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A chi ricerca 
 
 
Dici : 
per noi va male.  
Il buio cresce.  
Le forze scemano. 
Dopo che si è lavorato tanti anni 
noi siamo ora  
in una condizione più difficile  
di quando si era appena cominciato. 
 
E il nemico ci sta innanzi 
più potente che mai. 
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Ha preso una apparenza invincibile. 
E noi abbiamo commesso degli errori, 
non si può negarlo. 
Siamo sempre di meno.  
Le nostre parole sono confuse.  
Una parte delle nostre parole 
le ha stravolte il nemico fino a renderle 
irriconoscibili. 
 
Che cosa è errato ora, falso, di quel che abbiamo detto ? 
Qualcosa, tutto ?  
Su chi contiamo ancora ?  
Siamo dei sopravvissuti,  
respinti via dalla corrente ?  
Resteremo indietro, senza 
comprendere più nessuno  
e da nessuno compresi ? 
 
O dobbiamo contare  
sulla buona sorte? 
 
Questo tu chiedi. Non aspettarti 
nessuna risposta 
oltre la tua. 
 
 
 
Bertolt Brecht | A chi esita 
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Abstract 

The characterization of the mechanisms of earthquake generation and 

propagation is a major challenge in understanding the Earth engine. 

Although the seismic rupture non-linearly combines several space and time 

scales, some macroscopic parameters can provide insights in its evolution, 

such as the earthquake size and the stress drop released during a seismic 

event. However, the estimation of these parameters is very uncertain (Cotton 

et al., 2013), owing to uncertainties in data and models and to the strong 

coupling between source effects and wave propagation up to the observation 

sites. 

The objective of this thesis is the characterization of the seismic source 

parameters using the amplitude spectrum of the displacement records and 

assuming that the earthquake behaves as a circular crack (Keilis-Borok, 

1959). Several methods for the characterization of the source using a spectral 

analysis have been proposed in literature. Systematic comparison between 

different methodologies highlighted the dependence of the results on the 

fitting model, due to the high correlation between the parameters, especially 

comparing EGF and TGF based techniques (Ide et al. 2003; Oye et al., 2005). 

A probabilistic approach can allow to investigate such a correlation, defining 

a probability density function (PDF) in the parameter space and allowing for 

a consistent estimate of the uncertainties. Using the probabilistic framework 

developed by Tarantola (2005), and specifically the notion of conjunction of 

states of information, I developed a probabilistic approach to retrieve the 

source parameters  seismic moment (through the low-frequency spectral 

level), the corner frequency (that is a proxy of the rupture length) and the 

high-frequency decay parameter. Information on the source of an earthquake 

requires the modeling of the wave propagation too; I choose to use in this 
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work a theoretical Green’s function, adding one parameter to invert related 

to the propagation (a frequency-independent Q-factor) beyond the three 

source parameter that I want to retrieve. 

I model the observations with an operator, defined on these four parameters, 

which is non-linear; thus, a global exploration of the model space is required 

in order to find the best solution to describe the data.  

Additionally, the joint a-posteriori probability density function (PDF) is 

computed around the best model, to extract the correlation matrix of the 

parameters. This allows to obtain estimates and uncertainties from the PDF, 

that are taking into account the correlations. 

The global exploration relies on the building of a Markov chain in the 

parameter space and on the combination of a deterministic minimization 

with a random exploration of the space (Basin-Hopping method, Wales and 

Doye, 1997; Wales, 2003).  

The main advantages of this new methodology are the following :  

• A fully probabilistic approach associated with a global exploration 

method can provide a robust information about the “best-fit” model, 

with correct estimation of uncertainties and parameter correlation. 

• The shape of the estimated PDF can assess the quality of the solutions, 

allowing to rule out noisy data and thus enabling the use of the method 

for automatic processing of large datasets. 

I performed three applications of the method. In Chapter 4, I analyzed the 

Central Italy 2016-2017 sequence, characterizing the source of all the 

earthquakes with magnitude 4.0LM   (56 events); in Chapter 5 I 

characterized the source of more than 10000 LFEs occurred in the Nankai 

region (Japan) during the period 2012-2016; in Chapter 6 I analyzed the 

micro-seismicity ( 0.0 4.5jM   , 1061 events) occurred from 2016 to 2017 in 

the Northern Ibaraki region (Japan). 
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1. Introduction 

1.1. Preamble 

The characterization of the mechanisms of earthquake generation and 

propagation is a major challenge in understanding the Earth engine. On the 

one hand it allows to shine a light on the physics of the faulting process over 

different space and time scales, on the other hand it has a strong societal 

impact, mitigating the seismic risk over short to medium time scales (days to 

years). The major issue in understanding the physics of earthquake rupture 

is the correct characterization of the energy budget associated with different 

mechanisms which take place during the earthquake nucleation, unstable 

propagation, short wavelength radiation and arrest. Although the seismic 

rupture non-linearly combines several space and time scales, some 

macroscopic parameters can provide insights in its evolution, such as the 

earthquake size and the stress drop released during a seismic event. 

However, the estimation of these parameters is very uncertain (Cotton et al., 

2013), owing to uncertainties in data and models and to the strong coupling 

between source effects and wave propagation up to the observation sites. 

Indeed, actual estimates of stress drop do not allow to distinguish if this 

parameter is universal or it scales with the earthquake size (e.g. Sholtz 1994, 

Shaw 2009, Cocco et al. 2016).  

Different kinematic and dynamic source models have been proposed to infer 

the stress drop from observations, such as a circular rupture (Brune, 1970; 

Sato and Hirasawa, 1973; Madariaga, 1976) or a one-dimensional rupture 

(Haskell, 1964).  
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The objective of this thesis is the characterization of the seismic source 

parameters, such as the earthquake size and the stress drop, using the 

amplitude spectrum of the displacement records and assuming that the 

earthquake behaves as a circular crack (Keilis-Borok, 1959).  

Several methods for the characterization of the source using a spectral 

analysis have been proposed in literature. They are mainly based on a 

spectral fitting and in most cases they make use of theoretical Green 

functions (TGFs) with a frequency-independent attenuation factor 

(Abercrombie, 1995). Prieto et al. (2007) proposed to perform a jackknife 

analysis (Quenouille, 1949; Tukey, 1958) to evaluate the confidence intervals 

of the source parameters, with the use of both TGFs and empirical Green 

functions (EGFs). Zollo et al. (2014) proposed a multi-step, iterative 

approach with the objective of reducing the correlation among the 

parameters.  

Systematic comparison between different methodologies highlighted the 

dependence of the results on the fitting model, due to the high correlation 

between the parameters, especially comparing EGF and TGF based 

techniques (Ide et al. 2003; Oye et al., 2005). 

A probabilistic approach can allow to investigate such a correlation, defining 

a probability density function (PDF) in the parameter space and allowing for 

a consistent estimate of the uncertainties. This approach is becoming more 

and more applied to inverse methods for the geophysics. Specifically to 

earthquake source characterization, probabilistic source inversion 

techniques are applied to earthquake location (Lomax et al., 2000)  

kinematic source characterization (Song and Somerville, 2010) and 

kinematic source inversion (Minson et al, 2013; Piatanesi et al., 2007; Stahler  

and Sigloch, 2014). 

Independently of the strategy used to solve the inverse problem, the search 

for a best solution involves the use of an optimization technique which should 
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account for the non-linearity of the problem, owing to both source and 

propagation. Local minimization techniques, based on linearization, can be 

adopted;  several numerical methods (Levenberg, 1944; Marquardt, 1963; 

Fletcher, 1987; Nocedal and Wright, 2006) mostly based on the Gauss-

Newton method or on the gradient-descent method (Cauchy, 1847) have 

proved their efficacy, even with physical constraints, such as the non-

negativity of the solution, although they do not guarantee to reach the global 

minimum of the cost function. The possibility of having identified a local, not 

a global minimum must be always carefully taken into account. 

Different global techniques have been developed,  based on a deterministic 

approach, such as the cutting-plane (Gomori, 1960, 1963; Balas et al., 1993) 

and the branch and bound method (Land and Doig, 1960), or based on a 

stochastic approach, such as the Monte Carlo methods (Turing, 1950; Kahn 

and Harris, 1951), the Simulated Annealing method (Kirkpatrick et al., 1983) 

and the Genetic Algorithms (Goldberg, 1989). 

In this work, we will use a mixed optimization method, the Basin-Hopping 

technique (Wales and Doye, 1997; Wales, 2003), that combines the overall 

global search with local minimization at each step, to accelerate the search 

for the minimum. 

1.2. Objectives 

Using the probabilistic framework developed by Tarantola (2005), and 

specifically the notion of conjunction of states of information, I developed a 

probabilistic approach to retrieve the source parameters (the earthquake size 

and the stress drop) and to characterize the decay of the amplitude spectrum 

with frequency, assuming a circular rupture model (Brune, 1970).  

As discussed previously, information on the source of an earthquake requires 

the modeling of the wave propagation too. A possibility is represented by the 
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use of EGFs that allow to remove the propagation effect from the 

observations. However, also in this case robustness of the results is not 

guaranteed; while limitation of massive application of this technique to a 

generic dataset is introduced by the necessity to dispose of appropriate 

couples of events one of which  has to play the role of the EGF. For these 

reasons, we choose to use in this work the TGFs, adding one parameter to 

invert related to the propagation (a frequency-independent Q-factor) beyond 

the three source parameter that we want to retrieve. 

I model the observations with an operator, defined on these four parameters, 

which is non-linear; thus, a global exploration of the model space is required 

in order to find the best solution to describe the data.  

Additionally, the joint a-posteriori probability density function (PDF) is 

computed around the best model, to extract the correlation matrix of the 

parameters. This allows to obtain estimates and uncertainties from the PDF, 

that are taking into account the correlations. 

The global exploration relies on the building of a Markov chain in the 

parameter space and on the combination of a deterministic minimization 

with a random exploration of the space (Basin-Hopping method, Wales and 

Doye, 1997; Wales, 2003).  

The main advantages of this new methodology are the following:  

• A fully probabilistic approach associated with a global exploration 

method can provide a robust information about the “best-fit” model, 

with correct estimation of uncertainties and parameter correlation. 

• The shape of the estimated PDF can assess the quality of the solutions, 

allowing to rule out noisy data and thus enabling the use of the method 

for automatic processing of large datasets. 
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1.3. Summary 

The thesis is organized in 9 chapters, including the introduction and the 

conclusions.  

Chapter 2 defines the analytical framework whereby the seismic source and 

the wave propagation can be properly described. It specifically describes the 

source and propagation models used in the work. 

Chapter 3 describes the probabilistic method proposed to perform the 

source parameters inversion. I define first the inverse problem, thus the 

probabilistic framework used to solve the problem, discussing the 

assumptions of the method. Then I explain how the solution is retrieved, 

from the Basin-Hopping global exploration technique to the joint PDF. 

Finally, synthetic tests are performed to validate the method . 

Chapters 4, 5, 6 are three applications of the method. In Chapter 4, I 

analyzed the Central Italy 2016-2017 sequence, characterizing the source of 

all the earthquakes with magnitude 4.0LM   (56 events); in Chapter 5 I 

characterized the source of more than 40000 LFEs occurred in the Nankai 

region (Japan) during the period 2012-2016; in Chapter 6 I analyzed the 

micro-seismicity ( 0.0 4.5jM   , 1061 events) occurred from 2016 to 2017 in 

the Northern Ibaraki region (Japan). 

