT 
  
=cut 
 
my $USAGE = "perl annotate.pl [-f feature_BED] [-a annotation_GTF] [-c chr_sizes] [-
nc_rna] [-cds] [-so source] [-force] [-h help]"; 
 
my ($feature_bed, $annotation_gtf, $chr_sizes, $nc_rna, $cds, $source, $force, 
$show_help); 
 
&GetOptions(      
   'feature_bed|f=s'  => \$feature_bed, 
   'annotation_gtf|a=s' => \$annotation_gtf, 
   'chr_sizes|c=s'  => \$chr_sizes, 
                  'cds'    => \$cds, 
   'nc_rna'   => \$nc_rna, 
   'source|so=s'  => \$source, 
   'force'   => \$force, 
   'help|h'          => \$show_help 
   ) 
  or pod2usage(-verbose=>2); 
pod2usage(-verbose=>2) if $show_help; 
 
# Dies if files are not provided 
die "You must specify an feature file in bed format\n Use -h for help" 
  if !$feature_bed; 
 
die "You must specify an annotation file in gtf format\n Use -h for help" 
  if !$annotation_gtf; 
 
die "You must specify a chr_sizes file\n Use -h for help" 
  if !$chr_sizes; 
 
die "You must specify a source (ensembl, jgi, or internal)\n Use -h for help" 
  if !$source; 
 
$cds = 0 if(!$cds); 
   
# Checks if TSS and TTS files are already created 
my ($ann_name, $ann_path, $ann_suffix) = fileparse($annotation_gtf); 
 
# Defines annotation file names 
my $promoter_file   = $annotation_gtf.".promoter"; 
my $tss_file    = $annotation_gtf.".tss"; 
my $tts_file    = $annotation_gtf.".tts"; 
my $exon_file    = $annotation_gtf.".exon"; 
my $intron_file                    = $annotation_gtf.".intron"; 
my $gene_file    = $annotation_gtf.".gene"; 
 
$debug && print STDOUT "Using $annotation_gtf to create promoter, TSS, TTS and exon 
features.\n"; 
 
# Creates promoter features 
foreach my $promoter_id (keys %promoter_sizes) { 
 my $promoter_size = $promoter_sizes {$promoter_id}; 
 
 if (-e $promoter_file."_".$promoter_size && !defined($force)) { 
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  $debug && print STDOUT "Promoter features are available. Skipping the 
build. Use --force option to reload the annotation.\n"; 
 
 } else { 
  $debug && print STDOUT "Creating promoter features with size 
$promoter_size... "; 
    
  system("rm ".$promoter_file."_".$promoter_size); 
 
  my $cmd; 
  if ($cds==0){ 
   $cmd = 'awk \'{FS="\t";OFS="\t"}{if ($3=="gene") {if ($7=="+") 
{print $1,$2,"promoter_'.$promoter_size.'",$4,$4,$6,$7,$8,$9;} else if($7 == "-"){ 
print $1,$2,"promoter_'.$promoter_size.'",$5,$5,$6 
,$7,$8,$9}}}\' '.$annotation_gtf.' | slopBed -g '.$chr_sizes.' -i stdin -l 
'.$promoter_size.' -r 0 -s |  awk \'{if ($4 >= "0" && $5 >= "0" && $5-
$4=='.$promoter_size.') print $_;}\' > '.$promoter_file."_".$promoter_size; 
  } else{ 
   $cmd = 'awk \'{FS="\t";OFS="\t"}{if ($3=="CDS") {if ($7=="+") 
{print $1,$2,"promoter_'.$promoter_size.'",$4,$4,$6,$7,$8,$9;} else if($7 == "-"){ 
print $1,$2,"promoter_'.$promoter_size.'",$5,$5,$6, 
$7,$8,$9}}}\' '.$annotation_gtf.' | slopBed -g '.$chr_sizes.' -i stdin -l 
'.$promoter_size.' -r 0 -s |  awk \'{if ($4 >= "0" && $5 >= "0" && $5-
$4=='.$promoter_size.') print $_;}\' > '.$promoter_file."_".$promoter_size; 
  }  
 
  system($cmd); 
                $debug && print STDOUT $cmd."\n"; 
  
  $debug && print STDOUT "Done!\n"; 
 }  
} 
 
# Creates TSS, TTS and EXON features 
if (-e $tss_file && !defined($force)) { 
 
 $debug && print STDOUT "TSS, TTS, EXON and GENE features are available. 
Skipping the build. Use --force option to reload the annotation.\n";  
 
} else { 
 $debug && print STDOUT "Creating TSS, TTS, EXON and GENE features... "; 
 
 my ($TSS_list, $TTS_list, $exon_list, $gene_list); 
 
 open (FILE, $annotation_gtf) or die "Cannot open $annotation_gtf: $!"; 
  
 while (my $row = <FILE>) { 
  chomp ($row); 
   
  if ($row  !~ /^#/) { 
   my @fields =  split(/\t/, $row); 
 
   my $cmd; 
                  
   if ($cds==0){ 
    $gene_list .= "$row\n" if ($fields[2] eq "gene"); 
   } else { 
    $gene_list .= "$row\n" if ($fields[2] eq "CDS"); 
   } 
   $exon_list .= "$row\n" if ($fields[2] eq "exon"); 
    
   my ($start_promoter, $TSS, $TTS); 
 
   # Retrieves only transcript feature types that are predefined in 
the config file 
   next unless ((grep {$_ eq $fields[2]} @transcript_feature_types) || 
($cds && $fields[2] eq "CDS")); 
 
   if ($fields[6] eq "+") { 
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    $TSS = min($fields[3], $fields[4]);  
    $TTS = max($fields[3], $fields[4]); 
      
   } else { 
    
    $TSS = max($fields[3], $fields[4]);  
    $TTS = min($fields[3], $fields[4]);  
    
   } 
    
   $fields[3] = $TSS; 
   $fields[4] = $TSS; 
 
   $TSS_list .= join("\t", @fields)."\n"; 
    
   $fields[3] = $TTS; 
   $fields[4] = $TTS; 
 
   $TTS_list .= join("\t", @fields)."\n"; 
  } 
 } 
  
 close FILE; 
 
 open (TSS, ">$tss_file"); 
 print TSS "$TSS_list"; 
 close (TSS);  
  
 open (TTS, ">$tts_file"); 
 print TTS "$TTS_list"; 
 close (TTS);  
 
 open (EXON, ">$exon_file"); 
 print EXON "$exon_list"; 
 close (EXON);  
 
 open (GENE, ">$gene_file"); 
 print GENE "$gene_list"; 
 close (GENE);  
 
 # create intron features 
 my $annotype = 'ensembl'; 
 my $exon_sort_cmd = "sort -n -k1 -k4 $exon_file > $exon_file".".sort"; 
 my $reformat_cmd = "perl  $path/perl/reformatGTF_forintronsize.pl 
$exon_file".".sort $source"; 
 my $intron_cmd = "perl $path/genomegtf2intronbed.pl -gtf $annotation_gtf > 
$intron_file"; 
 my $intron_sort_cmd = "sort -n -k1 -k4 $intron_file > $intron_file".".sort"; 
 my $merge_introns_cmd = "bedtools merge -i $intron_file".".sort >  
$intron_file".".sort.nr.bed"; 
 my $intron_size_cmd = 'awk \'{sum += ($3-$2+1)} END {print sum}\' 
'.$intron_file.'.sort.nr.bed > '.$intron_file.".size"; 
 
 system ($exon_sort_cmd); 
 system ($exon_sort_cmd); 
 system ($reformat_cmd); 
 system ($intron_cmd); 
 system ($intron_sort_cmd); 
 system ($merge_introns_cmd); 
 system ($intron_size_cmd); 
 
 $debug && print STDOUT "Done!\n"; 
} 
 
foreach my $promoter_id (keys %promoter_sizes) { 
 my $promoter_size = $promoter_sizes {$promoter_id}; 
 
 # Overlapping annotation features 
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 my $overlapping_anno_cmd = "intersectBed -a $feature_bed -b $tss_file -c | 
intersectBed -a stdin -b $promoter_file"."_"."$promoter_size -c | intersectBed -a 
stdin -b $tts_file -c | intersectBed -a stdin -b $exon_ 
file -c | intersectBed -a stdin -b $intron_file -c | intersectBed -a stdin -b 
$annotation_gtf -c | uniq > $feature_bed"."_".$promoter_size."anno.txt"; 
 $debug && print STDOUT ("$overlapping_anno_cmd\n"); 
 system ($overlapping_anno_cmd); 
 
 my $parse_overlapping_anno_cmd = "perl $path/perl/parse_annotation.pl 
$feature_bed"."_".$promoter_size."anno.txt | sort | uniq -c | sort -nr > 
/$feature_bed"."_".$promoter_size."anno.stats.txt"; 
  $debug && print STDOUT ("$parse_overlapping_anno_cmd"); 
 system ($parse_overlapping_anno_cmd); 
 
 my $pie_plot_cmd = "R --slave --args 
$feature_bed"."_".$promoter_size."anno.stats.txt \"Tandem Repeat annotation\" < 
$path/R/draw_annotation_pie.r "; 
 $debug && print STDOUT ($pie_plot_cmd); 
 system ($pie_plot_cmd); 
} 
 
# Overlapping gene features (for genic vs intergenic plot) 
my $genic_anno_cmd = "intersectBed -a $feature_bed -b $gene_file -c | uniq > 
$feature_bed"."_gene_anno.txt"; 
$debug && print STDOUT ("$genic_anno_cmd\n"); 
system ($genic_anno_cmd); 
 
my $genic_anno_stat_cmd = "perl $path/perl/parse_gene_annotation.pl 
$feature_bed"."_gene_anno.txt | sort | uniq -c | sort -nr > 
/$feature_bed"."_gene_anno.stats.txt"; 
$debug && print STDOUT ("$genic_anno_stat_cmd\n"); 
system ($genic_anno_stat_cmd); 
 
my $pie_gene_plot_cmd = "R --slave --args $feature_bed"."_gene_anno.stats.txt 
\"Tandem Repeat annotation\" < $path/R/draw_annotation_pie.r "; 
$debug && print STDOUT ("$pie_gene_plot_cmd\n"); 
system ($pie_gene_plot_cmd); 
 
# Overlapping exon features (for exonic vs non-exonic plot) 
my $exonic_anno_cmd = "intersectBed -a $feature_bed -b $exon_file -c | uniq > 
$feature_bed"."_exonic_anno.txt"; 
$debug && print STDOUT ("$exonic_anno_cmd\n"); 
system ($exonic_anno_cmd); 
 
my $exonic_anno_stat_cmd = "perl $path/perl/parse_exonic_annotation.pl 
$feature_bed"."_exonic_anno.txt | sort | uniq -c | sort -nr > 
/$feature_bed"."_exonic_anno.stats.txt"; 
$debug && print STDOUT ("$exonic_anno_stat_cmd\n"); 
system ($exonic_anno_stat_cmd); 
 
my $pie_exonic_plot_cmd = "R --slave --args $feature_bed"."_exonic_anno.stats.txt 
\"Tandem Repeat annotation\" < $path/R/draw_annotation_pie.r "; 
$debug && print STDOUT ("$pie_exonic_plot_cmd\n"); 
system ($pie_exonic_plot_cmd); 
 
# Computes the distance of each feature to the closest TSS.  
my $closest_TSS_dist_cmd = "closestBed -D b -t first -a $feature_bed -b ".$tss_file." 
| awk '{print \$NF}' > "."$feature_bed.tss.dist.txt"; 
$debug && print STDOUT ("$closest_TSS_dist_cmd\n"); 
system ($closest_TSS_dist_cmd); 
 
# Generates a plot with the distance of each feature to the closest TSS.  
my $closest_TSS_dist_plot_cmd = "R --slave --args $feature_bed.tss.dist.txt 
\"Distribution of Tandem Repeats around TSS\" < $path/R/draw_TSS_linear_dist-
4kb_50b.r "; 
system ($closest_TSS_dist_plot_cmd); 
$debug && print STDOUT ("$closest_TSS_dist_plot_cmd\n"); 
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my $closest_TSS_dist_plot_cmd2 = "R --slave --args $feature_bed.tss.dist.txt 
\"Distribution of Tandem Repeats around TSS\" < $path/R/draw_TSS_linear_dist-
400b_10b.r "; 
system ($closest_TSS_dist_plot_cmd2); 
$debug && print STDOUT ("$closest_TSS_dist_plot_cmd2\n"); 
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Chapter III 

 

A comparative transcriptomic analysis of replicating and 
dormant liver stages of the relapsing malaria parasite 
Plasmodium Cynomolgi 

 

Abstract  

 

Plasmodium liver hypnozoites, which cause disease relapse, are widely 

considered to be the last barrier towards malaria eradication. The biology of this 

quiescent form of the parasite is poorly understood which hinders drug discovery. We 

report a comparative transcriptomic dataset of replicating liver schizonts and dormant 

hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express 

only 34% of Plasmodium physiological pathways, while 91% are expressed in 

replicating schizonts. Few known malaria drug targets are expressed in quiescent 

parasites, but pathways involved in microbial dormancy, maintenance of genome 

integrity and ATP homeostasis were robustly expressed. Several transcripts encoding 

heavy metal transporters were expressed in hypnozoites and the copper chelator 

neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a 

valuable resource for the discovery of vaccines and effective treatments to combat 

vivax malaria. 
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Introduction  

 

Plasmodium vivax (P. vivax) is the major cause of malaria outside of Africa 

with an estimated 13.8 million malaria cases globally in 2015 (World Health 

Organization (WHO), 2015). Among P. vivax parasites’ most salient biological 

features are the persisting dormant liver stages (hypnozoites) that can cause relapse 

infections and compromise future eradication programs (Campo, Vandal, Wesche, & 

Burrows, 2015). Although in vitro hepatic cultures systems for hypnozoite-forming 

parasites have been developed (March et al., 2013; Zeeman et al., 2014) and rodent 

models of humanized liver stage infections constituted recent advances (Mikolajczak 

et al., 2015), the search for new drugs targeting hypnozoites is hampered by our limited 

knowledge of this enigmatic dormant stage.  

Microbes commonly employ cellular quiescence to survive environmental stresses 

such as starvation, immune surveillance, or chemotherapeutic interventions and for 

disease causing microbes, dormancy often underlies chronic infections that 

considerably complicate the clinical management of infected patients (Rittershaus, 

Baek, & Sassetti, 2013). Cellular quiescence generally requires a physiological 

response underscored by a global repression of cellular metabolism but the 

preservation of mitochondrial respiration for ATP homeostasis and the maintenance 

of genome integrity (Rittershaus et al., 2013). Therapeutic interventions targeting 

some of these mechanisms have been proposed for a limited number of human 

pathogens (Andries et al., 2005; Rao, Alonso, Rand, Dick, & Pethe, 2008) but it is not 
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clear whether P. vivax hypnozoites rely on similar physiological responses to survive 

in hepatocytes. 

Some of the new drug targets that have been identified in the past decade (C. 

McNamara & Winzeler, 2011) have been shown to be critical in multiple stages of the 

parasite life cycle, such as PI4K (C. W. McNamara et al., 2013), DHODH (Phillips et 

al., 2015), eEF2 (Baragana et al., 2015), and pheT-RNA (Kato et al., 2016). However, 

none has yet been shown to be a valid target for malaria radical cure and elimination 

of the hypnozoite in vivo. Little is known about the expression pattern of these drug 

targets during Plasmodium life cycle in the liver and more specifically, it is not clear 

whether these genes are expressed at all in dormant parasites. 

Transcriptomics approaches to assess genome-wide gene expression levels of 

Plasmodium liver stage parasites are inherently challenging given the low infection 

grade ratios and the higher abundance of host cell transcripts. While previous reports 

have emerged providing a first glance of gene expression in Plasmodium liver stages 

(Cubi et al., 2017; Vaughan et al., 2009), we provide here a comprehensive dataset 

derived from green fluorescent protein (GFP)-tagged Plasmodium cynomolgi (P. 

cynomolgi) (Voorberg-van der Wel et al., 2013) — the nonhuman primate sister taxon 

of P. vivax, known to form hypnozoites (Dembélé et al., 2014; Krotoski et al., 1982). 

We have collected samples from multiple independent in vitro hepatocyte infections, 

containing thousands of purified hypnozoites and liver schizonts for RNA-Seq. The 

sequenced reads were mapped on the new high quality, completely annotated P. 

cynomolgi genome covering 7,178 genes (Pasini et al., 2017). Using different 

approaches, we provide some preliminary validation of our comparative analysis of 
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the transcriptome of replicating and quiescent liver-stages parasites, that will constitute 

a valuable resource for the development of P. vivax vaccines and therapeutics. 

 

Material and methods  

 

Ethics statement  

 

Nonhuman primates were used because no other models (in vitro or in vivo) 

were suitable for the aims of this project. The local independent ethical committee 

constituted conform Dutch law (BPRC Dier Experimenten Commissie, DEC) 

approved the research protocol (agreement number DEC# 708) prior to the start and 

the experiments were all performed according to Dutch and European laws. The 

Council of the Association for Assessment and Accreditation of Laboratory Animal 

Care (AAALAC International) has awarded BPRC full accreditation. Thus, BPRC is 

fully compliant with the international demands on animal studies and welfare as set 

forth by the European Council Directive 2010/63/EU, and Convention ETS 123, 

including the revised Appendix A as well as the ‘Standard for humane care and use of 

Laboratory Animals by Foreign institutions’ identification number A5539-01, 

provided by the Department of Health and Human Services of the United States of 

America’s National Institutes of Health (NIH) and Dutch implementing legislation. 

The rhesus monkeys (Macaca mulatta, either gender, age 4-7 years, Indian or mixed 

origin) used in this study were captive-bred and socially housed. Animal housing was 

according to international guidelines for nonhuman primate care and use. Besides their 
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standard feeding regime, and drinking water ad libitum via an automatic watering 

system, the animals followed an environmental enrichment program in which, next to 

permanent and rotating non-food enrichment, an item of food-enrichment was offered 

to the macaques daily. All animals were monitored daily for health and discomfort. 

