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The effect of cognitive training on 

subsequent sleep characteristics 

 

Abstract 

Introduction: Several studies have consistently shown that pre-sleep learning produces changes in 

sleep structure. Whereas the majority of these studies has mainly focused on post-training changes in 

sleep states (namely REM and NREM sleep amount) and, more recently, in specific 

electrophysiological features (e.g., sleep spindles, slow wave activity), very little attention has been 

paid to the hypothesis that pre-sleep learning might improve sleep quality, as expressed by sleep 

continuity, stability and cyclic organization measures. Furthermore, studies addressing the 

relationship between sleep and learning usually employ purely declarative or procedural tasks, 

neglecting that everyday life learning processes depend on the simultaneous activation of different 

memory systems. Recently, we have reported that a complex ecological learning task (requiring the 

simultaneous activation of several cognitive functions), intensively administered at bedtime, 

improves daytime sleep continuity and stability, possibly as a result of ongoing memory processes. 

To follow up our previous study, here we aimed to extend these findings to a night paradigm and to 

test whether a similar post-training sleep improvement may be obtained in a sample of individuals 

with sleep complaints. Specifically, our focus was on post-training changes in objective and 

subjective sleep quality. Furthermore, we compared overnight performance changes with those 

obtained over a wake retention period, in order to address the possible differential effect of sleep and 

wake on memory processes. 

 

Method: After a habituation night, twenty-one subjects (F=15, mean age: 27.5±7.7 years, all bad 

sleepers according to the Pittsburgh Sleep Quality Index) underwent conventional polygraphic 

recording under three conditions: 1) BL, baseline night sleep; 2) post-active control sleep (AC), a 

sleep episode preceded by a non-learning control task; 3) post-training sleep (TR), a sleep episode 

preceded by a complex ecological task. The same task as in TR was administered in a Wake condition 

(W), in which the retention period between training sessions corresponded to the duration of the 

subject’s baseline sleep time. Subjects underwent AC, TR and W conditions in balanced order. 
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The complex cognitive task consisted in a slightly modified version of the famous word game 

“Ruzzle”. In this game, the player has two minutes to form as many words as possible and reach the 

highest score achievable with the 16 letters available in a 4x4 grid on an iPad screen. Performance 

measures were R-WORDS%, i.e., the number of detected words over total available words, and R-

SCORE%, i.e., the global score achieved, depending on the number of words found, on their length 

and on the ability to use the coloured bonus letters which multiply letter or word values.   

 

Results: Post-training sleep (TR) showed a reduction in Stage 1 proportion (F=4.39, p=.021; TR<BL 

and AC) and a significant improvement in sleep continuity, stability and organization, as expressed 

by: a decrease of total (F=4.90, p=.014, BL>TR and AC) and brief awakenings frequency (F=5.89, 

p=.007, BL>TR and AC), decreased frequency of arousals (F=6.25, p=.005; TR<BL and AC), 

microarousals (F=3.63, p=.050; TR<BL), state transitions (F=10.16, p<.001; BL>TR and AC) and 

functional uncertainty (FU) periods (F=14.23, p<.001; BL>TR and AC), as well as a reduction of 

time spent in FU periods (F=515.33, p<.001; BL>TR and AC); an increase in the number of NREM-

REM cycles (F=4.51, p=.019; TR>BL and AC), and of time spent in cycles (F=4.77, p=.015; TR>BL 

and AC). This improvement in objective sleep quality was paralleled by that in subjective ratings, 

assessed through the Self-Rating Scale for Sleep and Awakenings Quality (χ2=9.13, p=.010; 

TR<BL). No other sleep measure displayed significant changes between conditions. Furthermore, the 

comparison of R-SCORE% changes between the TR and W conditions yielded a significant sleep 

effect (t=5.38, p<.001; TR>W), while the opposite effect emerged for the R-WORDS% (t=-2.96, 

p=.01; W>TR).  

 

Conclusions: Our results extend previous findings on post-training changes in sleep continuity, 

stability and organization to a sample of bad sleepers; also, they show that objective sleep 

improvement may be reflected in subjective sleep quality perception. Interestingly, the active control 

task also produced improvements in some of these features, prompting future investigations on the 

contribution to post-training sleep changes of additional factors not specifically linked to learning 

processes. As for performance, the finding of a significant sleep effect for the more complex 

performance measure (R-SCORE%) suggests that sleep preferentially promotes effective learning of 

elaborate cognitive strategies rather than that of simpler cognitive processes. In conclusion, in light 

of the importance of non-pharmacological treatments for sleep disturbances, this study offers the 
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possibility to further explore planned cognitive training as a low-cost treatment strategy to improve 

sleep quality. 
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Chapter 1 – Principles of sleep phenomenology:                             

sleep organization and regulation 

 

Before going deep in the “heart” of our research project, I will introduce some 

theoretical and methodological principles of sleep phenomenology. Specifically, 

starting from a general definition of sleep, this chapter provides a brief overview of 

basic sleep physiology, with a focus on sleep organization, which represents an 

important theoretical construct underlying our study. Finally, I will describe in detail 

what has been considered as the most prominent model of sleep-wake rhythm 

regulation, introducing our hypothesis on the need of reconsidering and updating it in 

light of recent evidence.  

 

 

1.1. Sleep: definition and main constituents 

 

According to the “Oxford English Dictionary”, sleep is defined as “a condition of body 

and mind which typically recurs for several hours every night, in which the nervous 

system is inactive, the eyes closed, the postural muscles relaxed, and consciousness 

practically suspended”. This definition stresses some of the most evident 

characteristics of sleep, easily recognizable through behavioural observation. 

However, even though some of its statements are commonly accepted, this definition 

appears in certain respects inexact and/or incomplete. For instance, sleep typically 

occurs every night, but it could be dislocated to another time of day or be repeated in 

case of polyphasic sleep or naps. Also, the idea that “the nervous system is inactive” 

during sleep is in disagreement with relatively recent literature showing the importance 

of sleep for cognitive and memory processes (Conte and Ficca, 2013; Rasch and Born, 

2013) and that external information processing while sleeping is still possible (Atienza 

et al., 2001; Hennevin et al., 2007). Finally, since sleep is a complex and dynamic 

phenomenon, a useful and complete definition must take into account the behavioural 

and physiological changes that characterize sleep and allow us to distinguish it from 

wake. Overtime, many authors attempted this challenge, emphasizing one or the other 

sleep feature at a time.  
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One of the latest and largely accepted definition of sleep has been introduced by two 

Italian scientists, Fagioli and Salzarulo (1995), who described sleep as “a state of the 

organism characterized by a reduced reactivity to the environment provoking a 

temporary suspension of relational activities: (this state) occurs spontaneously and 

periodically, is self-limited in time and reversible”. Here, the authors synthesized some 

of the key features of sleep. The reduced responsiveness to stimuli, which is in contrast 

with the general idea of a perceptual disengagement from the environment, refers to 

the elevated threshold of stimulus perception. The relative inactivity and suspension 

of relational activities is accompanied by a loss of consciousness of the outer word. 

The last sentence highlights the fact that sleep is a natural (spontaneous) and reversible 

state, meaning, on one side, that no specific external event is needed to induce sleep 

and that, on the other, stimuli of elevated intensity may interrupt it. Finally, as will be 

exhaustively explained later, the “periodical” occurrence of sleep and its limited 

duration in time, refer to the rhythmic alternation between sleep and wake and the 

mechanisms beyond this organization. 

Actually, in humans, sleep is not restricted to a two states “wake-sleep” system. Sleep 

architecture consists of three behavioural states, defined on the basis of their 

characteristics: wake, REM sleep and NREM sleep (Comte et al., 2006). Shortly, 

NREM sleep, composed of four stages (Stages 1, 2, 3 and 4), gradually occurring as 

sleep becomes deeper, is characterized by a brain slowed down in a movable body; 

instead, REM sleep, marked by rapid eye movements, is described as a stage where 

the brain is intensively active in a paralyzed body, due to muscle atonia.  

 

 

 

1.2. Methods to study sleep 

 

Following Fagioli and Salzarulo’s definition (1995), sleep is not simply a “condition” 

but it is considered as a “state” and specifically a “behavioural state”: a “combination 

of variables that occurs several times and has a stability in time” (Prechtl, 1974). In 

order to identify the “constellation” of variables characterizing human sleep 

physiology and, inside sleep, its macro and microstructure, a multidimensional 

approach based on different methods and instruments would be more appropriate. 

However, in most cases, researchers and clinicians cannot administer all of them. 
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Depending on the instruments used, chosen according to their objectives, it is possible 

to recognize and study different aspects of sleep that, when considered together, allow 

us to catch the entire sleep phenomenon, with its complex time-dynamics. 

Three are the main methods used in sleep medicine and research: behavioural 

observation, subjective scales and questionnaire and objective methods such as 

polysomnography and actigraphy. A brief paragraph is devoted to new recent methods 

used in sleep research, derived from nuclear and functional medicine. 

 

1.2.1. Behavioural observation 

Behavioural observation in sleep studies consists in systematically observing specific 

behaviour that characterizes a sleeping person (such as eyes, position and type and 

intensity of movements of the subject, responsiveness to internal and external 

environment) and taking note of them “live”, which means when the target event 

happened, or deferred based on video-recordings, by using guidelines, checklists and 

time grids. 

Because of its multiple advantages over more physiological methods to study sleep 

(lower costs, the non-invasive nature, paralleled by the increased compliance and the 

possibility to use it in natural contexts), it is frequently used in psychophysiological 

research (Bliwise et al., 1990). 

Behavioural observation has been often considered as a useful method to study sleep 

during ontogenetic development and aging, when it is often difficult to identify 

objective indicators of sleep and/or wakefulness, and recently, also as a possible 

screening tool in the diagnosis of some sleep disorders (Ipsiroglu et al., 2015). 

 

1.2.2. Subjective questionnaires and scales 

An important possibility to easily obtain information related to previous or habitual 

sleep characteristics consists in asking the subject questions about his sleep and/or the 

sleep-wake rhythms. Self-administered sleep questionnaires and sleep diaries are often 

used in sleep studies because they allow us to gather information on different 

populations in the short term. 

Sleep diaries are usually administered in order to collect specific information about 

sleep for a long period of time. Questions typically include bedtime, wake time, sleep 

latency, daytime activities and information about sleep quality (number and duration 
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of awakenings and sensation of feeling rested in the morning and so on). Subjects are 

asked to fill it immediately after final awakening, referring to the night before. 

Compared to sleep diaries which are often administered for several days, sleep 

questionnaires usually consist in a series of structured items about habitual sleep-wake 

behaviours, such as usual bedtimes and rise times, daytime sleepiness, sleep quality 

and so on. An example of this kind is the Pittsburgh Sleep Quality Index (PSQI) by 

Buysse et al. (1989), assessing sleep quality and duration over a 1-month time interval. 

The questionnaire measures seven “components”: subjective sleep quality, sleep 

latency, sleep duration, sleep efficiency, sleep disturbances, use of sleep medications, 

and daytime dysfunction. The global score, allows us to distinguish between good 

(PSQI<5) and bad sleepers (PSQI≥5). 

Sleepiness scales are administered to evaluate sleepiness or vigilance levels at different 

time points. A well-known example is the Karolinska Sleepiness Scale (Åkerstedt and 

Gillberg, 1990), where the subject is asked to indicate his/her sleepiness level on a 

self-administered 9-point scale. 

 

1.2.3. Actigraphy 

The actigraph is a computerized device, similar to a watch, which provides information 

on sleep-wake rhythms, based on the recording of the subject’s body movements. It is 

based on the assumption that the profile of body movements represents a sufficiently 

accurate index of sleep and wake states. In particular, the outcome measures are: time 

in bed, actual sleep time, actual wake time, sleep efficiency, number of awakenings, 

sleep fragmentation and movement indexes. Actigraphy has the advantage to be a low 

cost, non-invasive tool, useful to provide objective information on sleep-wake 

behaviour for a long period of time in the subject’s natural environment. 

Despite the high concordance between actigraphy and polysomnography for sleep 

scoring (Kripke et al., 1978; Cole and Kripke, 1988), the concurrent use of sleep diaries 

is recommended because this technology seems to overestimate sleep in some sleep 

disordered individuals and during specific daily activities (Martin and Hakim, 2011). 

 

1.2.4. Polysomnography 

Transitions between wakefulness and sleep and, inside sleep, between different sleep 

stages, are accompanied by physiological and electrical changes in the brain. Thanks 
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to Hans Berger (1930), it became possible to measure and record them using an 

instrument that detects and amplifies electrical activity from the human scalp. After 

almost one century, electroencephalography (EEG) is still a widely used technique to 

investigate brain activity through electrodes specifically positioned over the scalp, 

using a standardized method (10-20 International System). However, in order to define 

the main stages of sleep, the collection of other biosignals is also required. 

Polysomnography, the “gold standard” objective assessment of sleep, is based on the 

simultaneous recording of different physiological parameters during sleep. In addition 

to the EEG, other important measures are: the electrooculogram (EOG) for eye 

movements, the electromyogram (EMG) for tonic muscle activity, the 

electrocardiogram (ECG) for cardiac activity, the pneumogram (for respiratory 

parameters). Finally, in the clinical field most polysomnographic recordings also rely 

on the measurement of body temperature, a crucial index of circadian rhythmicity. 

Once sleep has been recorded through a polygraph, the next step is sleep scoring, i.e., 

the identification of sleep stages. After the historic R & K’s manual (Rechtschaffen 

and Kales, 1968), collecting standardized rules for visual sleep scoring, a more up-to-

date manual has been introduced by the American Academy of Sleep Medicine 

(AASM, Iber et al., 2007), which is still subject to continuous revisions based on new 

experimental and clinical data. 

Another well-established method for the analysis of EEG signals is spectral analysis. 

This mathematical approach uses the fast Fourier transform to automatically 

decompose EEG signals into its constituting frequency components. In the field of 

sleep medicine and research, five are the brain rhythms that are easily recognizable at 

sleep onset and during sleep itself: beta (16-40 Hz), sigma (12-16 Hz), alpha (8-12 

Hz), theta (4-8 Hz), delta (.5-4 Hz). The power spectrum analysis determines the 

relative amounts of given frequencies in the waveform over the analysed time segment. 

The idea is that EEG waves can be split into an infinite number of pure sinusoidal 

components, each of a different frequency, that when summed together reconstitute 

the original waveform. However, a faithful representation of the original signal is only 

possible when the signal is stationary; instead, the EEG signal has waves that are not 

stable or even appear intermittently (Campbell, 2009). Therefore, it is recommended 

not to include in the analysis abrupt variations, such as those due to drowsiness and 

alerting. Another important drawback of spectral analysis concerns the scarce ability 
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to recognize artefacts, which may lead to misinterpretation of the power spectra and 

the entire EEG signal (Campbell, 2009). 

Besides the fact that polysomnography is the best instrument to obtain information 

about sleep architecture both in the sleep laboratory and the natural environment, the 

main disadvantages are high costs and the high participant burden (Martin and Hakim, 

2011). 

 

1.2.5 New methods to study sleep 

Although the EEG and polysomnographic assessment remain the best method in the 

sleep field, new methods have been more recently used to study brain functions in 

discrete neural areas not accessible to surface EEG and during specific states of 

consciousness. Specifically, functional neuroimaging techniques applied in the study 

of sleep allow clinicians and researchers to determine which neuroanatomic areas are 

activated during sleep. For instance, a wide body of imaging studies, using functional 

Magnetic Resonance Imaging (fMRI) and/or Positron Emission Tomography (PET), 

have shown that during REM sleep there is a greater activation of the thalamus, the 

brainstem and basal forebrain, as well as of the limbic and paralimbic cortex (Braun et 

al., 1997; Nofzinger, 2004), whereas the sleeping brain during NREM sleep is less 

active, showing reduced blood flow and metabolism in several brain areas (i.e., dorsal 

pons and mesencephalon, cerebellum, thalami, basal ganglia, basal 

forebrain/hypothalamus, prefrontal cortex, anterior cingulate cortex, precuneus and the 

mesial temporal lobe) (Nofzinger et al., 2002; Nofzinger, 2004). 

Interestingly, neuroimaging techniques can be combined with EEG procedures for 

greater specificity and to overcome some of the drawbacks that each method has when 

used alone. For example, EEG combined with PET and with fMRI techniques allow 

researchers to investigate both the brain network that support sleep (top-down control) 

and the brain circuitry supporting processes, function and behaviour associated with 

sleep (bottom-up control) (Picchioni et al., 2014). Furthermore, recently greater 

attention has been paid to the use of Non-Invasive Brain Stimulation (NIBS) methods 

combined with polysomnography. In their study, Massimini and co-workers (2005) 

used transcranial magnetic stimulation (TMS, a non-invasive tool for manipulating 

neuronal excitability by stimulating the cerebral cortex) together with high-density 

EEG in order to study cortical connectivity during quiet wakefulness and sleep. The 

authors showed that during NREM sleep, there was a breakdown of cortical 
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connectivity, in that after stimulation of the premotor area, there was no propagation 

of the cortical response beyond the stimulation site (Massimini et al., 2005). 

 

 

 

1.3. Organizational levels of sleep 

 

The discovery of REM sleep thanks to Aserinsky and Kleitman (1953) may be 

considered as a Copernican Revolution in sleep research and medicine. It did not 

simply give us hints about sleep structure, but it has changed the way we look at the 

sleep phenomenon. 

For a long time, it was believed that sleep was a stable and quite homogeneous state, 

simply a pause between wakefulness states. Nowadays, sleep is considered as a 

biological state with a complex internal organization. Four organizational levels may 

be identified, hierarchically proceeding from the alternation between sleep and wake 

to the regular and multiple transitions from NREM to REM (the NREM-REM cycle), 

to the occurrence of the sleep stages, up to the phasic events appearing within them, 

such as rapid eye movements during REM sleep or sleep spindles and K-complexes 

during NREM sleep (Salzarulo et al., 1998; Conte and Ficca, 2013).  

Figure 1 shows the levels of sleep organization from the macro-structural to the 

microstructural one. 
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Figure 1. Levels of sleep organization (adapted from Salzarulo et al., 1998). 

 

 

1.3.1 First organizational level: the sleep episode 

The sleep-wake cycle represents the highest hierarchical level of sleep organization. 

Across the 24 hours, sleep and wake alternate in a cyclic manner and, as will be better 

explained later, in most mammals this alternation is regulated by an endogenous 

circadian pacemaker and a homeostatic (sleep-wake dependent) process. 

The nocturnal sleep episode of a healthy young good sleeper is predominantly made 

up of NREM sleep, which accounts for the 75-80% of the sleep episode, whereas REM 

sleep takes up the remaining 20-25%. In particular, the percentage of occurrence of 

each NREM sleep stage is: about 5% for Stage 1; at least 50% for Stage 2; the 

remaining sleep (20-25%) is composed of sleep stages 3 and 4, namely slow wave 

sleep (SWS). However, sleep stage percentages, while providing a global measure of 

sleep architecture, are less useful to get hints on how really sleep goes on throughout 

the night. Therefore, the first level of sleep organization does not only include the way 

sleep and wake interact with each other, in terms of “when” sleep and wake will most 

likely occur (i.e., its beginning and end over the 24 hours), but also how the sleep 

episode starts, proceeds and terminates in a more or less continuous and stable way. 

The analysis of sleep time dynamics is receiving more attention both in clinical 

practice and in research, since it provides more useful information about the sleep 

process beyond traditional sleep variables (Norman et al., 2006; Kishi et al., 2017).  
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Measures referring to sleep quality may capture the temporal dynamic of sleep-wake 

transition. However, despite its clinical importance, an ultimate definition of sleep 

quality is still lacking. This is somehow surprising since sleep quality has been 

associated with a wide range of positive outcomes, such as daytime wellbeing, mood 

and performance (Hyyppa and Kronholm, 1989). One possibility may be to look at the 

phenomenon from different points of view.  

From a subjective perspective, sleep quality seems to rely on the perception of easy 

falling asleep (Kecklund and Åkerstedt, 1997; Kecklund et al., 2003), total sleep time 

(Bastien et al., 2003), tiredness on waking and throughout the day, feelings of being 

rested, restored and refreshed at awakening and the number of intra-sleep awakenings 

experienced during the night (Harvey et al.,2008). 