Chapter 7 describes the software implementation (SPAR, Source 

PARameter estimator) of the method. 

Chapter 8, is the published version of the manuscript “Performance of 

Earthquake Early Warning Systems during the 2016–2017 WM  5–6.5 

Central Italy Sequence” published on Seismological Research Letters (Festa 

et al., 2018), that I co-authored.  This paper analyzes the performance of 

network-based and stand-alone (on-site) early warning systems during the 

2016–2017 Central Italy sequence. For this study, I provided and organized 
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the dataset on which the test was performed, and the information about the 

source parameters of the events needed to analyze the performances and 

contributed to the statistical analysis on which the performances are based. 

Chapters 3 and 4 are object of a manuscript submitted to the Geophysical 

Journal International ( https://arxiv.org/abs/1811.06049 ); Chapter 5 and 

chapter 6 are object of two manuscripts in preparation. 

  

https://arxiv.org/abs/1811.06049
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2. Source models and observations 

The study of the earthquakes is generally performed by analyzing the 

response of the Earth in terms of ground motion due to natural or artificial 

sources. For the aim, it is necessary to define the analytical framework, 

whereby the seismic source and the wave propagation can be described 

through an equation of motion of the rock particles, whose solution is the 

displacement at a general point in the propagation medium, as the effect of 

the passage of the seismic waves. 

The seismic source represents a dynamic process that generates seismic 

waves. This process can be external to the solid Earth, such as ocean waves 

and atmospheric explosions, or can occur in the subsoil. In the latter case, we 

can distinguish between faulting sources, which involve shear motion across 

a surface inside the Earth, and volume sources, such as human-made 

underground explosions (an underground nuclear test, for instance) or, 

rarely, natural explosive or implosive sources. 

In this work, we focus our attention on the most important natural seismic 

sources, the faulting sources. We will discuss the simplest model of seismic 

source, the point source, and then we will introduce the finite source model 

we are going to use, the circular fault model. This model remains simple, 

because it accounts for finiteness of the source through a small number of 

parameters. More complex source models have also been developed, using 

both kinematic and dynamic approaches. However, for most events analyzed 

in this study we do not have the resolution to look at the fine details of a 

complex rupture. 

The last part of the chapter is reserved to the data we are going to analyze: 

the seismograms.  
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A seismogram records the source effects combined with the effects of 

propagation, since the energy released in the source region turns into seismic 

waves and heat. 

Accelerometric and velocimetric records are usually provided by seismic 

networks; using both data, it is possible to obtain an information about the 

displacement in a broad frequency domain: this allows to increase the 

resolution on the displacement spectrum, that is the data we want to model. 

2.1. Green functions 

2.1.1. Elastic Green function 

The displacement of a particle, 0( , )tu x  , is defined as the difference between 

the position of a particle ( )tx  at time t  and the position 0 0( )tx  at the reference 

time 0t  . 

The Newton’s second law of motion for a material volume V  of the 

continuum, with surface S  , is : 

 
V V S

dV dV dS
t




 
   u f T   (2.1) 

where   is the material density, f  are the body forces per volume unit, 

namely the non-contact forces acting on the particle inside V , and ( )T n  is 

the traction, that is the contact force per unit area acting on a point of the 

surface S  identified by the normal n . 

We define the stress tensor 

 ˆ( )kl l kT e    (2.2) 

where the kl-th component is the contact force per unit area acting in the l-

th direction on the surface perpendicular to the k-th direction (Figure 2.1). 

It follows that 
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i ji jT n   (2.3) 

 

 

Figure 2.1 The stress tensor 

 

It is possible to prove that the stress tensor is symmetric: 

 kl lk    (2.4) 

Due to this symmetry, the equation of motion (2.1) becomes : 

 
,i i ij ju f     (2.5) 

where ,

ij

ij j

jx








 . 

For an isotropic, linearly elastic medium the stress tensor is related to the 

displacement by the constitutive relationship : 

 
ji

ij ij

j i

uu

x x
  

 
       

u   (2.6) 
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where    and   are the Lamé constants. For a homogeneous medium, the 

combination (2.5) and (2.6) leads to the following elastodynamic wave 

equation : 

 
2

2
( , ) ( 2 ) ( ( , )) ( ( , )) ( , )t t t t

t
   


      


u x u x u x f x   (2.7) 

If we consider a directional point force – the source – located at a point 0x  , 

we can write the force density as: 

 
0( , ) ( ) ( )t s t    f x f x x   (2.8) 

where ( )s t  is called source time function. We are assuming that the force has 

a time varying amplitude at a fixed point 0x  , with a fixed direction f̂  ; in 

seismology, separation between the geometry of the source and its time 

variation is a very common assumption; in this simple case, the geometry is 

represented by the term 
0

ˆ ( ) f x x  . 

The solution of the equation (2.7), when considering (2.8), is by definition 

the Green function of the homogeneous elastic isotropic medium that we are 

considering. Using the Fourier transform : 

 ( , ) ( , ) i tu x u x t e dt






    (2.9) 

and choosing homogeneous initial conditions: 

 ( ,0) ( ,0) 0 u x u x   (2.10) 

the solution in the frequency domain is (Achenbach, 1975) : 

  

 

/ /

2

/

2

/

2

1 1 ( )
( , ) 1 1

4

1 1
( )

4

1 1
( )

4

i R i R

i R

i R

s i R i R
R e e

R

R R s e
R

R R s e
R

   

 

 

  


   







 





      
            

       

    

     

u f

f

f f

 

 (2.11) 
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where 
2 





  is the P-wave velocity, 





  is the S-wave velocity, and 

0R  x x  the source receiver distance. 

Using the inverse Fourier transform : 

 
1

( , ) ( , )
2

i tu x t u x e dt






    (2.12) 

we obtain the solution in the time domain : 

  

 

min( , / )

/

2

2

1 1
( , ) ( )

4

1 1

4

1 1

4

t R

R

R t s t d
R

R
R R s t

R

R
R R s t

R





  


 

 

  
     

  

 
        

 

 
        

 

u f

f

f f

  (2.13) 

This is the representation for the displacement u  at a general point in space 

and time, for a point source force localized in space. 

2.1.2. Far field and near field waves 

From (2.11) we observe that the behavior of the Green function depends on 

the two quantities 
R


 and 

R


. By definition    , so we can define a 

unique condition: 

 1
R


  (2.14) 

for which the first term of (2.11) and (2.13) is negligible with respect to the 

last two terms. This is called the far field condition; if we consider the 

wavelength 
2




  , the latter becomes:  

 1
R


  (2.15) 
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The far field condition depends both on the distance between the source and 

the observer and on the wavelength of the radiation.  

In this work, we will assume that the observed data verify the far field 

condition for the whole explored frequency band. Again, this is an 

assumption usually verified in seismology when the observations are at a few 

wavelengths of distance from the source. 

In the time domain, the far field representation can be rearranged as follows: 

 
2

2

( , ) ( , ) ( , )

1 1
( , )

4

1 1
( , )

4

P S

FF FF FF

P P

FF FF

S S

FF FF

R t R t R t

R
R t s t

R

R
R t s t

R

 

 

 

 
   

 

 
   

 

u u u

u

u

  (2.16) 

P

FF  and S

FF  are called radiation patterns for P and S waves respectively, and 

are defined as follows : 

 
ˆP

FF R R

S

FF T

f 

 

e

f
  (2.17) 

with 
0R  e x x  , R Rf  f e  the radial component of the point force and 

T R Rf f f e  the transverse component.  

Having fixed the origin of the spherical reference frame in the source, the first 

term indicates a wave that propagates along the radial component of the 

point force, with velocity  ; it is called P-wave, and is a compressional      

wave : the direction of the particle motion is the direction of wave 

propagation (longitudinal wave). 

The second term indicates a wave that propagates still along the radial 

direction, but it generates motions in the orthogonal direction; this wave 

propagates with velocity  ; it is called S-wave, and is a shear wave: the 

direction of the particle motion is orthogonal to the direction of wave 

propagation (transversal wave). 
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Both P- and S-waves decay as a function of the source-receiver distance  as 

1

R
. We define the geometrical spreading 

 
0

0

1
( , )cA 


x x

x x
  (2.18) 

 and the travel-time  

 0

0( , )c

c

T
v




x x
x x   (2.19) 

which is the time required to the selected phase c , P- or S- wave, with velocity 

cv  , to travel from the source at 0x  to the receiver at x . 

When the condition (2.15) does not hold, the first term of (2.11) and (2.13) 

must be considered. This term is referred to as near field term and decays 

faster than 
1

R
: at larger distances from the source it decays as 

2

1

R
. 

If we consider a more complex propagation medium, a 1D horizontally 

layered medium, the Green function is still characterized by near field and 

far field terms. The travel-time cT  is still related to the wave propagation 

velocity, which now is a velocity field, ( )cv z ; it must satisfy the Eikonal 

equation : 

 
2

2

1c

c

T
v

    (2.20) 

The ray path followed by the wave-front during the propagation is 

determined by the Fermat principle, which states that the ray path from 0x  

to x  is the one for which the travel-time 

 

0
( )c

d

v z
x

x

x
  (2.21) 

 is stationary.  
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In this case, the geometrical spreading will depend on the length of the ray 

path. 

2.1.3. Anelastic attenuation 

When a wave propagates through a real medium, wave amplitudes attenuate 

as a result of the internal friction of the material; real propagation media are 

anelastic, and anelastic attenuation must be taken into account in the Green 

functions used to model the propagation from the source of an earthquake to 

the receiver. 

The effect of the internal friction can be described by an anelastic attenuation 

factor (quality factor), Q  , defined as follows : 

 
1

( ) 2

E

Q f E


    (2.22) 

where E  is the energy lost due to non- elasticity, and E  is the peak 

deformation energy of the medium at a given frequency. 

Observations show that in most of the cases the quality factor is frequency 

independent. Under this hypothesis, from the definition (2.22) is possible to 

obtain the corresponding Green function in the frequency domain, under the 

far field approximation : 
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0( ; ) ( , )

c

c

T
f

c c c QG Q f K A e




x x

x x   (2.23) 

where cQ  depends on the selected phase c  of the seismic wave, and cK  is a 

constant, depending on the source-receiver geometrical configuration and on 

the elastic properties of the medium; for a 1D horizontally layered medium : 
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

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  (2.24) 

c

FF  is the radiation pattern, depending on the phase c , SF  is the free-surface 

correction coefficient,   is the density and cv  is the wave velocity. 
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The representation (2.23) has a criticality in the time domain: a pulse 

propagating from the origin x 0  starting at time 0t   will show an 

amplitude different from zero at x 0  even before 0t  . Since the violation 

of the elementary notion of causality is not acceptable, a material dispersion 

in an attenuating medium must be introduced, in order to use a frequency 

independent Q  in the time domain. 

The standard linear solid (SLS) model (Zener, 1948) is a way of representing 

both attenuation and dispersion; a combination of these models reproduces 

the approximately constant Q behavior which is usually reported for the 

frequency range of observation in solids (Knopoff, 1964). 

2.2. Point source : The double couple solution 

From a kinematic point a view, a faulting source consists in a dislocation over 

a region of finite size, S : the relative motion of the two surfaces of the fault 

is called slip, D . 