All intravenous injections and large blood collections were performed under ketamine 

sedation, and all efforts were made to minimize suffering. Liver lobes were collected 

from monkeys that were euthanized in the course of unrelated studies (ethically 

approved by the BPRC DEC) or euthanized for medical reasons, as assessed by a 

veterinarian. Therefore, none of the animals from which liver lobes were derived were 

specifically used for this work, according to the 3Rrule thereby reducing the numbers 

of animals used. Euthanasia was performed under ketamine sedation (10 mg/kg) and 

was induced by intracardiac injection of euthasol 20%, containing pentobarbital.  

 

Transgenic Plasmodium cynomolgi sporozoite production  

 

Blood stage infections were initiated in rhesus monkeys by intravenous 

injection of 1x106 P. cynomolgi M strain PcyC-PAC-GFPhsp70-mCherryef1α (Voorberg-

van der Wel et al., 2013)  parasites from a cryopreserved stock. To exclude possible 

wild type contaminant parasites, monkeys were treated with pyrimethamine (1 mg/kg, 

orally on a biscuit every other day) for 3-4 times starting one day post infection. 

Parasitemia was monitored by Giemsa-stained smears prepared from a drop of blood 

obtained from thigh pricks. Animals were trained to voluntarily present for thigh 

pricks, and were rewarded afterwards. Around peak parasitemia, on two consecutive 
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days, generally at days 11 and 12 post-infection, 9 ml of heparin blood was taken to 

feed mosquitoes and monkeys were cured from Plasmodium infection by 

intramuscular treatment with chloroquine (7.5 mg/kg) on three consecutive days. 

Typically ± 600 mosquitoes (two to five days old female Anopheles stephensi 

mosquitoes Sind-Kasur strain Nijmegen; Nijmegen UMC St. Radboud, Department of 

Medical Microbiology) were fed per blood sample using a glass feeder system. 

Mosquitoes were kept under standard conditions (Voorberg-van der Wel et al., 2013). 

Approximately one week after feeding, oocysts were counted and mosquitoes were 

given an uninfected blood meal to promote sporozoite invasion of the salivary glands. 

Mosquitoes that had received blood from the first bleeding ('feed 1') were kept 

separately and treated independently from mosquitoes that had received blood from 

the second bleeding ('feed 2'). 

 

Primary hepatocytes  

 

Primary hepatocytes from Macaca mulatta or Macaca fascicularis were 

isolated freshly as described before or thawed from frozen stocks and resuspended in 

William's B medium (Zeeman et al., 2014): William’s E with glutamax containing 

10% human serum (A+), 1% MEM non-essential amino acids, 2% 

penicillin/streptomycin, 1% insulin/transferrin/selenium, 1% sodium pyruvate, 50 µM 

β-mercapto-ethanol, and 0.05 µM hydrocortisone. Hepatocytes were seeded into 

collagen coated (5 µg/cm2 rat tail collagen I, Invitrogen) 6-well Costar plates at a 

concentration of approximately 2.25×106 cells/well. Following attachment, the 
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medium was replaced by William’s B containing 2 % dimethylsulfoxide (DMSO) to 

prevent hepatocyte dedifferentiation.  

 

Sporozoite isolation and inoculation  

 

Two weeks post mosquito feeding on transgenic P. cynomolgi M strain infected 

blood, salivary gland sporozoites were isolated and used for hepatocyte inoculation. 

Prior to inoculation, hepatocytes were washed in William's B medium followed by 

sporozoite inoculation at ± 2 x 106 sporozoites per well. Plates were spun at RT at 500 

g for 10-20 min and placed in a humidified 37 °C incubator at 5% CO2 for 2-3 h to 

allow for sporozoite invasion. Medium (William's B) was replaced and incubation 

continued. Subsequently, infected hepatocytes were cultured with regular (every other 

day) medium changes until cell sorting. Sporozoite isolations and hepatocyte 

inoculations from 'feed 1' mosquitoes were performed separately from 'feed 2' 

mosquitoes. 

 

Flow cytometry and cell sorting  

 

At day 6 post sporozoite inoculation hepatocytes were harvested by Trypsin 

treatment (0.25% Trypsin-EDTA, Gibco). For logistical reasons, samples PAC22F1 

and PAC22F2 were cultured for an additional day and were trypsinized at day 7 post-

inoculation. Cells were washed once with PBS, followed by 3 min incubation in 

trypsin at 37 °C. Complete William's B medium was added to stop the trypsin 
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digestion, cells were collected and washed two times in William's B medium that was 

diluted 1:5 in William's E to decrease the amount of serum in the samples. Prior to 

sorting, cells were passed through a 100 µM cell strainer to exclude clumps. First, a 

sample of uninfected hepatocytes was analysed to enable gate settings. Subsequently, 

infected hepatocytes were sorted with a BD FACSAria flowcytometer equipped with 

a 488 nm Coherent® Sapphire™ solid state 20 mW Laser. Data analyses were 

performed using FlowJo Version 9.4.10 (TreeStar, Inc., Ashland OR, USA). The 

device was equipped with a 100 µM nozzle for sorting. Gate settings were essentially 

the same as reported previously, except that an extra gate ('GFPdim') was included to 

ensure a strict separation of 'GFPlow' and 'GFPhigh' parasites (Figure 1B). Sorted 

samples were collected in 300 µl Trizol (Life Technologies). For the series of 

experiments relating to this paper we performed six blood stage infections. In two out 

of six blood stage infections, parasitemia was low (<0.2%) at the time of mosquito 

feeding. This resulted in poor sporozoite yields and not enough liver stage forms for 

FACSsort. The four other infections all resulted in successful liver stage infections 

with sufficient parasites for FACSsort, with one of the infections used for validation 

experiments. Collected ‘GFPlow’ samples contained 1,193-2,713 Hz (on average 1826 

Hz); collected ‘GFPhigh’ samples contained 921-1,245 cells (on average 1,056 Sz). 

After sorting, tubes were vortexed ± 30 sec and transferred to a -80 °C freezer for 

storage until RNA extraction. During sorting, small amounts of GFPlow, GFPdim and 

GFPhigh samples were collected in William's B to analyze the quality of the sort: 

samples were transferred to a 96 well plate and analyzed using a high-throughput high-

content imaging system (Operetta, Perkin-Elmer).  
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Neocuproine treatment 

 

Following salivary gland dissection of infected A. stephensi mosquitoes 50,000 

sporozoites were added per well to primary macaque hepatocyte cultures in 96-well 

plates as described earlier (Zeeman et al., 2014). Neocuproine (Sigma cat. 121908), 

dissolved in DMSO and subsequently diluted in William’s B medium to 10, 1, and 0.1 

µM was added in duplicate or triplicate wells to the cultures after sporozoite invasion 

and incubated with regular refreshments until fixation at day 6. Medium containing 

DMSO was used as control. Following methanol fixation immunofluorescence 

analysis was performed and parasites were counted using a high-content imaging 

system (Operetta; Perkin-Elmer) as reported previously (Zeeman et al., 2014). 

 

Protein and antibody production  

 

An E. coli codon optimized gene for PcyM_0533600 (Genscript, USA) was 

synthesized and protein (Q30-K145) was expressed in BL21 cells. The protein was 

purified using a Ni-IMAC column followed by gel-filtration/buffer exchange and used 

to immunize rats (Eurogentec, Belgium). In addition, monoclonal antibodies were 

raised against selected proteins at Genscript, USA. 
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Immunofluorescence analysis (IFA) 

 

For IFA validation assays of hepatic stages, collagen coated Cell Carrier-96 

well plates (Perkin Elmer) or Permanox Lab-Tek chamber slides (Nunc) were seeded 

with fresh primary rhesus hepatocytes and infected with wild type P. cynomolgi M 

sporozoites following procedures as described above and previously (Zeeman et al., 

2014). For long-term culture, to enable IFA analysis of day 19 liver stage parasites, 

matrigel was placed on top of the hepatocytes as previously described (Dembélé et al., 

2014). At day 6/7 (or day 19) post sporozoite inoculation, cells were briefly fixed in 

cold methanol followed by three washes in PBS. Infected hepatocytes were blocked in 

100 mM glycine for 5 min. at room temperature. After three washes with PBS, cells 

were incubated for 1-2 h at room temperature with hybridoma supernatant (undiluted), 

polyclonal antiserum (1:100) or purified IgG (25 µg/ml) diluted in PBS. Primary 

antibodies were mouse mAb anti-H4K8ac (Active motif, #61525, 1:500 dilution), 

polyclonal rat-anti-ETRAMP (PcyM_0533600, Eurogentec), mouse mAb 1G4E7 

against GAP45 (PcyM_1442700, Genscript) and mouse mAb 5B10C7 against 

Ferredoxin (PcyM_1419800, Genscript). Anti-P. cynomolgi HSP70.1 polyclonal 

rabbit serum (Zeeman et al., 2014) was included to detect parasites. Cells were washed 

three times in PBS and incubated 1-2 h at room temperature with secondary antibodies 

diluted in PBS with DAPI. Fluorescein isothiocyanate (FITC)-labeled goat anti-rabbit 

IgG (Kirkegaard and Perry Laboratories, 1:200), FITC-labeled goat anti-mouse IgG 

(Kirkegaard and Perry Laboratories, 1:200), Alexa-594 labeled chicken anti-mouse 

IgG (Invitrogen, 1:2000), or Alexa-594 labeled chicken anti-rabbit IgG (Invitrogen, 
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1:2000) were used as secondary antibodies. Following three washes with PBS, 

mounting was performed with CITIFLUOR AF1 (Agar Scientific). Images were taken 

using a Nikon Microphot FXA fluorescence microscope equipped with a DS-5M 

digital camera or with a Leica DMI6000B inverted fluorescence microscope equipped 

with a DFC365FX camera. For IFA staining of blood stage parasites, blood smear 

preparations of P. cynomolgi infected red blood cells were fixed with methanol. 

Primary and secondary antibodies were diluted in 1% FCS/PBS and each staining was 

for 1 h at room temperature. Primary antibodies were polyclonal rat-anti-ETRAMP 

(PcyM_0533600) at 25 µg/ml and rabbit anti-Band 3 monoclonal antibody (Abcam 

ab108414, 1:100). Secondary antibodies were Alexa-594 labeled chicken anti-rabbit 

IgG (Invitrogen, 1:2000) and mouse serum adsorbed FITC-labeled goat anti-rat IgG 

(Kirkegaard and Perry Laboratories, 1:200); DAPI was included.  Slides were rinsed 

in PBS (4-5x) and mounted with CITIFLUOR AF1. Images were taken using a Leica 

DMI6000B inverted fluorescence microscope equipped with a DFC365FX camera. 

 

RNAscope in situ hybridization 

 

P. cynomolgi M infected primary rhesus hepatocytes cultured for 6 days in 

CellCarrier-96 well plates (Perkin-Elmer) were fixed for 30 min. at RT in 4% 

paraformaldehyde in PBS (Affymetrix), dehydrated and stored at -20°C until further 

processing.  RNA in situ detection was performed using the RNAscope Multiplex Kit 

(Advanced Cell Diagnostics) according to the manufacturer’s instructions. RNAscope 

probes used were: gapdh (PcyM_1250000, region 113-997) and hsp70 
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(PcyM_0515400, region 606-1837). Following the RNA-FISH protocol, IFA was 

performed using rabbit anti-PcyHSP70 to stain the parasites as described above. Z-

Stack images were acquired on the Operetta system (Perkin-Elmer) using a 40x 

objective NA 0.95 and maximum projections are shown.  

 

RNA sequencing 

 

Total RNA was isolated from 5 different samples of FACS-sorted small 

parasite infected cells (GFP-low, e.g. hypnozoites) and 5 samples of FACS-sorted 

large parasite infected cells (GFP-high, e.g. liver schizonts). All samples were stored 

in TRIzol (Thermo Fisher) and total RNA extracted using the Direct-zol™ RNA 

MiniPrep Kit (Zymo Research) including on-column DNase digestion according to the 

manufacturer’s instructions. RNA amplification was performed using the 

TargetAmp™ 2-Round aRNA Amplification Kit 2.0 (Epicentre). The quality of the 

RNA samples (before and after the amplification) was assessed with the RNA 6000 

Pico and Nano kits using the Bioanalyzer 2100 instrument (Agilent Technologies). 

RNA-seq cDNA libraries were prepared from the amplified RNA samples using the 

TruSeq mRNA Sample Prep kit v2 (Illumina). The quality of the cDNA libraries was 

assessed with the Bioanalyzer 1000 DNA kit (Agilent Technologies). RNA-seq cDNA 

libraries were then sequenced in paired-end mode, 2 x 76 bp, using the Illumina 

HiSeq2500 platform. Read quality was assessed by running FastQC (version 0.10) on 

the FASTQ files. Sequencing reads showed high quality, with a mean Phred score 

higher than 30 for all base positions. Over 857 million 76-base-pair (bp) paired-end 
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reads were used for the bioinformatics analysis. Reads from each sample were aligned 

to a genomic reference composed of the combination of the malaria parasite 

Plasmodium cynomolgi M strain genome and one of the following host genomes: 

Macaca mulatta (Zimin et al., 2014) (http://www.unmc.edu/rhesusgenechip/), and 

Macaca fascicularis (http://www.ncbi.nlm.nih.gov/assembly/GCF_000364345.1/). 

Reads mapping to the parasite genome was used to quantify gene expression by using 

the Exon Quantification Pipeline (EQP) (Schuierer & Roma, 2016). On average, a 

range of 38% (minimum) to 84% (maximum) of total reads were mapped to the 

parasite and host genomes, and between 17% and 65% were aligned to the parasite 

and host exons (expressed reads). A QC inspection of the aligned sequencing reads 

showed an expected coverage bias towards the 3’ end of the transcripts that is due to 

the use of the amplification kit. Based on the alignment statistics, we decided to 

exclude two Sz samples and one Hz sample from further analyses. Genome and 

transcript alignments were used to calculate gene counts based on the P. cynomolgi M 

strain gene annotation (Pcynom M_v2, Pasini et al., 2017) provided by the BPRC and 

the Wellcome Trust Sanger Institute.  

Gene raw counts represent the total number of reads aligned to each gene. These values 

were normalized using the following four-stage approach (Figure 1-figure supplement 

3). First, gene raw counts were divided by the total number of mapped reads for each 

sample and multiplied by one million to obtain Counts Per Million (CPM) to account 

for varying library sizes (library size normalization). In a given sample, one CPM 

indicates that a specific gene was detected by one read out of one million of mapped 

reads. Second, a further normalization of the CPMs based on the BioConductor 

package DESeq2 (Love, Huber, & Anders, 2014) was performed for the samples of 
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each stage separately to account for the variation of #parasite-cells/#host-cells fraction 

within one stage (group-wise normalization). Third, an adjustment of mean expression 

ratio between schizont and hypnozoite samples was computed by using host 

expression values to further account for the difference in cell size and RNA amount 

per cell which is expected between the schizont and the hypnozoite liver forms (host 

normalization). The host normalized counts were further divided by the gene length in 

kb to obtain the Fragments Per Kilobase per Million values (FPKM) (gene length 

normalization). The host normalized gene expression values  were also used to identify 

differences in gene expression between the schizont and the hypnozoite samples using 

the BioConductor package DESeq2 (Love et al., 2014). We therefore calculated the 

list of genes that are differentially expressed between the liver schizonts and the 

hypnozoites along with the log2 fold changes and p-values after Benjamini-Hochberg 

false discovery rate (FDR) correction for multiple hypothesis testing.  
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Figure 1-figure supplement 3. Normalization of gene expression values. (A) 
Overview of the normalization process from raw counts to FPKMs. This process 
comprises four steps which are library size normalization, group-wise normalization, 
host normalization, and gene length normalization. See Methods for a description of 
each step. (B) Effect of the normalization on gene expression levels. GAPDH is shown 
as an example. (C) Comparison of normalization strategies. Left: group-wise 
normalization is used to keep the expected difference in absolute level of gene 
expression between schizonts and hypnozoites. Right: uniform normalization (as 
applied by Cubi et al.) brings the distribution of the expression values of the 
hypnozoite and schizont samples onto equal levels. 
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Orthology and pathway analysis 

 

In order to annotate the Plasmodium cynomolgi proteome, we performed an 

extensive orthology analysis that included the following proteomes in addition to P. 

cynomolgi M strain: P. falciparum 3D7, P. berghei ANKA, P. knowlesi H, P. vivax 

Sal1, P. yoelii yoelii 17X, H. sapiens, D. melanogaster, M. musculus, R. norvegicus, 

and S. cerevisiae. The Plasmodia proteomes were obtained from PlasmoDB 

(http://PlasmoDB.org/) version 26 (Aurrecoechea et al., 2009), the other proteomes 

from UniProt (release 2015_12) (Bateman et al., 2015). Our orthology analysis is 

based on the OrthoMCL methodology but implemented in-house to work with our 

local high-performance computing environment. Conceptually, this comprised the 

following steps: 1) alignment of all protein sequences against each other with blastp 

(Altschul, Gish, Miller, Myers, & Lipman, 1990); 2) calculation of the percent match 

length by determining all amino acids participating in any HSP between two proteins 

divided by the length of the shorter protein; 3) filtering out of the blast results with a 

percent match length below 50% or an E-value above 10-5; 4) determination of 

potential orthologs and paralogs and their normalized E-values; 5) clustering of the 

resulting weighted similarity graph with MCL. See Fischer 2011 et al (Fischer et al., 

2012) for more details, and Figure 6.12.1 contained within for an overview. The 

obtained groups of proteins were used to propagate protein annotations from other 

species to P. cynomolgi. Using this approach, we were able to group a total of 6,040 

P. cynomolgi proteins (86% of the total 7,030 proteins) with at least one protein from 

another species, and 2295 (33%) P. cynomolgi proteins were linked to 257 malaria 
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pathways mapped from PlasmoDB. For the identification of pathways that are 

expressed in the liver stages, we used a stringent cut-off to focus only on those genes 

whose expression is consistent across replicates (>1 FPKM in at least 2 replicates). 