Following a more “structural” perspective, objective sleep quality seems to be 

associated with reduced light sleep (Stage 1) and increased sleep depth (SWS) (Harvey 

et al., 2008). Besides sleep duration and sleep stage percentages, what seems to be 

determinant for a good sleep is the continuity and stability of the sleep episode 

throughout the night. Several measures have been used in order to address sleep 

fragmentation, such as wake after sleep onset and sleep efficiency. However, these 

metrics provide just a quantitative overall measure of the entire sleep episode, while 

neglecting the temporal and dynamic distribution of overnight events. For these 

reasons, besides classical sleep variables, sleep continuity has been extended with the 

assessment of the frequency and mean duration of awakenings. In this sense, sleep 

quality might depend on any event reversing the natural build-up of the sleep episode, 

such as the frequency of arousals and state transitions (Conte and Ficca, 2013). 

In our view, it is most likely that the quality of intra-night wakefulness and the frequent 

and continuous passage from one state to another, affects the judgement of sleep 

quality more than sleep duration and structure. It is worth nothing that in real-life 

situations, individual, relational and environmental factors may influence the 

subsequent sleep characteristics; on the other hand, the way sleep proceeds during the 

night affects subsequent wakefulness. Therefore, the first organizational level, besides 

the theoretical models proposed overtime (see 1.4 paragraph), stresses the strict 

relationship between sleep and wake, so that any specific event occurring within the 

sleep-wake rhythms depends on what precedes it and will influence what is coming 

next (Conte and Ficca, 2013). 
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1.3.2 Second organizational level: the NREM-REM cycle 

The second level of organization concerns the regular alternation of NREM and REM 

sleep, within the basic functional unit of the sleep cycle. During the nocturnal sleep 

episode in the healthy young adult, sleep cycles occur, in average, 4-6 times per night, 

each lasting from 90 to 120 minutes (Carskadon and Dement, 2005). Also, NREM and 

REM sleep sequences are different across the night, with the cycles in the middle of 

the sleep episode being longer than the remainders, following a curvilinear trend 

(Feinberg and Floyd, 1979). As for NREM-REM cycle composition throughout the 

night, SWS prevails in the first two sleep cycles and is clearly reduced or even 

disappears after that in favour of Stage 2 (Feinberg et al., 1980; Carskadon and 

Dement, 2005). In contrast, REM sleep usually becomes longer and more frequent 

towards morning, mainly alternating with Stage 2 sleep during later cycles. 

Since NREM-REM alternation within cycles survives in basically all pathological 

conditions (Feinberg and Floyd, 1979) and in light of its increases during early 

development (Ficca and Salzarulo, 2004), several authors suggest that cycles could 

have a relevant functional meaning. 

More recently, as we will see in the next chapter, a crucial role of NREM-REM cycles 

has been hypothesized for cognitive functions, and specifically for offline memory 

consolidation processes (Mazzoni et al., 1999; Ficca et al., 2000; Ficca and Salzarulo, 

2004).  

 

1.3.3 Third organizational level: NREM and REM sleep states 

With the notion of sleep architecture, we generally refer to the progression and 

continuity of sleep through the sleep episode and, within it, through different sleep 

states, namely NREM and REM sleep. As recently shown by Markov and co-workers 

(2012), there are a lot of physiological differences between them, which are accounted 

for by the balance of the autonomic nervous system drives. 

From an organizational perspective, NREM sleep is, on its turn, divided in 4 different 

stages, characterized by specific frequency and amplitude of EEG waves and EOG and 

EMG patterns. Stage 1 sleep is the shallowest sleep stage, typically appearing at sleep 

onset, during the transition between relaxed wakefulness (characterized by a 

predominant alpha rhythm) and “deeper” Stage 2 sleep. For this reason, this stage 

usually constitutes 2-5% of total sleep; however, Stage 1proportion increases in case 

of disrupted sleep and, specifically, anytime there is an arousal during Stage 2 or REM 
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sleep, usually signalled by the appearance of body movements on the EMG channel 

(Rechtschaffen and Kales, 1968; Iber, 2007). In normal conditions, Stage 1 is scored 

when waking alpha rhythm is replaced by theta activity, occupying more than 50% of 

the epoch, along with slow eye movements and decreased muscle tone. Stage 2 sleep 

is known as the other lighter sleep stage, with increased arousal thresholds and sleep 

depth compared to Stage 1. This stage is still characterized for the most part of theta 

frequencies, along with particular electrographic elements such as sleep “spindles” and 

“K complexes”. 

As sleep goes by in the night, the EEG starts to be gradually occupied by high-voltage 

(at least 75 μV) and low-frequency slow wave activity (SWA, i.e., delta activity, in the 

.5-4 Hz frequency band). Stages 3 and 4 are known as the deepest stages of sleep, with 

higher arousal thresholds than the other NREM sleep stages. Scoring of stages 3 and 

4 is based on the percentage of delta activity in asleep epoch: 20-50% for Stage 3, 

more than 50% for Stage 4 (Rechtschaffen and Kales, 1968). For this reason, stages 3 

and 4 are collectively referred to as slow wave sleep (SWS) and the American 

Academy of Sleep Medicine (AASM) guidelines no longer distinguish between the 

two (Iber, 2007). The EOG shows no eye movements during Stage 2 and SWS, while 

on the EMG channel muscle tone continues to decline with the deepening of NREM 

sleep stages.  

After staying in SWS for about 20 minutes during the first sleep cycle, the EEG pattern 

starts to become desynchronized, with low-voltage, mixed-frequency brain wave 

activity. The transition from NREM to REM sleep is usually rapid, with all the 

variables characterizing one state suddenly modifying to leave place to the one that 

follows. However, in some clinical conditions, this transition can be prolonged and 

expressed by a period of “functional uncertainty” (Salzarulo et al., 1997), in which the 

characteristics of one well defined state occur only for short intervals, oscillating 

continuously between different states. 

REM sleep is scored when rapid eye movements, either isolated or in bursts, appear 

on the EOG channels and muscle atonia on the EMG one, along with a desynchronized 

Stage 1-like EEG pattern and characteristic “sawtooth” wave forms. In addition, REM 

sleep is often accompanied by other physiological phenomena such as intense 

neurovegetative modifications (globally named “neurovegetative storm”), including 

an increased heart rate variability with arrhythmias, changes in respiratory rate and in 

blood pressure, and remarkable alterations of thermoregulatory mechanisms. 
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The profile of a sleep episode is generally displayed by means of a “hypnogram”. As 

shown in Figure 2, SWS is predominant in the first part of the night (early sleep), 

especially in the first two cycles, whereas REM sleep dominates the second half (late 

sleep). 

 

 

 

Figure 2. Hypnogram of a healthy adult sleep episode (from Rasch and Born, 2013). 

 

 

1.3.4 Fourth organizational level: the intra-state events 

The fourth organizational level concerns sleep microstructure, i.e., the intrinsic 

organization of specific intra-state elements. In the next paragraphs we will describe 

the main field potential oscillations of brain activity observed during NREM and REM 

sleep. 

 

 

1.3.4.1. NREM sleep intra-state phasic events 

The main electrical field potential rhythms occurring during deeper NREM sleep are 

slow oscillations, sharp-wave ripples and sleep spindles, strictly interacting with each 

other (Figure 3). 
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Figure 3. Main field potential oscillations during NREM sleep (modified from Rasch and Born, 2013). 

 

 

Neocortical slow oscillations predominate during human SWS and are defined as the 

part of SWA with an EEG power density <1 Hz and a peak frequency of .8 Hz (Mölle 

et al., 2002; Rasch and Born, 2013). They originate in the neocortex and reflect the 

interaction between cortical and thalamic networks (Rasch and Born, 2013). Slow 

oscillations are characterized by alternating “down-states”, periods of membrane 

hyperpolarization during which cortical neurons remain silent, and “up-states”, with 

increased wake-like neuronal firing and membrane depolarization (Steriade et al., 

2001). One of the main function attributed to slow oscillations is the synchronization 

of large neuronal populations in the neocortex, during the transition from down-to-up 

phases, and at the hippocampal and thalamic level, therefore coordinating the activity 

of other intra-state events: sharp-wave ripples and sleep spindles (Mölle et al., 2002; 

Diekelmann and Born, 2010). 

 

When hippocampal sharp waves (fast, depolarizing waves originating in the 

hippocampus) are overlaid with ripple activity (100-300 Hz local field potential 

oscillations), they are called Sharp Wave-Ripple complexes (Sw-Rs). Sw-Rs are 

considered as the most synchronous microstructural events in the mammalian brain, 

occurring during SWS, but also during non-exploratory wakefulness. 

Since these features typically accompany the reactivation of neuronal ensembles active 

during previous wakefulness, it is hypothesized that Sw-Rs may be a mechanism for 

the transfer of information from the hippocampus to the neocortex during sleep 

(Buzsáki, 2015). 

Sw-Rs are often coupled to spindles, leading to the formation of “spindle-ripple 

events”, which may constitute an important mechanism of cortico-hippocampal 

communication during sleep (Siapas and Wilson, 1998; Rasch and Born, 2013). 
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The sleep spindle, the hallmark of Stage 2, is a waxing and waning EEG oscillation in 

the 12-16 Hz frequency range (sigma power) lasting .5-3 sec, predominant over centro-

parietal EEG derivations (De Gennaro and Ferrara, 2003). According to their 

frequency and topographical distribution, sleep spindles are classified into: slow 

spindles, with a frequency range between 12 and 14 Hz and distributed over frontal 

regions, and fast spindles (14-16 Hz) which have a posterior distribution. It is still a 

matter of debate whether these two kind of spindles have the same generator or reflect 

the activity of different neural networks (Mascetti et al., 2011; Rasch and Born, 2013). 

Spindles originate from the interplay between reticular thalamic and cortical neurons 

and for this reason they are often called thalamo-cortical spindles (Steriade and 

McCarley, 2005). 

From an organizational standpoint, spindles generally follow a curvilinear U-shaped 

pattern, with few spindles during early sleep, peaking in the middle and finally 

dropping off at the end of the sleep episode (Silverstein and Levy, 1976). Also, there 

is an intra-cycle variation in the density (i.e., frequency) of spindles, which is lower in 

the middle of the sleep cycle compared to the initial and the final part of the same cycle 

(Himanen et al., 2002). According to the authors, this phenomenon occurs only in the 

first four sleep cycles, apparently in association with stage transitions, and not in the 

last ones, which are instead more stable, probably due to a reduced homeostatic sleep 

pressure at the end of the night (Himanen et al., 2002). 

Sleep spindles may also occur during SWS, although their density is lower than during 

Stage 2 sleep. An inverse overnight relationship between spindles and SWA has been 

proposed, in that while SWA is higher during early sleep and progressively decreases 

across the night, spindle activity increases during late sleep (Åeschbach and Borbély, 

1993; Fogel and Smith, 2011). 

Besides spindles typical variations during the night and within sleep cycles, intra-

individual spindle density remains stable across different nights, so much so that they 

have been considered as an “electrophysiological fingerprint” (De Gennaro et al., 

2005). On the other hand, the variation in spindle density among individuals and over 

the lifespan (Nicolas et al., 2001) supports the notion that spindles may be a 

physiological index of intellectual ability (Fogel and Smith, 2011). For instance, in 

two studies Nader and Smith (2001, 2003) showed that the number of sleep spindles 

positively correlated with general intellectual potential as measured through IQ scores. 
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Sleep spindles have usually been attributed two main functions, which may not be 

mutually exclusive. EEG and neuroimaging studies demonstrated that spindles provide 

an inhibitory thalamic response to internal and external stimuli, suggesting a role for 

spindles in protecting overnight sleep stability and maintenance (Cote et al., 2000; 

Dang-Vu et al., 2010, 2011). Recently, it has been suggested that spindle activity may 

be a neurophysiological vulnerability factor predisposing to stress-related sleep 

disturbance in the face of precipitating events (Dang-Vu et al., 2015). 

The protective role of spindles on sleep maintenance has been recently related to 

another important function attributed to sleep spindles, that is their role in brain 

plasticity and sleep-dependent memory consolidation (Gais et al., 2002; Morin et al., 

2008; Fogel and Smith, 2011). In this view, spindles may contribute to consolidation 

processes by protecting sleep and allowing the undisturbed development of biological 

mechanisms required for learning (Dang-Vu et al., 2011; Conte and Ficca, 2013). 

 

According to the last edition of the AASM (Iber et al., 2007), Stage 2 sleep is scored 

when at least one sleep spindle and/or K complex occur in the first half of the epoch 

or in the second part of the previous one. Therefore, the K complex is the other phasic 

hallmark feature of Stage 2. A K-complex is characterized by a well-defined negative 

sharp wave followed by a high amplitude positive component, occurring 

spontaneously or elicited by auditory stimuli (Colrain, 2005; Cash et al., 2009). The 

specific function of this feature is not well understood. Since it is often followed by an 

arousal-related EEG event or a body movement, some authors suggest that it may 

represent a cortical arousal response to internal or external stimuli that are not intense 

enough to provoke a full awakening (Kokkinos et al., 2013). However, other studies 

propose a role for K complexes in protecting and promoting sleep maintenance 

(Nicholas et al., 2002; Cash et al., 2009). Recently, in a study by Kokkinos and co-

workers (2013), the authors reported that the oscillations appearing during the K-

complexes may reflect arousing processes, whereas the K-complexes down-state, 

which represent periods of neuronal silence, may have a role in sleep protection. 

Therefore, the two hallmarks of Stage 2 sleep, namely K complex and sleep spindles, 

may both exert a protective role on sleep maintenance and in brain information 

processing.  

 



23 
 

Finally, another important microstructural feature of NREM sleep is the “cyclic 

alternating pattern” (CAP). The CAP is a periodic EEG activity of NREM sleep 

characterized by repeated spontaneous sequences of transient events (phase A) with 

an abrupt frequency/amplitude variation from the ongoing sleep stage, recurring at 

intervals up to 60 sec long, followed by a return to background activity (Phase B) 

(Terzano et al., 2001). Phase A has been divided into 3 subtypes: A1 subtype, 

characterized by synchronized slow-waves, A3 subtype in which prevailed EEG fast 

rhythms, and A2 subtype defined by a combination of both EEG patterns (A2 subtype). 

It has been proposed that these A subtypes subserve different sleep functions: while 

A2 and A3 may have a role in maintaining arousability, the A1 subtype, mostly 

composed of slow waves, is involved in the build-up and maintaining of deep NREM 

sleep stability (Ferri et al., 2008). 

 

1.3.4.2. REM sleep intra-state phasic events 

According to Ktonas et al. (1990), measures of rapid eye movements (REMs), the 

hallmark of REM sleep detectable on the EOG channel, may be distinguished into 

“first order parameters” (e.g., number of REMs, REM density), and “second order 

parameters”, which refer to their clustering and to the characteristics of REM bursts or 

“bouffeès” (e.g., number of REMs occurring in bursts, duration of REM bursts, 

probability burst-to-burst, which indexes the tendency of REMs to cluster in bursts). 

The presence of REMs occurring in bursts appears to be an important organizational 

aspect, which in turn depends on the central nervous system (CNS) development: 

REMs are higher during maturation (Ktonas et al., 1990) and impaired with aging 

(Ficca et al., 1999; Vegni et al., 2001). 

In animals, REMs occurrence is closely associated to another phasic bioelectrical 

potential characterizing REM sleep, called P-wave in rats and PGO waves in cats and 

nonhuman primates, since in the latter these waves originate in the pons (P) and 

propagate to the lateral geniculate nucleus (G) and the occipital cortex (O) (Datta, 

2006; Bourdiec et al., 2010). PGO/P-waves are monophasic negative waves of 100-

150 mV amplitude and of short duration (around 75-150 msec), occurring isolated or 

in bursts during the transition from SWS to Paradoxical Sleep (PS, corresponding to 

REM sleep in many animal species) and during PS (Datta, 2006). Several studies 

suggest that PGO waves may also occur during human sleep (Peigneux et al., 2001; 

Lim et al., 2007). 
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In addition to the total amount of REM sleep, some of its phasic events, such as rapid 

eye movements (REMs) and PGO waves, have been originally related to the dreaming 

state. However, the early hypothesis that REMs reflected the dreamer’s exploratory 

activity during the oneiric scene, known as “the scanning hypothesis”, can be hardly 

reconciled with inconsistent results (Arnulf, 2011).  

Some authors suggest that REMs might represent an index of sleep satiation. In fact, 

REM density seems to be related to prior sleep time (Aserinsky, 1973; Lucidi, 1996) 

and it is significantly reduced in recovery nights after sleep deprivation (Reynolds et 

al., 1993). 

Furthermore, according to Barbato et al. (1994), there might be a close relationship 

between REM density and arousal level. In an extended sleep paradigm, the authors 

found that REM periods terminating with awakenings showed higher REM density 

than those not interrupted by wakefulness, probably as a result of a reduced sleep 

pressure (Barbato et al., 1994). 

Recently, intra-state phasic events of REM sleep have received strong attention in 

relation to a possible role for memory consolidation processes (Conte and Ficca, 2013), 

since human and animal studies showed significant changes in number of REMs and 

density after the administration of cognitive and learning tasks during wake (Smith 

and Lapp, 1986; Smith et al., 2004a). Similarly, PGO waves have been proposed as a 

mechanism supporting synaptic plasticity and memory processing during post-training 

REM sleep (Datta, 1999, 2006). 

 

 

 

1.4. Models of sleep regulation 

 

In order to explain why and how sleep and wake cyclically alternate, which represent 

the highest hierarchical level of behavioural states organization, many theories have 

been proposed overtime. The one of the “multiple oscillators” (Aschoff and Wever, 

1976; Kronauer et al., 1983) was the most widely accepted model of sleep regulation 

up to the Eighties. This model was based on the evidence that during a free-running 

period, i.e., in the absence of environmental time cues, the sleep-wake rhythm and that 

of core body temperature dissociate (Wever, 1979a). Therefore, it was believed that 

circadian biological rhythms were controlled by at least two endogenous pacemakers 
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(Aschoff and Wever, 1976): a stronger one would determine core body temperature, 

urine volume, urinary excretion of potassium and REM sleep; and a weaker one 

responsible of the control of sleep-wake alternation, SWS, GH secretion and urinary 

calcium excretion. According to this model, the latter, in the absence of time cues or 

zeitgebers, would tend to synchronize with the former. 

However, evidence of the existence of more than one circadian oscillator in mammals 

are still lacking. Furthermore, these models have the great limit of not taking into 

account the homeostatic aspect of sleep regulation, which in turn depends on the 

characteristics of previous sleep and wake (Borbély and Achermann, 1992). Just a few 

years later, these limits have been overcome when Borbély (1982) proposed his sleep 

regulation model, which is still considered as the major conceptual framework in sleep 

research. Before dealing with the “two-process model of sleep regulation” (Borbély, 

1982), a detailed separate description of the two major components of the model, 

namely circadian and homeostatic factors, is provided below. 

 

1.4.1 Circadian factors 

A circadian rhythm is a biological rhythm whose periodicity is approximately 24 

hours, oscillating between a maximum peak (“zenith”) and a minimum level (“nadir”). 

The best-known circadian rhythm is the sleep-wake cycle, whose biological 

pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus 

(Moore and Eichler, 1972). Indeed, lesions of this structure abolish and disrupt 

rhythmicity of the sleep-wake cycle and increase total sleep time, suggesting that the 

SCN has an active role in facilitating wake initiation and maintenance and in opposing 

sleep drive in primates (Edgar et al., 1993). However, in rodents and humans, the 

circadian clock seems to actively promote both wake and sleep at different phases of 

the circadian cycle (Dijk et al., 1999; Mistlberger, 2005). 

The wake-promoting system begins to decline at bedtime, in order to enhance sleep 

initiation (sleep gates), until it reaches a minimum around 6:00 am, which coincides 

with the temperature nadir, followed by a subsequent increase in correspondence of 

the rising slope of the temperature curve (Dijk and Czeisler, 1994). In fact, the 

biological pacemaker regulates the circadian rhythms of a great number of variables, 

including in particular body temperature (Eastmann et al., 1984; Moore, 1999), which 

is thus considered as the marker of the circadian rhythm. 
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The study of sleep in the absence of environmental time cues (“free-running” protocol) 

is considered as one of the best methods to investigate the sleep-wake timing. As a 

matter of fact, the endogenous “clock” has to be synchronized to environmental cues 

(zeitgebers), the most powerful of which is the light-dark cycle (Lu and Zee, 2010). 