Since faulting sources are localized in a volume inside the Earth, they must 

satisfy the following conditions : 

 


 





f 0

f r 0
  (2.25) 

The Green function from the directional force (2.8) does not satisfy these 

conditions. The simplest model that satisfies (2.25) consists in a double 

couple of forces (Figure 2.2), centered on the point source 0x  and having 

equal moment – assuming 0x  as reference point – in magnitude and opposite 

moment in direction. 
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Figure 2.2 Double couple source model. The hypocenter is in the origin of the reference 

system; , ,R    are the spherical coordinates. Figure from Madariaga, Treatise on 

Geophysics (2015). 

 

Each force of the couple is of the type (2.8). One of the couples has the 

direction of the slip, the other is orthogonal to the surface hosting the 

rupture.  

For each couple, the total displacement ( , )tu x  is the difference between the 

solution (2.13) evaluated for ( , )tf x  applied at 0 x  and for ( , )tf x  applied at 

0x , with   arm of the couple.  

Considering the limit for 0  , and consequently f  such that the 

product 
0M  f - magnitude of the moment of one of the couples – remains 

finite, it is possible to obtain the displacement due to a point dislocation : 
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  (2.26) 

The moment 0M  is called seismic moment; it is related to the source 

kinematic properties as follows : 
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0( ) ( )M t D t S   (2.27) 

where   is the shear modulus and D  is the average slip on the fault. 

The radiation patterns of the far field, P

FF  and S

FF  (Aki and Richards, 

1980), are represented in Figure 2.3; it is remarkable that, for almost all the 

earthquakes, the observed radiation pattern are in agreement with these 

diagrams. 

 

 

Figure 2.3 Radiation patterns of the P term (a) and S term (b) of the far field displacement. 
The central pair of arrows shows the shear dislocation; the arrows imposed on each lobe 
show the direction of particle displacement. Figure from Aki and Richards, Quantitative 
Seismology (1980). 

 

In addition to the near field and far field terms, there are two new terms 

called intermediate field terms, with radiation patterns IF ; they are 

negligible in the far field approximation, but often they must be considered 

in the near field. As for the Green function (2.16), in the far field  the waves 

still decay as 
1

R
. 
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2.3. Seismic radiation in the spectral domain 

It is usually observed that the complexity of the seismic radiation affects less 

the far field displacement spectra, which share these common features for 

most real earthquakes : 

• At low frequencies the amplitude spectrum is a plateau 

• A decay with a coherent slope is observed, starting from the end of the 

plateau 

The physical interpretation of these features is very simple, but can be very 

helpful for understanding the seismic radiation:  

• The plateau is observed in the frequency domain for which the source 

is seen as a point. In that domain, interaction among different points 

of the source cannot be seen due to wavelength resolution, and the 

source acts as a point with a unique behavior; we call this flat level of 

the spectrum 0 , and mathematically it can be written as the limit : 

 
0

0
lim ( ) ( )u u t dt






    (2.28) 

As we will see in the following section, 0  is related to the total 

moment released by an earthquake, 0M  . 

• Beyond a certain frequency, namely the corner frequency cf  , the 

observer has the resolution to distinguish the interactions from 

different points of the source; this effect is a coherent, destructive, 

interference that can be modeled by a power-law.  

The observed corner frequency must be therefore related to the 

dimension of the source. Again, in the following section we will see 

different models that connect cf  to the source size. 

The simplest representation for this kind of spectrum is the following : 
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 0( )

1
c

u f
f

f






 
  
 

  (2.29) 

where   is the power law exponent, and 
2

f



  is the frequency. 

This behavior can be obtained using the double-couple solution described in 

the previous section 2.2, by appropriating selecting the source function  

0 ( )M t . As an example, if we consider a source function having the shape of a 

triangle, the representation of the far field displacement spectrum coming 

from (2.26) will be of the type (2.29) : the corner frequency cf  will be 

inversely proportional to the width of the triangle, the seismic moment 0M  

will be proportional to the area of the triangle, and the spectrum will decay 

with 2  . 

Nevertheless, the double-couple model is not able to associate to this time 

scale  a characteristic length related to the earthquake phenomenon, because 

of its definition of point dislocation; our interest, instead, lies in the 

estimation of the size of the earthquake rupture . 

We therefore complexify the point source model, including some additional 

physical ingredients of the rupture. From a dynamic point of view,  a seismic 

source enucleates when, due to the stress conditions along the two surfaces 

of a fault, a change in the frictional state of the system happens, moving from 

static to dynamic friction. The resulting stress drop,   , causes the relative 

motion of the two surfaces that we call slip, D . 

Observations show that as the seismic moment increases, the corner 

frequency decreases. Thus, the larger the moment release, the larger the 

duration and the earthquake size. In order to estimate this dimension, we will 

use an extended source model, the circular fault model, described in the 

following section. 
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This will allow us to obtain information about the kinematic and dynamic 

parameters that are required to describe the seismic source.  

2.4. The circular fault model 

The simplest model of a static circular crack is obtained under the 

assumption of a constant stress drop  ; in this case the slip is (Keilis-

Borok, 1959) : 

 2 224
( )

7
D a r a



 


    (2.30) 

where r  is the radius of the crack and a  is the distance from the center of the 

crack. This result represents one of the most important properties of the 

circular crack, and it is widely used in seismology : the slip on the fault is 

proportional to the radius of the crack, and the constant of proportionality is 

driven by the stress drop. 

Using (2.30) to compute the seismic moment (2.27), we obtain : 

 3

0

16

7
M r     (2.31) 

In this case, the seismic moment scales like the third power of the rupture 

size, and the constant of proportionality is independent of the size of the 

earthquake (Aki, 1967), under the assumption of a scale independent stress 

drop. 

It is widely observed for different sets of earthquakes (Abercrombie, 1995; 

Ide and Beroza, 2001; Ide et al., 2003) that the seismic moment scales like 

the inverse third power of the corner frequency cf  : 

 
0 3

1

c

M
f

   (2.32) 

We will now introduce two circular fault models, the Brune’s model and the 

Madariaga’s model, that relate the radius of the fault to the inverse of the 
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corner frequency; therefore, they provide a solid connection among the 

observed scaling law (2.32) and the expected one (2.31).   

2.4.1. Brune’s model 

In 1970, Brune proposed a circular crack model for seismic source 

characterized by a pure shear stress pulse   applied instantaneously to the 

fault. No dynamic propagation effects are allowed. The stress pulse generates 

a pure shear stress wave propagating perpendicular to the dislocation 

surface: 

 ( , )
x

x t H t 


 
  

 
  (2.33) 

Where H  is the Heaviside function, x  is the distance from the fault plane 

and   is the shear wave velocity.    

This corresponds to the following source time function: 
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  (2.34) 

In the far field domain, the spectral amplitude of this causal function gives a 

representation in the frequency domain of the type (2.29) : 
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  (2.35) 

The flat level of the spectrum is equal to the seismic moment and the 

exponent of the high-frequency decay is equal to 2.Using the static solution 

of Keilis-Borok (1959), it follows that the relation among the corner 

frequency cf  and the radius of the fault r  is : 

 0.3724cf
r


    (2.36) 
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For a circular crack, the static strain energy change W  is : 

 
1

2
S

W DdS     (2.37) 

From the Brune’s model, the energy radiated as S-waves, SE , is a percentage 

of the total available strain energy : 

 0.44SE W    (2.38) 

The result (2.36) insures the equivalence between the scaling laws (2.32) and 

(2.31). 

In this work, we will use a generalized Brune’s model which provides a 

displacement spectrum where the power law exponent is not fixed to 2, but 

it is a free parameter of the model : 
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  (2.39) 

This choice is motivated by the observed far field displacement spectra, 

which in several cases show a decay with a power law exponent different from 

2. 

It is worth to note that there is a physical bound for the minimum value of   

 . Requiring the finiteness of the seismic energy, SE  , it follows that 1.5   

: 

Since we have 
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From (2.39) it follows : 
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A singularity may arise when considering the upper limit of the integration : 
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and, consequently, the convergence of (2.41) must be evaluated requiring : 
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f f 
  (2.43) 

It is satisfied if : 

 
3

2
    (2.44) 

 . 

In one of the performed applications of the method (Chapter 6), we tested 

these two different models and we proved that the generalized Brune’s model 

is able to better describe the observed data.  

2.4.2. Madariaga’s model 

In 1976 Maradiaga proposed a quasi-dynamic circular crack model, namely 

a circular crack that starts from a point and grows with a constant rupture 

speed until it stops on the border of the fault, due to unbreakable barriers. 

The spectral representation provided by this model is of the same type (2.29) 

of the Brune’s representation. Nevertheless, the interpretation of the 

parameter cf  is different : 

 0.21cf
r


    (2.45) 

This estimation comes from the assumption of a rupture speed 0.9Rv   , 

averaging the expected directivity effect on corner frequency; unlike the 

Brune’s model, cf  here is therefore related to the rupture duration. 

The choice between the Brune’s or Maradiaga’s model does not affect the 

shape of the expected displacement spectrum; therefore, it does not change 

the estimates of the model parameters. It only affects the estimate of the 
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source radius, and therefore of the stress drop obtained from (2.31). 

Specifically, the Madariaga stress drop is about 5.5 times larger than the 

Brune one.  

2.5. Displacement or velocity measurements 

Observations in Seismology are constituted by the ground motion records; 

seismic networks usually provide records from 3-components 

accelerometers and/or velocimeters. 

As we have seen, the complexity of the seismic radiation is generally reduced 

moving from the acceleration to the displacement, because the lower the 

frequency content, the simpler the waveforms. For this reason, we will 

estimate source parameters using ground motion displacement spectra. 

Since the displacement is a low frequency quantity, it is more sensitive to the 

seismic moment, than the velocity or the acceleration, but less sensitive to 

the higher-frequency parameters, such as the corner frequency or the high-

frequency decay  . If we compute the velocity spectrum from the 

displacement spectrum (2.29) using the Fourier transform properties : 

 ( ) 2 ( )u f i f u f    (2.46) 

we can note that this spectrum has a peak at the corner frequency cf  . 

Therefore, one could estimate this fundamental parameter from an 

instantaneous measurement on the velocity spectrum. Nevertheless, usually 

velocity spectra from recorded earthquakes are characterized by a broadened 

peak, polluted by oscillations and secondary peaks. 

For this reason, in this work we choose to estimate the source parameters 

using an integral measurement over the displacement spectrum, building a 

probabilistic framework to obtain a robust estimation of the uncertainties 

that affect the parameters’ measurement. 
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3. The method : source parameters inversion 

3.1. The inverse problem 

In this chapter we discuss how to characterize the source of an earthquake 

modeling the observed ground motion. 

As we have seen in Chapter 2, in linear elasticity, the displacement produced 

by a point source and recorded at a given receiver is the convolution of the 

source time function by the Green’s propagator. Thus, the displacement 

spectral amplitude in the frequency domain ( )u f  can be factorized as 

( ) ( ) ( )u f S f G f , where f is the frequency, ( )S f  is the modulus of the 

Fourier transform of the source time function and ( )G f  the modulus of the 

Fourier transform of the Green propagator. We separately model the far field 

P- and S-waves. For the source contribution, we consider the generalized 

Brune’s model introduced in Section 2.4.1 :  
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S M f f

f
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  (3.1) 

with S  depending on three parameters: the seismic moment 0M , the corner 

frequency cf  and the high frequency spectral decay factor  .  