This resulted into 2,748 genes and 88 pathways expressed in 2/4 Hz replicates, and 

5,323 genes and 233 pathways expressed in 2/3 Sz replicates. 

 

Pathway and Gene Ontology enrichment analyses  

 

Gene sets were collected from two sources: PlasmoDB (Aurrecoechea et al., 

2009) and Gene Ontology (Ashburner et al., 2000; The Gene Ontology Consortium, 

2017). The gene sets from PlasmoDB mostly correspond to “Metabolic pathways”, 

whereas the gene sets from the Gene Ontology correspond to general organizational 

principles of biology (such as “translation”). Many of the pathways from PlasmoDB 

are manually curated, whereas large parts of the annotations in the Gene Ontology are 

derived and propagated from one species to another by algorithms. The gene sets were 

mapped by orthology to Plasmodium cynomolgi. We employed two standard 

approaches to determine the relevance of gene sets with respect to our RNAseq data: 

1) overrepresentation analysis via a hypergeometric test; and 2) Kolmogorov-Smirnov 

test, as proposed in the original GSEA publication (Subramanian et al., 2005). The 

main differences between the two approaches is that the first one requires a 

predetermined criterion to select genes of interest in which overrepresented 

annotations are to be determined; the second does not need any such cut-off, as the test 

statistic is based on a ranking of all genes in the experiment. 
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For the enrichment analyses, we applied several criteria of increasing stringency to 

select stage-specific genes of interest from our RNA-seq experiment: 

• All genes within a certain stage that are expressed with at least 1 FPKM in at 

least 2 samples in that stage (e.g. Hz or Sz). 

• All genes within a certain stage that are expressed with at least P25 FPKM in at 

least 2 samples in that stage, where P25 is the 25th percentile (1st quartile) of the 

expression of the pooled samples of that stage (e.g._Hz_q1 or Sz_q1). 

• All genes within a certain stage that are expressed with at least P75 FPKM in at 

least 2 samples in that stage, where P75 is the 75th percentile (3rd quartile) of 

the expression of the pooled samples of that stage (e.g. Hz_q3 or Sz_q3); 

• All genes that satisfy criterion 2 in a stage but in no other stage (e.g. 

Hz_q1_specific or Sz_q1_specific). 

• All genes that satisfy criterion 3 in a stage but in no other stage (e.g. 

Hz_q3_specific or Sz_q3_specific). 

Genes satisfying the criteria above were determined for all stages and used as input for 

an overrepresentation analysis.  
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Targeted amplification and sequencing of the etramp gene 

 

Blood stage, sporozoite, schizont and hypnozoite RNA samples were reverse 

transcribed using the High Capacity RNA-to-cDNA Kit (#4368814, Thermo 

Scientific). The etramp gene (PcyM_0533600) was amplified in all the samples using 

the Phusion DNA Polymerase kit (#F530, Thermo Scientific) with the following 

primers: ACTCCTTGGTGGTGCCTTAG (FWD); TGCGGGGCCCTTATCTTT 

(REV). The Ovation Low complexity Sequencing System kit (#9092-256, NuGEN) 

was used to prepare the sequencing libraries. Libraries were multiplexed and 

sequenced in paired-end mode, at a read length of 2 × 300 bp, using the MiSeq platform 

(Illumina). The resulting FASTQ files were demultiplexed and aligned against the P. 

cynomolgi M strain genome (Pcynom M_v2, unpublished) using STAR version 2.5.2a 

(Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S & Chaisson M, 2013) 

for the detection of the amplified regions. The Integrative Genomics Viewer (IGV) 

(James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric 

S. Lander, Gad Getz, 2011) version 2.3.75 was used to visualize the aligned reads in 

the genome context. The etramp gene view presented in Figure 2D was generated using 

the R/Bioconductor GViz package (Hahne & Ivanek, 2016). 
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Comparison with published data  

 

Published expression data of P. cynomolgi liver stages (Cubi et al., 2017) were 

downloaded from the EMBL-EBI European Nucleotide Archive [ENA: PRJEB18141; 

Sample group: ERS1461774] and compared to our RNA-seq data. It was not possible 

to compare the gene lists from Cubi et al. directly with the genes from this manuscript 

because the two studies used different P. cynolmolgi reference genomes and gene 

annotation files. The downloaded Fastq files of Cubi et al. were thus processed with 

the genome reference and annotation files from (Pasini et al., 2017), the same RNA-

seq analysis pipeline, and the same normalization method as was used for our data set 

and which is described in the ‘RNA sequencing’ paragraph above. The correlation 

plots were generated on log10 normalized CPMs after the addition of a pseudo-count 

of 0.1. The Venn diagram plots were generated on genes expressed above the cut-off 

of 1 FPKM in the hypnozoite and schizont samples, and drawn using the on line tool 

available at the following website: 

http://bioinformatics.psb.ugent.be/webtools/Venn/.  
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Results  

 

Hypnozoites express a smaller set of genes than schizonts 

 

Six to seven days after P. cynomolgi sporozoite infection of primary simian 

hepatocytes, we FACS-purified hepatocytes containing hypnozoites and liver 

schizonts and prepared RNA for high-throughput sequencing (Figure 1). After quality 

control, we excluded 3 samples due to their low number of parasite reads, resulting in 

a dataset containing 3 independent schizont samples and 4 independent hypnozoite 

samples for analyses. To quantify parasite-specific expression for each P. cynomolgi 

gene, we determined the number of sequencing reads aligned to genes and computed 

gene expression values as the number of Fragments Per Kilobase per Million 

fragments mapped (FPKM) (Schuierer & Roma, 2016). Overall, the raw gene 

expression values of the schizont samples are ~14-fold higher than those of the 

hypnozoite samples (p-value 1.1e-3). This global difference in gene expression 

between multi-nucleated schizonts and uni-nuclear hypnozoites could be partly 

attributed to differences in the number of parasite transcriptionally active units per 

hepatocyte, however it is not possible to determine this exact number. In order to 

account for this difference, we normalized the gene expression values against the total 

number of host reads per sample which we posit to represent a constant host RNA 

content across all samples (see Methods). All data reported in Figures 1 to 4 show 

FPKM values after such normalization. A threshold of FPKM greater than 1 is deemed 

equivalent to one transcript copy per cell (Mortazavi, Williams, Mccue, Schaeffer, & 
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Wold, 2008). Using this threshold, hypnozoites generally express a lower number of 

genes compared to schizonts (respectively, 3,308 vs 5,702 genes at average FPKM per 

group ≥1). In addition, the expression level of these genes in schizonts is higher than 

in hypnozoites (average expression 89.14 and 9.88 FPKM, respectively) (Figure 1C). 

To further validate this finding we carried out RNA fluorescence in situ hybridization 

(RNA-FISH) to quantitatively evaluate the expression of abundantly expressed genes 

at the single-cell level in liver stage cultures. In agreement with the RNA-Seq results, 

the RNA-FISH staining with probes for gapdh and hsp70 showed a markedly lower 

level in hypnozoites compared to schizonts’ expression (Figure 1D). We then 

compared the gene expression data with those recently published by Cubi et al. (Cubi 

et al., 2017). Since the two studies used different reference genomes and annotation 

files, we reprocessed the raw sequencing files using the P. cynomolgi genome from 

Pasini et al. (Pasini et al., 2017) and the data analysis methods that we used in this 

manuscript. The schizonts data from Cubi et al. showed a high correlation of 0.95 and 

a large consensus between the two replicates, which compared with a slightly lower 

but equally high correlation (average correlation 0.88) and high overlap between the 

triplicates profiled in this study (Figure 1-figure supplement 1). In stark contrast, while 

gene expression data reported here showed a high concordance between the four 

biological replicates of hypnozoites (average correlation 0.68) and a large overlap of 

2,804 out of 4,198 genes expressed in at least two samples (Figure 1-figure supplement 

1), the data from Cubi et al. showed a lower correlation for the two hypnozoite samples 

(correlation of 0.38; Figure 1-figure supplement 1) and a scarse consensus between the 

two replicates (204 out of 1,147 genes; Figure 1-figure supplement 1). Of these 204 

genes, 175 overlap with at least one of our hypnozoite samples (Figure 1-figure 
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supplement 1), and can thus be considered true hypnozoite transcripts. Compared to 

the here reported 2,804 hypnozoite transcripts, this indicates that many genes and 

pathways expressed in hypnozoites were not captured in the previous study (Cubi et 

al., 2017). 
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Figure 1. Transcriptomics of relapsing malaria liver stage parasites. (A) Scheme of experimental 
approach for purification and RNA-sequencing of cultured P. cynomolgi M malaria liver stage schizonts 
(Sz) and hypnozoites (Hz). To enable FACS purification, P. cynomolgi parasites that stably express 
GFP using a Plasmodium Artificial Chromosome (PAC) were used. For further details, see methods. 
(B) Gating strategy included an extra gate, 'GFPdim', not used in subsequent RNA-seq analysis to ensure 
a strict separation of 'GFPlow' and 'GFPhigh' parasites. (C) Distribution of average gene expression 
values in the hypnozoite (green; n=4) and schizont (blue; n=3) samples. FPKM, Fragments per kilobase 
of transcript per million mapped reads. (D) Top panel showing RNA fluorescence in situ hybridization 
(RNA-FISH) of day 6 P. cynomolgi Sz and Hz with probes against gapdh (PcyM_1250000) and hsp70 
(PcyM_0515400). Scale bars, 20 µm. Lower panel shows gene expression values (FPKM) for gapdh 
and hsp70 of individual Hz and Sz samples as determined by RNA-sequencing	
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Figure 1-figure supplement 1. Comparison with published data. (A) Scatter plot showing all 
pairwise log10 normalized CPM correlations between samples from Cubi et al. The upper right part of 
the panel shows the value of the calculated Pearson correlation coefficients. The Venn diagrams show 
the overlap of genes expressed above 1 FPKM in the hypnozoite samples and in the schizont samples, 
respectively. (B) Same as A, but showing data from this study. (C) Venn diagrams showing the overlap 
of genes expressed above 1 FPKM in the three schizont samples from this study and the 5,502 genes 
shared by the two schizont samples from Cubi et al. (Sz-Cubi). (D) Venn diagrams showing the overlap 
of genes expressed above 1 FPKM in the four hypnozoite samples from this study and the 204 genes 
shared by the two hypnozoite samples from Cubi et al. (Hz-Cubi). 
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Although the transcription level in hypnozoites appears to be generally reduced, we 

found evidence that there is ongoing active transcription in hypnozoites, up to day 7, 

as demonstrated by the positive staining with antibodies recognizing the acetylated 

H4K8 protein, a marker of open chromatin (Gupta et al., 2013) (Figure 1-figure 

supplement 2). Thus, when compared to proliferating liver schizonts, “dormant” 

hypnozoites express only less than half of the parasite genome and the rate of 

transcription of individual genes also appears to be very low.  

 

 

 

Figure 1-figure supplement 2.  IFA staining of acetylated H4K8 in P. cynomolgi liver stages. 
Immunofluorescence analysis of day 7 P. cynomolgi liver stage schizont (upper panel) and two 
hypnozoites (lower panel). Scale bar 25 µm. 
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Comparative transcriptomic analysis allows the 

identification of differential markers of P. cynomolgi liver 

stages  

 

We further explored the liver stage transcriptomes to identify those genes with 

significantly different expression levels between hypnozoites and schizonts (>2 fold-

change absolute value, 10% false discovery rate (FDR)) (Figures 2A and 2B). Our 

results indicate that the expression of only a dozen genes might be enhanced in 

quiescent hypnozoites as compared to growing liver schizonts, while the expression of 

thousands of genes is significantly lower in hypnozoites than in schizonts. To 

determine whether protein expression follows the RNA differential expression 

observed, we selected a few genes that were upregulated in either stage and raised 

antibodies against recombinant predicted proteins. Using these antibodies, we then 

performed immunofluorescence analysis (IFA) on cultured liver stages. Unexpectedly, 

antibodies against PcyM_0533600 (ETRAMP, amino acids Q30-K145), one of the 

most up-regulated genes in the hypnozoite samples, failed to detect the protein in day 

6 P. cynomolgi liver stage parasites. The same antibodies strongly reacted with P. 

cynomolgi blood parasites (Figure 2C) but failed to detect the protein in sporozoites 

(data not shown). Sequence analysis of RT-PCR products from different parasite 

stages revealed that only blood stage parasites express the predicted full-length 

PcyM_0533600 mRNA, while alternatively spliced transcripts (including premature 

stop codons) were found in sporozoite, schizont, and hypnozoite samples (Figure 2D), 

explaining our inability to detect the predicted protein in these stages.  
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Figure 2. Relapsing malaria liver stages display low transcription levels and differ from 
developing stages. (A) Volcano plot showing genes differentially expressed in hypnozoites (Hz, n =4 
biological replicates) versus schizonts (Sz, n=3 biological replicates). The y-axis represents the 
significance as –log10 FDR-adjusted p-values and the x-axis represents the expression changes as log2 
fold-change of Hz and Sz. Genes used for validation are marked. (B) Gene expression values (FPKM) 
of individual Hz and Sz samples from genes selected for validation. (C) Immunofluorescent staining of 
ETRAMP protein (green), DAPI (blue) and red blood cell (red) in P. cynomolgi blood stage parasites. 
Scale bars 25 µm. (D) Genome browser view of the etramp gene (PcyM_0533600) showing intron 
splicing events detected by sequencing of RT-PCR products in Blood stages, Sporozoites (SPZ), 
Schizonts (Sz) and Hypnozoites (Hz). Retained intron events are highlighted in blue; asterisk shows 
premature termination codons (PMTs). The predicted protein (Pred. Protein), the recombinant portion 
of the protein (Rec. Protein) used for antibody production (amino acids Q30-K145), and the positions 
of the primers used to generate the RT-PCR products are shown. (E) Immunofluorescent staining 
patterns of Ferredoxin (PcyM_1419800), GAP45 (PcyM_1442700), and HSP70 (PcyM_0515400) in 
day 6 P. cynomolgi liver schizonts and hypnozoites. Arrows, hypnozoites. Lower panel shows 
magnified image of GAP45 stained hypnozoite.  
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To further validate our dataset, antibodies were raised against three other proteins, 

PcyM_0515400 (HSP70), PcyM_1419800 (Ferredoxin) (Miotto et al., 2015) and 

PcyM_1442700 (Glideosome Associated Protein GAP45). These antibodies did react 

with P. cynomolgi day 6 liver stage parasites showing staining of liver schizonts 

(Ferredoxin), primarily hypnozoites (GAP45) or both schizonts and hypnozoites 

(HSP70), mirroring precisely the RNA-seq data for these genes (Figure 2E). 

Antibodies against GAP45, an inner membrane complex (IMC) marker (Kono et al., 

2012) and a member of the glideosome motor complex (Harding & Meissner, 2014), 

stained the periphery of 6-days old hypnozoites (Figure 2E middle and lower panels). 

In contrast, the staining pattern in schizonts was weaker and sparsely distributed (early 

schizonts) or absent (large mature schizonts) (Figure 2E middle panel). These data 

concur with previous reports describing the progressive loss of the IMC during 

conversion of the motile sporozoite into a replication-competent metabolically active 

liver stage form (Jayabalasingham, Bano, & Coppens, 2010). Interestingly, we could 

still detect GAP45 in hypnozoites at day 19 (Figure 2-figure supplement 1). The long-

term presence of GAP45 may be due to low protein turnover in hypnozoites or a 

functional requirement of this protein for hypnozoite maintenance. Taken together the 

RNA-FISH and immunofluorescence experiments confirmed the general trends we 

observed in the RNA-seq dataset and we anticipate that further mining of this gene list 

will yield differential markers of schizont development and hypnozoite maintenance. 
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Figure 2-figure supplement 1. GAP45 protein expression in day 19 hypnozoite. Staining of GAP45 
protein (PcyM_1442700) in a 19-day P. cynomolgi hypnozoite parasite by immunofluorescence 
analysis (IFA). Scale bar 25 μm. 
 

 

Hypnozoites express few core pathways including the 

physiological hallmarks of dormancy 

 

To investigate the physiology of P. cynomolgi liver stages, we performed a 

pathway analysis in schizonts and hypnozoites. Through orthology mapping, P. 

cynomolgi genes were assigned to 257 Plasmodium falciparum pathways 

(Aurrecoechea et al., 2009). Gene ontology and pathway enrichment analyses 

highlighted that hypnozoites express genes related to translation, RNA processing and 

epigenetic processes (e.g. histone acetylation and methylation). These pathways and 

processes were also enriched in the schizonts, which however expressed more 

processes related to the cell nucleus, hinting at the differences in transcriptional 

activity. Schizonts clearly express a much higher number of pathways than 

hypnozoites (Figure 3A). Of all the pathways included in this analysis, only ~34% (88 

out of 257 pathways) express more than half of their constituent genes above the 

threshold of 1 FPKM in the hypnozoite while the equivalent is true for ~91% (233 out 

of 257) of the pathways in schizonts. In the schizonts, energy and glucose metabolism 
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pathways, such as pentose phosphate cycle enzymes, CoA biosynthesis pathways and 

mannose/fructose metabolism are all highly expressed with nearly all genes in those 

pathways detected above 1 FPKM (Figure 3A). In contrast, those pathways are nearly 

absent in the hypnozoite, which is consistent with the quiescence and low metabolism 

that may be expected in dormant forms.  
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Figure 3. Pathway analysis of the malaria liver stages reveals the core biological functions 
required for hypnozoites maintenance. (A) Heat map showing expression of Plasmodium pathways 
in schizonts and hypnozoites. A total of 257 pathways annotated in P. falciparum were assigned to P. 
cynomolgi through orthology (see methods). Pathways where the fraction of genes detected above the 
threshold of FPKM of 1 is 100% are shown in red, between 50% and 100% in grey, between 0% and 
50% in blue. (B) Same as a) but showing only erythrocytic invasion and schizont specific pathways. 
(C) Same as a) but showing house-keeping pathways. 
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Interestingly, some but not all erythrocytic invasion pathways are expressed only in 

schizonts, suggesting that already at day 6 the parasites express some of the genes 

required for merozoite function and red blood cell invasion (Figure 3B). Hypnozoites 

mostly express core housekeeping pathways such as those involved with nucleus and 

chromatin maintenance, transcription, translation and mitochondrial respiration, but 

no DNA replication enzymes (Figure 3C, Figure 3-figure supplement 1). Notably, 

genes known to be required for ATP homeostasis in non-replicating dormant 

Mycobacterium tuberculosis (Rao et al., 2008), such as various components of the F0-

F1 ATPase complex, are similarly significantly expressed in hypnozoites (Figure 3-

figure supplement 1). Collectively, our analyses reveal that hypnozoites express 

pathways previously associated with quiescence and required for the maintenance of 

chromosome integrity and ATP homeostasis. 
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Figure 3-figure supplement 1. Liver stage schizont (Sz) and hypnozoite (Hz) gene expression 
values (FPKM) for pathways associated with quiescence. (A) Pathways involved in maintenance of 
membrane potential and ATP biosynthesis. (B) Pathways involved in preservation of genome integrity. 
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Expression pattern of potential drug targets in P. cynomolgi 

liver stages  

 

In the liver schizonts and hypnozoites transcriptomic dataset, we looked at the 

expression FPKM values for clinically and chemically validated drug targets (reported 

in Figure 4A). While all drug targets are expressed in the schizonts above the threshold 

level of 1 FPKM, only a few of them are detectable above this level in the hypnozoites. 