The process of entrainment occurs when light inhibits melatonin secretion through a 

pathway leading from the retina to the pineal gland and the hypothalamus (Czeisler, 

1994). Under free-running conditions, the sleep-wake cycle not only is desynchronized 

from the external light-dark cycle, revealing that the endogenous circadian rhythm 

spans for longer than 24 hours (Wever, 1979b; Czeisler et al., 1999), but also from the 

internal rhythm of body temperature (Zulley et al., 1981; Daan et al., 1984). This 

phenomenon suggests that sleep duration and sleep structure are determined by the 

interaction of a circadian oscillator and a sleep-wake oscillator (Zulley et al., 1981; 

Daan et al., 1984). 

The role of the circadian pacemaker in the regulation of the ultradian NREM-REM 

sleep cycle was investigated using a forced desynchrony protocol, in which subjects 

were scheduled to activity-rest cycles outside the circadian range, e.g., 20 or 28 hours 

(Wyatt et al., 1999; Dijk and Czeisler, 1995). As a result, the rhythm of SWS and SWA 

was almost totally independent from the circadian phase, with a minimum peak in the 

early morning hours when, from a circadian perspective, sleepiness is at its highest 

(Dijk and Czeisler, 1995). In contrast, sleep spindles and REM sleep showed a strong 

circadian modulation, with their maximum activity coinciding with the melatonin 

rhythm in the former and occurring 1-2 hours after the temperature nadir in the latter 

(Dijk and Czeisler, 1995; Dijk et al., 1997).  

Therefore, forced desynchrony studies have suggested that the biological clock 

differently influences the rhythmicity of sleep states and that of intra-state elements. 

Accordingly, SWA seems to be primarily regulated by time spent awake, and it is 

considered the electrophysiological correlate of sleep homeostasis.  

 

1.4.2 Homeostatic factors 

The concept of “homeostasis” relies on the physiological tendency of a system to 

continuously regulate and control its condition, in order to maintain an internal 

stability despite changes. Many experimental approaches, such as sleep deprivation, 

which increase sleep pressure, and sleep extension studies, which lead to a reduction 
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of the sleep drive, have been used to investigate whether sleep is homeostatically 

regulated. 

Early studies (Berger and Oswald, 1962; Webb, 1969; Webb and Agnew, 1971) 

consistently showed that sleep deprivation increases sleep intensity in the recovery 

night, suggesting that SWS is a physiological indicator of sleep homeostasis, 

depending on previous wake length: the longer the wake period, the higher is the 

amount of deep sleep, especially in the beginning of the sleep episode (Webb and 

Agnew, 1971). Therefore, the homeostatic drive to sleep builds up during sustained 

wakefulness and is dissipated during sustained sleep through SWA. Similarly, a 

daytime nap, which reduces wake length and counteracts the rising trend of sleep 

propensity, attenuates SWA in the subsequent night-time sleep episode (Werth et al., 

1996).  

The existence of a prominent homeostatic sleep mechanism has been interpreted as 

proof of a restorative function of sleep. It seems that wakefulness causes an 

accumulation of a factor whose dissipation is necessary for the subject’s wellbeing. 

Feinberg’s homeostatic model of delta sleep (1974) suggested that NREM sleep 

counteracts the effect of waking on the brain and that SWA amplitude is a function of 

this reversal process. Also, REM sleep is considered as a co-factor allowing NREM 

sleep to continue until optimal levels of homeostasis have been attained (Feinberg, 

1974; Feinberg and March, 1988, 1995). However, it seems that the homeostatic 

control is mainly exerted on SWS rather than REM sleep, which serves just to optimize 

the reversal process of delta sleep. This view appears rather simplistic, since there are 

studies showing that REM sleep, despite its depending mainly on the circadian clock, 

is under partial homeostatic control as well (Benington and Heller, 1994; Barbato and 

Wehr, 1998). However, in contrast to the homeostatic SWA drive, rebounds of REM 

sleep may only occur after longer periods of sleep deprivation (Deboer, 2015). Also, 

it is still to be clarified whether it is homeostatically regulated as a function of prior 

waking or of prior NREM sleep (Benington and Heller, 1994; Franken, 2002). 

 

1.4.3 The two process model of sleep regulation 

In 1982, Alexander Borbély included both circadian and homeostatic factors inside a 

mathematical model, which has represented the leading model of sleep regulation ever 

since. The two-process model of sleep regulation describes the sleep-wake rhythm as 

a result of the interaction between the sleep-independent circadian process (“process 
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C”) with the sleep-dependent homeostatic process (“process S”), whose combined 

action determines sleep timing, propensity and depth. Process C is controlled by the 

internal pacemaker and behaviourally reflects circadian modulation of fatigue and 

alertness, serving to counteract homeostatic sleep pressure at specific times of the day. 

Core body temperature and melatonin rhythms are markers of process C.  

Process S accounts for an increase in sleep drive as a function of prior waking time 

and for a recovery process occurring during sleep and specifically during the first part 

of the night. While the former appears to be expressed by the increase in theta activity 

during the day, the latter is reflected by the increase in SWA during the first hours of 

sleep, followed by an exponential decline (Borbély and Achermann, 1999).  

Figure 4 displays the interplay between process C and S throughout a 24 hours’ sleep-

wake cycle. The build-up of the homeostatic sleep drive throughout the day is 

countered and moderated by the circadian drive for arousal. In the late evening, the 

circadian drive falls off, melatonin production increases and the homeostatic sleep 

drive becomes dominant, promoting sleep gates opening. During the night, process S 

rapidly dissipates until early morning, when melatonin production stops and process 

C is rising again. When the two curves meet, final awakening will occur (Borbély, 

1982). 

Therefore, while the homeostatic process maintains the duration and intensity of sleep 

within certain boundaries, the circadian rhythm determines the temporal organization 

of sleep and wake. 

 

 

 

 

Figure 4. The “two-process model” of sleep regulation. When daytime S approaches the upper 

boundary and encounter the falling curve of C, it triggers sleep; when curves of S and C meet after 
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homeostatic process dissipation and during the rising phase of process C alerting system, awakening 

may likely occur (redrawn from Borbély, 1982). 

 

 

1.4.4 Reconsidering the sleep regulation model 

The two-process model (Borbély, 1982) represented a major breakthrough in sleep 

research during the Eighties and it is still the prevalent conceptual model. In the last 

thirty years, it has been applied in studies on fatigue and performance and on age-

related and intra-individual differences in sleep regulation. The model successfully 

predicts sleep timing and intensity in several experimental paradigms, such as sleep 

deprivation and fragmentation, forced desynchrony protocols and in “natural” 

manipulations of sleep-wake rhythms, i.e., in shift-workers, long/short sleepers, 

early/late chronotypes (Daan et al., 1984; Borbély and Achermann, 1999; Borbély et 

al., 2016). Also, recently a growing line of research is focused on the possible impact 

of the model in the clinical field, and specifically, in promoting new treatment 

strategies for mood disorders (Borbély et al., 2016). In fact, the model contributes to 

the development of new non-pharmacological treatments in psychiatry, based on 

circadian and sleep manipulations and light exposure (Wu et al., 2009; Benedetti et al., 

2014; Echizenya et al., 2014; Borbély et al., 2016).  

Nevertheless, the two-process model has been continuously revised and re-updated. 

For instance, just a few years after Borbély’s proposal, Achermann and colleagues 

incorporated in the model the ultradian NREM-REM sleep cycle, representing the 

alternation of the two basic sleep states within the sleep episode (Achermann and 

Borbély, 1990; Achermann et al., 1990). 

Importantly, at the beginning it was believed that the homeostatic process was 

independent of the circadian clock and that they interacted together only at sleep onset 

and final awakening (Borbély, 1982). Later evidence suggests instead a mutual and 

continuous interaction between the two processes. For instance, forced-desynchrony 

protocols showed that the circadian rhythm of several neurobehavioral functions was 

modulated by the homeostatic sleep drive (Dijk et al., 1992; Dijk and Czeisler, 1995). 

On the other hand, it was shown that the circadian clock influences the build-up and 

decay of process S, in that the amount of SWA may depend on the time of day when 

waking occurs (Franken et al., 1991; Deboer, 2009). Finally, evidence in favour of a 

strict interaction between homeostatic and circadian processes arose from molecular 

and genetic studies (Curie et al., 2015).  
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In the attempt to explain the physiological phenomenon occurring immediately after 

awakening characterized by reduced alertness and impaired cognitive performance, 

known as sleep inertia (Tassi and Muzet, 2000), Folkard and Åkerstedt proposed the 

“three-process model”: in addition to the previously described basic processes (C and 

S), the authors include a “process W” (“Process Wake”), which accounts for the 

quantity and quality of wake after sleep (Folkard and Åkerstedt; 1987; Åkerstedt and 

Folkard, 1997). In fact, sleep inertia is not predicted by the original model since it 

occurs when the homeostatic sleep drive is already dissipated and the circadian alerting 

system becomes stronger. The main outcome of this model was the “nomogram”: a 

tool developed by the same authors in order to predict vigilance level, through the sum 

of C and S functions (Åkerstedt and Folkard, 1995, 1997). 

Another aspect not included in the classical sleep regulation model is the evidence that 

sleep homeostasis is not simply a global brain phenomenon, running in parallel in the 

entire brain, but has a local cortical component (Krueger and Obal, 1993). Several 

studies have suggested that SWA rebound during NREM sleep may be induced not 

simply by a longer wake but also by a use-dependent local cortical mechanism. Kattler 

and colleagues (1994) showed that the stimulation of a specific cortical area during 

wake results in an increase in SWA in subsequent sleep over the cortical area which 

was stimulated while awake. More recently, Huber and co-workers’ findings (2004) 

confirmed the idea that local SWA changes during NREM sleep may be triggered by 

an intensive cognitive training performed during previous waking involved the 

activation of the same cortical area. Combining the sleep homeostasis hypothesis with 

function of sleep theories, Tononi and Cirelli (2003, 2006, 2014) have proposed “the 

synaptic homeostasis” model, which suggests that synaptic and cellular processes 

enhanced during wake are re-established during sleep, again through SWA, favouring 

synaptic plasticity. However, from our point of view, it is more plausible that the 

effects of wake intensity may not only result in subsequent SWS rebound but may 

trigger several macro-structural and microstructural sleep changes, influencing the 

entire sleep episode.  

Finally, it is worth noting that, as discussed by Webb (1988), there are many 

psychological and contextual factors able to modulate sleep regulation, exerting their 

influence beyond the main physiological influences (homeostatic drive, circadian 

placement) usually studied in the laboratory setting. Examples are: family life 
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organization, work hours, emotional states, living conditions. To assess these factors, 

experiments in real life contexts are required. 
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Chapter 2 - How sleep is modified by previous cognitive activity: 

insights from sleep and memory literature 

 

The main idea underlying our research project is that wake intensity (i.e., the quantity and 

quality of waking cognitive activity) deeply affects sleep structure. In this sense, we believe 

that the classical model of sleep regulation, enabling us to predict sleep timing based on 

circadian and homeostatic factors, should be complemented by considering the effects of 

wake content on sleep features. In fact, wake intervals of the same duration can profoundly 

differ in their content, i.e., the quality and the quantity of the stimuli (both internal and 

environmental) to elaborate and respond to, and consequently in their intensity. The bulk of 

research addressing the relationship between sleep and memory has produced massive data 

on the way sleep might be modified by wake intensity changes.  

This chapter deals with the theoretical background of our research project. First, we will 

introduce the importance of wake intensity and its effects on sleep features; then, we will 

devote a paragraph to the role of sleep in memory and learning, explaining the main 

experimental paradigms conceived in sleep and memory research to investigate the “sleep 

effect” phenomenon; finally, in the third part (which is the result of a systematic review we 

are working on), we will  review the bulk of data on the effects of cognitive activity on sleep 

characteristics, with the aim of clarifying to what extent different sleep features are affected 

by wake intensity. Predicting which sleep variables are actually modified by cognitive 

activity, and in which direction, would not only expand our comprehension of sleep 

regulation mechanisms but also provide insight on how to manipulate these processes in 

order to improve sleep quality with a meaningful applicative fall-out for sleep medicine. 

 

 

2.1. The role of wake intensity in sleep regulation 

 

Sleep and wakefulness are behavioral states characterized by a tight interdependence: as the 

quantity and quality of previous sleep affects subsequent wakefulness, likewise wake 

characteristics influence sleep of the following night. 
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Taking into account a restorative role for sleep, the influence of its characteristics on 

subsequent wake has been largely studied in the last century, so that it is now generally 

accepted that a good night sleep is a crucial requirement for the effectiveness of a wide 

variety of daytime cognitive processes (Diekelmann, 2014). 

The inverse research question, i.e., the effect of wake characteristics on sleep, has been 

mainly addressed in the frame of the classical “two-process” model of sleep regulation 

(Borbély, 1982). As shown in the previous chapter, this model, based on previous wake 

duration and circadian factors, allows us to predict “when” sleep will most likely occur (i.e., 

its beginning and end over the 24 hours) and, though only partially, “how” it will be, i.e., 

some of its structural features - essentially the amount of Slow Wave Sleep (SWS). 

Actually, already a few years before Borbély’s model (1982), it had been suggested that 

sleep is also modulated by the intensity of waking brain activity, measured through the 

cerebral metabolic rate, which would in turn depend on the quantity and quality of physical 

and cognitive activity carried out during wake (Feinberg, 1974). According to Feinberg 

(1974), the cerebral metabolic rate represented the physical substrate of the homeostatic 

factor accumulating during wake; subsequent sleep, especially delta sleep, has the function 

to reverse the consequences of this “intense” brain activity (Feinberg, 2007). This idea 

received support from a conspicuous body of work showing, in rats, massive increases of 

NREM delta sleep following experimentally induced increments of the waking brain 

metabolic rate (Feinberg and Campbell, 1993; Campbell and Feinberg, 1996a, 1996b). 

Another animal study (Meerlo et al., 1997) showed that the exposition to a social stressor 

accelerated the build-up of Process S, resulting in an increase in subsequent SWA. The same 

authors stated that “sleep intensity may, thus, not only depend on the duration of prior 

wakefulness but also on the nature of the waking experience” (Meerlo et al., 1997). 

More recently, the notion of “wake quality” was reintroduced by Franken (2007), 

commenting on Huber et al.’s findings (2007) of an increase of delta sleep in rats that had 

been subjected to an acute dark condition, thus augmenting exploratory behavior at the 

expense of quiet waking (Huber et al., 2007). All these works have the merit to underline 

that sleep-wake reciprocal influences cannot be fully enlightened without taking into account 

wake “content” alongside its duration. In other words, as sleep quality and quantity 

significantly influence the quality and quantity of wake, the same is to be held true the other 

way round. 

Although this idea has been quite convincingly expressed in the past, an ultimate definition 

of “wake intensity” is still lacking. In general terms, an “intensive” day is usually 
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characterized by a greater amount of physical and cognitive activity. However, it has been 

suggested that the latter is intrinsically involved in the first. For instance, as suggested by 

Horne (2013) exercise in everyday life is actually inseparable from cognition, in that 

“physical activity intrinsically implies cognitive challenges and demands triggered by 

multisensory encounters, curiosity and interactions with novel environments”. 

The relationship between cognitive processes and sleep has been largely studied in the frame 

of sleep-dependent consolidation models (Conte and Ficca, 2013). In fact, a vast source of 

evidence comes from the bulk of research linking sleep to consolidation processes, showing 

significant sleep changes after bedtime training sessions both in animal and human studies 

(Peigneux et al., 2001; Conte and Ficca, 2013).  

Which kind of sleep changes are triggered by learning and cognition? Before trying to 

answer this question, I will briefly describe concepts and evidence in support of the idea that 

sleep actively benefits cognitive and memory processes, starting from the first historical 

“steps” taken and going through new recent findings produced so far in the field. 

 

 

 

2.2. The relationship between sleep and memory: overview of 

concepts and findings 

 

The relationship between sleep and memory has been the object of scientific interest 

since the discovery of the “sleep effect” on memory (i.e., a better memory recall when 

the retention period is followed by a period spent in sleep). In the first half of the 20th 

century, two psychologists of memory, Jenkins and Dallenbach, in the attempt to 

demonstrate that forgetting was due to the interference that newly learned information 

exerts on old memory traces, carried out an experiment that is still considered a 

milestone in sleep-memory literature. By comparing retention periods filled either with 

sleep or wakefulness, they showed that recall of non-sense syllables was higher after 

a retention period spent asleep, regardless of its duration (either 1, 2, 4 and 8 hours) 

(Jenkins and Dallenbach, 1924).  

Over the following decades, this phenomenon was consistently replicated by numerous 

authors, using different experimental paradigms and learning materials, confirming the 

positive effect of sleep on memory (Lovatt and Warr, 1968; Benson and Feinberg, 

1975; Ekstrand et al., 1977; Grosvenor and Lack, 1984).  
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Since sleep is considered as a state of reduced interference (for the elevated threshold 

of stimulus encoding), the finding of a sleep effect was initially interpreted as proof 

that oblivion was due to retroactive interference and that sleep passively protects 

memory from these negative effects. However, it was shown that, when keeping 

constant the amount of sleep and wake (and, therefore, of interference) in the retention 

period, the sleep effect appears more pronounced in the condition in which sleep 

immediately follows acquisition, rather than when it follows the wake period (Benson 

and Feinberg, 1977). This result suggested that the sleep state could itself represent a 

favourable frame for active consolidation processes. 

In an interesting review, Ellenbogen and co-workers (2006) discussed the possible role 

of sleep in memory consolidation, by going over four competing hypotheses: first, that 

sleep offers no benefit for memory; second, that sleep passively shelters memory; 

third, sleep favours indirectly memory consolidation, by reducing interference; finally, 

that sleep actively consolidate information previously acquired thanks to its unique 

biologic properties. The authors reported experimental evidence that convincingly 

argue against the first two hypotheses; as for the last two hypotheses, the abundant 

data collected so far on the physiological mechanisms of consolidation in sleep have 

led to the widely accepted notion that neurophysiological processes within sleep 

actively create the ideal circumstances for consolidation to take place. For instance, 

several animal studies demonstrate that recently acquired memories are “replayed” 

during sleep (e.g., Wilson and McNaughton, 1994; Nadasdy et al., 1999; O’Neill et 

al., 2006, 2008). These reactivations occur during SWS and mediate the transfer of 

newly memory representations from the hippocampus to neocortical areas, where they 

become strengthened and integrated into pre-existing long-term memories (Buzsáki, 

1989, 1996). Although especially microstructural features of SWS have been linked to 

memory consolidation (e.g., Huber et al., 2004, 2007), it has been proposed that all 

sleep stages cooperate in this process. The ultradian cycle, i.e., the natural succession 

of NREM-REM sleep within the sleep episode, may orchestrate the “hippocampus-

neocortical dialogue”, by transferring information back and forth, from the 

hippocampus to neocortical areas, sustained by synchronous neuronal bursts during 

SWS, and reversing its direction during REM sleep (Wilson and McNaughton, 1994; 

Buzsaki, 1996). 

Reactivation and integration of memory lead not only to a mere strengthening but also 

to a qualitative transformation of memory representations. More recently, research on 
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sleep-dependent memory reshaping, i.e., the reprocessing and reorganization of 

multiple memory traces in a reconstructive way, has been incredibly boosted by 

seminal papers, showing that sleep supports processes of abstraction, inference, 

insight. For instance, the role of sleep for the abstraction of the gist from a series of 

information has been studied through the Deese-Roediger-McDermott (DRM) 

paradigm (Roediger and McDermott, 1995). In this task, the participant listened to lists 

of words that are semantically-related to an unspoken critical word. Compared to an 

equivalent wake retention period, after sleep subjects better recalled the critical word, 

supporting the notion that sleep favours the abstraction of the core meaning from the 

list (Payne et al., 2009; Diekelmann et al., 2010). Also, it has been reported that sleep 

promotes “relational memory”, i.e., the ability to extract abstract relationships among 

novel elements, in infants (Gómez et al., 2006) and in young adults (Ellenbogen et al., 

2007). Interestingly, a number of studies suggest that sleep facilitates the gain of 

insight: by using a modified version of the Number Reduction Task (NRT), Wagner 

and co-workers (2004) showed that participants who slept during the retention period 

recognised the hidden rule required to faster transform the digit string. Similar results 

were obtained through other tasks, such as a modified version of the Serial Reaction 

Time Task (Fischer et al., 2006), Remote Associates Test (Cai et al., 2009), all of them 

supporting the idea that sleep promotes problem solving and creativity (Chambers, 

2017). 