For the propagation contribution, we consider the Green function introduced 

in Section 2.1.3 : 

 0( , ) '

0( ' ; ) ( , )
c cf T Qc c cG Q f K A e

 


x x
x x   (3.2) 

In the above formula, cK  is a constant, depending on the source-receiver 

geometrical configuration and the elastic properties of the medium crossed 

by the waves,
0( , )cA x x  and 

0( , )cT x x  are the geometrical spreading and the 
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travel-time related to the selected wave from the source at 0x  to the receiver 

at x , respectively, cQ  is a frequency independent attenuation quality factor 

and 
1

'c
c

Q
Q

  is the reciprocal of the quality factor.  

For a 1D layered model, under the far field approximation (2.15), the 

analytical representation of the constant cK  is (Aki and Richards, 1980) 
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  (3.3) 

Here c

FFR  is the radiation pattern contribution, depending on the phase c (P- 

or S-wave), SF  is the free-surface correction coefficient,   is the density and 

c the wave velocity. In the applications of this thesis,   and c  values depend 

on the adopted velocity model, while we use averaged values for the radiation 

pattern (Boore and Boatwright, 1984). The geometrical spreading describes 

how the amplitude decays as a function of the distance from the source; both 

the geometrical spreading and the travel time can be computed using the ray 

theory. They reduce to 
0

0

1
( , )cA 


x x

x x
 and 

0

0( , )cT
c




x x
x x  for a 

homogeneous medium, and the geometrical spreading is independent of the 

phase.  

In our modelling, we assume cK , 
0( , )cA x x  and 

0( , )cT x x  known; they are 

computed either in a homogeneous or in a 1D horizontally layered medium.  

Uncertainties in these terms contribute to the increase of the epistemic 

uncertainties on the source parameters and 'cQ  estimations. Both the 

geometrical spreading and the constant cK  are scale factors for the seismic 

moment. They depend on the relative location of the source and the receiver 

and on the velocity structure crossed by the waves. However, because of the 

logarithmic scale of the seismic moment, their uncertainties poorly affect the 
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estimation of the event magnitude. The travel-time appears in formula (3.2) 

through the product 
0' ( , )c cQ T r r , where the 'cQ  factor is retrieved from the 

inversion of the displacement spectra. Uncertainty on 
0( , )cT r r  only affects 

the final estimate of 'cQ  and can be completely absorbed in the inversion of 

the quality factor. 

What is unknown in the propagation contribution is, definitely, the quality 

factor; for this reason, the set of parameters that we want to estimate through 

the inverse problem will be composed by the three source parameters and, in 

addition, one propagation parameter : 
0(log , , , ' )c

cM f Q . 

Because of the exponential nature of the seismic moment, we define the 

forward operator as the logarithm of the displacement spectral amplitude:  

 0 0log log log 1 log ( , ) ' logc c

c

f
u M fT Q e

f



 
  
      
   

r r   (3.4) 

 where 
0( , )c cK A  r r ; 

0log (log , , , ' )c

cu M f Q depends on four unknown 

parameters that will be inverted analyzing the spectra obtained from seismic 

records. For sake of simplicity, we summarize the set of parameters to be 

estimated through the vector 
0(log , , , ' )c

cM f Qm and we indicate with M 

the model space, the subdomain of hR , 4h   , which individuates the range 

of variability of the model parameters. 

Although the equation (3.1) provides a continuous mapping between the 

parameter space and the theoretical amplitude spectrum, the displacement 

spectra obtained from observations are sampled at a discrete, finite set of 

points. Let us indicate with  log ( ), 0,1,..,obs obs ku f k n d  the logarithm of 

the discrete Fourier amplitude spectrum computed from the observed 

displacement; the vector dobs belongs to the data space D. In the above 

relationship, mink

k
f kf

T
  , where T is the window length of the selected 
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signal in time, min

1
f

T
  the minimum frequency in the spectrum, n is half of 

the number of samples in the time domain, and min

1

2
nf nf

t
 


 the Nyquist 

frequency, where t  is the time step of the recorded signal. It is worth to note 

that when using the FFT for spectral computation, the signal is padded to 

zero to satisfy the condition that n is a power of two. To compare theoretical 

and observed spectra, we then compute the theoretical prediction at the same 

discrete set of frequencies. Let us indicate with  

  ( ) log ( ; ), 0,..,ku f k n g m m   (3.5) 

the discrete forward operator. The solution of the inverse problem is indeed 

the set of parameters *
m , such as *( )g m  approaches d  at best. 

3.2. Probabilistic framework for the inverse 

problem 

We introduce a probabilistic framework for the resolution of the inverse 

problem (Tarantola, 2005). 

The definition of probability is based on the Kolmogorov axioms 

(Kolmogorov, 1933). Let’s consider a finite-dimensional manifold  ; any 

subset of the manifold,   , is called an event; the probability over   is a 

function that associates to any event   a number ( )P   satisfying these 3 

properties (axioms) : 
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  (3.6) 

( )P   is called probability of the event   ; the function ( )P   is called 

probability distribution. 
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If a coordinate system 1( ,..., )nx xx  is defined over  , it is possible to prove 

that a function ( )f x  always exists such that (Radon-Nikodym theorem1) : 

 
1

( ) ( ) ,

n

over

P f d

with d dx dx






  

 



  

x x

x
  (3.7) 

( )f x  is called probability density function (PDF), and it represents ( )P   with 

respect to the introduced coordinate system. 

The solution of the general inverse problem obtained by Tarantola (2005) is 

based on the notion of conjunction of states of information. We will now 

introduce the states of information needed to obtain the solution, and we will 

define the operation conjunction. Each state of information is a probability 

density. 

The homogeneous probability density ( ) x  is defined as follows : 

 
( )

( )
v

V
 

x
x   (3.8) 

where ( )v x  is the volume density over the manifold   with respect to the 

coordinates x  and ( )V v d


  x x  is the volume of   , that we assume to be 

finite. 

( ) x  is able to associate to each event   a probability 

 ( ) ( )M d


   x x   (3.9) 

, the homogeneous probability, which is proportional to the volume of the 

event. In Bayesian inference theory, ( ) x  is usually referred to as 

noninformative probability density. 

                                                   
1 The theorem has been proved by Radon in 1913 for the special case n ; it has been 

generalized by Nikodym in 1930. 
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In this work we will use two simple manifolds, the model space M  and the 

data space D ; these domains are cartesian spaces, and the homogeneous 

probability density is a constant. In general, this is not always the case; as a 

simple example we can consider the manifold   being the surface of a 2-D 

sphere: if ( , )   is a system of spherical coordinates, the homogeneous 

probability density is 

 
sin

( , )
4


  


   (3.10) 

After defining the probability and homogeneous probability distributions, we 

are allowed to define the conjunction operation.  

If 1P  and 2P  are two probability distributions and M  is the homogeneous 

probability distribution over the manifold  , the conjunction among 1P  and 

2P  , 1 2P P  , is an operation that satisfies the following properties : 

 

1 2 1 2

1 2 2 1

( ) 0 ( ) 0 ( )( ) 0P or P P P

P P P P

P M P P

        

  

  

  (3.11) 

It is possible to prove that, if 1( )f x  , 2 ( )f x  and ( ) x  are the probability 

densities of 1P  , 2P  and M , respectively, the following definition of 

conjunction : 

 1 2
1 2

( ) ( )1
( )( )

( )

f f
f f

 
 

x x
x

x
  (3.12) 

 with   normalization constant, always satisfies (3.11).  

The conjunction is an associative operation : 

 1 2 1 2
( ... ) ( )( ) ( )1

( ) ( ) ( ) ( )

k kf f f ff f

    

  
 

xx x

x x x x
  (3.13) 

The last elements that we need to introduce are the a-priori probability 

density functions over the model and data spaces, and the PDF that describes 

the connection – i.e. the physical theory – among the model parameters m  
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and the observations d . For this reason, from now on, we will specifically 

refer to the model and data spaces, M  and D  , and not anymore to a generic 

manifold  .  

The a-priori probability density over the model space M , ( )M m , represents 

the information that is available for the model parameters independently of 

the observations. 

The a-priori probability density over the data space D , ( )D d , represents the 

results of the measurement operation. If a perfect measure were possible 

observing obsd  , the corresponding PDF would be : 

 ( ) ( )D obs  d d d   (3.14) 

where   is the Dirac delta function. In measurements affected by 

uncertainties the a-priori PDF in the data space has a more complex 

representation.  

Finally, we indicate with ( , ) d m  the joint probability density function over 

the cartesian product D M , that represents the information about the 

model prediction and its uncertainties. It is therefore connected to the 

physical theory we are using to model the observations : it has to be a function 

of the forward operator. 

If having no theoretical uncertainties were possible – namely having an exact 

theory – the corresponding PDF would be : 

 ( , ) ( ( ) ) ( )M   d m g m d m   (3.15) 

If for each model m  we associate a probability density for d ,  | d m , we 

have : 

 ( , ) ( | ) ( )M  d m d m m   (3.16)  

These two different representations are visualized in Figure 3.1. 
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Figure 3.1 Modelization uncertainties. On the left, uncertainties in the forward modelization 
can be neglected (3.15); on the right, for each model m  there is a probability density 
representing the uncertainties (3.16). Figure from Tarantola, Inverse Problem Theory 
(2005). 

 

The a-priori information on the model space is, by definition, independent of 

the information on the data space; we can therefore obtain the joint a-priori 

PDF over D M  by multiplication : 

 ( , ) ( ) ( )D M  d m d m   (3.17) 

Tarantola (2005) proposes to obtain the a-posteriori information combining 

the two states of information ( , ) d m  and ( , ) d m ; their combination is 

obtained through the conjunction (3.12) : 

 
( , ) ( , )

( , )
( , )

k








d m d m
d m

d m
  (3.18) 

with k  normalization constant; ( , ) d m  represents the a-posteriori PDF in 

the D M  space. 

The solution of the general inverse problem within this probabilistic 

framework is given by the a-posteriori PDF in the model space ( )M m  ; it is 

obtained from (3.18) by integration : 

 ( ) ( , )M d  
D

m d m d   (3.19) 

3.2.1. The assumptions 

The methodology we are proposing is based on the solution (3.19). It is 

evaluated assuming that both modelization and data uncertainties are 
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normally distributed. Using (3.16), modelization uncertainties are 

represented by the following PDF : 

   
1/2

11
( | ) 2 det exp ( ( ) ) ( ( ) )

2

n T

m m 


 
    

 
d m C g m d C g m d   (3.20) 

while data uncertainties, for an observation obsd  , are represented by the a-

priori PDF : 

   
1/2

11
( ) 2 det exp ( ) ( )

2

n T

D d obs d obs 


 
    

 
d C d d C d d   (3.21) 

with mC  the covariance matrix related to modelization uncertainties and dC   

the covariance matrix related to measurement uncertainties. 

Furthermore, we assume that there is no a-priori information in the model 

space : 

 ( ) ( )M M m m   (3.22) 

Finally, since the data and model spaces are cartesian spaces, the 

homogeneous probability densities ( )M m , ( )D d  and consequently ( , ) d m  

are constant. 