For example, we could not detect PI4K transcripts in day 6 hypnozoites while this gene 

is abundantly expressed in schizonts (Figure 4A), which is consistent with previously 

published data on Plasmodium PI4K inhibitors having prophylactic but not radical 

curative activity in the P. cynomolgi model (Zeeman et al., 2016). In contrast, the 

antifolate drug target DHFR is detectable above 1 FPKM in hypnozoites, yet 

antifolates do not exhibit radical cure in the P. cynomolgi model (Schmidt, Fradkin, 

Genther, Rossan, & Squires, 1982). Likewise, DHODH, the target of the clinical 

candidate DSM265, is detectable in hypnozoites while this compound shows poor 

activity against hypnozoites in vitro (Phillips et al., 2015). Although the P. cynomolgi 

ATP4 ortholog, the clinically validated target of KAE609, is detectable in schizonts at 

low level, it is not critical as PfATP4 inhibitors are not active in liver stages (Jiménez-

díaz et al., 2014; Rottmann et al., 2010; Vaidya et al., 2014). Thus, it appears that 

function could not be directly inferred from the liver stages expression data.  

Plasmodium parasite survival and replication depends on the import of nutrients and 

solutes from its host cell and some transporters have been proposed to be tractable 

drug targets for malaria (Hapuarachchi et al., 2017; Pain et al., 2016; Slavic, Krishna, 
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Derbyshire, & Staines, 2011; Weiner & Kooij, 2016). Consistently, we observe high 

FPKM values for a broad range of transporters in both liver schizonts (35 putative 

transporters with FPKM values >10) and hypnozoites (7 transporters with FPKM 

values >10 and 25 transporters with FPKM values >1. Heavy metal homeostasis has 

been shown to be critical to liver stage (Kenthirapalan, Waters, Matuschewski, & 

Kooij, 2016; Sahu et al., 2014; Stahel et al., 1988) development and consistently we 

found several heavy metal transporters to be expressed in all liver stages (Figure 4B). 

Remarkably, two putative copper transporters (PcyM_1331900 and PcyM_1277100) 

showed high FPKM values for both liver stage schizonts and hypnozoites (Figure 4B), 

suggesting a role for copper homeostasis in liver stage development and quiescence. 

To determine whether copper was critical to P. cynomolgi liver stages, we treated 

infected hepatocytes with a copper chelator, neocuproine (Choveaux, Przyborski, & 

Goldring, 2012; Kenthirapalan, Waters, Matuschewski, & Kooij, 2014). Neocuproine 

treatment, initiated 1-2 hours after infection with sporozoites and continued for 6 days, 

indeed showed pronounced cidal effects on the viability of both liver schizonts and 

hypnozoites (Figure 4C) at the highest concentration tested. In one of the three assays 

we noted a limited effect on hepatocyte viability at this concentration, as concluded 

from from hepatocyte nuclei counts in the analysis. These data provide some 

preliminary chemical validation of the hypothesis that copper homeostasis may be 

critical for schizonts replication and hypnozoites survival. 
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Figure 4. Expression of potential malaria drug targets in hypnozoites. (A) Table showing the list of 
known malaria drug targets along their expression levels in the liver stages and the targeting compound. 
(B) Table showing list of putative heavy metal transporters with chelating agents and their expression 
levels in the P. cynomolgi liver stages. (C) Structure formula of the copper chelator neocuproine. Dose-
dependent effect of day 0-6 neocuproine treatment on P. cynomolgi liver stage schizonts (Sz) and 
hypnozoites (Hz). Bar charts show averaged results of 3 independent assays (7 wells per compound 
dilution in total) with standard error of the mean (sem). 
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Discussion  

 

Because malaria liver stage parasites are more difficult to culture in vitro, the 

parasite hepatic life cycle has been neglected and our collective knowledge of those 

stages remains sparse. The need for new pre-erythrocytic vaccination strategies 

(Longley, Hill, & Spencer, 2015) and novel drug therapies to combat relapsing malaria 

parasites (Campo et al., 2015), recently fueled much interest for further investigations 

of the biology of liver stage parasites. As a significant contribution to these efforts, we 

report here a comprehensive comparative transcriptomics dataset of both developing 

and dormant liver stage P. cynomolgi malaria parasites. Using this dataset, we 

identified two protein markers that differentiate quiescent from actively dividing 

parasites and demonstrate that copper homeostasis is critically required for P. 

cynomolgi parasites replication and survival in hepatocytes. It is our hope that through 

multi-disciplinary collaborative efforts the research community will further mine this 

dataset to gain further insights in the biology of Plasmodium dormancy. 

Recently a first P. cynomolgi hypnozoite transcriptomic dataset has been published 

(Cubi et al., 2017) which reports about 120 differentially expressed genes of which 69 

are more than 3-fold upregulated, while we report here a much smaller number of 

upregulated genes in hypnozoites. It is important to note that Cubi et al. applied a 

uniform normalization that assumes that signals from different samples should be 

scaled to have the same median or average value thus not taking into account the size 

differences of replicating and dormant liver stages (Mikolajczak et al., 2015). This 

could have potentially biased their comparative analysis towards an over-estimation 
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of the gene expression levels in hypnozoites. In contrast, we applied a group-wise 

normalization to the expression data in order to keep the expected difference in 

absolute level of gene expression between schizont and hypnozoite (Figure 1-figure 

supplement 3). Cubi et al. proposed that the gene PCYB_102390 (PcyM_1014300 in 

our dataset) encodes an ApiAP2 transcription factor AP2-Q (for quiescence) which 

could act as a master regulator of the hypnozoite fate (Cubi et al., 2017). However 

even after normalization, we failed to detect expression of this gene in 4 hypnozoite 

samples (Figure 3-figure supplement 2). Notwithstanding we detected transcripts for 

9 other Api-AP2 genes in hypnozoites (Figure 3-figure supplement 2). None of the 

AP-AP2 genes, including PcyM_1014300, are, however, exclusive for relapsing 

malarias, as suggested previously (Cubi et al., 2017). Only further functional 

characterization, like the studies that revealed the role of the AP2-G and AP2-G2 genes 

in gametocyte commitment (Sinha et al., 2014), will reveal the possible role of these 

AP2 transcription factors in hypnozoite identity and survival.  
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Figure 3-figure supplement 2. Expression of transcription factors in hypnozoites. (A) Heat map 
illustrating the expression values of genes belonging to putative target classes such as ZnF’s and AP2-
transcription factors. (B) Venn diagrams showing ZnF and AP2 transcription factors expressed in 
schizonts (Sz), hypnozoites (Hz), and both. 
 

 

We have previously shown that hypnozoite physiology evolves over time and while 

PI4 kinase (PI4K) inhibitors are protective when administered shortly after the initial 

malaria liver infection, they fail to radically cure monkeys when administered several 

days after parasite inoculation (Zeeman et al., 2016). In agreement with our previous 

reports, we found that at least as early as day 6 post-infection, the P. cynomolgi PI4K 

gene is not expressed in hypnozoites. The current in vitro liver stage drug assays 

cannot distinguish compounds only active against developing hypnozoites from those 

with activity against established hypnozoites (Zeeman et al., 2016). The identification 
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of markers specific to established hypnozoites would inform the design of parasites 

with transgenic reporter genes that would greatly assist the development of in vitro 

drug screening platforms (Campo et al., 2015). We found few upregulated genes in 

hypnozoites and unfortunately the most highly differentially expressed gene, 

PcyM_0533600, a member of the etramp family, was not translated in hypnozoites 

and sporozoites. The presence of such unproductive alternatively spliced transcripts in 

Plasmodium is not uncommon (Sorber, Dimon, & Derisi, 2011) and translational 

repression, including that of a member of the etramp family, UIS4 (Silvie, Briquet, 

Müller, Manzoni, & Matuschewski, 2014), has been shown to be involved in 

transitions between developmental stages of the life cycle (Lasonder et al., 2016). We 

showed nonetheless that the comparative transcriptomic dataset from this work can 

help select suitable proteins to produce monoclonal antibodies that differentially label 

specific liver stages. Further experiments are ongoing to expand the malaria liver stage 

research toolbox with selective and specific antibodies for replicating and quiescent 

liver stages. 

Dormancy is a physiological response which is relevant to various chronic human 

infectious diseases and shared by a wide range of pathogens expressing physiological 

hallmarks characteristic of microbial quiescence. Our dataset suggests that several of 

these hallmarks are present in the Plasmodium hypnozoite—namely the maintenance 

of membrane potential, ATP biosynthesis and preservation of genome integrity 

(Rittershaus et al., 2013). Indeed, pathways analysis reveals that most mitochondrial 

electron flow genes and ATP production enzymes are robustly expressed in 

hypnozoites (Figure 3-figure supplement 1). Similarly, nucleus and chromatin 

maintenance genes are highly expressed in hypnozoites, and while canonical non-
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homologous end joining (NHEJ) DNA-repair pathways are not present in Plasmodium 

(Gardner et al., 2002), we detected most of the homologous recombination repair (HR) 

enzymes as well as genes required for the maintenance of epigenetics marks (Figure 

3-figure supplement 1). In addition, the transcriptomics data together with the FISH 

validation experiments, suggest that hypnozoites display a significant reduction in 

transcriptional rate both qualitatively and quantitatively which is another hallmark of 

quiescence (Figures 1C and 1D). All of these physiological hallmarks do theoretically 

provide proven therapeutic approaches for killing quiescent organisms with the 

targeting of pathogens’ RNA polymerase(s) (Sala et al., 2010), proton-motive force 

enzymes (Andries et al., 2005) and DNA repair or epigenetic regulators (Dembélé et 

al., 2014; Sala et al., 2010). Establishing selective inhibition of these essential 

physiological processes in the parasite without significant toxicity to the host cells will 

be the key challenge for such approaches to be successful.  

In order to survive, malaria parasites utilize membrane transport proteins that allow 

the uptake of nutrients, disposal of waste products and maintenance of ion homeostasis 

(Weiner & Kooij, 2016). While some of these transporters have been implicated in 

drug resistance, recent experimental work has also supported their potential as anti-

malarial drug targets (Weiner & Kooij, 2016). Recent evidence has emerged for 

important roles of heavy metal homeostasis in sporozoite transmission and liver-stage 

development (Kenthirapalan et al., 2016; Sahu et al., 2014; Slavic et al., 2016; Stahel 

et al., 1988). Iron-deprivation inhibits liver stage growth (Goma, Renia, Miltgen, & 

Mazier, 1995; Stahel et al., 1988) and inactivation of a zinc-iron permease (ZIPCO) 

was shown to be detrimental for liver stage development (Sahu et al., 2014). We report 

here that P. cynomolgi liver stage parasites express transporters for heavy-metals, 
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including copper that in these preliminary experiments seems to be crucially needed 

for liver stages. Targeting such essential import pathways will again require selective 

inhibition of the parasite transporters for such approaches to be viable therapeutically.  

Taken together the RNA-seq data indicate that drug target liver stage expression is 

necessary but clearly not sufficient for an inhibitor to show anti-parasitic liver stage 

activity. Nonetheless, it is worth noting that the 1-deoxy-D-xylulose 5-phosphate 

reductoisomerase (DXR), the target of Fosmidomycin (Umeda et al., 2011), and the 

Elongation Factor 2 (eEF2), the target of the recently discovered drug candidate 

DDD107498 (Baragana et al., 2015), are both expressed in the hypnozoite at day 6. 

This may warrant further investigations of the potential of these compounds for vivax 

malaria radical cure. Although we did not identify pathways or drug targets specific to 

hypnozoites, our data collectively show that the hypnozoite expresses a core set of 

genes required for its basic cellular function. Identifying those essential functions that 

could be safely targeted with small molecule inhibitors should reveal the Achilles’ heel 

of the elusive hypnozoite. 

 

  



 118 

References 

 

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic 

local alignment search tool. J. Mol. Biol., (215), 403–410. 

Andries, K., Verhasselt, P., Guillemont, J., Neefs, J., Winkler, H., Gestel, J. Van, … 

Jarlier, V. (2005). A Diarylquinoline Drug Active on the ATP Synthase of 

Mycobacterium tuberculosis. Science, 307(5707), 223–227. 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … 

Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nat 

Genet, 25(1), 25–29. Retrieved from http://dx.doi.org/10.1038/75556 

Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., … 

Wang, H. (2009). PlasmoDB: A functional genomic database for malaria 

parasites. Nucleic Acids Research, 37(SUPPL. 1), 539–543. 

http://doi.org/10.1093/nar/gkn814 

Baragana, B., Hallyburton, I., Lee, M. C. S., Norcross, N. R., Grimaldi, R., Otto, T. 

D., … Gray, D. W. (2015). A novel multiple-stage antimalarial agent that 

inhibits protein synthesis. Nature. http://doi.org/10.1038/nature14451 

Bateman, A., Martin, M. J., O’Donovan, C., Magrane, M., Apweiler, R., Alpi, E., … 

Zhang, J. (2015). UniProt: A hub for protein information. Nucleic Acids 

Research, 43(D1), D204–D212. http://doi.org/10.1093/nar/gku989 

Campo, B., Vandal, O., Wesche, D. L., & Burrows, J. N. (2015). Killing the 

hypnozoite - drug discovery approaches to prevent relapse in Plasmodium 

vivax. Pathogens and Global Health, 109(3), 107–22. 



 119 

http://doi.org/10.1179/2047773215Y.0000000013 

Choveaux, D. L., Przyborski, J. M., & Goldring, J. P. D. (2012). A Plasmodium 

falciparum copper-binding membrane protein with copper transport motifs. 

Malaria Journal, 11(1), 397. http://doi.org/10.1186/1475-2875-11-397 

Cubi, R., Vembar, S. S., Biton, A., Franetich, J.-F., Bordessoulles, M., Sossau, D., … 

Mazier, D. (2017). Laser capture microdissection enables transcriptomic 

analysis of dividing and quiescent liver stages of Plasmodium relapsing species. 

Cellular Microbiology, 19(8). http://doi.org/10.1111/cmi.12735 

Dembélé, L., Franetich, J., Lorthiois, A., Gego, A., Zeeman, A., Kocken, C. H. M., 

… Mazier, D. (2014). Persistence and activation of malaria hypnozoites in long-

term primary hepatocyte cultures. Nature Medicine, 20(3), 307–312. 

http://doi.org/10.1038/nm.3461 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, B. P., & Chaisson 

M, G. T. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 

29(1), 15–21. http://doi.org/10.1093/bioinformatics/bts635 

Fischer, S., Brunk, B. P., Chen, F., Gao, X., Harb, O. S., John, B., … Jr, C. J. S. 

(2012). Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to 

cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics, 1–23. 

http://doi.org/10.1002/0471250953.bi0612s35. 

Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., … 

Barrell, B. (2002). Genome sequence of the human malaria parasite 

Plasmodium falciparum. Nature, 419(6906), 498–511. Retrieved from 

http://dx.doi.org/10.1038/nature01097 

Goma, J., Renia, L., Miltgen, F., & Mazier, D. (1995). Effects of iron deficiency on 



 120 

the hepatic development of Plasmodium yoelii. Parasite (Paris, France), 2(4), 

351–356. 

Gupta, A. P., Chin, W. H., Zhu, L., Mok, S., Luah, Y., Lim, E., & Bozdech, Z. 

(2013). Dynamic Epigenetic Regulation of Gene Expression during the Life 

Cycle of Malaria Parasite Plasmodium falciparum. PLoS Pathog, 9(2). 

http://doi.org/10.1371/journal.ppat.1003170 

Hahne, F., & Ivanek, R. (2016). Visualizing Genomic Data Using Gviz and 

Bioconductor. Methods in Molecular Biology, 1418, 335–351. 

http://doi.org/10.1007/978-1-4939-3578-9 

Hapuarachchi, S. V, Cobbold, S. A., Shafik, S. H., Dennis, A. S. M., McConville, M. 

J., Martin, R. E., … Lehane, A. M. (2017). The Malaria Parasite’s Lactate 

Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in 

Whole Cell Phenotypic Screens. PLOS Pathogens, 13(2), 1–24. 

http://doi.org/10.1371/journal.ppat.1006180 

Harding, C. R., & Meissner, M. (2014). The inner membrane complex through 

development of Toxoplasma gondii and Plasmodium. Cellular Microbiology, 

16(5), 632–641. http://doi.org/10.1111/cmi.12285 

James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric 

S. Lander, Gad Getz, J. P. M. (2011). Integrative genomics viewer. Nature 

Biotechnology, 29(1), 24–26. http://doi.org/10.1038/nbt0111-24 

Jayabalasingham, B., Bano, N., & Coppens, I. (2010). Metamorphosis of the malaria 

parasite in the liver is associated with organelle clearance. Cell Research, 20(9), 

1043–59. http://doi.org/10.1038/cr.2010.88 

Jiménez-díaz, M. B., Ebert, D., Salinas, Y., Pradhan, A., Lehane, A. M., Endsley, A. 