Lewis and Durrant (2011), starting from the synaptic downscaling hypothesis (Tononi 

and Cirelli, 2003), have proposed a neurophysiological model to explain how sleep 

enhances memory reshaping and reorganization. The “information overlap to abstract” 

(iOta, Lewis and Durrant, 2011) hypothesis proposed that the simultaneous 

reactivation of neurons that code for shared memory components lead to a 

strengthening of their connections. While in their first conceptualization the authors 

proposed that this mechanism was specific to SWS (Lewis and Durrant, 2011), 

recently they included REM sleep in a more complex neurophysiological model 

(BiOta), showing that the interweaving of NREM and REM sleep across overnight 

sleep cycles facilitates creative problem solving (Lewis et al., 2018): memory replay 

during NREM sleep leads to the formation of abstract representations of learned 

information, while memory reactivation during REM sleep may promote novel 

associations. Thus, repeated cycles of NREM and REM sleep allow memories to be 

deeper reorganized and reintegrated with pre-existing knowledge. 
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2.2.1. Main experimental paradigms in the sleep-memory field 

While the existence of the sleep effect and the idea of the active role of sleep for 

memory consolidation soon became widely accepted, the focus of sleep-memory 

research shifted towards the clarification of the role of different sleep features in 

sustaining the observed memory enhancements. To this aim, four main experimental 

paradigms have been used. The most frequent one relies on sleep manipulation 

procedures: either total, partial or selective (REM vs. NREM) sleep deprivation are 

administered after a learning task and compared to a condition of undisturbed sleep. 

By showing impaired memory recall at awakening after cutting particular sleep 

components, this paradigm provides direct evidence of their role in the facilitation of 

memory processes. Early animal studies used this paradigm in order to study the role 

of REM sleep in memory processing: thanks to its unique characteristics, it was 

initially believed that REM sleep represented the optimal physiological frame for the 

active consolidation of memory traces (Rasch and Born, 2013). However, possible 

non-specific side effects of deprivation paradigms, such as stress, neuronal 

excitability, emotional, mood and motivational modifications (Peigneux et al., 2001; 

Rauchs et al., 2005), hamper conclusive interpretations of results. 

Another commonly used approach consists in comparing the effects on memory 

performance of an early sleep episode, which, due to homeostatic and circadian 

factors, is rich in SWS, relative to a late sleep episode, which is, instead, for the same 

reasons, rich in REM sleep (Yaroush et al., 1971; Plihal and Born, 1997). According 

to Peigneux et al. (2001) and Rauchs et al. (2005), besides the fact that this paradigm 

disrupts the sleep episode, the early sleep deprivation also produces a need for 

compensatory SWS during the second part of the night, making it difficult to compare 

early and late sleep. Furthermore, the results showing better performances after late 

compared to early sleep could be due to the involvement of Stage 2 sleep as well as 

that of REM sleep, as the time spent in the two stages is quasi-equivalent during the 

second half of the night (Peigneux et al., 2001). 

While the two former paradigms rely on sleep manipulations, the third one is based on 

the manipulation of the consolidation process during sleep: the targeted memory 

reactivation (TMR) consists in the administration of learning-related cues during 

subsequent sleep, either SWS or REM sleep. While the majority of studies using this 

paradigm have focused on the different effects of cueing reactivation during SWS or 
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REM sleep on overnight memory, recently it has been suggested that memory 

consolidation benefits from the cyclic succession of both SWS and REM sleep 

(Batterink et al., 2017). According to the authors, reactivation during SWS allows 

newly encoded memories to be destabilized in order to be transformed and reintegrated 

into pre-existing networks during REM sleep (Batterink et al., 2017). 

Finally, the last paradigm relies on the comparison between a baseline sleep episode 

and one preceded by a learning task, allowing to overcome potential biases linked to 

sleep manipulation by studying the post-learning sleep episode in its natural unfolding. 

In fact, specific changes observed in the post-learning sleep episode features are 

believed to reflect the involvement of such features in the overnight memory 

consolidation process. Although initially introduced to provide indirect proof of the 

role of sleep in memory consolidation, the post-learning sleep modifications paradigm 

also allows us, inversely, to get hints on the role of learning in sleep regulation. In the 

next section, I will review the existing data on the effects of waking cognition on sleep, 

by taking into account two major groups of studies: a) experiments based on 

naturalistic paradigms such as the “enriched environment” procedures; b) the vast 

body of data on post-learning sleep changes coming from literature on sleep-memory 

relationships. 

 

 

 

2.3. An overview of learning-dependent sleep changes 

 

This section has been organized by separately taking into account and describing all 

the sleep variables that have shown to be affected by manipulating cognitive activity 

in the previous wakefulness. After illustrating evidence on sleep macro-structural 

variables (i.e., sleep duration, sleep latency, NREM-REM cycles, sleep efficiency, 

wake after sleep onset, behavioural awakenings, arousals, state transitions, sleep states 

and stages amount), I will describe data from more fine-grained analyses on NREM 

and REM-related specific features (e.g., sleep spindles, slow oscillations, sharp-wave 

ripples, Cyclic Alternating Pattern, rapid eye movements, pontine waves). Finally, a 

brief paragraph is also devoted to subjective sleep quality changes. In each paragraph, 

starting with data from animal studies and proceeding to human literature, I will list 

only the findings of significant changes of that given variable in post-training sleep, 
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summarised in Table 1. The data extracted and the organization of the results reported 

here, are part of a systematic review, in preparation, on the effect of waking cognitive 

activity on sleep features. 

 

2.3.1. Sleep duration and propensity 

In animals, modifications of global sleep duration, i.e., the duration of time spent 

asleep over the whole recorded time, have been documented after exposition to 

enriched environments. Two rat studies from Abou-Ismail and co-workers assessed 

sleep behaviour in rats kept for six (Abou-Ismail et al., 2010) and seven (Abou-Ismail 

and Mahboub, 2011) weeks in enriched cages (i.e., cages in which multiple physical 

structures, believed to stimulate species-specific behaviours, are added). Compared to 

control individuals living in unenriched cages, the experimental group exhibited 

increased sleep duration (Abou-Ismail and Mahboub, 2011) and number of sleep bouts 

(Abou-Ismail et al., 2010). 

A particular type of enriched environment procedure is that in which social (as 

opposed to physical) stimuli are manipulated. Social enrichment procedures have 

repeatedly shown, in insect models, that social interactions markedly affect sleep 

pressure. Increases in global sleep duration and sleep bouts duration were reported 

after 5-day expositions to social interactions in fruit flies (Drosophila melanogaster) 

compared to individually housed siblings (Ganguly-Fitzgerald et al., 2006; Donlea et 

al., 2014; Lone et al., 2016), and these effects were proportional to the size of the social 

group the flies were exposed to (Ganguly-Fitzgerald et al., 2006). Furthermore, Chi et 

al. (2014) observed that higher larval population density during early development 

results in more consolidated sleep in female fruit flies: their sleep episodes were 

reduced in number but increased in duration. Honey bees experiencing a colony 

environment for 1 or 2 days after birth slept more frequently and spent more time 

asleep compared with same-age siblings that were caged individually or in small 

groups outside the colony (Eban-Rothschild and Bloch, 2015). Furthermore, bees 

placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, 

slept similarly to bees freely moving in the colony, suggesting that also social signals 

that do not require close distance interactions are sufficient to produce an effect on 

sleep (Eban-Rothschild and Bloch, 2015). Interestingly, the effect of social enrichment 

procedures on sleep time appears to persist for several days (Ganguly-Fitzgerald et al., 

2006, Eban-Rothschild and Bloch, 2015). Finally, an increase in global sleep duration 
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was reported in rats after administration of the two-way shuttle avoidance task 

(Ambrosini et al., 1995): the increase, relative to baseline, was evident only in rats 

showing improvements at re-test. Accordingly, a reduction of wake time, i.e., the 

duration of time spent awake over the whole recorded time, was found in rats following 

several kinds of cognitive manipulations: after exposure to an enriched environment 

(Van Gool and Mirmiran, 1986), enhanced exploratory behaviour (Huber et al., 2007) 

and a rewarded olfactory discrimination task (Magloire and Cattarelli, 2009). 

Despite this massive body of data in animals, only few human studies have produced 

evidence of experience-dependent changes in sleep duration. Increases in total and/or 

actual sleep time have been found in healthy elderly subjects after word pairs learning 

(Conte et al., 2012), in healthy adults after procedural learning (only in subjects with 

high baseline performance) (Peters et al., 2007), and in sleep-disordered adults, after 

an 8-session forest walking program (Morita et al., 2011).  

In contrast to the widely held assumption that pre-sleep cognitive activity hinders sleep 

propensity (e.g., Higuchi et al., 2005), several studies report reductions in sleep onset 

latency after enhanced cognitive activity. In two studies conducted with the enriched 

environment procedure, more rapid sleep onset was observed after long-term pair-wise 

social interaction in Drosophila males (Lone et al., 2016) and after a behaviourally 

“active” day in humans (Horne and Minard, 1985) Moreover, objective sleep onset 

latency was found to decrease after a four-choice visual motor task in a night sleep 

episode (Kirov et al., 2015). Also, average sleep latency (actigraphically measured) 

was reduced during the week following an 8-week computerized cognitive training 

programme compared to baseline assessment in a group of elderly insomniacs 

(Haimov and Shatil, 2013). 

Only two studies showed increased sleep latency relative to baseline sleep after 

different cognitive manipulations: in one case, a set of cognitive tasks - digit span, 

Stroop test, a recognition task and a symbol substitution task - was administered to 

young adults (Wuyts et al., 2012); in the other study, a group of pre-adolescents was 

exposed for an hour to an interactive car racing computer game (Dworak et al., 2007). 

 

2.3.2. Wake after sleep onset and sleep efficiency 

While no data is available for animals, in human research wake after sleep onset and 

sleep efficiency has been often assessed as measures of global sleep continuity. An 

increase in sleep efficiency, paralleled by a decrease in wake after sleep onset, has 
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been observed in healthy adults after pre-sleep administration of a modified version of 

a serial reaction time task, created in order to induce implicit encoding of a hidden 

sequence (Kirov et al., 2015), and of a prose-learning task (Mango et al., 2016). The 

same results were also obtained in healthy elderly subjects after declarative learning 

(Conte et al., 2012) and in elderly insomniacs after an 8-week computerized cognitive 

training program (Haimov and Shatil, 2013). 

In a study aimed to investigate the effects of different degrees of mental activity on 

subsequent sleep (De Bruin et al., 2002), it was found that the only sleep variable 

affected by the heavy mental workload condition (i.e., participants had to continuously 

perform computerized cognitive tasks involving sustained attention, memory, logical 

thinking, decision making and calculating) was the percentage of wake after sleep 

onset, which was reduced relative to the light mental activity condition (video session). 

In contrast, a decrease in sleep efficiency was found in a group of pre-adolescents 

watching a subjectively exciting movie compared to baseline sleep (Dworak et al., 

2007). 

 

2.3.3. Behavioural awakenings, arousals, state transitions 

Only one animal study has assessed sleep continuity after cognitive manipulation: 

Huber et al. (2007) showed, in rats, that increased exploratory activity results in a 

decrease in the number of brief awakenings. 

Similar reductions in sleep fragmentation, as expressed by decreased frequency of 

awakenings, were found in humans after the administration of a word pairs task (Conte 

et al., 2012), of an implicit learning task (Kirov et al., 2015), of a theatrical monologue 

(Mango et al., 2016). Also, sleep was less fragmented in elderly insomniacs after an 

8-week cognitive training program (Haimov and Shatil, 2013). 

In an interesting recent study, Sergeeva et al. (2017) trained subjects with Periodic 

Limb Movements (PLM) on a procedural (motor sequence) and a declarative (word 

pairs) task. Post-training sleep, compared to baseline, showed a significant reduction 

in the number of arousals and awakenings. Also, this improvement of sleep continuity 

was such that, while the subjects’ baseline sleep quality was significantly worse than 

that of controls, their post-training sleep appeared comparable to that of controls 

(Sergeeva et al., 2017). 

While no data is available for animals, pre-sleep training appears to affect sleep 

stability parameters in human subjects, by reducing the frequency of arousals (Conte 



42 
 

et al., 2010; Mango et al., 2016; Sergeeva et al., 2017) and of state transitions (Conte 

et al., 2012; Mango et al., 2016). Also, it has been reported that pre-sleep cognitive 

training resulted in the reductions of “functional uncertainty periods” (expressing “the 

inability of the Central Nervous System to sustain a stable condition”- Salzarulo et al., 

1997) in young (Mango et al., 2016) and elderly individuals (Conte et al., 2012). 

Contrasting results come from Kirov and co-workers (2015), who showed that an 

implicit learning task induced increased frequency of transitions between sleep states 

compared to baseline sleep. Also, the transition rate was significantly higher in 

subjects who developed an explicit knowledge of the task compared to those who did 

not (Kirov et al., 2015). Interestingly, the authors interpret the increased post-training 

frequency of transitions as a sign of high “inter-stage interaction”, which would 

represent a crucial feature of efficient memory consolidation processes. In contrast, 

other authors (Conte et al., 2012; Mango et al., 2016; Sergeeva et al., 2017), finding 

decreased transition rates after training, propose an opposite interpretation, attributing 

a “stabilizing” effect on sleep states to task-induced memory demands. However, it 

must be noted that the different results could be brought-back to the different 

definitions of stability used in these studies: while Kirov et al.’s data (2015) exclude 

transitions from sleep to wake (i.e., awakenings), the other authors include them 

(Conte et al., 2012; Mango et al., 2016). 

 

2.3.4. Sleep organization: NREM-REM cycles and sleep state sequences 

While at the beginning, most sleep-memory research has focused on single sleep 

components, either REM or NREM sleep amount, at the end of 80’s the group of 

Ambrosini and Giuditta started a series of experiment in rats showing a role of both 

SWS and REM sleep sequences for memory consolidation (Ambrosini and Giuditta, 

2001; Ficca and Salzarulo, 2004). Specifically, in animals, results concerned NREM-

REM sleep sequences (termed by the authors as “synchronous sleep-transitional sleep-

paradoxical sleep”), corresponding, in rats, to human NREM-REM cycles, and their 

changes following cognitive tasks. 

Increases in the number (Ambrosini et al., 1992, 1995) and average duration 

(Ambrosini et al., 1988, 1992) of NREM-REM sleep sequences and of time spent in 

these sequences (Ambrosini et al., 1992, 1995) were reported following two-way 

shuttle avoidance training. These changes emerged both for successful and 

unsuccessful learners (rats attaining or not the learning criterion during the training 
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session) (Ambrosini et al., 1988, 1992) and for “slow learners” (rats with no 

improvement during training but attaining the learning criterion at re-test) (Ambrosini 

et al., 1995) relative to the control group. An increase of time spent in NREM-REM 

sleep sequences was also shown after a spatial habituation task (Montagnese et al., 

1993). Moreover, in Van Gool and Mirmiran’s study (1986), total time spent in 

NREM-REM sleep sequences was found to increase after exposure to an enriched 

environment only in old aged rats compared to baseline sleep. 

Further animal studies from Ambrosini and Giuditta’s group focused on sleep state 

sequences that included phases of transitional sleep (Ambrosini and Giuditta, 2001). 

Compared to baseline sleep, sleep after training a two-way shuttle avoidance displayed 

increased total amount and average duration of NREM and of transitional sleep 

episodes, but only when these were part of “NREM sleep-transitional sleep-REM sleep 

sequences” (Mandile et al., 2000). Instead, time in transitional sleep and number of 

transitional sleep episodes decreased when followed by wake (Mandile et al., 2000). 

Notably, these changes emerged only in “fast learning” rats, i.e., rats attaining the 

learning criterion during the training session, as opposed to rats showing 

improvements only at re-test and to rats showing unchanged performance in either 

session.  

In humans, the organization of sleep in NREM-REM cycles appears to be boosted by 

pre-sleep learning. An early study by Buchegger and Meier-Koll (1988) found an 

increase in time spent in sleep cycles after an 8-week motor learning training. Two 

recent studies from our group have replicated the finding with declarative learning 

paradigms: increases in the number of complete sleep cycles and in total time spent in 

cycles (percentage over actual sleep time) emerged in elderly subjects after word pairs 

learning (Conte et al., 2012) and in a group of adults after learning a theatrical 

monologue (Mango et al., 2016).  

 

2.3.5. NREM sleep 

No data concerning Stage 1 and Stage 2 are to be reported in animals, for whom sleep 

stages are limited to synchronous sleep, corresponding to human SWS, and 

paradoxical sleep (REM) (Comte et al., 2006). Animal studies have consistently shown 

increases in SWS sleep amount after different kinds of cognitive manipulation: 

associative olfactory learning (Magloire and Cattarelli, 2009), intensified exploratory 
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activity (Huber et al., 2007), expositions to enriched environments (Van Gool and 

Mirmiran, 1986) and novel objects (Schiffelholz and Aldenhoff, 2002). 

In two studies using the same learning task (two-way shuttle avoidance), Ambrosini 

and co-workers reported different post-training SWS sleep changes relative to baseline 

according to whether rats attained or not the learning criterion at recall. In Ambrosini 

et al. (1995), increases in SWS sleep duration and in average duration of SWS sleep 

episodes were found only in those rats showing no improvement during training but 

attaining the learning criterion at re-test, whereas no change emerged in untrained rats 

and non-learning rats (trained rats showing no improvements in either session). 

Conversely, in the second study, an increase in average duration of SWS sleep 

episodes after the same task emerged only in unsuccessful rats (showing no 

improvement neither at acquisition nor re-test) (Ambrosini et al., 1988). In contrast, 

decreases in SWS were found in rats after shock avoidance training (Fogel et al., 2009 

- only in rats showing improvements at re-test) compared to baseline sleep.  

In humans, post-training decreases of Stage 1 sleep proportion have been found after 

procedural (Peters et al., 2007, 2008; Kirov et al., 2015) and declarative tasks (Conte 

et al., 2012). These results have been usually interpreted as reflecting an increase of 

time spent in deeper sleep stages or a decrease in transitions to shallower sleep (i.e., 

improvements in sleep depth and stability). 

As for Stage 2 sleep, several human studies have shown increases in its duration after 

cognitive training, both in night sleep episodes (Fogel and Smith, 2006; Peters et al., 

2007; Fogel et al., 2007, 2015) and in naps (Hoedlmoser et al., 2015). It is worthwhile 

noting that these changes emerged only after tasks involving procedural skills: rotor 

pursuit (Peters et al., 2007; Fogel et al., 2007), adapting cycling to an inverse steering 

device (Hoedlmoser et al., 2015), Tower of Hanoi (Fogel et al., 2015), a set of simple 

motor tasks including rotor pursuit, simple tracing, ball-and-cup game, the children’s 

board game ‘Operation’ (Fogel and Smith, 2006). In one study (Peters et al., 2007) 

using the rotor pursuit task, the post-learning increases of Stage 2 sleep, compared to 

the baseline night, emerged only in subjects showing high performance levels at 

acquisition. Interestingly, Fogel et al. (2015) studied the role of different sleep features 

over the time course of skill acquisition by recording sleep in four different conditions: 

a) control sleep (in which sleep was preceded by a simple cognitive task); b) novice 

sleep (in which, before sleep, subjects were administered the Tower of Hanoi task for 

the first time); c) expert sleep (in which sleep was recorded after a week during which 
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subjects gained proficiency on the task through repeated exercise); d) re-test (in which 

sleep followed re-administration of the task a week after the previous condition). Stage 

2 sleep changes appeared only in the re-test condition compared to the other ones. This 

result is in line with Smith et al.’s hypothesis (Smith et al., 2004b) of a role for Stage 

2 sleep in the stabilization and maintenance of existing skills. 

Contrasting results come from two studies showing reductions in Stage 2 sleep 

proportion compared to baseline sleep after a visual motor serial reaction time task in 

adults (Kirov et al., 2015) and a rotor pursuit task in adolescents (Nader et al., 2016). 

Also, a significant decrease of Stage 2 sleep proportion (secondary to the increase in 

SWS) emerged in the “active day” condition in the study by Horne and Minard (1985). 

In humans, increases in the total amount of SWS were found after exposition to an 

enriched environment (Horne and Minard, 1985), following acquisition of complex 

motor skills (Buchegger and Meier-Koll, 1988; Morita et al., 2012), sequential finger 

tapping (Morin et al., 2008), a serial reaction time task (Kirov et al., 2015), a 2-week 

daily program of combined social and physical activity sessions in elderly subjects 

(Naylor et al., 2000) and a rotor pursuit task in adolescents who did not show 

performance improvements at morning re-test (Nader et al., 2016). Moreover, in a 

study aimed to compare post-learning sleep changes in young and older adults, the 

administration of the pursuit rotor task was followed by an increase in SWS duration 

compared to the baseline night only in the older group (Peters et al., 2008). In contrast, 

a decrease in SWS proportion compared to baseline was found in a group of pre-

adolescents exposed to an interactive computer game (car racing) before bedtime 

(Dworak et al., 2007). 