Under these hypotheses, the a-posteriori PDF (3.18) writes : 

 '( , ) ( ) ( | )Dk  d m d d m   (3.23) 

and the explicit solution for the inverse problem becomes : 

 

 

'

'' 1

1

'' 1 1

( ) ( ) ( | )

1
exp ( ) ( )

2

1
exp ( ( ) ) ( ( ) )
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1
exp ( ( ) ) ( ( ) )

2

M D

T

obs d obs

T

m

T

obs d m obs

k d

k

d

k

  





 

 

  
     
 

 
    
 

 
    
 





D

D

m d d m d

d d C d d

g m d C g m d d

g m d C C g m d

  (3.24) 
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Here ' '',k k  are normalization constants; under Gaussian assumption, 

observation and modelization uncertainties are combined by adding the 

inverses of the covariance matrices.   

We can rearrange (3.24) as follows : 

     
1/2

( ) 2 det exp ( , )
n

M D obsK S 


 m C m d   (3.25) 

Where D d m C C C  and 

   11
( , ) ( ) ( ( ) )

2

T

obs obs D obsS   m d g m d C g m d   (3.26) 

is the cost function and K  is a normalization constant. 

Usually, the function 

     
1/2

( , ) 2 det exp ( , )
n

obs D obsL S


 m d C m d   (3.27) 

is referred to as likelihood function. 

Within this approach the best model *
m  is the value that maximizes the PDF 

( )M m  ; however, we can also integrate ( )M m  to infer statistical indicators, 

such as the mean value of the distribution, the standard deviation and the 

correlation coefficients. 

We assume that the covariance matrix is diagonal and it has the form 

D MSE C 1 , where 

2
*

1

( ) ( )

1

n
obs i i

i

d g
MSE

n

  



m

. Under this assumption 

maximization of the likelihood function also corresponds to the minimization 

of the 2L  distance between data and predictions, 

 '( , ) ( ) ( ( ) )
T

obs obs obsS   m d g m d g m d , which does not depend on the MSE 

and can be computed independently of the knowledge of the solution m*. In 

the following application on real data we found a-posteriori that the MSE is 

in the range 0.01-0.03. The data uncertainties are associated to the S/N ratio. 

For  S/N ratio > 10 on average in the selected frequency range, thus, the 



The method : source parameters inversion 

40 
 

contribution of the noise to the MSE is at least one order of magnitude 

smaller. Thus, the MSE is dominated within this range of S/N values by the 

modelization uncertainties and is retrieved to be independent of the specific 

S/N value.  

3.3. Solution of the inverse problem 

The solution of the inverse problem is computed in two steps: we first 

compute the minimum of the cost function '( , )obsS m d , using the Basin-

Hopping technique, as described in the next section, then we evaluate the 

MSE, which is used for the estimation of the a-posteriori PDF ( )M m . 

Finally, the estimation of the uncertainties requires the integration of   

( )M m .  

If the forward operator ( )g m  is linear, ( , )obsS m d  is quadratic and ( )M m  is 

normal (Gauss, 1809); the more nonlinear ( )g m , the farther ( )M m  from a 

Gaussian PDF. However, though strongly non-linear, the forward operator 

( )g m  can be linearized in the vicinity of the best model, in a subdomain *
M  

centered around *
m . We define *

M  as the hypercube 
1

* ..
hm mI I  M , where 

imI  is a 1D interval containing the value *

im . If the value of ( )M m  is enough 

small outside *
M , to not significantly contribute to the marginal PDFs 

related to the single parameters, we can extract the mean and the variance 

for each parameter, and the correlation coefficients for all couples of 

parameters, limiting the exploration to the domain *
M .  

Let us define the marginal PDF for the parameter im  as 
*

( ) ( )

i

M i Mm d  
M

m m

, and the marginal PDF for the couple ( , )i jm m  as 
*

( , ) ( )

ij

M i j Mm m d  
M

m m , 



The method : source parameters inversion 

41 
 

where 
1

*

1 1.. ..
i i hi m m m mI I I I      M  is the hypercube built accounting for all 

the parameters except im  and *

ijM  the hypercube built excluding the 

parameters im  and 
jm .  

Mean value, variance and correlation are finally computed as: 

 

* *

* *

* *

\

2 2

\

,

\

( )

( ) ( )

cov ( )( ) ( , )

i

i

ij

i i M i i

i i i M i i

i j i i j j M i j i j

m m dm

m m dm

m m m m dm dm

 

  

  

 

  

   







M M

M M

M M

  (3.28) 

3.4. The Basin-Hopping algorithm for the search of 

the global minimum 

The search for the minimum of the cost function '( , )obsS m d  is performed 

through the global optimization technique of the Basin-Hopping (BH) 

(Wales and Doye, 1997; Wales, 2003). The BH algorithm uses a random 

sampling of the model space, based on a Markov chain with a transition 

probability given by the Metropolis criterion.  

Here we shortly summarize the searching strategy of the technique. If after j 

iterations the exploration has reached the point 
jm , at the (j+1)-th iteration 

a random perturbation of the coordinates is performed, moving the model in 

the point (0)

1jm ; this latter is considered as the starting point for a local 

minimization, which brings the exploration in the point 
1jm . The 

minimization is performed using the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm (Fletcher, 1987). The point 
1jm  is then compared with 

jm

. If the cost function at the end of the (j+1)-th iteration is smaller than the 
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cost function at the end of the j-th iteration, i.e. 
1'( , ) '( , )j obs j obsS S m d m d , 

the transition from 
jm  to 

1jm  is accepted, else it is accepted with a 

probability 
1( , )trans j jP m m   given by the Metropolis criterion : 

1'( , ) '( , )
exp

j obs j obs

trans

S S
P

T

  
  

 

m d m d
, where the temperature T of the 

Metropolis scheme is fixed all along the exploration. 

It is worth to note that the solution at the end of each iteration 
jm  comes 

from a local minimization process, speeding up the search for the final 

solution, while maintaining a constant temperature facilitates the hopping 

out of cost function basins which contain local minima.  

The method is based on sole three parameters, allowing for simple tuning. 

The first one is related to the initial modulus of the random perturbation. The 

perturbation is assumed to be the same fraction   of the range of variability 

for all the parameters. If the exploration of the parameter im  is constrained 

in the domain 
,min ,max( , )i im m , the size of the initial perturbation is thus 

 ,0 ,max ,mini i im m m   . It is worth to note that the magnitude of the 

perturbation dynamically changes during the exploration. It is based on the 

fraction of the transitions ra  from the point 
jm  to 

1jm , evaluated every 50 

iterations; if 0.5ra  ,   is increased dividing the previous value by 0.9; if 

0.5ra  ,   is decreased multiplying it by 0.9. This condition allows to 

explore farther and farther regions when the solution does not move from the 

same location in the model space for many iterations.  

The second parameter is the temperature T of the Metropolis criterion, which 

is chosen by balancing the ability to converge toward the final solution and 

the possibility to escape from a local minimum. Its magnitude order should 

be comparable with the average difference between the local minima, and 
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thus it requires preliminary investigation. Finally, the exploration stops 

when the maximum number of iterations itern  is reached.  

The tuning of the BH parameters is problem dependent. From synthetic tests 

on theoretical spectra (Section 3.7), we obtained convergence to the global 

minimum with 0.1, 10000itern    and T of the order of the unity. 

We tested the BH technique with two standard test functions; the Ackley  

function : 

    2 21 1
( , ) 20exp 0.2 exp cos2 cos2 20

2 2
ack x y x y x y e 

   
          

  
 

 (3.29) 

and the three-hump camel function : 

 
6

2 4 2( , ) 2 1.05
6

x
cam x y x x xy y       (3.30) 

Both functions have a global minimum in (0,0) . 

The Ackley function mainly tests the ability of the global optimization 

technique to avoid a very-large number of local minima. In the example of 

Figure 3.2 we see that starting the exploration  from the point (20,20) , far 

away from the global minimum, the BH technique was able to converge to 

the global minimum within 10000 iterations. 

 

Figure 3.2 Ackley function. BH converges to the global minimum (0,0) starting from (20,20) 
within 10000 iterations. 
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The three-hump camel function is characterized by two minimum valleys in 

(1.5,1.5)  where the value of the function is very close to the global 

minimum. Again in the example of Figure 3.3, starting the point (20,20) , the 

BH method was able to converge to the global minimum within 1000 

iterations. 

 

Figure 3.3 Three-hump camel function. BH converges to the global minimum (0,0) starting 
from (20,20) within 1000 iterations. 

 

3.5. Parameters estimation : uncertainty and 

quality of the solution 

The use of the joint PDF allows not only to seek for the best solution, but also 

to compute the uncertainties related to the best model, via integration of 

( )M m . We cannot use the parameter space exploration from the BH 

technique, because it does not rely on a Monte Carlo sampling and thus, 

convergence of integrals is not guaranteed when increasing the iteration 

number. On the other hand, a complete description of ( )M m  in the whole 

parameter space is computationally expensive and, in many cases, 

unnecessary, since this function very often rapidly decreases to zero when 
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moving away from the maximum. For this reason, we limit the computation 

of the joint PDF in the hypercube *
M  centered in the best fit model m*. For 

the definition of the hypercube we explore the 1D conditional distributions 

 * *

1( ) ( ,.., ,.., )
iM i M i hm m m m    1,...,i h  (3.31) 

where all parameters are fixed to the value that they have in the global 

maximum of the PDF while the parameter im  can vary. We then define the 

interval *

down up[ , ]i i iI m m , containing the value *

im , such that 

*

down up( ) ( ) 0.05 ( )
i i iM i M i M im m m    . In the case in which the conditional 

PDF can be described by a Gaussian function, the interval *

iI  is symmetric 

around *

im  and its length is four times the standard deviation of the Gaussian 

function. Since the marginal PDF has usually a larger standard deviation 

than the conditional PDF because of the correlations among parameters, we 

consider the enlarged interval 
idown up[ , ]i iI m m . 

*

down min downmax ,(1 )i i i im m m m       being 2.5   the scaling factor 

between the marginal and the conditional PDF standard deviations; 

analogously *

up max upmin ,(1 )i i i im m m m      . Finally, the domain *
M  is 

obtained by tensorization : *

1 .. hI I  M .  

We can finally check a-posteriori the assumption of Gaussian uncertainties, 

evaluating the quality of the retrieved marginal PDFs ( )M im  in terms of 

similarity with a normal distribution. As similarity criterion, we adopt the 

normalized cross-correlation function: 

 
*

exp( ) ( ) ( )

i

M i i icc m m dm    
M

  (3.32) 

where 2

exp ( ) ( ; , )i i i im N m    is the expected, normal distribution having 

median i   and variance 2

i . We selected a quality threshold  ; if the zero-
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lag correlation (0)cc  , the solution is accepted. In our analysis we chose 

0.95  .  

3.6. Dataset features and final results expression 

In the previous sections, we described how to retrieve source parameters 

from the inversion of a single spectrum. However, an earthquake is recorded 

at several stations, usually on the three components of a seismic instrument. 

For a single station, we invert for one spectrum for the P wave, obtained from 

the vertical component, and one spectrum for the S wave, obtained as the 

geometrical mean of the two spectra, computed on the horizontal 

components (Fletcher et al., 1984). When combining information from 

diverse stations we should be aware that each station provides a different 

image of the earthquake source, depending on the directivity, the radiation 

pattern and propagation effects. For that reason, we cannot consider each 

spectrum as a repeated measure of the same source parameters. After 

obtaining an estimation of the source parameter  i k
 with uncertainty  i k

   

from the inversion of a single spectrum at the k-th station, the final 

estimation of this parameter is given by the weighted mean  

 

   

 
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


  (3.33) 

 and the weighted uncertainty is given by  

 

 
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1
i K

i k
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
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


  (3.34) 
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where 
2

1
( )

( )
i k

i k

w


  and K is the total number of stations contributing to the 

mean.   