 121 

N., … Horst, J. (2014). through ATP4 to induce rapid host-mediated clearance 

of Plasmodium, 5455–5462. http://doi.org/10.1073/pnas.1414221111 

Kato, N., Comer, E., Sakata-kato, T., Sharma, A., Sharma, M., Maetani, M., … 

Winzeler, E. A. (2016). Diversity-oriented synthesis yields novel multistage 

antimalarial inhibitors. Nature, 538(7625), 344–349. 

http://doi.org/10.1038/nature19804 

Kenthirapalan, S., Waters, A. P., Matuschewski, K., & Kooij, T. W. A. (2014). 

Copper-transporting ATPase is important for malaria parasite fertility. 

Molecular Microbiology, 91(2), 315–325. http://doi.org/10.1111/mmi.12461 

Kenthirapalan, S., Waters, A. P., Matuschewski, K., & Kooij, T. W. A. (2016). 

Functional profiles of orphan membrane transporters in the life cycle of the 

malaria parasite. Nature Communications, 7, 10519. Retrieved from 

http://dx.doi.org/10.1038/ncomms10519 

Kono, M., Herrmann, S., Loughran, N. B., Cabrera, A., Engelberg, K., Lehmann, C., 

… Gilberger, T. W. (2012). Evolution and architecture of the inner membrane 

complex in asexual and sexual stages of the malaria parasite. Molecular Biology 

and Evolution, 29(9), 2113–2132. http://doi.org/10.1093/molbev/mss081 

Krotoski, W. A., Bray, R. S., Garnham, P. C. C., Gwadz, R. W., Killick-Kendrick, 

R., Draper, C. C., … Cogswell, F. B. (1982). Observations on Early and Late 

Post-Sporozoite Tissue Stages in Primate Malaria. The American Journal of 

Tropical Medicine and Hygiene, 31(2). 

Lasonder, E., Rijpma, S. R., Schaijk, B. C. L. Van, Hoeijmakers, W. A. M., Kensche, 

P. R., Gresnigt, M. S., … Sauerwein, R. W. (2016). Integrated transcriptomic 

and proteomic analyses of P . falciparum gametocytes : molecular insight into 



 122 

sex-specific processes and translational repression, 44(13), 6087–6101. 

http://doi.org/10.1093/nar/gkw536 

Longley, R. J., Hill, A. V. S., & Spencer, A. J. (2015). Malaria vaccines: identifying 

Plasmodium falciparum liver-stage targets. Frontiers in Microbiology, 6, 965. 

http://doi.org/10.3389/fmicb.2015.00965 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change 

and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. 

http://doi.org/10.1186/s13059-014-0550-8 

March, S., Ng, S., Velmurugan, S., Galstian, A., Shan, J., Logan, D. J., … Hoffman, 

S. L. (2013). A Microscale Human Liver Platform that Supports the Hepatic 

Stages of Plasmodium falciparum and vivax. Cell Host and Microbe, 14(1), 

104–115. http://doi.org/10.1016/j.chom.2013.06.005 

McNamara, C. W., Lee, M. C. S., Lim, C. S., Lim, S. H., Roland, J., Nagle, A., … 

Winzeler, E. A. (2013). Targeting Plasmodium PI(4)K to eliminate malaria. 

Nature, 504(7479), 248–253. Retrieved from 

http://dx.doi.org/10.1038/nature12782 

McNamara, C., & Winzeler, E. A. (2011). Target identification and validation of 

novel antimalarials. Future Microbiology, 6(6), 693–704. 

http://doi.org/10.2217/fmb.11.45 

Mikolajczak, S. A., Vaughan, A. M., Kangwanrangsan, N., Roobsoong, W., 

Fishbaugher, M., Yimamnuaychok, N., … Kappe, S. H. I. (2015). Plasmodium 

vivax Liver Stage Development and Hypnozoite Persistence in Human Liver-

Chimeric Mice. Cell Host & Microbe, 17(4), 526–535. 

http://doi.org/https://doi.org/10.1016/j.chom.2015.02.011 



 123 

Miotto, O., Amato, R., Ashley, E. A., MacInnis, B., Almagro-Garcia, J., 

Amaratunga, C., … Kwiatkowski, D. P. (2015). Genetic architecture of 

artemisinin-resistant Plasmodium falciparum. Nature Genetics, 47(3), 226–34. 

http://doi.org/10.1038/ng.3189 

Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L., & Wold, B. (2008). 

Mapping and quantifying mammalian transcriptomes by RNA-Seq, 5(7), 1–8. 

http://doi.org/10.1038/NMETH.1226 

Pain, M., Fuller, A. W., Basore, K., Pillai, A. D., Solomon, T., Bokhari, A. A. B., & 

Desai, S. A. (2016). Synergistic Malaria Parasite Killing by Two Types of 

Plasmodial Surface Anion Channel Inhibitors. PLOS ONE, 11(2), 1–16. 

http://doi.org/10.1371/journal.pone.0149214 

Pasini, E. M., Böhme, U., Rutledge, G. G., Voorberg-Van der Wel, A., Sanders, M., 

Berriman, M., … Otto, T. D. (2017). An improved Plasmodium cynomolgi 

genome assembly reveals an unexpected methyltransferase gene expansion. 

Wellcome Open Research, 2, 42. 

http://doi.org/10.12688/wellcomeopenres.11864.1 

Phillips, M. A., Lotharius, J., Marsh, K., White, J., Dayan, A., White, K. L., … 

Charman, S. A. (2015). A long-duration dihydroorotate dehydrogenase inhibitor 

(DSM265) for prevention and treatment of malaria. Science Translational 

Medicine, 7(296), 296ra111. 

Rao, S. P. S., Alonso, S., Rand, L., Dick, T., & Pethe, K. (2008). The protonmotive 

force is required for maintaining ATP homeostasis and viability of hypoxic, 

nonreplicating Mycobacterium tuberculosis. Proceedings of the National 

Academy of Sciences of the United States of America, 105(6), 11945–11950. 



 124 

Rittershaus, E. S. C., Baek, S., & Sassetti, C. M. (2013). The Normalcy of 

Dormancy: Common Themes in Microbial Quiescence. Cell Host and Microbe, 

13(6), 643–651. http://doi.org/10.1016/j.chom.2013.05.012 

Rottmann, M., McNamara, C., Yeung, B., MC, L., B, Z., B, R., … TT., D. (2010). 

Spiroindolones, a potent compound class for the treatment of malaria., 

329(5996), 1175–1180. http://doi.org/10.1126/science.1193225.Spiroindolones 

Sahu, T., Boisson, B., Lacroix, C., Bischoff, E., Richier, Q., Formaglio, P., … 

Baldacci, P. (2014). ZIPCO, a putative metal ion transporter, is crucial for 

Plasmodium liver-stage development. EMBO Molecular Medicine, 6(11), 1387–

1397. http://doi.org/10.15252/emmm.201403868 

Sala, C., Dhar, N., Hartkoorn, R. C., Zhang, M., Ha, Y. H., Schneider, P., & Cole, S. 

T. (2010). Simple Model for Testing Drugs against Nonreplicating 

Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 54(10), 

4150–4158. http://doi.org/10.1128/AAC.00821-10 

Schmidt, L. H., Fradkin, R., Genther, C. S., Rossan, R. N., & Squires, W. (1982). II. 

Responses of Sporozoite-Induced and Trophozoite-Induced Infections to 

Standard Antimalarial Drugs. Am J Trop Med Hyg, (31), 646–665. 

Schuierer, S., & Roma, G. (2016). The exon quantification pipeline (EQP): a 

comprehensive approach to the quantification of gene, exon and junction 

expression from RNA-seq data. Nucleic Acids Research, gkw538. 

http://doi.org/10.1093/nar/gkw538 

Silvie, O., Briquet, S., Müller, K., Manzoni, G., & Matuschewski, K. (2014). Post-

transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is 

important for host switch. Molecular Microbiology, 91(6), 1200–1213. 



 125 

http://doi.org/10.1111/mmi.12528 

Sinha, A., Hughes, K. R., Modrzynska, K. K., Otto, T. D., Pfander, C., Dickens, N. 

J., … Waters, A. P. (2014). A cascade of DNA-binding proteins for sexual 

commitment and development in Plasmodium. Nature, 507(7491), 253–257. 

http://doi.org/10.1038/nature12970 

Slavic, K., Krishna, S., Derbyshire, E. T., & Staines, H. M. (2011). Plasmodial sugar 

transporters as anti-malarial drug targets and comparisons with other protozoa. 

Malaria Journal, 10(1), 165. http://doi.org/10.1186/1475-2875-10-165 

Slavic, K., Krishna, S., Lahree, A., Bouyer, G., Hanson, K. K., Vera, I., … Mota, M. 

M. (2016). A vacuolar iron-transporter homologue acts as a detoxifier in 

Plasmodium. Nature Communications, 7, 10403. Retrieved from 

http://dx.doi.org/10.1038/ncomms10403 

Sorber, K., Dimon, M. T., & Derisi, J. L. (2011). RNA-Seq analysis of splicing in 

Plasmodium falciparum uncovers new splice junctions, alternative splicing and 

splicing of antisense transcripts. Nucleic Acids Research, 39(9), 3820–3835. 

http://doi.org/10.1093/nar/gkq1223 

Stahel, E., Mazier, D., Guillouzo, A., Miltgen, F., Landau, I., Mellouk, S., … 

Gentilini, M. (1988). Iron Chelators: In Vitro Inhibitory Effect on the Liver 

Stage of Rodent and Human Malaria. The American Journal of Tropical 

Medicine and Hygiene, 39(3), 236–240. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, 

M. A., … Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-

based approach for interpreting genome-wide expression profiles. Proceedings 

of the National Academy of Sciences, 102(43), 15545–15550. 



 126 

http://doi.org/10.1073/pnas.0506580102 

The Gene Ontology Consortium. (2017). Expansion of the Gene Ontology 

knowledgebase and resources. Nucleic Acids Research, 45(D1), D331–D338. 

Retrieved from http://dx.doi.org/10.1093/nar/gkw1108 

Umeda, T., Tanaka, N., Kusakabe, Y., Nakanishi, M., Kitade, Y., & Nakamura, K. T. 

(2011). Molecular basis of fosmidomycin’s action on the human malaria 

parasite Plasmodium falciparum. Scientific Reports, 1–8. 

http://doi.org/10.1038/srep00009 

Vaidya, A., JM, M., Z, Z., Das S, Daly TM, Otto TD, Spillman NJ, W., M, Siegl P, 

Marfurt J, Wirjanata G, Sebayang BF, Price RN, Chatterjee A, N. A., Stasiak 

M, Charman SA, Angulo-Barturen I, Ferrer S, B. J.-D. M., … Kortagere S, 

Burrows J, Fan E, B. L. (2014). Pyrazoleamide compounds are potent 

antimalarials that target Naþ homeostasis in intraerythrocytic Plasmodium 

falciparum. Nat Commun., 5:5521(May), 1–10. 

http://doi.org/10.1038/ncomms6521 

Vaughan, A. M., O’neill, M. T., Tarun, A. S., Camargo, N., Phuong, T. M., Aly, A. 

S. I., … Kappe, S. H. I. (2009). Type II fatty acid synthesis is essential only for 

malaria parasite late liver stage development. Cellular Microbiology, 11(3), 

506–520. http://doi.org/10.1111/j.1462-5822.2008.01270.x 

Voorberg-van der Wel, A., Zeeman, A. M., van Amsterdam, S. M., van den Berg, A., 

Klooster, E. J., Iwanaga, S., … Kocken, C. H. M. (2013). Transgenic 

Fluorescent Plasmodium cynomolgi Liver Stages Enable Live Imaging and 

Purification of Malaria Hypnozoite-Forms. PLoS ONE, 8(1). 

http://doi.org/10.1371/journal.pone.0054888 



 127 

Weiner, J., & Kooij, T. W. A. (2016). Phylogenetic profiles of all membrane 

transport proteins of the malaria parasite highlight new drug targets. Microbial 

Cell, 3(10), 511–521. http://doi.org/10.15698/mic2016.10.534 

World Health Organization (WHO). (2015). World malaria report 2015. Geneva, 

(http://www.who.int/malaria/publications/world-malaria-report-2015/en/). 

Zeeman, A. M., Lakshminarayana, S. B., van der Werff, N., Klooster, E. J., 

Voorberg-van der Wel, A., Kondreddi, R. R., … Kocken, C. H. M. (2016). 

PI4K is a prophylactic, but not radical curative target in Plasmodium vivax -

type malaria parasites. Antimicrobial Agents and Chemotherapy, 60(5), 

AAC.03080-15. http://doi.org/10.1128/AAC.03080-15 

Zeeman, A. M., Van Amsterdam, S. M., McNamara, C. W., Voorberg-van Der Wel, 

A., Klooster, E. J., Van Den Berg, A., … Kocken, C. H. M. (2014). KAI407, a 

potent non-8-aminoquinoline compound that kills Plasmodium cynomolgi early 

dormant liver stage parasites in vitro. Antimicrobial Agents and Chemotherapy, 

58(3), 1586–1595. http://doi.org/10.1128/AAC.01927-13 

Zimin, A. V, Cornish, A. S., Maudhoo, M. D., Gibbs, R. M., Zhang, X., Pandey, S., 

… Norgren, R. B. (2014). A new rhesus macaque assembly and annotation for 

next-generation sequencing analyses. Biology Direct, 9(1), 20. 

http://doi.org/10.1186/1745-6150-9-20 

 

 

  



 128 

Chapter IV 

Genomic analysis revealed new oncogenic signatures in 
TP53-mutant hepatocellular carcinoma 
 

Abstract  

 

The TP53 gene is the most commonly mutated gene in human cancers and 

mutations in TP53 have been shown to have either gain-of-function or loss-of-function 

effects. Using the data generated by The Cancer Genome Atlas, we sought to define 

the spectrum of TP53 mutations in hepatocellular carcinomas (HCCs) and their 

association with clinicopathologic features, and to determine the oncogenic and 

mutational signatures in TP53-mutant HCCs. Compared to other cancer types, HCCs 

harbored distinctive mutation hotspots at V157 and R249, whereas common mutation 

hotspots in other cancer types, R175 and R273, were extremely rare in HCCs. In terms 

of clinicopathologic features, in addition to the associations with chronic viral 

infection and high Edmondson grade, we found that TP53 somatic mutations were less 

frequent in HCCs with cholestasis or tumor infiltrating lymphocytes, but were more 

frequent in HCCs displaying necrotic areas. An analysis of the oncogenic signatures 

based on the genetic alterations found in genes recurrently altered in HCCs identified 

four distinct TP53-mutant subsets, three of which were defined 

by CTNNB1 mutations, 1q amplifications or 8q24 amplifications, respectively, that 

co-occurred with TP53 mutations. We also found that mutational signature 12, a liver 

cancer-specific signature characterized by T>C substitutions, was prevalent in HCCs 
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with wild-type TP53 or with missense TP53 mutations, but not in HCCs with 

deleterious TP53 mutations. Finally, whereas patients with HCCs harboring 

deleterious TP53mutations had worse overall and disease-free survival than patients 

with TP53-wild-type HCCs, patients with HCCs harboring missense TP53 mutations 

did not have worse prognosis. In conclusion, our results highlight the importance to 

consider the genetic heterogeneity among TP53-mutant HCCs in studies of biomarkers 

and molecular characterization of HCCs. 
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Introduction 

 

Hepatocellular carcinomas (HCCs) display extensive histologic, 

transcriptomic and genetic diversity (Lee et al., 2004; Boyault et al., 2007; Chiang et 

al., 2008; Hoshida et al., 2009; Fujimoto et al., 2012; Guichard et al., 2012; Ahn et al., 

2014; Schulze et al., 2015; The Cancer Genome Atlas Research Network, 2017). On 

the genetic level, genes involved in liver metabolism, Wnt and p53 signaling have been 

shown to be recurrently altered (Fujimoto et al., 2012; Guichard et al., 2012; Ahn et 

al., 2014; Schulze et al., 2015; The Cancer Genome Atlas Research Network, 2017). 

The most frequently mutated protein-coding genes are CTNNB1 (encoding β-catenin) 

and TP53 (encoding p53), both mutated in 20–40% of HCCs (Fujimoto et al., 2012; 

Guichard et al., 2012; Ahn et al., 2014; Schulze et al., 2015; The Cancer Genome Atlas 

Research Network, 2017). 

TP53 is the most frequently mutated gene in human cancers (Kandoth et al., 2013). 

The p53 protein modulates multiple cellular functions, including transcription, DNA 

synthesis and repair, cell cycle arrest, senescence and apoptosis (Vogelstein et al., 

2000). Mutations in TP53 can abrogate these functions, leading to genetic instability 

and progression to cancer (Vogelstein et al., 2000). Across 12 major cancer types 

(excluding HCC), 42% of cancers harbored TP53 somatic mutations, with at least 20% 

mutational rate in 10/12 cancer types and TP53 mutations are associated with inferior 

prognosis and unfavorable clinicopathologic parameters, such as tumor stage 

(Kandoth et al., 2013). Furthermore, TP53-mutant tumors are highly enriched among 

tumors driven by copy number alterations (CNAs), with most remaining TP53-mutant 
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tumors associated with the presence of somatic mutations in the Wnt and/or the RAS-

RAF-ERK signaling pathways (Ciriello et al., 2013). 

The pattern of TP53 mutations is reminiscent of both an oncogene and a tumor 

suppressor gene (Vogelstein et al., 2013). The majority (86%) of TP53 mutations are 

in the DNA-binding domain (Olivier et al., 2010; Kandoth et al., 2013). Most 

mutations in the DNA-binding domain are missense (88%) and approximately 1/3 of 

missense mutations affect the hotspot residues R175, G245, R248, R249, R273, and 

R282 (Olivier et al., 2010). Outside the DNA-binding domain, most mutations (∼60%) 

are nonsense or frameshift (Olivier et al., 2010). Mutant p53 proteins may lose the 

tumor suppressive functions and exert dominant-negative activities, but may also gain 

new oncogenic properties (Olivier et al., 2010; Muller and Vousden, 2014). Indeed, on 

the immunohistochemical level, p53 is generally detectable to various extents in 

samples with missense mutations but is undetectable in samples with truncating or 

frameshift mutations (Hall and McCluggage, 2006; Soussi et al., 2014). 