As already mentioned in chapter 1, Slow Wave Activity (SWA, defined by power 

density in the delta frequency band, i.e., .5 to 4 Hz) is traditionally considered the 

electrophysiological marker of sleep need, since it increases as a function of time spent 

awake and decreases during sleep (Borbély and Achermann, 1999). Numerous studies 

have shown that SWA is affected, not only by wake duration, but also by wake 

intensity. Increases of SWA have been reported after intensive exploratory activity in 

rats (Huber et al., 2007) and, as for human subjects, following a complex sport skills 

training (three-ball cascade juggling, Morita et al., 2012) and an intensive training at 

the Tower of Hanoi task (Fogel et al., 2015). In the latter study, the increase in SWA 

emerged both in the novice and re-test conditions compared to control, suggesting an 

involvement of SWA both in initial acquisition of a skill and in its stabilization once 
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expertise is attained (Fogel et al., 2015). Interestingly, it has been shown that SWA 

has a local component, in that post-training sleep changes are selectively observed over 

the cortical areas specifically involved in cognitive processing of the task administered 

before sleep. Taking into account SWA’s purported role in synaptic downscaling 

(Tononi and Cirelli, 2003), a growing literature has led to consider SWA as a marker 

of experience-dependent plasticity. This line of research was initiated by Huber et al. 

(2004), showing selective SWA increases in parietal areas after an implicit learning 

task (rotation adaptation) in human adults. Later on, these data have been replicated 

with different tasks and populations. In rats, it was shown that the administration of 

the single pellet reaching task produced, during post-training NREM sleep, SWA 

increases in the trained (motor) cortex, with smaller or no increase in other cortical 

areas (Hanlon et al., 2009). In addition, training appeared to enhance the expression of 

genes for activity-dependent proteins involved in motor learning and this increase was 

restricted to the same cortical area (Hanlon et al., 2009). In humans, local SWA 

increases in post-training sleep episodes were found after a finger tapping task (Tamaki 

et al., 2013), a spatial navigation task (Moroni et al., 2014), after a 3-week training on 

a visuospatial N-back task (Pugin et al., 2015) and in three other studies (Määttä et al., 

2010; Wilhelm et al., 2014; Li et al., 2017) using the same task as in Huber et al. 

(2004). Interestingly, in Määttä et al.’s study (2010), the local SWA enhancement was 

observed even when the task was performed in the morning rather than at bedtime. 

Also, local SWA increases have been reported in children and adolescents (Wilhelm, 

et al., 2014; Pugin et al., 2015). In particular, in Wilhelm and co-workers’ study 

(2014), comparing three age groups (adults, adolescents and children), a SWA 

enhancement emerged in all groups but its magnitude was significantly higher in 

children: the authors propose that brain maturation processes favour experience-

dependent plasticity. 

In a recent experiment from Li and co-workers (2017), aimed to investigate whether 

local post-training changes in SWA may be due to overnight consolidation or to 

metabolic demand, participants were administered three different tasks on separate 

days: a single rotation task, similar to that used in Huber and co-worker’s study (2004); 

a random rotation task, requiring the same cognitive effort without triggering specific 

memory processes; a no-rotation task, requiring minimal effort and attentional 

resources. Since parietal SWA was increased in both rotation conditions compared to 

the control one and there were no correlations between overnight gains in the single 
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rotation condition and SWA changes, the authors concluded that SWA may be 

modulated by levels of cognitive effort during prior wakefulness rather than just 

consolidation. 

 

2.3.6. REM sleep 

In the beginning, research on the sleep effect focused on the role of REM sleep for 

memory, because of its peculiar characteristics: the desynchronized EEG activity, the 

different aminergic-cholinergic balance in the central nervous system compared to 

NREM sleep, as well as the frequent reports of vivid dreams after awakenings from 

this sleep stage, were often singled out as evidence in favour of the role of REM sleep 

considered the optimal physiological frame for the active consolidation of memory 

traces (Rasch and Born, 2013). Increases in REM sleep amount after intensive training 

sessions and exposure to enriched environments have been consistently reported in 

animals since early studies (for a review see Smith, 1996). In particular, Smith (1985) 

hypothesized that the REM increases selectively appeared in specific time frames of 

post-training sleep, namely “REM windows”. Though limited to animal studies, a few 

results were produced in support of this idea (Smith and Lapp, 1986; Smith and Rose, 

1997; Smith and Wong, 1991). 

Later studies have confirmed this bulk of findings on post-training REM sleep 

increases in rats and mice, using spatial learning (Smith and Rose, 1997), novel object 

exposition (Schiffelholz and Aldenhoff, 2002), environmental (Van Gool and 

Mirmiran, 1986) and social enrichment (Febinger et al., 2014), after active avoidance 

training, conducted through the two-way shuttle avoidance task (Bramham et al., 1994; 

Datta, 2000; Ulloor and Datta, 2005; Fogel et al., 2009; Sanford et al., 2010). Also, 

one study reported that, after a complex operant task, time in REM sleep was greater 

in rats who were able to solve the task compared to those who were not and to the 

untrained control group (Smith and Wong, 1991).  

A few studies have reported different REM sleep changes depending on whether the 

animals were successful in learning the conditioned response (Ambrosini et al., 1988, 

1992; Mandile et al., 2000). For instance, after two-way shuttle avoidance training, a 

reduction in the number of REM sleep episodes compared to baseline sleep emerged 

only in non-learning rats (showing little improvement during training) (Ambrosini et 

al., 1988, 1992) and in slow learning rats (displaying performance improvement only 
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at re-test) (Mandile et al., 2000), as opposed to fast learning rats (attaining the learning 

criterion already in the training session).  

As for human studies, increases of time spent in this sleep stage have been found after 

learning of complex motor skills (Buchegger and Meier-Koll, 1988; Buchegger et al., 

1991), expertise acquisition of complex cognitive procedural learning (Fogel et al., 

2015), Morse code learning (Mandai et al., 1989), prolonged working-memory 

training (Pugin et al., 2015), implicit serial reaction time task (Kirov et al., 2015), a 6-

week foreign language course (De Koninck et al., 1989) and a rotor pursuit task in 

adolescents (Nader et al., 2016). Interestingly, in De Koninck et al. (1989), the REM 

sleep increase emerged only in subjects showing successful language learning at the 

end of the course, while, in an opposite manner, the rotor pursuit task produced REM 

increases only in adolescents showing no performance changes at morning re-test 

(Nader et al., 2016). Only one study (Meier-Koll et al., 1999) detected a decrease in 

REM sleep proportion after a simple virtual maze task (but not a complex maze) 

relative to a control group. 

Finally, task-dependent increases in theta oscillations (4-8 Hz), considered as the 

electrophysiological hallmark of tonic REM sleep (Rasch and Born, 2013), have been 

showed in three studies: in rats after avoidance training in rats (Fogel et al., 2009), 

with greater effect in rats showing successful avoidance learning at retrieval compared 

to unsuccessful rats; in humans, after the administration of word pairs (Fogel et al., 

2007) and a decision-making task (Seeley et al., 2016). 

 

2.3.7. NREM sleep intra-state phasic events: sleep spindles, slow oscillations, sharp-

wave ripples, Cyclic Alternating Pattern 

NREM sleep microstructure has received great attention in the last two decades. In 

particular, the sleep variables usually investigated in the field of sleep-memory 

research are sleep spindles, slow oscillations, sharp wave ripples and Cyclic 

Alternating Pattern (CAP).  

While data from animal studies are sparse, these features have been extensively 

investigated in humans. For instance, only two studies have addressed the effects of 

learning on spindles in animals, finding spindle density, i.e., the frequency of spindle 

events in the time unit (e.g., number/minute), increases relative to baseline sleep in 

rats after an odor-reward association task (Eschenko et al., 2006) and in dogs trained 

to respond to commands in an unfamiliar language (Iotchev et al., 2017). Results on 
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humans are very consistent in pointing to an enhancing effect of cognitive training on 

spindle activity. Spindle density increases have been frequently reported after 

procedural tasks in young adults: rotor pursuit (Fogel and Smith, 2006; Fogel et al., 

2002, 2007; Peters et al., 2007, 2008), finger tapping (Morin et al., 2008; Barakat et 

al., 2011), visuomotor learning (Johnson et al., 2012), Tower of Hanoi (Fogel et al., 

2015). Analogue results have been produced following tasks in the declarative and 

spatial domains: unrelated word pairs (Gais et al., 2002; Schmidt et al., 2006) and 

virtual maze navigation (Meier-Koll et al., 1999). Interestingly, in Schmidt et al. 

(2006), the spindle density increase emerged only in the difficult encoding condition 

(list containing more abstract words) compared to the easy encoding and to the control 

condition. Furthermore, Peters et al. (2008) studied both a sample of young and of 

older adults: the spindle density increase was evident only in the young group. 

A decrease in spindle density was reported in a single study (Ward et al., 2014), after 

administration of a declarative learning task: the decrease emerged both after learning 

neutral and emotional material (independently of emotional valence). Fewer studies 

have assessed spindle duration and amplitude rather than density: spindle duration was 

increased following a finger tapping (Morin et al., 2008) and a mirror tracing task 

(Tamaki et al., 2008); spindle amplitude was enhanced by mirror tracing (Tamaki et 

al., 2008, 2009). Based on their frequency, two types of spindles have been identified: 

slow spindles (usually defined as spindles <13 Hz), which are mainly localized in 

anterior areas of the scalp, and fast spindles (>13 Hz), displaying a posterior 

distribution (Anderer et al., 2001). A few studies using procedural tasks suggest that 

fast spindle density is selectively enhanced by training (Barakat et al., 2011; Tamaki 

et al., 2008, 2009; Fogel et al., 2015). Instead, a selective increase of slow spindle 

density was found in one study using a declarative task (Schmidt et al., 2006), only in 

the difficult encoding condition versus the easy encoding and control ones. Other 

studies have assessed changes in the EEG sigma power band during post-training 

NREM sleep, with the assumption that sigma power reflects spindle activity. Increases 

in sigma power were found after different kinds of learning sessions, again mostly 

involving procedural tasks: texture discrimination (Bang et al., 2014), finger tapping 

(Morin et al., 2008; Tamaki et al., 2013), Tower of Hanoi (Fogel et al., 2015), rotor 

pursuit (Fogel et al., 2007), three ball cascade juggling (Morita et al., 2012). As for 

declarative tasks, two studies using the same task (unrelated word pairs learning) found 

opposite results: while Schmidt et al. (2006) reported a post-training increase of low 
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sigma power (12-14 Hz, corresponding to slow spindle activity), Fogel et al. (2007) 

observed a decrease of the same measure. 

Finally, a number of studies have observed that the changes in spindle measures were 

specifically detected over the areas involved in the pre-sleep task (Fogel et al., 2007; 

Morin et al., 2008; Tamaki et al., 2009, 2013; Johnson et al., 2012; Bang et al., 2014), 

suggesting, as for SWA, that spindle activity may play a major role in the re-processing 

of prior wake cognitive experiences. In line with this idea, an intriguing experiment 

using a simultaneous EEG-fMRI technique (Bergmann et al., 2012) reported that 

learning face-scene associations triggered an increase in spindle-coupled neocortical 

activity, despite the absence of significant changes in sleep measures (including 

spindle variables). In other words, the reactivation during sleep of neocortical and 

hippocampal regions occurred in temporal synchrony with spindle events and was 

tuned by ongoing variations in spindle amplitude. These task-dependent changes were 

topographically specific to the brain areas engaged in pre-sleep learning. 

SWS microstructural features, namely slow oscillations and sharp-wave ripples, have 

lately become the focus of much sleep-memory research due to their purported 

involvement in long-term plastic changes at the cellular level (Diekelmann and Born, 

2010): sharp-wave ripple (SW-R) complexes are thought to accompany neuronal 

reactivation of memories (Mölle et al., 2002) and enhance long-term potentiation 

(Csicsvari et al., 1999); neocortical slow oscillations (SOs), by alternating periods of 

strongly increased neuronal activity (up-states) and periods of neuronal silence (down-

states) (Csercsa et al., 2010), are believed to have a role in orchestrating the transfer 

of information from the hippocampus to the neocortex (Mölle and Born, 2011). 

Experience-dependent changes in SW-R and SO measures have been consistently 

shown in animal and human studies. In rats, an odor-reward association task triggered 

an increase in the density (number/sec), duration and magnitude (microV/sec) of ripple 

events in subsequent SWS, compared to baseline sleep, only in rats showing 

performance improvement during the training session (Eschenko et al., 2008); also, 

ripple density increases have been reported after a 10-day training period at a spatial 

task (Ramadan et al., 2009). A few human studies showed task-dependent 

enhancements of slow oscillation parameters. Increases in the .5-1 Hz power band have 

been reported after complex motor skill learning in healthy adults (Morita et al., 2012) 

and after a finger tapping task in epileptic patients (Moroni et al., 2008). Interestingly, 

in the latter study, this change selectively appeared after the procedural task, while 
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sleep was unaffected by word pairs learning (Moroni et al., 2008). Also, Heib et al. 

(2013) showed that word pairs learning produced an increase of down-state amplitude 

and a trend towards increased up-state amplitude of SOs (only in subjects who showed 

overnight memory improvements).  

Some studies (Mölle et al., 2004, 2009, 2011; Ruch et al., 2012) have specifically 

addressed the interplay between SOs, SW-R complexes and spindle activity, 

suggesting that pre-sleep training strengthens the top-down control of SOs on spindles 

and ripple complexes. Mölle et al. (2009) compared the effect of learning on sleep in 

humans and rats, by using respectively a word pairs task and an odor-reward 

association task. In both samples, prior learning triggered increases in the amplitude 

of the SO up-state and in spindle activity during these up-states; also, ripple activity, 

measured only in the rat sample, displayed an increase that was not synchronized to 

the depolarized up-state (Mölle et al., 2009). The same authors (Mölle et al., 2011) 

reported that post-learning sleep, relative to a non-learning condition, increased the 

occurrence of “trains” of SOs and spindle activity: in the learning condition SOs were 

preceded by enhanced fast spindle activity and followed by enhanced slow spindle 

activity. Similarly, in a study by Ruch et al. (2012), training on a declarative task before 

a nap resulted in a redistribution of sleep spindles from down- to up-states of Stage 2 

SOs and spindle density during the up-states was higher in the experimental nap 

compared to the control nap. Furthermore, a pre-sleep word pairs task was shown to 

produce increased EEG coherence in several frequency bands, with a greater effect in 

the slow-oscillatory, delta and slow spindle bands, and this increase was time-locked 

to the occurrence of slow oscillations (Mölle et al., 2004). The increases in EEG 

coherence are believed to reflect the synchronized activity between cortical neuron 

populations that underlie newly encoded representations (Miltner et al., 1999).  

Finally, only one study reported changes in the CAP in humans: in Ferri and 

colleagues’ work (2008), the slow-wave components of CAP (A1 subtypes) displayed 

a significant increase in the night following a motor learning task. 

 

2.3.8. REM sleep intra-state phasic events: rapid eye movements and pontine waves 

Recent literature on REM sleep microstructure after cognitive manipulations is sparser 

compared to that on NREM sleep. The most frequently used measures are number and 

density (number/time unit) of rapid eye movements (REMs) and the density of pontine 

waves (P-waves), considered as expression of REM sleep phasic activity. In animals, 
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the number and density of REMs have been mainly investigated in the frame of the 

“REM windows hypothesis” (Smith, 1985). For instance, Smith and Lapp (1986) 

found an increased number of REMs in successful learning rats (attaining the learning 

criterion during training), after a two-way shuttle avoidance task: the increase was 

restricted to the period spanning from the ninth to the twelfth hour after the training 

session and it emerged each day in the same time window for the following seven days.  

Data from one human study has also been interpreted in support of the REM windows 

hypothesis (Smith, 1985): Smith and Lapp (1991) reported increased REM density 

following an intensive and prolonged (three months) learning period in college 

students: this enhancement was evident from the third to the fifth night after the day 

of examination. Moreover, REM density increases have been observed in human 

adults following rotor pursuit (Peters et al., 2007), mirror tracing (Fogel et al., 2007) 

and mirror tracing plus Tower of Hanoi tasks (Smith et al., 2004a). 

P-waves (corresponding to Ponto-Geniculate-Occipital waves, PGO waves, in 

humans) are thought to contribute to brain plasticity (Datta, 2000). It is maintained that 

P-waves have a role in enhancing the efficiency of memory processing by reactivating 

the forebrain and cortical areas to reprocess recently stored information (Datta, 2000). 

Increases in P-wave density during REM sleep have been shown in rats following 

training on an active avoidance task and these changes were proportional to the 

improvement in performance at retrieval (Datta, 2000; Ulloor and Datta, 2005).  

 

2.3.9. Subjective sleep quality 

Only three studies investigated the impact of cognitive activity on subjective sleep 

quality. In a sample of healthy elderly individuals, De Almondes et al. (2017) 

compared the effects on cognitive functioning and subjective sleep quality of three 

interventions (six 90-minute sessions): a cognitive training program, a sleep hygiene 

psychoeducation program and a cognitive training plus sleep hygiene psychoeducation 

program. The cognitive training was aimed to promote executive functioning skills 

(planning, attention, working memory, problem solving). All three interventions 

resulted in improved subjective sleep quality, measured through the Pittsburgh Sleep 

Quality Index (PSQI, Buysse et al., 1989) global score, compared to the no-

intervention control group. Specifically, the sleep hygiene program group showed the 

greatest benefits in subjective sleep quality, followed by the cognitive training group, 

while the combined sessions appeared not to provide any additional gain. 
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Benloucif et al. (2004) also studied a sample of older adults. The intervention consisted 

in a 2-week program in which participants were administered daily (either in the 

morning or in the evening) a 90-minute session of combined physical and social 

activity. Subjective sleep quality ratings, measured through the PSQI, improved in 

both conditions (morning and evening sessions), in contrast with objective measures 

(recorded by means of polysomnography and actigraphy) displaying no change. The 

improvement in subjective sleep quality was limited to a sub-group of bad sleepers 

(identified through the PSQI baseline score), while good sleepers showed no benefit 

of training.  

The other study was conducted on a group of sleep-disordered adults (Morita et al., 

2011): after an 8-session forest walking program (administered over 4 months), 

subjects reported greater sleep depth and higher sleep quality compared to baseline 

sleep. 
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Table 1. Post-cognitive training sleep modifications in animal (panel a) and human studies (panel b), divided 

for each sleep variable. 