3.7. Synthetic tests 

3.7.1. Large signal to noise ratio 

As a first example we want to show the reliability of the method on a signal 

poorly affected by the noise. This example will also enable us to understand 

how the uncertainties are computed and what are the intrinsic correlations 

between couples of parameters. For the aim, we assume an exact knowledge 

of geometrical spreading, elastic properties and travel time of the wave (we 

assume    and 
0( , )cT r r  known in (3.4)). We consider a theoretical Brune 

spectrum with the following parameters : 0log 10M   , 10cf  Hz , 2    and 

100Q  . We then pollute the signal with noise, having a signal to noise ratio 

RS/N = 100. First, RS/N is defined in the time domain. Here the displacement 

u is the sum of the signal ( )s t  and the noise ( )n t : ( ) ( ) ( )u t s t n t  . The 

displacement amplitude spectrum can be written (see Appendix A) as 

log( ) log( ) cos( )S N

n
u s

s
    , where s  and n  are the amplitude spectra, S   

and N   the phase spectra of the signal and the noise, respectively, and they 

are all a function of the frequency. The ratio 
n

s
 scales as 

/

1

S NR
 and at low 

frequencies, for a flat noise spectrum the ratio 
/

1

S N

n

s R
. However, the noise 

spectrum is usually not flat in the displacement, but it decreases as a function 

of the frequency, as well as the source spectrum does, eventually with 
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different slopes. In addition, the noise spectrum is not uncoherent, but it 

presents peaks and holes related to ambient and site effects.  

In these tests we impose the following perturbation on the Brune spectrum 

Bruneu  to account for the noise effect in the displacement:  

  
/

1 2
log log sin 1Brune

S N N

f
u u

R f




 
     

 
  (3.35) 

The noise has a coherent contribution having a sinusoidal shape with 

amplitude equal to the reciprocal of the signal to noise ratio, modulated by a 

random contribution. Here we have 1Nf  Hz and   a random variable over 

the interval [ 0.5,0.5] . The spectrum has been inverted in the frequency band 

[0.1 - 100] Hz.  

Within this high value of the signal to noise ratio, the solution almost 

perfectly fits the initial spectrum (Figure 3.4, left panel). 

 

 

Figure 3.4 Synthetic spectrum (blue curve) and solution retrieved from the inverse problem 
(red curve, eq. (3.4)) for the case of RS/N  = 100 (left panel) and RS/N  = 5 (right panel). 

 

The 1-D marginal PDFs are Gaussian distributions, centered on the values 

imposed to generate the synthetic spectrum (Figure 3.5). We have the 

following estimates for the source parameters: 0log 10.000 0.004M   , 

9.99 0.09cf   Hz and 1.999 0.015   , and the final estimate for the quality 
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factor is 100.00 0.05Q   , whose uncertainty has been obtained by 

propagating the error on Q’. We have very small uncertainties on the seismic 

moment and the quality factor (<0.1%), while the uncertainty is about at 1% 

on both fc and  .  

In Figure 3.6 we represent the 2-D marginal PDFs as heatmaps. Since the 

data uncertainty is negligible in this case, the maps represent the intrinsic 

correlation among the parameters. This correlation is due to the 

modelization uncertainty, and cannot be reduced. The absolute value of all 

the correlation coefficients is above 0.6; larger (anti-)correlations can be 

found between fc  and logM0,   and 'Q  , with values close to -1. These large 

correlations provide a support for the selection of the factor   , used to define 

the exploration interval for the computation of the marginal PDFs from the 

conditional PDFs (Section 3.5). 
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Figure 3.5 1-D marginal PDFs computed for a RS/N  = 100. In the four panels the PDF are 
represented for log(M0), fc, γ and Q’. The black vertical line is the true value of the parameter. 
All the distributions show a Gaussian-like behavior. 
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Figure 3.6 2-D marginal PDFs (heatmaps) computed for a RS/N  = 100. Correlation 
coefficients are at the top of each heatmap. We see that large anticorrelations occur for the 
couples log(M0)-fc, and γ-  Q’, with correlation coefficients close to -1. 

 

3.7.2. Signal to noise ratio RS/N = 5 

We perform a test similar to the previous example, with the synthetic 

spectrum to be retrieved having the same parameters as above and polluted 

with the same functional perturbation. In this case we use a smaller signal to 

noise ratio (RS/N = 5), this value being representative of the average RS/N 

value in the analyzed datasets of tectonic earthquakes. The spectrum is 

inverted in the same frequency band of [0.1 - 100] Hz. In Figure 3.4 (right 

panel) we represent the comparison between the retrieved solution and the 

original spectrum. We still retrieve the final parameters but in this case the 

uncertainties are larger. The final estimates are 0log 10.01 0.08M   , 

9.7 1.7cf   Hz, 1.9 0.3    and 99.7 1.1Q   . Although the smallest 

uncertainties are still retrieved for the seismic moment and the quality factor, 

now they have increased to 0.8% and 1.1% respectively. The percentage error 

is increased to 18% on fc and to 16% on  . In Figure 3.7 we compare the 

marginal distributions for this case with the case of RS/N = 100, on the same 
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scale. The distributions still maintain their Gaussian shape, but their width 

is significantly increased. It is very interesting to note that, on the contrary, 

correlation coefficients do not change significantly (Figure 3.8) : thus, 

correlation among parameters is mostly due to the modelization uncertainty, 

and the effect of data uncertainty on it is negligible. 

 

 

Figure 3.7 Comparison between 1-D marginal PDFs solutions, for RS/N  = 100 (green curve) 
and RS/N  = 5 (red curve). 
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Figure 3.8 2-D marginal PDFs (heatmaps) computed for a RS/N = 5. Correlation coefficients 
are at the top of each heatmap; both the shape and correlation coefficients do not 
significantly change as compared to the case of a RS/N = 100 (Figure 3.6). 

 

3.7.3. Frequency bandwidth for the inversion  

The resolution of the source parameters and of the quality factor depends on 

the bandwidth in the frequency domain available for the inversion. In the 

previous examples the bandwidth for the inversion is enough large, with two 

decades before the corner frequency and one decade after it, to allow the 

proper resolution of the parameters. We want to investigate how the 

resolution degrades when we shrink the bandwidth around the corner 

frequency. We use the same parametrization of the synthetic spectrum as in 

the previous examples and we use a value of RS/N = 5. We analyze the 

reduction of the bandwidth with three different approaches: we reduce the 

band at frequencies larger than fc (case 1), smaller than fc (case 2) and 

symmetrically around fc (case 3). The results are shown in Figure 3.9, panels 

A, B and C respectively. In the Figure we represent the relative difference 

between the expected and the retrieved values, for all the parameters. In all 

cases, when we reduce the band, the uncertainty increases and eventually a 

bias in the estimation of two or more parameters can emerge because of the 
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unresolved correlations. In Figure 3.9-A we can observe that the parameters 

are well resolved down to a frequency band as large as 0.4 decade. The 

seismic moment and the quality factor are almost unsensitive to the 

reduction of the high-frequency band, while the uncertainty in both fc and   

significantly increases as the bandwidth decreases. The correlations start to 

be poorly resolved at a width of 0.4 decade after the corner frequency. The 

mean value of all the parameters is less sensitive to the reduction of the 

bandwidth at the left of the corner frequency. Still larger errors arise from 

the correlation between cf  and   but with mean values well constrained 

down to a 0.1 decade. When a symmetric restriction is performed the quality 

of the solution is controlled by the high-frequency region and again we need 

a bandwidth of 0.4 decade to have proper resolution on the parameters. 

Finally, in Figure 3.10 we show the heatmaps of the correlation between 'Q   

and cf  for a symmetric bandwidth size of 0.3 decade and 0.4 decade around 

the corner frequency. When reducing the bandwidth, we see a migration of 

the maximum of the marginal PDF toward the upper limit of the explored 

frequency band, with the smoother decay of the spectrum around cf  being 

instead explained through a slightly lower Q value.   
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Figure 3.9 Difference between the expected and the retrieved values for the parameters 
log(M0), fc, γ and Q’ as a function of the frequency bandwidth used for the inversion. Panels 
A, B and C corresponds to a change in the bandwidth from 0.4 to 1 decade to the right of fc, 
to the left of fc and symmetrically around fc, respectively. 
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Figure 3.10 2-D marginal PDFs (heatmaps) for the parameters fc and Q’. In the left panel we 
represent the solution obtained using a bandwidth of 0.4 decade on the two sides of the 
corner frequency; in the right panel we show the solution with a bandwidth of 0.3 decade. 
We see that the maximum of the PDF migrates in the right panel to the upper limit of the 
explored fc range, far from the true value Q’ = 0.1, fc = 10 Hz. 

 

3.7.4. Uncertainties variations for different Q factors 

The accuracy in the quality factor estimate depends on the value of Q itself: 

the smaller Q, the more relevant its effect on the spectrum. We see that the 

uncertainty on the Q estimate increases as Q increases. As an example, we 

consider the solutions for Q = 100 and Q = 800 obtained from a theoretical 

spectrum inverted in the same frequency band, symmetric around fc with 0.4 

decade available on the two sides of the corner frequency. The percentage 

error moves from 5 % to 37 %, with the estimates for the quality factor of 

98 5Q    and 680 250Q   , respectively. However, the change in the Q 

value does not affect significantly the accuracy and the quality of the 

solutions for the other parameters. 

  



2016-2017 Central Italy earthquakes 

57 
 

4. 2016-2017 Central Italy earthquakes 

4.1. Data 

A major earthquake sequence interested the Central Italy region from 

August, 2016 to January, 2017. The first event of the sequence, the 6.0wM   

Amatrice earthquake occurred on August 24, 2016 with epicenter in the 

village of Accumoli; it was a very-high impact event; it caused 298 casualties, 

more than 17000 displaced persons and it completely destroyed several 

villages. The largest earthquake of the sequence – the 6.5wM  , Norcia 

earthquake - occurred on October 30, 2016 with epicenter in the village of 

Norcia. It generated large slip at the surface, with a maximum amplitude 

observed on the Monte Vettore of about 2 m.  

We computed the source parameters for the major events of this sequence. 

The dataset consists of accelerometric records for all the events of the 

sequence with 4.0LM   (56 events), recorded by stations within 100 km from 

the event epicenter. We have at maximum 62 stations per event (Figure 4.1); 

the minimum hypocentral distance is equal to 9 Km, the maximum is equal 

to 100 Km. The total number of records is 2329. 

Sampling frequency varies among 100 Hz, 125 Hz and 200 Hz, depending on 

the station. 

The waveforms were downloaded from ESM (Engineering Strong-Motion 

database) (Luzi et al., 2016); the metadata were acquired from INGV bulletin 

(ISIDe working group, 2016). 
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Figure 4.1 Map representing the location of the events (red dots) and stations (yellow 
triangles). 

4.2. Processing 

For each record, the definition of the S-wave (signal) duration t  was based 

of the expected ground motion duration (Trifunac and Brady, 1975): 

 
0.02 exp(0.74 ) 0.3L HM

t
a

   
    (4.1) 

where H  is the hypocentral distance and 2a   is a factor introduced to 

rescale the ground motion duration to the S-wave duration. The S-wave time-

window ST  was therefore defined using a theoretical S-wave arrival time ST  

obtained from a 1-D velocity model (Chiarabba, 2009): 

  0.1 , 0.9S S ST T t T t        (4.2) 
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To be sure to include the direct S wave, the time window starts before the 

theoretical expected arrival; specifically, it anticipates the S wave arrival time 

of a time equal to the 10% of the expected duration.    