In HCC, TP53 mutational frequency has been reported to range between 22 and 33% 

(Fujimoto et al., 2012; Guichard et al., 2012; Cleary et al., 2013; Kan et al., 2013; Ahn 

et al., 2014; Jhunjhunwala et al., 2014; Shiraishi et al., 2014; Totoki et al., 2014; 

Weinhold et al., 2014; Schulze et al., 2015; Fujimoto et al., 2016; The Cancer Genome 

Atlas Research Network, 2017). However, the frequency varies between geographic 

regions, etiological factors and carcinogen exposure, with more frequent TP53 

mutations in regions where hepatitis B virus (HBV) infection is endemic (Fujimoto et 

al., 2012; Guichard et al., 2012; The Cancer Genome Atlas Research Network, 2017). 

Similar to other cancer types, TP53-mutant HCCs have been associated with features 

linked to poor prognosis, including high levels of alpha-fetoprotein, high Edmondson 
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grade, expression of stem-like markers, and activation of pro-oncogenic signaling 

pathways (Kiani et al., 2002; Breuhahn et al., 2004; Lee et al., 2004; Peng et al., 2004; 

Boyault et al., 2007; Chiang et al., 2008; Hoshida et al., 2009; Goossens et al., 2015). 

Furthermore, patients with TP53-mutant HCCs tend to have shorter overall (OS) and 

disease-free survival (DFS) (Yano et al., 2007; Woo et al., 2011; Cleary et al., 2013). 

However, it appears that not all TP53 mutations in HCCs are equal. For instance, one 

of the most common mutation hotspots affecting residues R248/249 has an overall 

frequency of ∼10% among TP53-mutant HCCs (Fujimoto et al., 2012, 2016; Ahn et 

al., 2014; Schulze et al., 2015; The Cancer Genome Atlas Research Network, 2017). 

In particular, the R249S mutation resulting from G>T transversion has specifically 

been linked to the combined effect of aflatoxin B1 exposure and HBV infection 

(Bressac et al., 1991; Hsu et al., 1991) and this mutation is detected in >75% of HCC 

from areas with high aflatoxin B1 exposure (Gouas et al., 2009; Kew, 2010). Further 

hotspot mutations affecting preferentially HCC are located at the residues V157 and 

H193 (both at ∼2%) (Fujimoto et al., 2012, 2016; Ahn et al., 2014; Schulze et al., 

2015; The Cancer Genome Atlas Research Network, 2017). Both R249S and V157F 

have been associated with stem cell-like traits and poor prognosis in HCC patients 

(Villanueva and Hoshida, 2011; Woo et al., 2011). 

Finally, molecular classification studies have invariably grouped TP53-mutant HCCs 

under the umbrella of the aggressive subclass, but it is also clear that this subclass is 

molecularly, biologically and clinically heterogeneous (Boyault et al., 2007; Hoshida 

et al., 2009; Goossens et al., 2015). 

Given the diverse pattern of TP53 mutations, taking advantage of The Cancer Genome 

Atlas (TCGA) dataset, in this study we sought to determine the pattern of TP53 
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somatic mutations in HCCs and its association with clinicopathologic features. 

Additionally, as TP53 mutations are associated with HCC molecular subclasses with 

poor prognosis, we sought to define the oncogenic and mutational signatures among 

TP53-mutant HCCs. 
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Material and methods  

 

Sample Selection and Histologic Assessment 

 

From TCGA liver hepatocellular carcinoma (LIHC) project (The Cancer 

Genome Atlas Research Network, 2017), 373 tumors with available somatic 

mutational data1 (accessed April 2017) (Gao et al., 2013) were included in the study. 

Images of diagnostic hematoxylin & eosin (H&E) slides were retrieved from the 

cbioportal and reviewed by three expert hepatopathologists (SA, MSM and LMT) 

according to the guidelines by the World Health Organization (Bosman et al., 2010) 

to define the presence or absence of cholestasis, Mallory bodies, tumor infiltrating 

lymphocytes (TILs), vessel infiltration and necrotic areas. 4-point scale Edmondson 

and Steiner system was adopted for tumor grading as previously described 

(Edmondson and Steiner, 1954; Alexandrov et al., 2013). Clinical information were 

obtained from the cbioportal (Gao et al., 2013). 

 

Classification of TP53 Somatic Mutations 

 

TP53 somatic non-synonymous and splice region mutations for the 373 HCCs 

were retrieved from the cbioportal (accessed April 2017) (Gao et al., 2013). TP53 

mutations were stratified according to (i) the mutation type as single-nucleotide 

missense mutations (also encompassing synonymous mutations affecting splice 
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region) or deleterious mutations (encompassing splice site, nonsense, in-frame, and 

frameshift mutations); (ii) whether the mutations were within or outside of the DNA-

binding domain. For correlative analyses with clinicopathologic parameters, the 

sample (TCGA-DD-A1EE) with three TP53 mutations (A161S, H193R and C277∗) 

was classified as harboring deleterious mutation. 

The spectrum of TP53 mutations in non-LIHC TCGA datasets were retrieved from the 

cbioportal (accessed June 2017) (Gao et al., 2013). Mutation (lolliplot) diagrams and 

Oncoprints were generated using cbioportal (Gao et al., 2013). 

 

Genomic and Transcriptomic Data Analysis 

 

Gene-level copy number (“gistic2_thresholded,” 370/373 samples) and 

expression (“IlluminaHiSeq,” 367/373 samples) data were retrieved from the UCSC 

Xena Functional Genomics Browser2 accessed April 2017). Gene-level copy number 

data were used to define genomic regions with differential frequencies of copy number 

alterations between HCCs with missense TP53 mutations, with deleterious TP53 

mutations, or with wild-type TP53. Copy number states -2, -1, 0, 1, and 2 were 

considered homozygous deletion, heterozygous loss, copy number neutral, gain and 

high-level gain/amplification, respectively. 

Transcriptomic data were in the form of gene-level, log-transformed, upper-quartile-

normalized RSEM values. Molecular classification was performed according to 

Hoshida et al. (2009), using the Nearest Template Prediction: 

http://software.broadinstitute.org/cancer/software/genepattern. The R package limma 



 136 

was used to perform quantile normalization and for differential expression analysis. 

Multiple correction was performed using the Benjamini–Hochberg method. Genes 

with adjusted P-value < 0.05 were considered as differentially expressed. 

The number of somatic mutations per sample was obtained from the cbioportal (Gao 

et al., 2013). 

 

Oncogenic Signatures 

 

Oncogenic signature (“oncosign”) classification and the selection of genomic 

features as ‘selected functional elements’ (SFEs) input data were performed as 

described by Ciriello et al. (2013). Specifically, we selected 29 significantly mutated 

genes that have previously been reported as cancer genes (Futreal et al., 2004; 

Fujimoto et al., 2012; Kandoth et al., 2013; Lawrence et al., 2014), 27 recurrent 

amplifications and 34 recurrent deletions as SFEs. Robustness of the subclasses was 

assessed by removing 5, 10, or 20% of samples, reclassifying the reduced dataset, and 

calculating the Jaccard coefficients over 20 runs (Ciriello et al., 2013). Enrichment of 

genomic alterations was assessed using Chi-squared and Fisher’s exact tests, as 

described (Ciriello et al., 2013). 
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Mutational Signatures 

 

Decomposition of mutational signatures was performed using deconstructSigs 

(Rosenthal et al., 2016), based on the set of 30 mutational signatures 

(“signature.cosmic”) (Alexandrov et al., 2013; Nik-Zainal et al., 2016), for the 358 

samples with at least 30 somatic mutations. Mutational signatures with >20% weight 

were considered to have substantial contribution to the overall mutational landscape. 

For each sample, the mutation signature with the highest weight was considered the 

dominant mutational signature. 

 

Pathway Analysis 

 

Pathways analysis was performed using Ingenuity Pathway Analysis as 

previously described (Piscuoglio et al., 2014; Martelotto et al., 2015). P < 0.001 was 

considered significant. 

 

Statistical Analysis 

 

Associations between TP53 mutations and clinical/histologic features were 

assessed using Mann–Whitney U, Chi-squared or Fisher’s exact tests as appropriate. 

Survival analyses were performed using the Kaplan-Meier method and the log-rank 

test. Univariate and multivariate analyses for OS and DFS were performed using the 

Cox proportional-hazards model. Mutual exclusivity and co-occurrence of somatic 
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mutations were defined using the cbioportal (Gao et al., 2013). Statistical analyses 

comparing copy number profiles and defining genes up-regulated when gained or 

amplified and genes down-regulated when lost were performed as previously 

described (Piscuoglio et al., 2014). All tests were two-sided. P < 0.05 were considered 

statistically significant. Statistical analyses were performed with R v3.1.2 or SPSS v24 

(IBM, Münchenstein, CH). 
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Results 

 

Clinicopathologic Characterization and Molecular 

Classification of HCCs 

 

TP53 mutation status was available for 373 HCCs subjected to whole-exome 

sequencing by TCGA (The Cancer Genome Atlas Research Network, 2017). Analysis 

of the clinical details of the patients revealed that the median age at diagnosis was 61 

(range 16–90) and that 67.5% were male. Half of the patients were Caucasian (50.8%), 

with most remaining patients being Asian (43.9%). The most frequent primary risk 

factor was alcohol consumption (33.1%), followed by HBV (30.0%) and hepatitis C 

virus (HCV) infection (15.9%). Overall, history of at least one primary risk factor was 

noted in 74.2% patients. 

We performed a comprehensive histopathologic review of the diagnostic H&E slides 

for all 373 included cases to assess Edmondson grade, the presence of cholestasis, 

Mallory bodies, vessel infiltration, necrotic areas, and TILs (Figure 1). Most samples 

were of intermediate grade, with 33.2, 60.6, and 5.4% graded as of Edmondson grades 

2, 3, and 4, respectively. No sample was classified as of Edmondson grade 1. 

Cholestasis, Mallory bodies, vessel infiltration, necrotic areas, and TILs were present 

in 21.6, 22.0, 34.1, 24.8, and 47.3% of cases, respectively. 



 140 

 

Figure 1. Histologic features of hepatocellular carcinoma. Low-power view of hepatocellular 
carcinomas with tumor infiltrating lymphocytes (A), necrotic areas (B), vessel infiltration (C), Mallory 
bodies (D), cholestasis (E) and of high Edmondson grade (F). Red arrows indicate the relevant histologic 
features. 
 

Molecular classification was performed for the 367 HCCs for which expression data 

were available according to Hoshida et al. (2009). 31.3, 21.5, and 47.2% of HCCs were 

classified as S1, S2 and S3, respectively. 

 

Spectrum of TP53 Somatic Mutations in HCCs 

 

Given that TP53 is one of the most frequently mutated genes in HCCs and its 

diverse spectrum of mutations in human cancers, we sought to define the spectrum and 

type of TP53 mutations found in HCCs. A total of 116 somatic non-synonymous TP53 

mutations and 2 synonymous TP53 mutations affecting splice regions were identified 

in 115 (30.8%) cases, including one case with three distinct mutations and one case 

with two. Missense (including missense and synonymous mutations affecting splice 

region) and deleterious (including nonsense, frame-shift, in-frame, splice site) 
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mutations accounted for 73 (62%) and 45 (38%), respectively (Figure 2). Compared 

to other cancer types characterized by the TCGA, there was no difference between 

HCC and non-HCC tumor types in terms of the ratio of missense vs deleterious 

mutations (P = 0.197, Fisher’s exact test). 

 

 

Figure 2. The distribution and the spectrum of TP53 mutations. The distribution and spectrum of TP53 
missense (A,B) and deleterious (C,D) mutations in hepatocellular carcinoma (A,C) and in non-liver 
TCGA datasets (B,D). Diagrams represent the protein domains of p53 encoded by the TP53 gene. The 
presence of a mutation is shown on the x axis (lollipop), and the frequency of mutations is shown on 
the y axis. Missense mutations are presented as green circles, deleterious mutations (i.e., nonsense, 
frameshift, splice-site and in-frame) are depicted in black and brown circles. Plots were generated using 
cBioPortal tools (http://www.cBioPortal.org) and curated manually. 
 

 

Of the 73 missense and synonymous mutations affecting splice region, 51 (70%) 

affected known hotspot residues (Chang et al., 2016; Gao et al., 2017) and all but one 

(99%) affected the DNA-binding domain (Figure 2A). All missense mutations were 

predicted to be pathogenic by at least 2/5 in silico mutation effect predictors, with the 

two synonymous mutations affecting splice region also predicted to be disease causing. 

The most frequent hotspot mutations were R249S (11/73, 15%), H193R (4/73, 5%), 

and R248Q/W (4/73, 5%). V157F, a mutation not considered to be a hotspot residue 

(Chang et al., 2016; Gao et al., 2017) but was reported as a mutation hotspot in HCCs 

(Woo et al., 2011), accounted for 4/73 (5%) of the missense mutations (Figure 2A). 



 142 

Compared to other cancer types, mutations affecting V157 and R249 accounted for 

greater proportions of the missense mutations in HCCs than in other cancer types 

(4/73, 5% vs. 22/1787, 1.2%, P = 0.017 and 11/73, 15% vs. 21/1787, 1.2%, P < 0.001, 

respectively, Fisher’s exact tests, Figures 2A,B). In particular, R249S accounted for 

<0.5% of TP53 missense mutations in non-HCC TCGA samples, but accounted for 

15% of the missense mutations in HCCs (P < 0.001, Fisher’s exact test). In contrast, 

the most frequent hotspots in non-HCC tumors R273 (178/1787, 10.0% of missense 

mutations) and R175 (112/1787, 6.3%) were only observed once and not at all, 

respectively, in HCCs (P = 0.008 and P = 0.020, respectively, Fisher’s exact tests). 

The 45 deleterious mutations comprised 13 (29%) nonsense point mutations, 20 (44%) 

frameshift small insertions or deletions (indels), 3 (7%) in-frame indels and 9 (20%) 

mutations affecting splice sites. Unlike missense mutations, the 45 deleterious 

mutations were spread across the TP53 gene, with 32 (71%) in the DNA-binding 

domain, 3 (7%) in the tetramerization motif and 10 (22%) outside of these two domains 

(Figure 2C). In other cancer types, recurrent truncating mutations were observed at 

R196 (44/926, 4.8% of deleterious TP53 mutations) and R213 (56/926, 6.0%), both of 

which were not observed in HCC (Figures 2C,D). 

Our results demonstrate that the spectrum of TP53 mutations in HCCs is distinct from 

that in non-HCC tumors, with HCC-specific recurrent hotspot mutations and a near 

absence of highly recurrent TP53 mutations found in other cancer types. 
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TP53 Status Correlates with Specific Histopathologic and 

Clinical Features of HCCs 

 

Next, we sought to define whether TP53 mutation status correlated with 

clinicopathologic parameters. TP53 mutations were more frequently found in male 

patients (35.9% vs. 20.7% in female; P = 0.003, Fisher’s exact test) and in patients 

with at least one primary risk factor (35.1% vs. 20.9%; P = 0.013, Fisher’s exact test), 

especially in HCCs associated with HBV/HCV infection (53.1% vs. 39.7%; P = 0.021, 

Fisher’s exact test, Table 1). Patients from different racial backgrounds were 

associated with different TP53 mutational frequencies (P = 0.001, Chi-squared test, 

Table 1). Black or African Americans had the highest frequency of TP53 mutations 

(70.6% vs. Asians, 36.5%, P = 0.009, and vs. Caucasians, 22.8%, P < 0.001, Fisher’s 

exact tests), while Asians displayed more frequent TP53 mutations than Caucasians (P 

= 0.006, Fisher’s exact test). No association with age of patients or Child-Pugh 

classification was observed. 
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Table 1. Analyses of TP53 status and clinicopathologic parameters in the 373 HCCs from The Cancer 
Genome Atlas cohort (The Cancer Genome Atlas Research Network, 2017). 
 

 

Correlation with histologic features revealed that TP53-mutant HCCs were associated 

with high Edmondson grade, accounting for 12.1, 38.5, and 65.0% of cases classified 

as Edmondson grades 2, 3, and 4, respectively (P < 0.001, Chi-squared test, Table 1). 

TP53 mutations were less frequent in HCCs associated with cholestasis (17.5% vs. 

38.4%; P = 0.003, Fisher’s exact test) and were more frequent in HCCs with necrotic 

areas (43.5% vs. 26.9%; P = 0.004, Fisher’s exact test, Table 1). The presence of TILs 

was associated with less frequent TP53 mutations (37.4% vs. 62.6%; P = 0.013, 

Fisher’s exact test; Table 1). No association was found between TP53 mutation status 

and the presence of Mallory Bodies or vessel infiltration. 
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Further analyses comparing HCCs with missense or deleterious mutations showed that 

patients with HCCs with deleterious TP53 mutations were slightly older than those 

with missense mutations (median 64 vs. 58, P = 0.049, Mann–Whitney U test). After 

excluding one patient (TCGA-DD-A1EE) with both deleterious mutation (C277∗) and 

hotspot missense (H193R) mutations, the ages between the two groups were not 

different (P = 0.058, Mann–Whitney U test). Of note, TP53 recurrent hotspots V157F, 

R158H, H193R, Y205, and R249S were exclusively found in tumors of high 

Edmondson grade (grades 3/4, P = 0.038, Fisher’s exact test, compared to HCCs with 

other TP53 mutations). 

Correlating TP53 status with molecular classification, (Hoshida et al., 2009) TP53-

mutant HCCs were preferentially enriched in the S1 and S2 subclasses (36.5% and 

42.5% vs. 21.8% in S3, P = 0.001, Chi-squared test, Table 1). Stratifying TP53-mutant 

HCCs into those with missense or deleterious mutations did not reveal association 

between TP53 mutation types and molecular classification (P = 0.459, Chi-squared 

test). 