 

a) Animal studies 

SLEEP VARIABLES INCREASE DECREASE 

Global sleep duration (min) Ganguly-Fitzgerald et al., 2006; Abou-

Ismail et al., 2010; Abou-Ismail and 

Mahboub, 2011; Chi et al., 2014; Donlea 

et al., 2014; Eban-Rothschild and Bloch, 

2015; Lone et al., 2016 

 

Wake Time (absolute duration, %)  Van Gool and Mirmiran, 1986; Huber et 

al., 2007; Magloire and Cattarelli, 2009 

Sleep Onset Latency (min)  Lone et al., 2016 

Slow Wave Sleep 

(absolute duration, mean duration 

of episodes, %) 

Van Gool and Mirmiran, 1986; 

Schiffelholz and Aldenhoff, 2002; Huber 

et al., 2007; Magloire and Cattarelli, 2009 

 

Slow Wave Activity 

(power in delta band) 

Huber et al., 2007; Hanlon et al., 2009  

REM sleep (absolute duration, 

mean duration of episodes, %) 

Van Gool and Mirmiran, 1986; Bramham 

et al., 1994; Smith and Rose, 1997; Datta, 

2000; Schiffelholz and Aldenhoff, 2002; 

Ulloor and Datta, 2005; Febinger et al., 

2014 

 

NREM-REM cycles (number, 

absolute duration, mean duration 

of episode) 

Van Gool and Mirmiran, 1986; 

Montagnese et al., 1993 

 

Awakenings (number)  Huber et al., 2007 

Sleep spindles (density, mean 

duration, amplitude) 

Eschenko et al., 2006; Molle et al., 2009; 

Iotchev et al., 2017 

   

Slow Oscillations (number, length)  Mölle et al., 2009  

Sharp Wave Ripples (density, 

duration, amplitude,) 

Eschenko et al., 2008; Ramadan et al., 

2009; Mölle et al., 2009  

 

Pontine Waves (density) Datta, 2000; Ulloor and Datta, 2005  
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b) Human studies 

SLEEP VARIABLES INCREASE DECREASE 

Sleep duration (total and 

actual sleep time) (min) 

Morita et al., 2011; Conte et al., 2012  

Sleep Onset Latency (min) Dworak et al., 2007; Wuyts et al., 2012 Horne and Minard, 1985; Haimov and 

Shatil, 2013; Kirov et al., 2015 

Stage 1 sleep (absolute 

duration, %) 

 Peters et al., 2007; Peters et al., 2008; 

Morita et al., 2012; Conte et al., 2012; 

Kirov et al., 2015 

Stage 2 sleep (absolute 

duration, %) 

Fogel and Smith, 2006; Fogel et al., 2007; 

Hoedlmoser et al., 2015 

Horne and Minard, 1985; Kirov et al., 

2015; Nader et al., 2016 

Slow Wave Sleep (absolute 

duration, %) 

Horne and Minard, 1985; Buchegger and Meier-

Koll, 1988;Naylor et al., 2000; Moroni et al., 2008; 

Morita et al., 2012; Kirov et al., 2015 

Dworak et al., 20 07 

Slow Wave Activity 

(power in delta band) 

Huber et al., 2004; ; Määttä et al., 2010; Morita et 

al., 2012; Tamaki et al., 2013; Moroni et al., 2014; 

Fogel et al., 2015; Pugin et al., 2015; Li et al., 2017 

 

REM sleep (absolute 

duration, mean duration of 

episodes, %) 

Buchegger and Meier-Koll, 1988; Mandai et al., 

1989; Buchegger et al., 1991; Kirov et al., 2015; 

Pugin et al., 2015 

Meier-Koll et al., 1999 

REM sleep Theta power Fogel et al., 2007; Seeley et al., 2016  

Wake After Sleep Onset 

(%) 

 De Bruin et al., 2002; Conte et al., 2012; 

Haimov and Shatil, 2013; Kirov et al., 

2015; Mango et al., 2016 

Sleep Efficiency (%) Conte et al., 2012; Haimov and Shatil, 2013; Kirov 

et al., 2015; Mango et al., 2016 

 

Awakenings (number, 

frequency, mean duration) 

 Kirov et al., 2015; Haimov and Shatil, 

2013; Sergeeva et al., 2017; Mango et al., 

2016; Conte et al., 2012 

Arousals (number, 

frequency) 

 Conte et al., 2010; Conte et al., 2012; 

Sergeeva et al., 2017 

State transitions (number, 

frequency) 

Kirov et al., 2015 Conte et al., 2012; Mango et al., 2016 

NREM-REM cycles 

(number, duration, %) 

Buchegger and Meier-Koll, 1988; Conte et al., 

2012; Mango et al., 2016 

 

Subjective Sleep Quality Benloucif et al., 2004; Morita et al., 2011; De 

Almondes et al., 2017 

 

Sleep spindles (including 

fast and slow spindles) 

(number, density, mean 

duration, amplitude) 

Meier-Koll et al., 1999; Gais et al., 2002; Fogel et 

al., 2002; Fogel and Smith, 2006; Schmidt et al., 

2006; Peters et al., 2007; Fogel et al., 2007; Morin 

et al., 2008; Tamaki et al., 2008; Tamaki et al., 

2009; Mölle et al., 2009; Barakat et al., 2011; 

Johnson et al., 2012; Fogel et al., 2015 

Ward et al., 2013 

NREM sleep Sigma power Schmidt et al., 2006; Fogel et al., 2007; Morin et 

al., 2008; Morita et al., 2012; Tamaki et al., 2013; 

Bang et al., 2014; Fogel et al., 2015 

 

Slow Oscillations (power, 

number, length, amplitude) 

Moroni et al., 2008; Mölle et al., 2009; Morita et 

al., 2012 

 

A1 subtypes of the Cyclic 

Alternating Pattern 

(number) 

Ferri et al., 2008   

Rapid Eye Movements 

(number, density) 

Smith and Lapp, 1991; Smith et al., 2004a; Peters 

et al., 2007; Fogel et al., 2007 

 

Notes. For greater clarity, results appearing only for specific subgroups of subjects (e.g., improvers vs. non 

improvers, different age subgroup) were excluded. 
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2.4. The effects of waking cognitive manipulations on sleep features: 

the current scenario 

 

Results reported here generally support the hypothesis of a strict interdependence 

between sleep features and wake contents. In fact, it is a quite consistent evidence that 

the experimental manipulations of cognitive activity determine macro- and micro-

structural sleep changes. However, when looking at the nature of these changes (Table 

1), there seem to be very few constant findings.  

In particular, in panel a of Table 1, animal data more consistently shows changes in 

macro-structural features, and specifically in sleep stage proportions: a longer sleep 

period after exposition to social enriched environment in fruit flies, a REM rebound 

and a SWS “local” increase in those brain areas recruited for learning in intensively 

trained rats. 

Compared to animal studies, in humans, the panel of results is more complex, showing 

a puzzling picture with a number of discrepancies. Indeed, comparisons between 

human and animal studies are challenging for the different classification of 

behavioural states and events used (see for example the scoring of “transitional state” 

which in rats and mice is considered as a behavioural state itself, characterized by 

alpha and theta frequencies interspersed with residual slow waves (Ambrosini and 

Giuditta, 2001), while in humans has been often deemed as a marker of sleep 

instability). Importantly, while in rats more attention has been paid to sleep macro-

structure, recent studies in humans focused on more fine-grained analysis of sleep. 

As shown in panel b of Table 1, sleep depth, as expressed by several SWS-related 

measures, spindle activity and sleep continuity and stability indexes (reflected by a 

decrease of fragmenting events, i.e., brief awakenings and arousals) seem to be the 

most impacted features. Interestingly, pre-sleep training seems to improve sleep 

quality even in populations with impaired sleep maintenance, i.e., in elderly 

individuals, whose sleep is habitually disrupted even in good health conditions (Conte 

et al., 2012), in subjects affected by Periodic Leg Movements (Sergeeva et al., 2017) 

and in insomniacs (Haimov and Shatil, 2013). A possible mechanism proposed by the 

authors is that the increased sleep continuity may allow sleep-related memory 

consolidation to proceed with less disruption. This idea is supported by experimental 

manipulations of sleep continuity in rats that impair sleep-dependent memory 

consolidation (Tartar et al., 2006; Rolls et al., 2011).  
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As for the mechanisms sustaining post-training sleep changes, a plausible hypothesis 

is that two concurrent factors would intermingle in determining them. On one side, the 

augmented cognitive load would increase fatigue and the brain’s restorative need, thus 

adding to wake duration in the build-up of process S and deep sleep propensity. At the 

same time, pre-sleep training, by triggering offline memory consolidation and 

reshaping of the material acquired during wake, would trigger increases of those sleep 

variables that are believed to serve sleep-dependent memory processes, i.e., spindle 

activity (Fogel and Smith, 2011), sleep continuity (Tartar et al., 2006; Rolls et al., 

2011) and, again, SWA (Huber et al., 2004; Fogel et al., 2015). Interestingly, spindle 

activity may exert its beneficial effect on memory processes both in a direct manner 

(Gais et al., 2002; Fogel and Smith, 2006; Schmidt et al., 2006) and through its 

protective role for sleep maintenance (Dang-Vu et al., 2010, 2011). 

Finally, since sleep depth and continuity have also been proposed as major 

determinants of the individuals’ perception of a good night’s sleep (Kecklund and 

Akerstedt, 1997; Laffan et al., 2010), it would be interesting to assess whether post-

training objective sleep quality changes are paralleled by modifications in subjective 

sleep quality too. To our knowledge, data on this issue are still very sparse. 

Therefore, a possible therapeutic impact of pre-sleep training should be carefully 

evaluated in all kinds of sleep disturbances with impaired sleep maintenance.  

It is also noteworthy that most studies assessing sleep latency show that it is not 

increased after cognitive tasks (in some studies it appears even reduced), challenging 

the commonplace tenet that cognitive would hinder sleep propensity and produce 

difficulties in falling asleep by provoking higher levels of psychophysiological arousal 

(Higuchi et al., 2005; Wuyts et al., 2012). It could be the case that not all cognitive 

tasks actually increase arousal, and that other environmental (Buechner and Maier, 

2016) and psychological factors (i.e., trait predisposition - Palagini et al., 2017) 

modulate this effect. 

Moreover, the effects of intensive cognitive training on sleep could be substantially 

different depending on whether the task administered is more or less “ecological”. On 

one side, classical neuropsychological tasks are able to selectively prompt the response 

of one specific cognitive function but fail in satisfactorily replicating real-life 

situations and mechanisms; on the other, the “enriched environment” paradigm and 

naturalistic tasks are certainly more promising in terms of ecological validity, but the 

feasibility of their adoption and the reliability of their results are often limited by 
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methodological factors (such as the impossibility to assess the differential contribution 

of many cognitive functions simultaneously called into action). 

 

In conclusion, it seems to us that the articulate panel of findings reported above should 

encourage sleep scientists to further conceive a comprehensive model for experience-

dependent sleep changes, able to predict how and to what extent sleep will be modified 

in response to wake intensity modifications. 

Finally, clinicians will be in charge of further evaluating the beneficial effects of pre-

sleep training for all kinds of sleep disturbances with impaired sleep maintenance and 

of exploring planned training sessions as alternative treatment or complement strategy 

to be introduced in standard behavioural therapies for sleep disordered populations. 
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Chapter 3 - The experimental study: the effect of cognitive training 

on subsequent sleep characteristics 

 

For what said so far, the assessment of objective and subjective sleep quality changes 

after pre-sleep training is an extremely hot topic in sleep research, which may bear 

important applicative implications for clinics and psychosocial medicine, by 

suggesting the use of planned training sessions, in populations affected by disrupted 

sleep, in such a way to obtain desired changes, as we have recently shown in young 

subjects with irregular sleep patterns (Conte et al., 2010) and in healthy elderly 

individuals (Conte et al., 2012). 

My PhD project stems from our scientific interest on how sleep might be modified by 

waking experience, and specifically by intensive cognitive activity. A recent study of 

our own (Arzilli et al., 2018) had already investigated the effects of an ecological 

intensive cognitive training on the characteristics of a daytime nap. Results have 

shown that pre-sleep training improves sleep initiation and maintenance, by reducing 

sleep onset latency, behavioural awakenings, state transitions and wake after sleep 

onset. Following this line of research, we have therefore planned a further study, 

explained in details below, with the objective of extending these encouraging results 

to nighttime sleep, in a sample of subjects with subjective sleep complaints undergoing 

bedtime administration of a complex ecological cognitive task. 

This PhD thesis reports the results from this joint project between the Department of 

Psychology of University of Campania L. Vanvitelli and the NEUROFARBA 

Department of University of Florence. 

 

 

 

3.1. Introduction 

 

The role of wake “content” in sleep regulation has been put forward more than forty 

years ago in the frame of the “homeostasis model of delta sleep” (Feinberg, 1974). 

While the classical sleep regulation model (Borbély, 1982) explains sleep 

characteristics (namely, slow-wave activity) as a function of wake duration, Feinberg 
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focused on waking brain intensity, which in turn depends on the quantity and quality 

of physical and cognitive activity carried out during wake. Experimental evidence 

supporting this idea has been produced in rats, showing SWS enhancements after 

experimental manipulations of cerebral metabolic rate during wake (Campbell and 

Feinberg, 1996a, 1996b; Feinberg and Campbell, 1993). 

Later on, the importance of wake quality and its influence on sleep has received 

renewed attention in a few studies (e.g., Meerlo et al., 1997; Huber et al., 2007) finding 

SWS increases after behavioural manipulations. Similarly, a recent review (Wilckens 

et al., 2018) highlighted that sleep drive accumulates more rapidly with increased brain 

energy consumption, neural activity and energy metabolism. 

As explained in the previous chapter, two relevant lines of research have produced 

substantial data on sleep changes following manipulations of waking cognitive 

activity. The first one is based on enriched environment procedures, with a relevant 

instance being Huber and colleagues’ work (2007) on the finding of SWA 

enhancements after intensified exploratory activity in rats; the second is based on 

studies from the sleep-memory field, consistently showing significant sleep changes 

after bedtime training sessions, allegedly due to the role of sleep in reprocessing the 

previously encoded material.  

However, though earlier studies focused on SWS changes, in line with Feinberg’s 

initial proposal, it is interesting that the repertoire of sleep parameters apparently 

affected by manipulation of cognitive activities is much wider. 

For instance, in humans, increases in macro-structural features, such as sleep stages 

proportion (Fogel and Smith, 2006; Moroni et al., 2008; Mandai et al., 1989), and in 

micro-structural ones, namely spindles activity (Peters et al., 2007, 2008; Fogel et al., 

2007) and REM density (Smith and Lapp, 1991; Smith et al., 2004a), have been 

documented after the administration of different learning tasks in several studies.  

Recently, more attention has been paid to the possibility that pre-sleep training might 

improve sleep quality even in populations with impaired sleep maintenance, i.e., in 

elderly individuals, whose sleep is habitually disrupted even in good health conditions 

(Conte et al., 2012), in subjects affected by Periodic Leg Movements (Sergeeva et al., 

2017) and in insomniacs (Haimov and Shatil, 2013).  

A possible mechanism proposed by those authors was that the increased sleep 

continuity may allow sleep-related memory consolidation to proceed with less 

disruption. This idea is supported by experimental manipulations of sleep continuity 
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in rats that impair sleep-dependent memory consolidation (Tartar et al., 2006; Rolls et 

al., 2011). Interestingly, to our knowledge, very few studies reported subjective sleep 

quality improvements after manipulation of wake intensity, in terms of cognitive (De 

Almondes et al., 2017) and social activities (Benloucif et al., 2004) and emotional 

experience (Morita et al., 2011).  

This panel of results suggests the possibility to further systematically explore, in both 

psychosocial and clinical settings, the possible therapeutic impact of pre-sleep training 

on subsequent sleep characteristics.  

However, in this applied psychology perspective, a wanting point concerns the 

ecological validity of the findings. In fact, the majority of the studies in the field has 

been conducted with “purely” declarative or procedural tasks, which, on one side, 

allow us to study the role of one specific cognitive function but, on the other, fail in 

satisfactorily replicating real-life situations. 

A step forward in this direction has been recently made in a study of our group, aimed 

at investigating the effect of an ecological cognitive task, on the characteristics on a 

subsequent daytime sleep episode, with a special regard to sleep continuity, stability 

and organization (Arzilli et al., 2018). The study was carried out on thirty-eight healthy 

individuals, using a nap model. This choice was motivated by the different architecture 

of nap episodes, which are naturally less efficient (Bianchi et al., 2012; Kanady et al., 

2011) and stable (Dinges, 1992) compared to night sleep, most likely allowing us to 

more easily detect changes in sleep quality measures. In this study, after a habituation 

nap, each subject underwent, in balanced order, a baseline daytime nap (BL) and one 

preceded by an intensive training session (TR) at the sleep laboratory. The cognitive 

training was developed along the lines of a famous word-videogame, which requires 

the simultaneous activation of several cognitive functions, both simple and executive, 

therefore resembling everyday life-learning. The comparison between the two 

conditions (BL and TR) showed that when daytime sleep was preceded by the 

cognitive task, there were improvements in sleep propensity, as expressed by decreases 

in sleep onset latency, and in sleep maintenance. In particular, besides being longer 

and more efficient, the post-training nap was more continuous and stable, as shown by 

the reduced frequency of behavioural awakenings, both brief and long, and of state 

transitions. 
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Despite these encouraging results and their implications for both sleep research and 

medicine, it remains unclear whether similar effects may be extended to sleep episodes 

other than naps. 

Therefore, the experimental study presented here has the objective to broaden these 

results obtained on naps, extending them to a nighttime sleep paradigm. In particular, 

we investigate whether the same cognitive task used in Arzilli and co-workers (2018), 

produces improvements in objective and subjective sleep quality and in some 

electrophysiological features (e.g., sleep spindles), which seem to be related to both 

sleep maintenance (Dang-Vu et al., 2010, 2011) and sleep-related learning processes 

(Fogel and Smith, 2011), in a sample of individuals with sleep complaints. The use of 

a nighttime rather than a nap paradigm allows the investigation of the possible 

influence of training also on organizational sleep measures. Furthermore, in order to 

verify that the observed sleep changes are due to the involvement of learning processes 

rather than other confounding effects (i.e., fatigue, cognitive effort), we compare a 

sleep episode preceded by the cognitive task with one preceded by an active control 

task. A secondary aim is to investigate the effect of sleep on task performance, by 

comparing performance changes after a retention period spent either in sleep or in 

wake. 

 

 

3.2. Materials and method 

 

3.2.1. Participants 

A total of twenty-one subjects (F=15, mean age: 27.5±7.7 years), all reporting habitual 

bad sleep (PSQI mean score: 7.3±2.6; PSQI score range: 5-14), took part in the study. 

Participants were recruited from the general population, via advertisements placed on 

social networks, at the university, in gyms, medical facilities, cafes.  

All participants were screened through a brief ad hoc interview, to collect general 

demographic data and information on medical condition and health habits, and the 

administration of a battery of self-report questionnaires to assess habitual subjective 

sleep quality (through the Pittsburgh Sleep Quality Index-PSQI, Italian version; Curcio 

et al., 2013), circadian preference (through the reduced Morningness Eveningness 

Questionnaire- rMEQ, Italian version; Natale, 1999), anxiety and depression 
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symptoms (by means of the Beck Anxiety Inventory-BAI and the Beck Depression 

Inventory-BDI-II, Italian versions; Sica and Ghisi, 2007). 

Inclusion criteria were the following: a) age 18-45 years; b) absence of any relevant 

somatic or psychiatric illness; c) no sleep apnea or respiratory disorder symptoms; d) 

allegedly being a bad sleeper (PSQI score≥5); e) no history of drug or alcohol abuse; 

f) limited caffeine (no more than 150 mg caffeine per day, corresponding to about three 

cups of espresso or one cup of American coffee) and alcohol (no more than 250 ml per 

day) consumption; g) being unfamiliar with the Ruzzle game (occasional players were 

included only if their score did not exceed 500 in a test trial). 

The local Ethical Committee (Department of Psychology, University of Campania L. 

Vanvitelli) approved the research protocol on 26 July 2017 (acceptance code 14/2017) 

and all participants signed a consent form. 

 

3.2.2. Procedure 

Each subject underwent four nights of sleep recording at home, separated by an 

interval of 3 to 7 days. Specifically, a habituation night was followed by four 

experimental conditions: 1) BL, baseline undisturbed night sleep; 2) post-active 

control (AC), a sleep episode preceded by a non-learning control task; 3) post-training 

(TR), a sleep episode preceded by a complex learning task; 4) wake (W), a condition 

in which the subjects spent the retention period in wake, after the administration of the 

same learning task in TR. The order of AC, TR and W conditions was balanced 

between subjects in a randomized way.  

On experimental days (in the BL, AC and TR conditions), the experimenter arrived at 

the subject’s house approximately one hour before usual bedtime and proceeded to 

electrode montage. While in BL subjects went to bed immediately after that, in AC 

and TR conditions, subjects were administered the corresponding behavioural sessions 

just before bedtime. In the TR condition, re-test was performed 30 minutes after final 

awakening to allow sleep inertia dissipation. 

In the W condition, participants spent awake the retention period (i.e., the time interval 

between training and recall of the complex cognitive task), which corresponded to the 

duration of the subject’s baseline sleep (BL) time. The timing of the training session 

was determined according to subjects’ circadian preference and scheduled in order to 

perform re-test at the chronotype vigilance peak (at 3 pm for morning-types, 5 pm for 
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intermediates, 7 pm for evening-types). During the retention period, subjects were 

requested to avoid falling asleep and engaging in cognitively demanding activities. 

During the three days preceding each session, subjects were requested to complete a 

detailed sleep log to verify the regularity of their sleep-wake habits. Also, they were 

requested to keep daily activities as habitual as possible and to avoid cognitively 

engaging activities (such as reading, playing cards, etc.) on recording days. In order to 

make sure that these conditions were met, we asked subjects to fill a short ad hoc diary 

on daily activities.  

To control for fatigue and sleepiness levels, a Visual Analogue Scale (VAS, 0 cm = 

not tired at all and 10 cm = very tired) for fatigue (Hewlett et al., 2011) and a 

Karolinska Sleepiness Scale (KSS, Åkerstedt and Gillberg, 1990), were administered 

in all sleep conditions immediately before lights off and in the W condition 

immediately before training and recall sessions.  