A noise time-window NT   of the same duration t  was selected before the 

origin time 0T  : 

  0 0,NT T t T     (4.3) 

With this choice, we do not want to include the P-wave within the noise 

window. Although the P wave coda may pollute the S wave signal, the direct 

P wave does not usually perturb the S waveform. Indeed, using the P wave as 

noise to be compared to the S signal artificially amplifies the noise 

contribution.   

The following operation were performed on both signal and noise 

waveforms: 

1. Constant and linear trend removal 

2. Hann-function tapering on the first and last 5 % of the signal; the first 

half of the window is applied to the first 5% of the signal, the second 

half to the last 5 %. 

Fast Fourier Transform (Cooley and Tukey, 1965) was computed for pre-

processed signal and noise, obtaining the amplitude spectra. Finally, each 

spectrum has been smoothed with a 5-points moving average filter. 

4.2.1. Quality control on automatic processing 

Automatic processing of large dataset could be very dangerous.  

In order to avoid to blindly mix in the processing data with very different 

quality, we defined two quality selection criteria. The first-one is based on the 

signal-to-noise ratio, evaluated point by point in the frequency domain; the 
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second-one is based on the similarity of each a-posteriori probability density 

function to a Gaussian function as discussed in the Section 3.5. 

4.2.1.1. Signal-to-noise ratio quality selection 

We computed the signal-to-noise ratio for each point of the frequency 

domain  0 Hz 0.8 NYQUISTf  ; starting from the center of the domain, we 

looked for the first (left direction) and the last (right direction) point with 

S/N larger than 1.25. These 2 points become the bounds of the a-posteriori 

frequency domain, used for the fit. As a result, this allowed us to reject the 

frequency subdomain in which the noise was comparable to the signal 

(Figure 4.2). Moreover, we were able to automatically reject records that 

carried no information about the earthquake (Figure 4.3) when an empty 

frequency band was selected. 

4.2.1.2. Solution quality selection 

One of the assumptions of the probabilistic approach is that modelization 

uncertainties are Gaussian-like functions. If the forward operator we are 

using is not able to properly describe the observed data, this assumption does 

not hold anymore. As a consequence, the a-posteriori pdf (3.25) is no longer 

similar to a Gaussian function. 

In order to reject the data for which this similarity does not hold, we 

evaluated the similarity of each solution to a Gaussian function (Section 3.5). 

An example is shown in Figure 4.4. 
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Figure 4.2 A-priori (red rectangle) and a-posteriori (black rectangle) frequency band for the 
spectrum fit (red curve). The blue curve is the signal spectrum, the yellow curve is the noise 
spectrum; there is a clear effect of the noise spectrum (change of decay slope beyond 20 Hz) 
that we are able to avoid thanks to the signal-to-noise ratio criterion. 

 

 

Figure 4.3 Rejected data (Event-ID INGV 7077321, station PCRO) due to the signal-to-noise 
ratio criterion. On the left, the noise (yellow window) and the signal (blue window); on the 
right, the noise (blue curve) and the signal (yellow curve) spectrum. 
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Figure 4.4 Rejected data due to the gaussian similarity criterion for the solution (Event ID-
INGV 7077781). The rejected data (upper left, station SSFR) is very different from the S-
wave observed at other stations for the same event (upper right, station MBGAB).  
Each column, from the top : rejected signal; signal spectrum(blue curve), noise spectrum 

(yellow curve) and fit (red curve); 1-D marginal PDF for cf . 
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4.3. Results 

We investigated the earthquake source properties for the main events of the 

Central Italy 2016-2017 sequence. As an example, we show the solution for 

the 4.0LM  event occurred the day 24-08-2016 at 23:22:05 (UTC) (Event 

7141891), and recorded at the station FIAM. Observed signals in time and 

frequency domains are shown in Figure 4.5. The fit is superimposed to the 

amplitude spectrum of the waveform. 1-D marginal PDFs are shown in Figure 

4.6; 2-D marginal PDFs heatmaps are plotted in Figure 4.7, while a 

comparison with the modelization correlation (Section 3.7.1) is shown in 

Figure 4.8. It is worth noting that, as observed from synthetic tests, the 

correlation is governed by the modelization uncertainty. 

 

 

Figure 4.5 An example of accepted solution. In the left panel we plot the 2 horizontal 
components of the signal; in the right panel we represent the signal spectrum (blue curve), 
the noise spectrum (gray curve) and the best-fit solution (red curve). The traces are shown 
for the event ID-INGV 7141891 and the station FIAM. 
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Figure 4.6 1-D marginal PDFs for the parameters log(M0), fc, γ and Q’. All the curves show a 
Gaussian-like behavior for the same event-station as shown in Figure 4.5. 

 

 

Figure 4.7 2-D marginal PDFs for the parameters log(M0), fc, γ and Q’, for the same event-
station as shown in Figure 4.5. These heatmaps look similar to the theoretical ones of Figure 
3.6, indicating that correlations are mainly driven by model uncertainties.2-D marginal 
PDFs. 



2016-2017 Central Italy earthquakes 

65 
 

 

 

Figure 4.8 Comparison among expected and observed correlation for source parameters. On 
the top, 2-D marginal PDFs for the event 7141891, station FIAM; on the bottom, 2-D 
marginal PDFs from synthetic spectrum with S/N = 100 (Section 3.7.1). 

 

In Figure 4.9 we represent  the solutions for all the events, in the plot of the 

corner frequency as a function of the seismic moment.  We observe on 

average that standard scaling 
0 3

1

c

M
f

   holds (Aki, 1967) with an average 

static stress drop 2.1 0.3    MPa, although we have a large variability in 

the corner frequency estimates for events with similar seismic moment. 

Specifically, for event with moment magnitude WM  between 4 and 5 a 

variability in the corner frequency of a factor 5, with the stress drop jumping 

from few hundreds KPa to 10 MPa. However, the majority of events has a 

stress drop close to the average values. As the magnitude increases the stress 

drop increases. For the Norcia event ( 6.4 0.1WM   ), we have a corner 

frequency 0.15 0.03cf Hz   and a high-frequency decay slope 2.14 0.08  

. The estimated source radius is 8.3 1.8r km   and the static stress drop is 

4 3 MPa   . For the Amatrice event, we have a moment magnitude of  
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6.11 0.07WM   ,  a corner frequency 0.27 0.04cf Hz   and a high-

frequency decay slope 2.05 0.08   . The estimated source radius is 

4.5 0.7r km  , the static stress drop is 9 4 MPa   . Finally, for the Visso 

earthquake, we have a moment magnitude of  5.93 0.05WM   , a corner 

frequency 0.23 0.03cf Hz   and a high-frequency decay slope 1.94 0.04  

. The estimated source radius is 5.3 0.6r km  , the static stress drop is 

3.0 1.0 MPa   . 

To analyze the stress drop retrieved in this study, we compare our findings 

with scaling relationships of the two major seismic sequences, that have 

interested the Central Italy region (Umbria-Marche 1997-1998, L’Aquila 

2009) in the last two decades. Different studies for this events show a stress 

drop characterization fully consistent with our results : Bindi et al. (2004) 

found an average stress drop of 2 1 MPa for the Umbria-Marche sequence; 

For L’Aquila sequence Pacor et al. (2015) showed a stress drop variability that 

spans two order of magnitude (0.1 25) MPa, with an average value equal to 

2.6 MPa, and a higher value - 10 MPa - for the largest event ( 5.8)WM  . They 

also observed a stress drop increase from 1 to 10 MPa with the moment 

magnitude ranging from 3 to 5.8. Also Del Gaudio et al. (2015) reanalyzed 

the source parameters for some events of the L’Aquila sequence, to extract 

appropriate empirical Green functions for numerical simulations. They also 

found a self-similarity in the selected dataset, including events with 

magnitude ranging between 3.5 and 6.3, with an average stress drop of 3 

MPa. The mainshock of the sequence instead showed a higher stress drop of 

about 9.0 MPa. 

All the reported stress drop estimations are consistent among each other and 

with our estimations, since they are obtained assuming the Brune’s circular 

rupture model. 
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As in the previous studies we also have a larger stress drop than the average 

for the largest magnitude events in the sequence. This may be an indication 

of slip concentration in smaller size patches, as also retrieved from kinematic 

inversions (Tinti et al., 2016; Liu et al., 2017; Chiaraluce et al., 2017). In the 

case of the M 6.0, Amatrice earthquake Chiaraluce et al. (2017) retrieved a 

small size slip patch ( 3 3x Km2) with a maximum slip larger than 1 m, just up-

dip with respect to the hypocenter and a secondary slip patch of about 5 5x  

Km2, with slip above 50 cm. On the rest of the fault ( 20 15x Km2) the slip 

level is lower (< 30 cm).  

 

Figure 4.9 Scaling law between the corner frequency and the seismic moment. The red points 
are the solutions per event; the blue line is the best fit curve, with a scaling of -3; the parallel 

lines indicate the scaling with stress drops ranging from 0.1MPa   to 100MPa 

. The error bars are represented with a 3  confidence level. 

 

Results for   and Q  are shown in Figure 4.10 and Figure 4.11. The   

distribution has a median value equal to 2.1, with the 60 % of events 
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exhibiting a   between 1.9. and 2.3 as expected from the standard Brune’s 

model (Brune, 1970, Section 2.4.1). In this case, retrieved high-frequency 

scaling could be an indication of standard mechanisms for earthquake 

generation, mainly driven by tectonic stress perturbed by the occurrence of 

previously events (static and dynamic triggering).  

The Q  distribution has a mean value of 230, and a standard deviation of 50; 

this can be interpreted as a mean value for the anelastic attenuation factor of 

the whole explored region. It is consistent - at a confidence level of 2   - with 

the estimate of Bindi et al. (2004). They found an average S wave anelastic 

attenuation factor of 318 for the Central Italy region; it is worth to note that 

they used a different Green’s function with a frequency-dependent Q factor 

and a constant Q value was found only for frequencies above 8 Hz. 

 

 

Figure 4.10   estimates per single events. In the left panel we plot the histogram for the 

parameter and in the right panel the retrieved values per event. The error bars are 
represented with a 3  confidence level. 
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Figure 4.11 Q estimates per single events. In the left panel we plot the histogram for the 
parameter and in the right panel the retrieved values per event. The error bars are 
represented with a 3  confidence level. 
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5. LFEs in Nankai 

Low-frequency earthquakes (LFEs) (Nishide et al., 2000) are a peculiar 

seismic activity manifestation, characterized by low amplitude, very low 

signal-to-noise ratio and a frequency content mostly included in the 1-10 Hz 

band. LFEs are part of a more general phenomenon called slow earthquakes; 

it comprehends nonvolcanic tremor (Obara, 2002), slow-slip events (SSE) 

(Dragert et al., 2001) and very low-frequency earthquakes (VLFs) (Ito et al., 

2007). Two common features distinguish these events from ordinary 

earthquakes : the longer time duration and the frequency content. 