These results demonstrate that, additional to the well-established associations with the 

male gender, HBV/HCV infection and high Edmondson grade, TP53 mutations were 

less frequent in HCCs with cholestasis or TILs, but were more frequent in HCCs with 

necrotic areas. 
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Genomic Instability Is Not Associated with TP53 Mutation 

Type 

 

Next, we compared the number of somatic genetic alterations between TP53-

wild-type and mutant cases. Mutational burden was higher in TP53-mutant HCCs, 

HCCs with missense TP53 mutations and HCCs with deleterious TP53 mutations than 

TP53-wild-type cases (P < 0.001, P < 0.001 and P = 0.004, respectively, Mann–

Whitney U tests), but no difference was observed between cases with missense or 

deleterious mutations (P = 0.799, Mann–Whitney U test). Similarly, TP53-mutant 

HCCs, HCCs with missense TP53 mutations and HCCs with deleterious TP53 

mutations all harbored higher number of genes affected by CNAs compared with 

TP53-wild-type cases (P < 0.001, P < 0.001 and P = 0.001, respectively, Mann–

Whitney U tests), with no difference between cases with missense or deleterious TP53 

mutations (P = 0.352, Mann–Whitney U test). 

Consistent with their increased chromosomal instability, TP53-mutant HCCs 

displayed more frequent gains of chromosomes 1p, 3, 10p and 19p and losses of half 

the genome, notably of chromosomes 4, 5, 10q, 14, 17p, 18 and 19. The CNA 

landscapes between HCCs with TP53 missense or deleterious mutations were 

remarkably similar. 

To identify potential CNA drivers associated with TP53 mutations, we interrogated 

the genes overexpressed when gained and genes downregulated when lost in the 

regions that showed differential CNA frequencies between TP53-mutant and TP53-

wild-type cases. Pathway analysis of the copy number-regulated genes revealed that 
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TP53-mutant cases displayed deregulation in pathways associated with EIF2 

signaling, protein ubiquitination pathway, RNA polymerase-II complex and DNA 

repair pathways, and in molecular and cellular functions related to cell death and 

survival, cell cycle, DNA replication, recombination and repair. 

 

TP53-Mutant HCCs Displayed Heterogeneous Oncogenic 

Signatures 

 

In HCCs, TP53 and CTNNB1 mutations were largely mutually exclusive (P = 

0.028, Figure 3A) (Fujimoto et al., 2012; Guichard et al., 2012; Schulze et al., 2015; 

The Cancer Genome Atlas Research Network, 2017). Additionally, TP53 and BAP1 

mutations were also mutually exclusive (P = 0.004; Figure 3A). In contrast, TP53 

mutations co-occurred with RB1, JAK1 and KEAP1 mutations (P = 0.028, P = 0.034 

and P = 0.044, respectively, Figure 3A). These observations suggest that TP53-mutant 

HCCs likely constitute a genetically heterogeneous subclass and may be subclassified 

into categories with distinct oncogenic signatures. 
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Figure 3. Oncogenic signature classes in TP53-mutant hepatocellular carcinoma. The pattern of 
mutations in TP53, CTNNB1, BAP1, RB1, JAK1 and KEAP1 in hepatocellular carcinoma (A). Number 
of TP53-mutant samples classified as OSC1, OSC2, OSC3, and OSC4, according to the color key in A 
(B). Number of mutational (C) and copy number (D) ‘selected functional elements’ (SFEs) in the 
different subclasses. The distribution of mutational vs copy number SFEs in TP53-mutant cases (E). 
The shade of red is proportional to the number of samples for a given (x,y) position. Heatmap shows 
the mutational and copy number SFEs altered in at least 5% of the samples in at least one oncogenic 
signature class (F). Shades of red and blue are proportional to the number of samples with a given 
genetic alteration, according to the color key. Plot in (A) was generated using cBioPortal 
(http://www.cBioPortal.org) and curated manually. 
 

To define the oncogenic signatures in TP53-mutant HCCs, we performed unsupervised 

partitioning of the samples into classes with distinct patterns of likely ‘driver’ genetic 
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alterations (or ‘selected functional elements,’ SFEs), (Ciriello et al., 2013) including 

mutations in 29 significantly mutated genes, amplifications in 27 recurrently amplified 

regions, and homozygous deletions in 34 recurrently deleted regions (see Materials 

and Methods). Among the 144 TP53-mutant HCCs with mutational and CNA data, we 

found median of 2 mutational (range 0–11) and 2.5 CNA (range 0–13) SFEs in each 

case and identified four robust oncogenic signature classes (OSCs, Figures 3B–E). 

HCCs with missense or deleterious TP53 mutations did not cluster separately (P = 

0.305, Chi-squared test, Figure 3B), nor HCCs of distinct transcriptomic subclasses. 

Inspection of the SFEs that characterized each OSC revealed that OSC1 was defined 

by the presence of CTNNB1 mutations (100%, P < 0.001, Fisher’s exact test, Figure 

3F). The most frequent alteration in OSC2 was 8q24.21 amplification (encompassing 

MYC, 67%, P < 0.001, Fisher’s exact test), while the most frequent alterations in 

OSC4 were 1q21.3 (encompassing CHD1L and HORMAD1, 60%) and 1q42.2 

(encompassing TARBP1 and EXO1, 63%) amplifications (both P < 0.001, Fisher’s 

exact tests, Figure 3F). OSC3 was notable for lacking highly recurrent genetic 

alterations, with the most frequent alteration being 11q13.3 amplification (CCND1, 

23%, P = 0.011, Fisher’s exact test). Additionally, ARID1A mutations were enriched 

in OSC1 (35%, P < 0.001, Fisher’s exact test), while 10q23.21 deletion (PTEN, 20%) 

and 6p25.2 amplification (VEGFA, 23%) were enriched in OSC4 (P = 0.020 and P = 

0.001, respectively, Fisher’s exact tests). We also found that OSC1 harbored higher 

number of mutational SFEs and lower number of CNA SFEs (P < 0.001 and P = 0.002, 

respectively, Mann–Whitney U tests, Figures 3C,D) compared to other classes. By 

contrast, OSC4 harbored higher number of CNA SFEs than the other classes (P < 

0.001, respectively, Mann–Whitney U test, Figure 3D). The TP53 R249S hotspot 
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mutation was not associated with specific OSC classes (P = 0.591, Chi-squared test). 

Finally, OSC1/2 were more frequently associated with the presence of TILs than 

OSC3/4 (P = 0.028, Chi-squared test). No other associations between histologic or 

clinicopathologic parameters and OSCs were found. 

These observations are concordant with the observation that tumors are primarily 

driven by either somatic mutations or CNAs but rarely both (Ciriello et al., 2013) 

(Figure 3E). Furthermore, we identified subclasses of TP53-mutant HCCs likely 

driven by co-occurring CTNNB1 mutations, 8q24.21 (MYC) amplification or 1q 

amplification in a mutually exclusive manner. 

 

Mutational Signatures in TP53-Mutant HCCs 

 

The somatic mutational landscapes are shaped by endogenous and/or 

environmental biological and chemical processes (Alexandrov et al., 2013). More than 

10 mutational signatures have been identified in liver cancers, including two liver 

cancer-specific signatures 12 and 16 of unknown etiology, both of which are 

characterized by frequent T>C substitutions but with different sequence contexts 

(Alexandrov et al., 2013). To determine whether TP53-mutant HCCs harbored distinct 

mutational signatures compared to TP53-wild-type HCCs, we inferred the underlying 

mutational processes for the 358 HCCs with at least 30 somatic mutations (Alexandrov 

et al., 2013; Nik-Zainal et al., 2016). The age-associated signature 5, (Alexandrov et 

al., 2015) and the liver cancer-specific signatures 12 and 16 contributed substantially 

(≥20% weight) to the mutational landscapes in 17.0, 12.8, and 53.4% of the samples, 
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respectively (Figure 4). Together, 72.9% of HCCs harbored signatures 5, 12 or 16 as 

the dominant signatures (14.0, 10.6, and 48.3%, respectively). 
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Figure 4. Mutational signatures in hepatocellular carcinoma with and without TP53 somatic mutations. 
Heatmap depicting the mutational signatures that shaped the genomes of the tumor samples analyzed 
(A) (Alexandrov et al., 2013). The similarity of the pattern of substitutions to the published mutational 
signatures is indicated in blue according to the color key. HCC samples were divided according to their 
TP53 mutational status. Mutational signatures were sorted by the number of cases classified as having 
a given mutational signature as the dominant signature, in decreasing order. Barplots illustrating 
examples of mutational signatures 12 (upper) and 24 (bottom) (B). In each panel, the colored barplot 
illustrates each mutational signature according to the 96 substitution classification defined by the 
substitution classes (C>A, C>G, C>T, T>A, T>C, and T>G bins) and the 5′ and 3′ sequence context, 
normalized using the observed trinucleotide frequency in the human exome to that in the human 
genome. The bars are ordered first by mutation classes (C>A/G>T, C>G/G>C, C>T/G>A, T>A/A>T, 
T>C/A>G, T>G/A>C), then by the 5′ flanking base (A, C, G, T) and then by the 3′ flanking base (A, C, 
G, T). 
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A comparison of the mutational signatures with substantial contribution (≥20%) to the 

mutational landscapes of TP53-mutant or TP53-wild-type HCCs revealed that only the 

aflatoxin-associated signature 24 was enriched among TP53-mutant HCCs (7/114, 

6.1% vs. 4/244, 1.6%, P = 0.042, Fisher’s exact test). 

We further compared the mutational signatures between HCCs with missense or 

deleterious TP53 mutations. Interestingly, while 18.6% (13/70) of samples with 

missense TP53 mutations displayed substantial contribution from signature 12, only 

4.5% (2/44) of samples harboring deleterious TP53 mutations did (P = 0.044, Fisher’s 

exact test), with signature 12 being the dominant signature in 15.7% (11/70) and 2.3% 

(1/44) of samples with missense or deleterious TP53 mutations, respectively (P = 

0.027, Fisher’s exact test, Figure 4). No difference in other signatures was observed. 

The aflatoxin-associated signature 24 was enriched among R249S-mutant HCCs 

compared other TP53-mutant HCCs (4/11, 36% vs. 3/103, 3%, P = 0.001 for 

substantial contribution and 3/11, 27% vs. 2/103, 2%, P = 0.006 for dominant 

signature, Fisher’s exact tests). 

Taken together, our results suggest that the different types of TP53 mutations were 

associated with distinct mutational processes. Specifically, signature 12 was rarely 

found in HCCs with deleterious TP53 mutations. 
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Distinct Types of TP53 Mutations Are Associated with 

Different Prognoses 

 

Previous studies found that associations between the types of TP53 mutations 

and prognoses in breast, and head and neck cancers (Olivier et al., 2006; Ozcelik et 

al., 2007; Vegran et al., 2013; Lapke et al., 2016). Here we hypothesized that patients 

with HCCs harboring TP53 missense or deleterious mutations may display different 

prognoses. Considering the patients with available data on OS (n = 372) or DFS (n = 

321), we found that patients with TP53-mutant HCCs displayed a more aggressive 

behavior including shorter OS and DFS than TP53-wild-type patients (P = 0.018 and 

P = 0.005, respectively, log-rank tests, Figure 5). Patients with missense or deleterious 

TP53 mutations did not differ in OS or DFS (P = 0.129 and P = 0.148, respectively, 

log-rank tests, Figure 5). Importantly, while patients with deleterious TP53 mutations 

had worse OS and DFS than TP53-wild-type patients (P = 0.004 and P = 0.001, 

respectively, log-rank tests, Figure 5), there was no difference in OS or DFS between 

patients with missense TP53 mutations and those wild-type for TP53 (P = 0.192 and 

P = 0.084, respectively, log-rank tests, Figure 5). 
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Figure 5. TP53 mutation status is associated with worse overall and disease-free survival. Overall (A) 
and disease-free survival (B) of HCC patients with and without TP53 somatic mutations using the 
Kaplan–Meier method. Median survival for each group is indicated in parentheses. Statistical 
comparisons were performed using log-rank tests. P < 0.05 was considered statistically significant. 
 

 

As an exploratory analysis, we asked whether OSCs or mutational signatures of TP53-

mutant HCCs were prognostic. Compared to OSC1 (28 months), OSC2 (26 months) 

and OSC3 (median not reached), OSC4 was associated with the shortest median OS 

of 14 months, although the difference was not statistically significant (P = 0.366, log-

rank test;). Univariate Cox regression analyses revealed that the aflatoxin-associated 

signature 24 (HR 3.275, CI 1.279–8.384, P = 0.013), HBV infection status and the 

presence of necrotic areas were associated with poor prognosis. However, in a 

multivariate analysis, mutational signature 24 was not an independent prognostic 

indicator (P = 0.242). 

Taken together, our results showed only patients with deleterious TP53 mutations but 

not missense TP53mutations were associated with significantly worse OS and DFS in 

this cohort. 
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Discussion 
 

 

In this study, we performed a detailed analysis of TP53 somatic mutational 

spectrum in HCCs, with nearly all missense mutations (98%) and most deleterious 

mutations (73%) affecting the DNA-binding domain. Notably, we found that the 

residues mutated in HCCs differed from those in other cancer types. Hotspot mutations 

R249S and V157F were common in HCCs but extremely rare in other cancers, while 

mutations affecting R175 and R273, two of the most frequently mutated residues in 

other cancers, were nearly absent in HCCs. This latter observation also applies to other 

HCC datasets (Ahn et al., 2014; Schulze et al., 2015), suggesting that TP53 mutational 

spectrum in HCC is distinct from that in other cancers. 

To determine the genotype–phenotype correlation between TP53 mutation status and 

clinicopathologic parameters, we performed a detailed assessment of histologic 

features using H&E slides. We confirmed the established associations with the male 

gender, HBV/HCV infection and high Edmondson grade. Additionally, TP53 

mutations were associated with the presence of necrotic areas, and accordingly, with 

the absence of cholestasis, a feature more frequently observed in well-differentiated 

HCCs. Finally, we observed that the presence of TILs was associated with less 

frequent TP53 mutations, in line with the favorable prognosis associated with tumors 

with high TILs in other tumor types (Mahmoud et al., 2011). 

Analysis of the mutational signatures revealed that signatures 16 of unknown etiology 

and the age-associated signature 5 (Alexandrov et al., 2015) were the most prevalent 

in HCCs. We also found that signature 12 of unknown etiology, characterized by 
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frequent T>C substitutions, was prevalent in TP53-wild-type and HCCs with missense 

TP53 mutations but were largely absent in those with deleterious TP53 mutation. A 

previous study reported that the W3 signature, which was highly similar to signature 

12 (Fujimoto et al., 2012), was associated with the age of patients. Here we found no 

difference in the age of patients when we considered tumors with strictly missense or 

deleterious TP53 mutations (i.e., excluding one patient with both types). The basis of 

signature 12 is thus unclear and further studies are required to elucidate its biological 

significance. 

Adopting the algorithm of “oncosign” (Ciriello et al., 2013), we identified four robust 

subclasses of TP53-mutant HCCs with distinct oncogenic signatures. Of these classes, 

one subclass was likely driven by co-occurring CTNNB1 mutations, while two 

subclasses were likely driven by amplicon drivers on 1q and 8q. 1q21 amplification 

has been linked to hepatocarcinogenesis, with ALC1 (CHD1L) overexpression in HCC 

cells shown to promote G1/S phase transition and to inhibit apoptosis (Ma et al., 2008). 

The authors further suggested that the oncogenic function of ALC1 might be 

associated with its role in promoting cell proliferation by down-regulating p53 

expression (Ma et al., 2008). The 1q21 amplicon also contains HORMAD1, a gene 

that has been shown to drive chromosomal instability in breast cancer (Watkins et al., 

2015). As for 8q24, in addition to the well-known oncogenic role of MYC, previous 

studies have also shown that MYC amplification is an indicator of malignant potential 

and poor prognosis in HCC (Lin et al., 2010), and that the co-occurrence of MYC 

amplification and p53 alteration may contribute to HCC progression (Kawate et al., 

1999). The remaining subclass did not have highly recurrent genetic alterations. 

Interestingly, this subclass was numerically, though not statistically, associated with 
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the most favorable OS among the four classes. One may speculate that TP53-mutant 

HCCs lacking additional drivers may constitute a less aggressive subclass. Of note, 

the features that characterized the four OSCs were largely mutually exclusive, 

suggesting that distinct oncogenic processes are operative in non-overlapping subsets 

of TP53-mutant HCCs. 

TP53 mutation status predicts worse OS and DFS in HCC patients (Yano et al., 2007; 

Woo et al., 2011; Cleary et al., 2013). However, we found that patients with deleterious 

mutations, but not those with missense mutations, were associated with worse OS and 

DFS compared to patients wild-type for TP53. This is in line with other tumor types, 

in which different types of TP53 mutations have been associated with different 

prognoses (Olivier et al., 2006; Ozcelik et al., 2007; Vegran et al., 2013; Lapke et al., 

2016). In fact, the risk of death or relapse for patients harboring deleterious mutation 

is 2.3 times (HR = 2.36 and 2.063, respectively) higher than TP53-wild-type patients. 

The prognosis for patients with missense mutations appears to sit between those with 

wild-type TP53 or deleterious TP53 mutations, albeit not statistically different from 

either group. It is conceivable that the prognostic significance of the type of TP53 

mutations may be confirmed in a larger cohort with extensive follow-up. 

It has been suggested that TP53 missense mutations have varying capacity to 

transactivate p53 target genes and to alter the responsiveness to chemotherapeutic 

agents in breast cancer (Jordan et al., 2010). A differential expression analysis using 

the HCC TCGA dataset comparing HCCs with TP53 missense mutations and those 

with TP53 deleterious mutations identified TP53 itself as up-regulated but did not 

identify significantly altered genes (data not shown). Furthermore, HCCs harboring 

the missense mutations functionally shown to lack the ability to transactivate genes 
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with p53 response elements (Jordan et al., 2010) did not differ from HCCs with other 

missense mutations on the transcriptomic level (data not shown). It is thus unclear 

precisely how the various TP53 mutations may differentially alter the transcriptomic 

landscape of HCCs. Further functional studies may be required to elucidate how the 

types of TP53 mutations may affect its biological functions. 