Also, on each morning following experimental conditions (BL, AC and TR), subjects 

completed the sleep log and the Self-Rating Scale for Sleep and Awakenings Quality 

(SSA), a 20-item scale assessing sleep quality, quality of awakenings and somatic 

complaints (Saletu et al., 1987).  

Polysomnographic recordings were performed following standard techniques 

(Rechtschaffen and Kales, 1968), through a BluNet multichannel recorder (EEG 

channels: F3, F4, C3, C4, O1, O2, referenced against contralateral mastoids A1 and 

A2). 

 

3.2.3. Cognitive tasks 

In the TR and W conditions, the complex training was the same used in Arzilli et al. 

(2018), i.e., a slightly modified version of the interactive word-game Ruzzle. An ad 

hoc software was created in order to have exactly the same stimuli for all subjects. 

Thirty rounds of the game were randomly selected from the original game. These were 

classified in three levels of difficulty (easy, medium, difficult) according to their 

maximum global score (lower maximum scores corresponding to greater difficulty). 

Twenty-two rounds were randomly selected from the three groups and assigned to the 

four phases of the training scheme to obtain a balanced number of easy, medium, and 

difficult rounds (Figure 5). 
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Figure 5. Training session and re-test scheme. The different phases are depicted with the number of 

game rounds composing them. Each box represents a game round and the letter it contains indicates 

the level of difficulty: “E” for easy, “M” for medium, “D” for difficult.  

 

 

In each round of the game, the player has 2 minutes to form (by touching an iPad 

screen) as many words as possible and reach the highest score achievable, with the 16 

letters available in the 4 × 4 grid. The final score of each round depends on the number 

of words identified, on word length, and on the use of the coloured letters (6 per round) 

which allow the player to multiply the value of the letters or of the words containing 

them (Figure 6). In this way, the game triggers the simultaneous activation of several 

cognitive functions (semantic and procedural motor memory, working memory, 

planning, decision making). 
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Figure 6. Example of a game grid. The two panels show an example of how the same word can be 

composed with different coloured letters, whose particular bonuses determine different final scores. In 

Panel A, the score achieved for the word “trust” is lower than the one achieved in Panel B: in fact, in 

Panel A, the score for the letter “R” is doubled (DL = Double Letter), whereas in Panel B the score for 

the letter “S” is tripled (TL = Triple Letter), as well as the whole word’s score (TW = Triple Word). 

 

 

Each training session lasted approximately 40 min and was carried out according to 

the following scheme (Figure 5): 

1) baseline assessment, consisting of 3 consecutive rounds, followed by a 2-min break;  

2) training phase, consisting of 5 trials, each made up of 2 consecutive rounds followed by 

a 1.5-min pause and with a final 5-min break;  

3) post-training assessment, consisting of 6 consecutive rounds, during which subjects are 

instructed to try to achieve the highest global score and the highest possible number of words. 

At re-test upon awakening in TR and after a comparable period spent awake in W, subjects 

were administered another 3 consecutive rounds (re-test). 

The active control task consisted of a tablet-based game similar to the Psychomotor 

Vigilance Task (Dorrian et al., 2005), chosen to resemble the learning task in as many ways 

as possible but without the intentional learning component. Here, subjects were requested to 

touch small balls scrolling down an iPad screen as soon as they change colour (from black 

to red). Participants performed consecutive rounds of the task with equal difficulty (same 

speed of the balls appearing and scrolling down the screen). 

For AC, TR and W, task duration was approximately 40 minutes; in the same way, the 

number of sessions, their timing and duration, were comparable among post-training 

conditions. 
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The “f.lux” app filter (http://stereopsis.com/flux/, 2012) was used on the iPad screen in order 

to reduce short wavelength lights, which may increase alertness at bedtime and delay sleep 

initiation (Cajochen et al., 2005; Vandewalle et al., 2009). 

 

3.2.4. Sleep measures 

Sleep recordings were visually scored according to standard criteria (Iber et al., 2007) by an 

expert technician, blind to the study conditions. To verify scoring reliability, 10 randomly 

selected sleep recordings were also scored by another technician. Inter-rater agreement was 

91.1%. Points of disagreement were discussed and resolved by mutual agreement between 

raters. 

Classical sleep variables considered in the study were: Time In Bed (TIB, i.e., total amount 

of time, in minutes, from lights off to final awakening); Total Sleep Time (TST, i.e., total 

amount of time in minutes from the first appearance of Stage 1 sleep to final awakening), 

Actual Sleep Time (AST, i.e., total time spent in sleep states, expressed in minutes), Sleep 

Onset Latency (SOL), total amount of time between lights off and the first appearance of 

Stage 1 sleep (minutes); Sleep Efficiency (SE, i.e., percentage of AST over Time in Bed), 

sleep stage proportions, percentage of Wake After Sleep Onset (WASO) over TST.  

 

Objective sleep quality was also addressed through an additional set of variables concerning 

sleep continuity, stability and organization. As for sleep continuity: a) number of total 

awakenings per hour of AST; b) number of brief (<2 min) awakenings per hour of AST; c) 

number of long (≥2 min) awakenings per hour of AST; d) number of awakenings from Stage 

1, Stage 2, SWS, REM sleep, per minute of that stage; e) average duration of awakenings. 

Concerning sleep stability: a) number of arousals per hour of AST (arousals are defined as 

all transitions to shallower NREM sleep stages and from REM sleep to Stage 1; b) number 

of arousals from Stage 2, SWS, REM sleep, per minute of that stage; c) number of “state 

transitions” (defined as all transitions from one state to another) per hour of TST; d) number 

of “functional uncertainty periods” (FU periods), defined as periods in which a minimum of 

three state transitions follow one another with no longer than 1 min and a half intervals, per 

hour of TST; e) mean duration of FU periods; f) percentage of total time spent in FU (TFU) 

over TST.  

Finally, with respect to sleep organization: a) number of complete sleep cycles, defined as 

sequences of NREM and REM sleep (each lasting at least 10 min), not interrupted by periods 
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of wake longer than 2 min; b) percentage of TCT, i.e., total time spent in cycles, over TST; 

c) cycle average duration. 

 

Subjective sleep measures were the scores at the Self-Rating Scale for Sleep and 

Awakenings Quality (SSA, Saletu et al., 1987). The SSA yields three sub-scores (Sleep 

Quality, Awakening Quality and Somatic Complaints) as well as a global score (lower values 

corresponding to higher perceived quality).  

 

Finally, electrophysiological variables included: spectral power in the different frequency 

bands, spindle density (n/Stage 2 minutes) and the microarousal index (n/AST minutes).  

 

3.2.5. Performance measures 

Performance at the Ruzzle task was assessed by means of two measures: a) average global 

score percentage (R-SCORE%), i.e., the percentage of the score achieved over the maximum 

global score achievable, and b) average words percentage (R-WORDS%), i.e., the 

percentage of detected words over the total available words. 

 

3.2.6. EEG automatic analyses  

All EEG automatic analyses were performed through the Polysmith software package 

(Nihon Kohden Polysmith version 9.0). 

Power spectral analysis was carried using the Fast Fourier Transform (FFT) technique on all 

recorded artifact-free epochs of each experimental night, from frontal (F3, F4) and central 

(C3, C4) electroencephalography derivations. Power spectra were computed for 30-second 

epochs with no overlap. The spectra, expressed in absolute power (μV2), were then divided 

into five frequency bands: delta (.5-4 Hz), theta (4-8 Hz), alpha (8-11 Hz), sigma (11-16 

Hz), beta (16-32 Hz). Artifacts, including extreme REMs and muscular activity, were 

visually removed from the EEG. Other EEG segments epochs that may have contained 

artifacts were detected using the “High Frequency Artefact” report available in the Polysmith 

Package, and then removed. 

Sleep spindles were automatically detected from the central derivation and confirmed 

visually. In addition, we distinguished between slow spindle (11-13 Hz) and fast spindle 

frequency (13-16 Hz). The density of total, slow and fast spindles was calculated 

respectively as the number of total, slow and fast spindles identified in Stage 2 sleep per 

minute of that stage. 
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Finally, an automatic detection of microarousals was also performed. A microarousal is 

defined as an abrupt change in EEG frequency, including theta, alpha and/or frequencies 

greater than 16 Hz (but not spindles), lasting from 3 to 14 seconds, according to the Sleep 

Disorders Atlas Task Force’ criteria (Bonnet et al., 1992), and the microarousal index is 

calculated as the number of microarousals per hour of AST. 

 

3.2.7. Statistical analysis 

Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS 

version 16.0). Sleep measures in the three conditions (BL, AC, TR) were compared by means 

of a repeated measures one-way ANOVA. Due to non-normal distribution of SSA variables, 

nonparametric Friedman’s repeated measures ANOVA was carried out to assess changes in 

subjective sleep quality measures between conditions. 

A repeated measures one-way ANOVA was also conducted on pre-sleep KSS and VAS 

scores in the three conditions in order to control for sleepiness and fatigue levels. 

Pairwise comparisons were performed with the Least Significant Difference (LSD) 

correction. 

Finally, for cognitive performance, paired Student’s t-test was performed to assess 

differences in performance between post-training assessment and re-test in both conditions. 

We also used paired t-test to compare performance changes (scores at re-test over post-

training assessment*100) at TR compared to the W condition. 

Pearson’s analysis of correlation was carried to assess the association between TR sleep 

parameters (% over BL sleep parameters) and morning recall scores (% over post-training 

assessment). 

Significance was set at p.05. 

 

 

 

3.3. Results 

 

Three subjects had to be excluded from analyses due to unexpectedly good sleep in BL, 

with sleep efficiency exceeding 96% and very low frequency of fragmenting events. 

Another subject was excluded for EEG missing data, due to technical problems during data 

collection. Thus, the final sample for data analysis included seventeen participants (F=12, 

mean age: 26.9±5.8 years). 
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3.3.1. Quantitative sleep variables 

Classical quantitative sleep variables did not display changes between conditions (Table 2) 

except for Stage 1 %, which was reduced in TR relative to BL (p=.014) and to AC (p=.047). 

 

 

Table 2. Quantitative sleep variables (Mean ± SD) in the Baseline (BL), active control (AC) and post-training 

(TR) conditions. 

 BL AC TR Fischer 

F(2,32) 

p-value Pairwise 

comparisons 

Time in Bed (min) 461.62±69.62 455.88±70.64 460.91±49.26 .13 ns  

Total Sleep Time (min) 450.00±67.54 440.00±59.82 447.18±40.91 .37 ns  

Actual Sleep Time (min) 433.38±68.75 418.35±70.37 430.82±41.40 1.05 ns  

Sleep latency (min) 11.59±11.81 15.85±21.10 13.79±18.70 1.49 ns  

Stage 1 % 10.55±3.68 9.88±2.92 8.55±2.76 4.39 .021 BL>TR** 

AC>TR* 

Stage 2 % 47.84±7.46 47.61±5.63 47.01±5.61 .22 ns  

SWS % 20.27±5.61 20.84±7.16 21.28±5.09 .31 ns  

REM % 21.35±6.08 21.67±5.07 23.16±4.33 1.23 ns  

WASO % 3.90±2.33 5.12±7.07 3.63±3.57 1.30 ns  

Sleep Efficiency 93.79±3.64 91.78±7.22 93.67±4.66 3.01 ns  

Notes. Data are presented as Mean±Standard Deviation. Significant p-values are in bold.  

BL: baseline sleep; AC: post-active control sleep; TR: post-training sleep; REM: Rapid Eye Movement Sleep; 

WASO: Wake After Sleep Onset. **: p ≤.01; *: p≤ .05. 

 

 

3.3.2. Sleep continuity 

Significant differences between conditions emerged both for total (BL=2.90±1.14, 

AC=2.30±1.16, TR=2.17±.75, F2,32=4.90, p=.014) and brief awakenings frequency 

(BL=2.74±1.08, AC=2.05±1.07, TR=2.03±.70, F2,32=5.89, p=.007), with a reduction, 

compared to BL, both in AC (total awakenings frequency: p=.046, brief awakenings 

frequency: p=.019) and in TR (total awakenings frequency: p=.003, brief awakenings 

frequency: p=.003). Long awakenings frequency showed a trend to a significant difference 

between conditions as well (BL=.16±.14, AC=.25±.30, TR=.14±.13, F2,32=3.05, p=.078), 

with a reduction in TR compared to AC (p=.060). Instead, awakenings average duration 

(minutes) displayed no change (BL=.84±.30, AC=1.55±2.47, TR=1.05±.95, F2,32=1.715, 

ns). These comparisons are summarized in Figure 7. 
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Figure 7. Frequency of total, brief and long behavioural awakenings in the three experimental conditions.  
BL: baseline sleep; AC: post-active control sleep; TR: post-training sleep; AST: Actual Sleep Time.  

*: significant differences relative to BL (p<.05). Error bars represent standard deviation. 

 

 

Table 3 shows the distribution of fragmenting events in the different sleep stages. Only 

awakenings from REM sleep displayed a significant difference between conditions 

(BL>TR, p=.016; AC>TR, p=.072). 

 

 

Table 3. Sleep fragmentation and instability in different sleep stages. 

 BL AC TR Fischer 

F(2,32) 

p-value Pairwise 

comparisons 

AWAKENINGS FREQUENCY 

from Stage 1 .131±.069 .087±.061 .103±.046 2.35 ns  

from Stage 2 .046±.027 .035±.015 .037±.020 2.52 ns  

from SWS .026±.017 .033±.029 .020±.012 2.42 ns  

from REM .042±.028 .031±.022 .022±.012 4.77 .015 BL>TR* 

AROUSALS FREQUENCY 

Stage 2 to Stage 1 .112±.049 .106±.033 .089±.036 3.09 .059 BL>TR* 

SWS to Stage 2 .263±.128 .207±.077 .171±.077 3.70 .036 BL>TR* 

SWS to Stage 1 .008±.012 .006±.009 .004±.009 .48 ns  

REM to Stage 1 .149±.077 .147±.039 .131±.050 .67 ns  

Notes. Data are presented as Mean±Standard Deviation. Significant p-values are in bold. Awakenings and 

arousals from a certain stage are calculated as frequencies over the total time spent in that stage (minutes). 

BL: baseline sleep; AC: post-active control sleep; TR: post-training sleep; REM: Rapid Eye Movement Sleep. 

*: p≤.05. 
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3.3.3. Sleep stability 

With the only exception of the average duration of FU periods (BL=4.73±.44, 

AC=4.73±.71, TR=4.55±.56, F2,32=.787, ns), all sleep stability measures displayed 

significant effects of condition: frequency of arousals (BL=8.14±1.78, AC=7.47±1.52, 

TR=6.48±1.79, F2,32=6.25, p=.005, Figure 8a), state transitions (BL=24.10±4.98, 

AC=21.27±4.83, TR=19.20±4.09, F2,32=10.16, p<.001, Figure 8b), FU periods 

(BL=2.38±.71, AC=1.76±.71, TR=1.49±.63, F2,32=14.23, p<.001, Figure 8c); TFU% 

(BL=18.73±5.58, AC=14.02±5.79, TR=11.50±5.27, F2,32=15.33, p<.001, Figure 8d). Post-

hoc pairwise comparisons revealed the following pattern: arousal frequency was reduced 

in TR relative to both BL (p=.007) and AC (p=.05); state transitions and FU periods 

frequency were reduced, relative to BL, in TR (respectively, p<.0001 and p<.0001) and in 

AC (respectively, p=.011 and p<.0001); TFU% also decreased, as compared to BL, in TR 

(p<.0001) and AC (p=.001).  

Automatically detected microarousal index showed a significant difference between 

conditions (BL=7.22±1.80, AC=7.58±1.66, TR=6.22±2.04, F2,32=3.63, p=.050), with a 

reduction in TR compared to both BL (p=.030) and AC (p=.050) (Figure 8a). 
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Figure 8. Sleep stability in the three experimental conditions. a) frequency of arousals and 

microarousals over Actual Sleep Time (AST). b) frequency of state transitions over Total Sleep Time 

(TST). c) frequency of functional uncertainty periods (FU) over TST. d) Percentage of time spent in FU 

periods over TST. BL: baseline sleep; AC: post-active control sleep; TR: post-training sleep.  

*: significant differences relative to BL (p<.05); #: significant differences relative to AC (p<.05). Error 

bars represent standard deviation. 
 

 

Table 3 shows arousal frequency from different sleep stages. Those from Stage 2 to 

Stage 1 and from SWS to Stage 2 showed a significant reduction in TR compared to 

BL (respectively, p=.040 and p=.033). 

 

3.3.4. Sleep organization 

Number of cycles and TCT% showed significant differences between conditions 

(respectively, BL=.71±.99, AC=.65±.79, TR=1.47±1.33, F2,32=4.51, p=.019 and 

BL=11.61±17.09, AC=9.87±11.46, TR=25.07±20.81, F2,32=4.77, p=.015), with an 

increase of both variables in TR compared to BL (respectively, p=.043 and p=.050) and to 

AC (respectively, p=.008 and p=.005). We summarized these comparisons in Figure 9. 

No change emerged, instead, for cycles average duration (BL=30.56±38.52, 

AC=33.34±38.27, TR=58.06±43.22, F2,32=2.41, ns). 
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Figure 9. Sleep organization in the three experimental conditions. a) number of NREM-REM sleep cycles; 

b) percentage of time spent in cycles over TST.  

*: significant differences relative to BL (p<.05); #: significant differences relative to AC (p<.05). Error bars 

represent standard deviation. 

 

 

3.3.5. EEG power 

Spectral power comparisons from C4, C3, F4 and F3 derivations for all EEG power bands 

across conditions are displayed in Table 4. 
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Table 4. EEG power bands (delta, theta, alpha, sigma, beta) from central (C3 and C4 electrodes) and frontal 

(F3 and F4 electrodes) derivations in the three conditions. 
  BL AC TR Fischer 

F(2,32) p-value 
Pairwise 

comparisons 

C
4

 

delta 242.72±134.06 254.54±156.53 210.77±106.56 .848 ns  

theta 32.53±23.68 38.13±53.29 29.25±16.82 .335 ns  

alpha 10.84±7.03 11.45±9.86 11.10±8.95 .53 ns  

sigma 4.36±1.89 4.28±2.66 4.05±1.91 .123 ns  

beta 2.23±1.51 2.59±3.40 1.80±.96 .480 ns  

C
3

 

delta 205.48±96.52 289.32±203.62 210.18±94.37 2.466 ns  

theta 27.43±15.97 42.04±60.54 30.11±16.96 .795 ns  

alpha 9.35±5.90 13.13±13.33 11.31±9.34 1.075 ns  

sigma 3.66±1.67 4.65± 3.43 4.12±2.03 .770 ns  

beta 1.69±.62 2.84±4.37 1.90±.83 .847 ns  

F
4

 

delta 328.17±209.37 328.40±178.67 328.12±175.96 .01 ns  

theta 24.07±19.14 23.50±14.90 25.13±15.57 .33 ns  

alpha 10.28±9.13 11.70±9.62 12.08±10.06 2.23 ns  

sigma 3.66±1.98 3.81±1.96 4.15±2.06 .55 ns  

beta 1.72±.70 1.80±.80 1.91±.81 .82 ns  

F
3

 

delta 301.48±156.07 354.85±177.90 377.56±209.42 3.619 .040 BL<TR* 

theta 23.00± 14.69 24.68±16.74 27.28±19.05 3.359 .049 BL<TR* 

alpha 10.48±8.67 11.73±10.07 13.43±13.15 3.719 .037 BL<TR* 

sigma 3.66±1.85 4.03±1.74 4.31±2.10 2.941 .069 BL<TR* 

beta 1.70±.77 1.81±.64 1.94±.76 2.762 .080 BL<TR* 

Notes. Data are presented as Mean±Standard Deviation. BL: baseline sleep; AC: post-active control sleep; 

TR: post-training sleep. Bold indicates significant p-values. *: p≤.05. 
 

 

3.3.6. Spindle density 

No differences between conditions were found for any spindle measures: total 

(BL=1.69±1.42, AC=1.67±1.32, TR=1.83±1.26, F2,32=.41, ns), fast (BL=1.40±1.33, 

AC=1.35±1.23, TR=1.31±1.14, F2,32=.08, ns) and slow spindle density (BL=.47±.48, 

AC=.46±.42, TR=.50±.47, F2,32=.16, ns). 

 

3.3.7. Subjective sleep quality 

In the SSA, a significant difference between conditions was observed for the global score 

(BL=17.95±7.61, AC=16.88±5.41, TR=15.221±6.04, χ2
2,17=9.13, p=.010) with a 

significant reduction in TR relative to BL (p=.028).  
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Focusing on sub-scales, there was a significant difference for the Awakening Quality sub-

score (BL=9.76±5.21, AC=9.35±3.46, TR=7.71±3.14, χ2
2,17=12.79, p=.002), with a 

reduction in TR relative to both BL (p=.011) and AC (p=.011). 

Instead, no differences emerged for the Sleep Quality (BL=7.06±4.34, AC=6.65±3.98, 

TR=6.81±4.39, χ2
2,17=.060, ns) and the Somatic Complaints sub-scores (BL=1.13±1.58, 

AC=.88±1.41, TR=.71±1.21, χ2
2,17=2.12, ns). 

 

3.3.8. Sleepiness 

No significant differences in sleepiness levels were found between conditions 

(BL=6.25±1.15, AC=6.59±.94, TR=6.82±.81, F2,32=2.39, ns). 

 

3.3.9. Fatigue 

A significant effect of condition emerged for fatigue (BL=6.12±1.67, AC=6.57±1.87, 

TR=7.01±1.31, F2,32=4.96, p=.013), accounted for by the higher levels at TR relative to BL 

(p=.001).  

 

3.3.10. Cognitive performance 

Two subjects were excluded from analysis due to extreme performance scores. Therefore, 

performance analyses have been conducted on fifteen participants (F=12, mean age: 

27.3±6.1 years). 

Significant overnight performance changes from post-training to re-test assessments at TR 

were found for R-SCORE% (post-training assessment: 4.14±1.81 vs. re-test: 5.83±2.52, 

Student’s t14=-7.71, p<.001) but not for R-WORDS% (post-training assessment: 8.06±2.99 

vs. re-test: 7.78±3.09, Student’s t14=-1.44, ns) (see Figure 10a). Instead, as shown in Figure 

10b, the waking retention period (W) was followed by an improvement in both R-

WORDS% (post-training assessment: 7.38±2.02 vs. re-test: 8.44±2.35, Student’s t14=-

3.795, p=.002) and R-SCORE% (post-training assessment: 4.02±1.30 vs. re-test: 

4.52±1.57, Student’s t14=-2.272, p=.039). 
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Figure 10. Changes in R-WORDS% and R-SCORE% from post-training assessment to re-test in the TR 

(panel a) and W (panel b) conditions.  

***: p≤.001; **: p≤.01; *: p≤.05. Error bars represent standard deviation. 

 

 

The comparison of over-time (W condition) and overnight (TR condition) scores changes 

revealed a significant difference for both performance measures, albeit in an opposite 

direction: while the change in R-WORDS% was greater in W (TR=97.35±12.33 vs. 

W=115.25±16.09, Student’s t14=-2.96, p=.01), R-SCORE% displayed a larger 

improvement in TR (TR=141.43±15 vs. W=112.85±22.51, Student’s t14=5.38, p<.001) 

(see Figure 11). 

 

 

 
Figure 11. Changes in R-WORDS% and R-SCORE% (re-test scores/post-training assessment scores*100) in 

TR and W.  

***: p≤.001; **: p≤.01. Error bars represent standard deviation. 
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To further explore the relationship between R-WORDS% change and R-SCORE% change 

in the two conditions, we ran Pearson’s correlational analysis between the two measures, 

separately for TR and W. Interestingly, while in the W condition the improvement in R-

WORDS% was positively associated with the improvement in R-SCORE% (Pearson’s 

r=.85, p<.001), in TR this association was not observed (Pearson’s r=.01, ns, Figure 12). 

Also, the slopes of the correlations in the TR and W conditions were compared using the 

Fisher r-to-z transformation, showing a significant difference between the two regression 

slopes (Z=-3.06, p=.002). 

 

 

 

 
Figure 12. Correlations between changes in R-WORDS% and R-SCORE% (re-test scores/post-training 

assessment scores*100) for the TR and W conditions. 

 

 

3.3.11. Sleep-memory correlation 

R-WORDS% displayed no significant correlation with any post-training sleep measure. 

Instead, a significant negative correlation and a trend towards a significant negative 

association between overnight improvement in R-SCORE% and TR sleep variables 

(differences over BL) emerged respectively for total (Pearson’s r=-.46, p=.05) and brief 

awakenings frequency (Pearson’s r=-.43, p=.07) (see Figure 13). 
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Figure 13. Correlations of overnight improvement in R-SCORE% (re-test scores/post-training assessment 

scores*100) with the decrease in total awakenings frequency (% over BL) (Panel a), and brief awakenings 

frequency (% over BL) (Panel b). 

 

 

 

3.4. Discussion 

 

Our study clearly supports the idea that the quality of waking, namely an intensive 

cognitive activity performed before sleep, significantly affects subsequent sleep features. 

In the wake of previous studies showing remarkable post-training sleep changes (e.g., Gais 

et al., 2002; Morin et al. 2008, Conte et al., 2012; Haimov and Shatil, 2013), our line of 

research is focusing on the effect of a more ecological type of learning, i.e., a complex 

cognitive task that simultaneously requires the activation of multiple memory systems, thus 

resembling real-life learning. 

Encouraging results were first obtained in a recent work of ours (Arzilli et al., 2018), 

showing post-training sleep changes in objective sleep quality in a sample of healthy young 

individuals. Here, we have explored whether similar results could be replicated using a 

nighttime paradigm in a sample of individuals with reported bad sleep quality. 

 

First of all, we did not find changes in sleep states proportions or in other classical sleep 

quantitative measures, with the only exception of a decrease of Stage 1 sleep in TR 

compared to both BL and AC conditions. Interestingly, our analysis of the temporal 

distribution of fragmenting events shows that the higher post-training sleep stability relies 

mostly on the reduction of arousals from SWS to Stage 2, suggesting that training exerts 

a stabilizing effect on deep sleep, though leaving its overnight proportion unaffected. 
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In line with the findings of Arzilli et al. (2018), our main result is the re-compacting effect 

determined by pre-sleep training on objective sleep quality: post-training sleep episodes 

were more consolidated than baseline sleep, i.e., with less brief awakenings, arousals and 

microarousals, and sleep state transitions.  

Furthermore, the analysis of the temporal distribution of fragmenting events shows that 

improved sleep continuity is achieved mainly through the reduction of awakenings from 

REM sleep.  

In contrast with our previous work (Arzilli et al., 2018), the improvement in sleep 

continuity and stability is not paralleled by a visible decrease of the grosser measures 

concerning sleep continuity, i.e., WASO and sleep efficiency. This apparent inconsistency 

may be linked to the fact that, although we have recruited a sample of bad sleepers, their 

baseline sleep episodes surprisingly show a high sleep efficiency (over 93%) and low 

WASO (less than 4%), possibly determining a ceiling effect.  

One may argue that judging one’s own sleep as bad is sometimes observed in absence of 

specific objective signs of poor sleep (Baker et al., 1999; McCrae et al., 2005); in fact, 

subjective sleep perception is a very complex phenomenon, modulated by both individual 

variables, such as personal emotional experience in relation to disturbed sleep and beliefs 

on what the characteristics of a “good sleep” should be (e.g., how much sleep is enough 

for efficient diurnal functioning) (Giganti et al., 2016). However, another possible 

explanation is that those quantitative measures classically used to assess sleep quality 

(namely sleep efficiency and WASO) may be unable to capture the temporal and dynamic 

distribution of overnight disturbing events (Norman et al., 2006; Kishi et al., 2017). For 

these reasons, in our previous work we have extended the assessment of sleep continuity 

to include the frequency and mean duration of brief and long awakenings (Conte et al., 

2012, 2014). The same may be true for sleep stability, as assessed through the frequency 

of arousals and state transitions, which have been recently suggested as a marker of 

disturbed sleep (Swihart et al., 2008; Kishi et al., 2010; Laffan et al., 2010; Djonlagic et 

al., 2012; Conte et al., 2014).  

Further support to this idea comes from our results on subjective sleep ratings. Better 

objective sleep quality was paralleled by an improvement in overall subjective perception, 

a result accounted for by the increase in the Awakening Quality sub-score at TR compared 

to both AC and BL. It might be the case that the observed changes in the frequency of short 

fragmenting and disrupting events in post-training sleep may not be able to affect the 
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overall subjective perception of having slept better, while it does influence how subjects 

feel in the morning. In other words, the perception of global sleep quality may at least 

partly rely on awareness of night awakenings, which may in turn depend on their duration. 

If this is the case, since long awakenings (≥2 min) and WASO% were not impacted by 

training, subjects would not retrospectively judge better their global sleep episode; 

however, the reduction of micro-fragmentation would still be enough to determine the 

perception of increased refreshment at awakening.  

 

Interesting results arise also from our spectral power analysis. Post-training sleep showed 

an increase of all EEG frequency bands in the left frontal lobe. As for the increase of delta 

and the trend to increase of sigma, the result is in line with several previous data on local 

learning-dependent increases in SWA (Huber et al., 2004; Määttä et al., 2010; Wilhelm et 

al., 2014; Li et al., 2017; Pugin et al., 2015) and sigma power (Fogel et al., 2007; Morin et 

al., 2008; Tamaki et al., 2013; Bang et al., 2014) observed over the areas involved in the 

pre-sleep task. Though our task was deliberately designed to be multi-componential, the 

left lateralization of the observed changes may be explained by its predominantly verbal 

rather than spatial nature. Also, the activation of executive functions required by the task 

is consistent with the changes selectively involving a frontal derivation. The sparse 

available data on post-learning changes in the theta, alpha and beta bands are in line with 

the hypothesis that the changes observed in our study may be learning-dependent. Theta 

activity has been shown to be enhanced after training at a verbal declarative task (Fogel et 

al., 2007) and at a decision-making task (Seeley et al., 2016); also, in the latter study, it 

was correlated to performance improvement. An increase in fast frequencies (beta and 

alpha bands) has also been reported after a verbal declarative training (Schmidt et al., 

2006); moreover, it has been related to gaining insight into hidden rules at a number 

reduction task (Yordanova et al., 2010) and to motor sequence learning (Morin et al., 2008). 

 

To this regard, a somewhat surprising result is the absence of differences between 

conditions in spindle density, either in the slow or fast frequency range. This is at variance 

with evidence suggesting that spindles play two functional and possibly related roles: 

protecting overnight sleep stability and continuity through the inhibition of external 

sensory processing (Cote et al., 2000; Dang-Vu et al., 2010, 2011), and enhancing sleep-

dependent memory processes (for a review see Fogel and Smith, 2011). Therefore, we 

expected that changes in sleep stability and continuity would parallel those in spindle 
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density. The lack of post-training spindle changes could be explained in two ways: a) sleep 

stability and continuity improvements could primarily depend on other factors, more 

relevant than the protective role of spindles on sleep maintenance; b) from a 

methodological point of view, the distinction between slow and fast spindles appears 

complicated both for the diversity of spectral definitions used in previous works, and for 

individual differences in slow and fast sigma peak frequencies (Cox et al., 2017). In fact, 

the density of sleep spindles is very consistent in individuals, in that they have been 

considered as “electrophysiological fingerprint” (De Gennaro et al., 2005), which in turn 

is associated with individual learning abilities (Fogel and Smith, 2011). It may be 

speculated that the higher standard deviation in our spindle density results may covert 

significant changes between conditions. Novel approaches targeting subject-specific 

spindle frequencies, to determine individualized slow and fast sigma frequencies, are 

needed in order to understand the physiology and functional role of sleep spindles (Cox et 

al., 2017). In addition, it must be noted that data on post-training spindle increases are 

mostly based on studies using “pure” procedural (e.g., Fogel and Smith, 2006; Fogel et al., 

2007; Morin et al., 2008; Barakat et al., 2011) or, more seldom, declarative tasks (Gais et 

al., 2002; Schmidt et al., 2006). The multi-componential nature of our task, in which 

semantic and motor memory play a minor part in determining performance, may mask 

possible effects on spindles linked to these specific memory processes. 

 

Surprisingly, improvements in some sleep continuity and stability measures over baseline 

sleep were observed in the active control condition as well. In other words, it seems that 

the active control task, albeit to a lesser extent, is sufficient to produce changes in objective 

sleep quality. It may be speculated that additional factors (other than sleep-dependent 

memory processes) triggered by the task are responsible for the observed reductions of 

behavioural awakenings frequency and that of state transitions. In line with what proposed 

by Li et al. (2017), a plausible interpretation may be that sleep features are more generally 

modulated by metabolic demand, dependent on the activation of intensive cognitive 

processes, rather than specifically by the triggering of memory consolidation. In sum, we 

may hypothesize that the changes observed in the active control condition are the effect of 

a global use-dependent recovery phenomenon, while those observed in post-training sleep 

result from the latter in addition to the activation of specific learning-related processes. In 

other words, the magnitude of the effects of cognitive activity on subsequent sleep may be 

modulated by task demands both in terms of amount of cognitive resources required and 
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of memory processes activated. Future studies using dose-response models could address 

the issue of “how much” cognitive activity (with or without learning demands) is necessary 

to trigger sleep changes, in order to quantify the contribution of wake intensity in sleep 

regulation. 

 

From a theoretical standpoint, the occurrence of significant negative correlations between 

recall performance and measures of sleep continuity supports the assumption that an 

undisturbed sleep episode may be a crucial requirement for off-line memory consolidation 

and reshaping (Conte and Ficca, 2013). In other words, the triggering of learning processes 

(obtained through the pre-sleep intensive training) would prompt an increase of sleep 

continuity, if an undisturbed sleep is required for consolidation to proceed effectively. 

 

Another relevant result is the difference between post-active and post-training sleep in 

sleep organization measures. In fact, increases in the number and in the percentage of time 

spent in NREM-REM sleep cycles were observed after the complex training, compared to 

both BL and AC. According to the sequential hypotheses (Giuditta et al., 1995; Stickgold 

et al., 2000; Ambrosini and Giuditta, 2001; Ficca and Salzarulo, 2004), the close interaction 

and regular alternation between NREM and REM states represent the main requirement for 

memory consolidation. In line with this hypothesis, the improvement of sleep organization 

in TR may reflect the effectiveness of offline consolidation processes activated by training, 

as previously suggested in other studies (Mazzoni et al., 1999; Ficca et al., 2000; Conte et 

al., 2012; Lee et al., 2016; Mango et al., 2017).  

 

Finally, an interesting finding is the opposite pattern of performance scores emerged in the 

TR and W conditions: while the R-WORDS% displayed a significant wake effect (its over-

time change was significantly larger in the W compared to the TR condition), the R-

SCORE% showed the opposite trend, with a significant sleep effect (overnight change at 

TR significantly higher than that of the W condition). It must be pointed out that these two 

measures reflect distinct cognitive processes. While R-WORDS% (the percentage of 

detected words over the total available words) depends on how fast words are identified 

and traced with the finger on the screen (mainly involving reaction time, semantic and 

procedural motor memory), R-SCORE% comprises, in addition to the number of identified 

words, also their length and the use of the coloured letters which multiply letter or word 

values. In other terms, a high R-SCORE% depends on effective learning of elaborate 
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cognitive strategies, i.e., on the exercise of higher cognitive functions pertaining to the 

executive domain (e.g., planning, decision making). Therefore, it appears that, while a 

waking retention period is associated to the enhancement of simpler memory processes, 

sleep, instead, promotes learning of more elaborate cognitive strategies. This idea is further 

supported by our analyses of correlations between the two performance measures in the 

two conditions, and by the statistical comparison of the two regression slopes. In W, the 

significant correlation between Ruzzle measures shows that the improvement in R-

SCORE% was linked to the increase in R-WORDS%, suggesting that the R-SCORE% 

enhancement over the retention period relies mainly on increased rapidity in detecting and 

tracing words on the screen. The lack of such a correlation at TR, instead, implies that the 

greater R-SCORE% was the result of a different strategy: in other words, sleep seems to 

have boosted the acquisition of a novel cognitive process, preferentially based on more 

elaborate planning and decision making functions, rather than simply enhance a more basic 

procedural ability. This explanation is in line with recent studies highlighting sleep’s role 

in enhancing complex cognitive processes (Ellenbogen et al., 2007; Fogel et al., 2015). 

A few limitations of the study have to be taken into account when interpreting our results. 

The main one is our small sample size: while allowing a good statistical power for a within-

subjects design, it may be insufficient to detect significant associations between sleep and 

cognitive performance measures. For instance, we cannot rule out the possibility that 

correlations between sleep organization and performance could emerge on larger samples, 

as suggested by the results obtained by Mazzoni et al. (1999) and Göder et al. (2007). 

Furthermore, the maintenance of regular sleep-wake habits and daily activities during the 

weeks preceding experimental conditions was controlled for through self-reports (i.e., sleep 

logs and diaries on daily activities) rather than objective instruments (e.g., actigraphy). 

However, we are confident that the careful monitoring of subjects by experimenters (e.g., 

sending daily and timely reminders for questionnaire completion and verbally questioning 

the subjects about the sleep-wake and daily activities before recordings) has sufficiently 

increased the reliability of this control procedure.  

Finally, another methodological issue concerns our choice of recruiting a sample of bad 

sleepers based only on subjective sleep quality ratings, i.e., by means of the PSQI score. 

When looking at subjects’ baseline sleep episodes, values of sleep efficiency and WASO 

appear not consistent with the perceived bad sleep quality reported. However, as discussed 

above, it might be the case that the high sleep micro-fragmentation, even in presence of 
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preserved sleep macrostructure indexes, is able to negatively affect sleep quality 

judgments. To explore this possibility, we have recently recruited a sample of good and 

bad sleepers (selected through the PSQI) and compared their sleep recordings, with a 

specific focus on sleep macro and micro-structural measures. While WASO and sleep 

efficiency show no between-groups differences, the bad sleepers group displays 

significantly lower sleep continuity, stability and organization measures (article in 

preparation). Therefore, the analysis of sleep microstructure is greatly needed to fully 

evaluate objective sleep quality, with the possibility of further including these measures in 

standard sleep assessments on both normal and clinical populations as indexes of sleep 

quality. 

 

In conclusion, our data suggest that a cognitive activity resembling real-life learning 

processes may be useful to improve objective sleep quality in terms of sleep continuity, 

stability, and organization, calling into question the common place tenet that pre-sleep 

cognitive activity hinders sleep propensity and sleep quality by increasing 

psychophysiological arousal (see, e.g., Higuchi et al., 2005; Wuyts et al., 2012). 

The relevance of this study is manifold. First al all, it contributes to the understanding of 

how wake intensity affects subsequent sleep characteristics. In fact, as proposed by Conte 

and Ficca (2013), the quantity and quality of daytime cognitive activity may be considered 

as a major additional factor in the widely accepted models of sleep and alertness regulation, 

along with the classical factors “S” (“Sleep”, expressed by prior wake duration) and “C” 

(“Circadian”, expressed by time of day). Furthermore, the administration of an ecological 

task, such as a tablet-based game, can be a useful means to investigate the influence of 

everyday memory processes on sleep architecture. 

Finally, there are relevant applicative implications for clinics and psychosocial medicine. 

In light of the increasing importance of non-pharmacological interventions for sleep 

disturbance, ecological pre-sleep learning sessions could be further studied as a low-cost 

and easily accessible alternative treatment, or as a complementary strategy in standard 

therapies, for sleep-disordered populations. 
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3.5. Conclusion 

 

The present experimental study showed that the administration of an intensive 

cognitive training before bedtime produces changes in subsequent sleep 

characteristics, and specifically on sleep continuity, stability and organization in a 

sample of individuals with subjective sleep complaints. Regardless of the mechanism 

underlying post-training sleep modifications, we can conclude that not only wake 

duration, but also the intensity of wake deeply influences sleep characteristics and that, 

in line with the variety of results reported in the field of sleep and memory literature, 

the variables affected may be more numerous than originally thought. 

Our findings bear both a theoretical and a clinical fall-out. In fact, the possibility that 

sleep may be modified by daily activities suggests to further update classical sleep 

regulation models, by adding “wake intensity” as a new predictive factor, along with 

the homeostatic and circadian ones. Dose-response models are needed in order to 

better understand “how much” cognitive activity is necessary to trigger sleep changes 

and to quantify the contribution of wake intensity in sleep regulation. 

Also, from a clinical standpoint, pre-sleep training may be implemented as a new tool, 

easily accessible and acceptable by patients, to improve sleep quality in sleep-

disordered individuals.  
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