In HCC molecular characterization studies to date, HCCs are typically classified as 

TP53-wild-type or TP53-mutant, where all TP53 mutations were treated as equal 

(Fujimoto et al., 2012; The Cancer Genome Atlas Research Network, 2017). However, 

many studies have demonstrated that TP53 can be affected by either (or both) gain-of-

function or loss-of-function mutations, with missense mutations preferentially 

displaying gain-of-function or neomorphic properties (Muller and Vousden, 2014). 

Our study has demonstrated that HCCs with missense or deleterious TP53 mutations 

display similar clinicopathologic features, mutational/CNA burden and oncogenic 

signatures, but are associated with distinct mutational signatures. Clinically, while 

patients with tumors harboring deleterious TP53 mutations had worse prognosis 

compared to those wild-type for TP53, there was no statistically significant difference 

between those with missense mutations and those wild-type for TP53. Our study 

highlights the importance to consider the type of TP53 mutations in studies of 

biomarkers and molecular characterization of HCCs. 

Our study has limitations. Despite TCGA being the largest genomic study of HCC, it 

is by no means the only large-scale study. However, as one of our aims was to define 

clinicopathologic correlates, we chose TCGA as it is the only study with publicly 

available H&E slides for pathology review. Secondly, the power of the OS and DFS 

analyses was limited due to the cohort size. Further studies may reveal whether 



 160 

prognosis is related to the type of TP53 mutations, as has been shown in other cancers. 

Thirdly, our analyses did not consider the non-coding genome due to the nature of the 

sequencing performed by the TCGA. Given the frequent mutations in non-coding 

regions such as TERT promoter, MALAT1 and NEAT1 (Fujimoto et al., 2012; 

Schulze et al., 2015), it is conceivable that additional oncogenic signatures within 

TP53-mutant HCCs may emerge. 

 

Conclusion 

 

Our study highlights the genetic heterogeneity among TP53-mutant HCCs and 

that patients with HCCs harboring different types of TP53 mutations may be associated 

with distinct prognoses. Future work will be required to elucidate whether the co-

occurring genetic alterations act synergistically with TP53 mutations to promote 

carcinogenesis in HCCs. 

  



 161 

References 

 

Ahn, S. M., Jang, S. J., Shim, J. H., Kim, D., Hong, S. M., Sung, C. O., et al. (2014). 

Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and 

FGF19 aberrations for patient stratification. Hepatology 60, 1972–1982. doi: 

10.1002/hep.27198 

Alexandrov, L. B., Jones, P. H., Wedge, D. C., Sale, J. E., Campbell, P. J., Nik-Zainal, 

S., et al. (2015). Clock-like mutational processes in human somatic cells. Nat. Genet. 

47, 1402–1407. doi: 10.1038/ng.3441 

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, 

A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature 500, 

415–421. doi: 10.1038/nature12477 

Bosman, F. T., Carneiro, F., Hruban, R. H., and Theise, N. D. (2010). WHO 

Classification of Tumours of the Digestive System World Health Organization. Lyon: 

IARC. Google Scholar 

Boyault, S., Rickman, D. S., De Reynies, A., Balabaud, C., Rebouissou, S., Jeannot, 

E., et al. (2007). Transcriptome classification of HCC is related to gene alterations and 

to new therapeutic targets. Hepatology 45, 42–52. doi: 10.1002/hep.21467 

Bressac, B., Kew, M., Wands, J., and Ozturk, M. (1991). Selective G to T mutations 

of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429–431. 

doi: 10.1038/350429a0 

Breuhahn, K., Vreden, S., Haddad, R., Beckebaum, S., Stippel, D., Flemming, P., et 

al. (2004). Molecular profiling of human hepatocellular carcinoma defines mutually 



 162 

exclusive interferon regulation and insulin-like growth factor II overexpression. 

Cancer Res. 64, 6058–6064. doi: 10.1158/0008-5472.CAN-04-0292 

Chang, M. T., Asthana, S., Gao, S. P., Lee, B. H., Chapman, J. S., Kandoth, C., et al. 

(2016). Identifying recurrent mutations in cancer reveals widespread lineage diversity 

and mutational specificity. Nat. Biotechnol. 34, 155–163. doi: 10.1038/nbt.3391 

Chiang, D. Y., Villanueva, A., Hoshida, Y., Peix, J., Newell, P., Minguez, B., et al. 

(2008). Focal gains of VEGFA and molecular classification of hepatocellular 

carcinoma. Cancer Res. 68, 6779–6788. doi: 10.1158/0008-5472.CAN-08-0742 

Ciriello, G., Miller, M. L., Aksoy, B. A., Senbabaoglu, Y., Schultz, N., and Sander, C. 

(2013). Emerging landscape of oncogenic signatures across human cancers. Nat. 

Genet. 45, 1127–1133. doi: 10.1038/ng.2762 

Cleary, S. P., Jeck, W. R., Zhao, X., Chen, K., Selitsky, S. R., Savich, G. L., et al. 

(2013). Identification of driver genes in hepatocellular carcinoma by exome 

sequencing. Hepatology 58, 1693–1702. doi: 10.1002/hep.26540 

Edmondson, H. A., and Steiner, P. E. (1954). Primary carcinoma of the liver: a study 

of 100 cases among 48,900 necropsies. Cancer 7, 462–503. doi: 10.1002/1097-

0142(195405)7:3<462::AID-CNCR2820070308>3.0.CO;2-E 

Fujimoto, A., Furuta, M., Totoki, Y., Tsunoda, T., Kato, M., Shiraishi, Y., et al. (2016). 

Whole-genome mutational landscape and characterization of noncoding and structural 

mutations in liver cancer. Nat. Genet. 48, 500–509. doi: 10.1038/ng.3547 

Fujimoto, A., Totoki, Y., Abe, T., Boroevich, K. A., Hosoda, F., Nguyen, H. H., et al. 

(2012). Whole-genome sequencing of liver cancers identifies etiological influences on 

mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 

760–764. doi: 10.1038/ng.2291 



 163 

Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. 

(2004). A census of human cancer genes. Nat. Rev. Cancer 4, 177–183. doi: 

10.1038/nrc1299 

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. 

(2013). Integrative analysis of complex cancer genomics and clinical profiles using the 

cBioPortal. Sci. Signal. 6:l1. doi: 10.1126/scisignal.2004088 

Gao, J., Chang, M. T., Johnsen, H. C., Gao, S. P., Sylvester, B. E., Sumer, S. O., et al. 

(2017). 3D clusters of somatic mutations in cancer reveal numerous rare mutations as 

functional targets. Genome Med. 9:4. doi: 10.1186/s13073-016-0393-x 

Goossens, N., Sun, X., and Hoshida, Y. (2015). Molecular classification of 

hepatocellular carcinoma: potential therapeutic implications. Hepat. Oncol. 2, 371–

379. doi: 10.2217/hep.15.26 

Gouas, D., Shi, H., and Hainaut, P. (2009). The aflatoxin-induced TP53 mutation at 

codon 249 (R249S): biomarker of exposure, early detection and target for therapy. 

Cancer Lett. 286, 29–37. doi: 10.1016/j.canlet.2009.02.057 

Guichard, C., Amaddeo, G., Imbeaud, S., Ladeiro, Y., Pelletier, L., Maad, I. B., et al. 

(2012). Integrated analysis of somatic mutations and focal copy-number changes 

identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–

698. doi: 10.1038/ng.2256 

Hall, P. A., and McCluggage, W. G. (2006). Assessing p53 in clinical contexts: 

unlearned lessons and new perspectives. J. Pathol. 208, 1–6. doi: 10.1002/path.1913 

Hoshida, Y., Nijman, S. M., Kobayashi, M., Chan, J. A., Brunet, J. P., Chiang, D. Y., 

et al. (2009). Integrative transcriptome analysis reveals common molecular subclasses 



 164 

of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392. doi: 10.1158/0008-

5472.CAN-09-1089 

Hsu, I. C., Metcalf, R. A., Sun, T., Welsh, J. A., Wang, N. J., and Harris, C. C. (1991). 

Mutational hot spot in the p53 gene in human hepatocellular carcinomas. Nature 350, 

427–428. doi: 10.1038/350427a0 

Jhunjhunwala, S., Jiang, Z., Stawiski, E. W., Gnad, F., Liu, J., Mayba, O., et al. (2014). 

Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol. 15, 

436. doi: 10.1186/s13059-014-0436-9 

Jordan, J. J., Inga, A., Conway, K., Edmiston, S., Carey, L. A., Wu, L., et al. (2010). 

Altered-function p53 missense mutations identified in breast cancers can have subtle 

effects on transactivation. Mol. Cancer Res. 8, 701–716. doi: 10.1158/1541-

7786.MCR-09-0442 

Kan, Z., Zheng, H., Liu, X., Li, S., Barber, T. D., Gong, Z., et al. (2013). Whole-

genome sequencing identifies recurrent mutations in hepatocellular carcinoma. 

Genome Res. 23, 1422–1433. doi: 10.1101/gr.154492.113 

Kandoth, C., Mclellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., et al. (2013). 

Mutational landscape and significance across 12 major cancer types. Nature 502, 333–

339. doi: 10.1038/nature12634 

Kawate, S., Fukusato, T., Ohwada, S., Watanuki, A., and Morishita, Y. (1999). 

Amplification of c-myc in hepatocellular carcinoma: correlation with 

clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57, 

157–163. doi: 10.1159/000012024 



 165 

Kew, M. C. (2010). Epidemiology of chronic hepatitis B virus infection, hepatocellular 

carcinoma, and hepatitis B virus-induced hepatocellular carcinoma. Pathol. Biol. 58, 

273–277. doi: 10.1016/j.patbio.2010.01.005 

Kiani, C., Chen, L., Wu, Y. J., Yee, A. J., and Yang, B. B. (2002). Structure and 

function of aggrecan. Cell Res. 12, 19–32. doi: 10.1038/sj.cr.7290106 

Lapke, N., Lu, Y. J., Liao, C. T., Lee, L. Y., Lin, C. Y., Wang, H. M., et al. (2016). 

Missense mutations in the TP53 DNA-binding domain predict outcomes in patients 

with advanced oral cavity squamous cell carcinoma. Oncotarget 7, 44194–44210. doi: 

10.18632/oncotarget.9925 

Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., 

Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 

21 tumour types. Nature 505, 495–501. doi: 10.1038/nature12912 

Lee, J. S., Chu, I. S., Heo, J., Calvisi, D. F., Sun, Z., Roskams, T., et al. (2004). 

Classification and prediction of survival in hepatocellular carcinoma by gene 

expression profiling. Hepatology 40, 667–676. doi: 10.1002/hep.20375 

Lin, C. P., Liu, C. R., Lee, C. N., Chan, T. S., and Liu, H. E. (2010). Targeting c-Myc 

as a novel approach for hepatocellular carcinoma. World J. Hepatol. 2, 16–20. doi: 

10.4254/wjh.v2.i1.16 

Ma, N. F., Hu, L., Fung, J. M., Xie, D., Zheng, B. J., Chen, L., et al. (2008). Isolation 

and characterization of a novel oncogene, amplified in liver cancer 1, within a 

commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47, 503–

510. doi: 10.1002/hep.22072 



 166 

Mahmoud, S. M., Paish, E. C., Powe, D. G., Macmillan, R. D., Grainge, M. J., Lee, A. 

H., et al. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in 

breast cancer. J. Clin. Oncol. 29, 1949–1955. doi: 10.1200/JCO.2010.30.5037 

Martelotto, L. G., De Filippo, M. R., Ng, C. K., Natrajan, R., Fuhrmann, L., Cyrta, J., 

et al. (2015). Genomic landscape of adenoid cystic carcinoma of the breast. J. Pathol. 

237, 179–189. doi: 10.1002/path.4573 

Muller, P. A., and Vousden, K. H. (2014). Mutant p53 in cancer: new functions and 

therapeutic opportunities. Cancer Cell 25, 304–317. doi: 10.1016/j.ccr.2014.01.021 

Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., et al. 

(2016). Landscape of somatic mutations in 560 breast cancer whole-genome 

sequences. Nature 534, 47–54. doi: 10.1038/nature17676 

Olivier, M., Hollstein, M., and Hainaut, P. (2010). TP53 mutations in human cancers: 

origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2:a001008. 

doi: 10.1101/cshperspect.a001008 

Olivier, M., Langerod, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., et al. (2006). 

The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. 

Clin. Cancer Res. 12, 1157–1167. doi: 10.1158/1078-0432.CCR-05-1029 

Ozcelik, H., Pinnaduwage, D., Bull, S. B., and Andrulis, I. L. (2007). Type of TP53 

mutation and ERBB2 amplification affects survival in node-negative breast cancer. 

Breast Cancer Res. Treat. 105, 255–265. doi: 10.1007/s10549-006-9452-0 

Peng, S. Y., Chen, W. J., Lai, P. L., Jeng, Y. M., Sheu, J. C., and Hsu, H. C. (2004). 

High alpha-fetoprotein level correlates with high stage, early recurrence and poor 

prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, 

p53 and beta-catenin mutations. Int. J. Cancer 112, 44–50. doi: 10.1002/ijc.20279 



 167 

Piscuoglio, S., Ng, C. K., Martelotto, L. G., Eberle, C. A., Cowell, C. F., Natrajan, R., 

et al. (2014). Integrative genomic and transcriptomic characterization of papillary 

carcinomas of the breast. Mol. Oncol. 8, 1588–1602. doi: 

10.1016/j.molonc.2014.06.011 

Rosenthal, R., Mcgranahan, N., Herrero, J., Taylor, B. S., and Swanton, C. (2016). 

deconstructSigs: delineating mutational processes in single tumors distinguishes DNA 

repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17:31. doi: 

10.1186/s13059-016-0893-4 

Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L. B., Calderaro, J., Rebouissou, 

S., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new 

mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511. doi: 

10.1038/ng.3252 

Shiraishi, Y., Fujimoto, A., Furuta, M., Tanaka, H., Chiba, K., Boroevich, K. A., et al. 

(2014). Integrated analysis of whole genome and transcriptome sequencing reveals 

diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers. 

PLOS ONE 9:e114263. doi: 10.1371/journal.pone.0114263 

Soussi, T., Leroy, B., and Taschner, P. E. (2014). Recommendations for analyzing and 

reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 35, 

766–778. doi: 10.1002/humu.22561 

Totoki, Y., Tatsuno, K., Covington, K. R., Ueda, H., Creighton, C. J., Kato, M., et al. 

(2014). Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. 

Nat. Genet. 46, 1267–1273. doi: 10.1038/ng.3126 



 168 

The Cancer Genome Atlas Research Network (2017). Comprehensive and integrative 

genomic characterization of hepatocellular carcinoma. Cell 169, 1327.e23–1341.e23. 

doi: 10.1016/j.cell.2017.05.046 

Vegran, F., Rebucci, M., Chevrier, S., Cadouot, M., Boidot, R., and Lizard-Nacol, S. 

(2013). Only missense mutations affecting the DNA binding domain of p53 influence 

outcomes in patients with breast carcinoma. PLOS ONE 8:e55103. doi: 

10.1371/journal.pone.0055103 

Villanueva, A., and Hoshida, Y. (2011). Depicting the role of TP53 in hepatocellular 

carcinoma progression. J. Hepatol. 55, 724–725. doi: 10.1016/j.jhep.2011.03.018 

Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 

408, 307–310. doi: 10.1038/35042675 

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A. Jr., and 

Kinzler, K. W. (2013). Cancer genome landscapes. Science 339, 1546–1558. doi: 

10.1126/science.1235122 

Watkins, J., Weekes, D., Shah, V., Gazinska, P., Joshi, S., Sidhu, B., et al. (2015). 

Genomic complexity profiling reveals that hormad1 overexpression contributes to 

homologous recombination deficiency in triple-negative breast cancers. Cancer 

Discov. 5, 488–505. doi: 10.1158/2159-8290.CD-14-1092 

Weinhold, N., Jacobsen, A., Schultz, N., Sander, C., and Lee, W. (2014). Genome-

wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–

1165. doi: 10.1038/ng.3101 

Woo, H. G., Wang, X. W., Budhu, A., Kim, Y. H., Kwon, S. M., Tang, Z. Y., et al. 

(2011). Association of TP53 mutations with stem cell-like gene expression and 



 169 

survival of patients with hepatocellular carcinoma. Gastroenterology 140, 1063–1070. 

doi: 10.1053/j.gastro.2010.11.034 

Yano, M., Hamatani, K., Eguchi, H., Hirai, Y., Macphee, D. G., Sugino, K., et al. 

(2007). Prognosis in patients with hepatocellular carcinoma correlates to mutations of 

p53 and/or hMSH2 genes. Eur. J. Cancer 43, 1092–1100. doi: 

10.1016/j.ejca.2007.01.032 

  



 170 

Acknowledgements 

 

Going back to study has been at the same time challenging and extremely 

rewarding, bringing along positive emotions. I am very grateful to my supervisor Prof. 

Remo Sanges for his guidance, advice, and encouragement. Thanks for giving me this 

unique opportunity to work together. I gratefully acknowledge Prof. Luigi Terracciano 

for his friendship and for being my guidance in many occasions. I would like to thank 

also my many collaborators at the UniBasel, Novartis, and Biomedical Primate 

Research Centre (BPRC) for their scientific input. The research work on the malaria 

hypnozoites presented in Chapter III has been conducted with Dr. Thierry Diagana 

(Novartis) and Dr. Clemens Kochen (BPRC) and recently published in eLife. I thank 

Thierry and Clemens for being a great source of inspiration for my research work on 

malaria. The research work on TP53 described in Chapter IV, recently published in 

Frontiers in Genetics, stems from an effective collaboration with Dr. Salvatore 

Piscuoglio and Dr. Charlotte Ng (UniBasel): special thanks to these two bright 

scientists who are always ready to share their talent and knowledge with their 

collaborators. Last but not least, I am deeply grateful to my family for their love and 

their constant support throughout this period. 