With the exception of very few cases (Kanamori and Cipar, 1974; Linde et al., 

1996), a systematic observation of these phenomena was possible only after 

the recent deployment of dense and highly sensitive seismic networks, such 

as the NIED Hi-Net (Obara et al., 2005). 

Slow earthquakes always occur close to the source area of very-large 

earthquakes (megathrust earthquakes). The scientific interest in the study of 

these phenomena is therefore high : they could play a fundamental role in the 

control and preparation of large seismic events; thus a detailed 

characterization of the events would help in improving the seismic hazard, 

mitigating the associated risk. Furthermore, the 1-10 Hz frequency band is 

relevant for seismic engineering in the study of the stability of several kinds 

of structures. 

In the last years, several complex data analysis methods have been developed 

in order to enhance the detection of LFEs (Brown et al., 2008; Frank and 

Shapiro, 2014; Poiata et al., 2016); consequently, very-large datasets are 

available to the scientific community. Nevertheless, the source 

characterization of these phenomena still remains unknown; the main 

difficulty is represented by the very-low signal-to-noise ratio associated with 

this seismic transient. Ide et al. (2007) and Bostock et al. (2015) observed 
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two opposite behaviors concerning the scaling of the source duration with the 

seismic moment. The former study includes all the available slow 

earthquakes at the time of the publication and shows a seismic moment 

proportional to the duration (Figure 5.1); the latter study, specifically related 

to LFEs along the Cascadia subduction plate, retrieves an almost constant 

duration over two decades of seismic moments. Both results are completely 

different from what has been largely observed for ordinary earthquakes (Aki, 

1967), where the seismic moment is proportional to the cube of the duration. 

 

 

Figure 5.1 Scaling among seismic moment and duration for various slow earthquakes, and 
comparison with ordinary earthquakes scaling. Figure from Ide et al., 2007. 

 

In this work, we applied the previously described method to characterize the 

source of more than 40000 LFEs occurred in the Nankai region during the 

period 2012-2016. 
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5.1. Data 

The dataset is composed by 43183 LFEs detected by applying the BTBB 

technique (Poiata et al., 2016) to nonvolcanic tremors recorded in 

southwestern Japan by the dense high-sensitive Hi-net monitoring system 

(Obara, 2005) during the period 2012-2016. Along this period 100  Hz 

continuous velocity records were available from 25 stations. 

The BTBB technique consists in a multi-scale array-based detection; using 

characteristic functions extracted from the seismic signals, it detects and 

locates the events by back-projecting the station-pair time-delay estimates 

according to theoretical time-delays, and by exploiting coherence across the 

stations. 

The distribution of the events in space and time is represented in Figure 5.2 

and Figure 5.3, respectively. 

 

 

Figure 5.2 Map representing the location of the LFEs (brown dots) and stations (yellow 
squares). 
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Figure 5.3 Time distribution of the LFEs : on the top, BTBB catalog; in the middle, NIED 
catalog; on the bottom, JMA catalog. 

 

5.2. Processing 

We applied the described methodology to S-wave displacement spectra. S-

wave arrival times ST  were theoretically obtained from the 1-D layered 

velocity model of Kubo et al. (2002).  

Following the criterion defined in Section 4.2, a 4 seconds S-wave time 

window ST  was selected as follows : 

  0.4, 3.6S S ST T T      (5.1) 

A noise time-window NT  of the same duration was selected before the origin 

time 0T  : 

  0 04,NT T T     (5.2) 
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The following operations were then performed on both signal and noise 

records: 

3. Constant and linear trend removal 

4. Hann-function tapering on the first and last 5 % of the data  

Fast Fourier Transform (Cooley and Tukey, 1965) was computed for pre-

processed signal and noise, obtaining the amplitude spectra. Finally, each 

spectrum has been smoothed with a 5-points moving average filter. 

For each LFE and each station, the observed curve is the geometric mean of 

the smoothed spectra from the 2 horizontal components. 

5.2.1. Quality control on automatic processing 

We applied the same quality criteria as described previously (Section 4.2.1), 

and based on the signal-to-noise ratio, and degree of similarity of the a-

posteriori PDF to a Gaussian function. 

5.2.1.1. Signal-to-noise ratio quality selection 

We computed the S/N for each point of the frequency domain  0.7 40  Hz, 

where the maximum frequency was selected as the 80 % of the Nyquist 

frequency, while the minimum frequency is due to the instrument response 

function; the response is flat above 1 Hz, but when removing the instrument 

response from the records by deconvolution, the domain can be further 

extended to 0.7 Hz.  

Starting from the center of the interval, we looked for the first (left direction) 

and the last (right direction) point with S/N larger than 1.25. These 2 points 

become the bounds of the a-posteriori frequency domain, used for the fit. As 

a result, this allowed us to exclude from the fitting the frequency subdomain 

in which the effect of the noise was comparable to the signal (Figure 5.4). 

Moreover, we were able to automatically reject records with no information 
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about the earthquake (Figure 5.5), when an empty frequency band was 

obtained at the end of this phase. This happened for more than 50 % of the 

available records. 

 

 

Figure 5.4 A-priori (red rectangle) and a-posteriori (black rectangle) frequency band for the 
spectrum fit (red curve). The blue curve is the signal spectrum, the yellow curve is the noise 
spectrum; there is a clear effect of the noise spectrum (change of decay slope beyond 7 Hz) 
that we are able to avoid thanks to the signal-to-noise ratio criterion. To better visualize the 
effect of the criterion, the a-priori frequency domain has been cut up to 20 Hz. 

 

 

Figure 5.5 Rejected data (Event-ID 20120529_0329D, station N.HIYH) due to the signal-
to-noise ratio criterion. On the left, the noise (yellow window) and the signal (blue window); 
on the right, the noise (blue curve) and the signal (yellow curve) spectrum. 
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5.2.1.2. Solution quality selection  

Since our probabilistic framework is based on the assumption that   

modelization uncertainties are Gaussian, we verify the similarity of the a-

posteriori PDF (3.25) to a Gaussian function (Section 3.5).  

As an example of rejected data, we show (Figure 5.6, left column) an ordinary 

earthquake waveform contained in the dataset, with a corner frequency cf  

beyond the data resolution; this event was rejected after processing. The PDF 

for cf  is clearly different from a Gaussian distribution, and indicates that the 

true corner frequency is in a frequency domain beyond 40 Hz, which is the 

maximum data resolution. Indeed, for an ordinary earthquake with a seismic 

moment equal to 11.710 N m the expected corner frequency – assuming a stress 

drop 10  MPa – is 50 Hz. With this criterion, we were able to reject all 

the ordinary earthquakes contained in the dataset. 

Moreover, we show (Figure 5.6, right column) a LFE signal with a very low 

quality (low signal-to-noise ratio); the S/N criterion described in the 

previous section is able to individuate a frequency band in which there could 

be an information different from the noise; this band is very narrow (

[0.8 3.0]  Hz) due to the low quality of the data and from a visual inspection 

of the spectrum is easy to understand that it is different from the expected 

displacement spectrum that we want to model (Section 2.3). However, an 

automatic processing of this signal would lead to an estimation of the source 

parameters for this station; thanks to this criterion, we were able to reject all 

the signals characterized by such a low quality. 
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Figure 5.6 Examples of rejected solutions. Left column : signal (blue window) and noise 
(yellow window) (top), signal (blue curve) and noise (yellow curve) spectrum (middle), 
corner frequency PDF (bottom) for an ordinary earthquake contained in the dataset (Event 
20120525_0852C, station N.UWAH). Right column : signal, spectrum and corner frequency 
PDF for a low quality data (Event 20120529_0329D, station N.TSYH). 
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5.3. Results 

We analyzed the dataset inverting for the three source parameters 

0(log , , )cM f  , while the Q-factor was fixed to the value 300Q   from 

literature (Kubo et al., 2002). 

We estimated the source parameters for 11076 LFEs (Figure 5.7); the seismic 

moment of the events varies in the interval  0log 10.4 12.4M    (

 0.86 2.2WM   ), while the corner frequency spans the interval 

 0.8 12cf   Hz. 

 

Figure 5.7 Scaling law between the corner frequency and the seismic moment. The red points 
are the solutions per event; the blue line is the best fit curve, with a scaling of -3.4; the parallel 

lines indicate the scaling with stress drops ranging from 0.1  KPa to 1  MPa. The 

error bars are represented with a 3  confidence level. 
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As an example, we show the spectra and the solutions for one event 

(20120531_0326D, 1.93 0.04WM    , 1.59 0.12cf    Hz, 2.26 0.17   ) at 

all the stations (Figure 5.8) and the velocity records, the spectra and the 

solutions for 3 events (Figure 5.9, Figure 5.10, Figure 5.11) at the edges and 

in the middle of the explored seismic moment range (Event 

20140505_2358H, Station N.UWAH, 0log 12.3M  ; Event 

20150212_0123Q, Station N.GHKH, 0log 11.3M  ; Event 20151101_0439E, 

Station N.KWBH, 0log 10.3M  ).  

 

Figure 5.8 Spectra (discrete curves) and solutions (continuous curves), event 

20120531_0326D; the estimated source parameters are 1.93 0.04WM    , 

1.59 0.12cf    Hz, 2.26 0.17   . 

 

We found the typical behavior of the slow earthquakes, observing corner 

frequencies that are much lower than what expected for ordinary 

earthquakes sharing the same seismic moment. Furthermore, the retrieved 

order of magnitude of the stress drop (KPa) is well in the range of what 

reported in literature (Ide, 2014). 
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Figure 5.9 Example of accepted solution (log(M0) = 12.3, event 20140505_2358H, station 
N.UWAH). Top panels : signal (blue windows) and noise (grey window) (left), signal (blue 
curve) and noise (grey curve) spectrum and solution (red curve) (right). Middle panels : 1-D 
marginal PDFs for the parameters log(M0), fc, and γ. Bottom panels : 2-D marginal PDFs for 
the parameters log(M0), fc and γ. 
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Figure 5.10 Example of accepted solution ( 0log 11.3M  , event 20150212_0123Q, Station 

N.GHKH). Top panels : signal (blue windows) and noise (yellow window) (left), signal (blue 
curve) and noise (yellow curve) spectrum and solution (red curve) (right). Middle panels : 1-
D marginal PDFs for the parameters log(M0), fc, and γ. Bottom panels : 2-D marginal PDFs 
for the parameters log(M0), fc and γ. 
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Figure 5.11 Example of accepted solution ( 0log 10.3M  , event 20151101_0439E, Station 

N.KWBH). Top panels : signal (blue windows) and noise (yellow window) (left), signal (blue 
curve) and noise (yellow curve) spectrum and solution (red curve) (right). Middle panels : 1-
D marginal PDFs for the parameters log(M0), fc, and γ. Bottom panels : 2-D marginal PDFs 
for the parameters log(M0), fc and γ. 

 

Although the events in Figure 5.7 show a large variability in the cf  value for 

fixed 0M , a scaling among corner frequency and seismic moment is evident. 

From a linear regression 0log logcf M  we obtained a slope whose reciprocal 

is 3.4 , very close to the classical scaling for ordinary earthquakes ( 3.0 ) ( 

Aki, 1967).  
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In order to avoid that the regions in the seismic moment domain having the 

largest number of events (the central part of the explored domain) dominate 

the fit, we grouped the data in bins of size 0.03 (Figure 5.12). We estimated a 

scaling slope whose reciprocal is equal to 3.5 0.5  , compatible with the 

standard one, through an unweighted linear regression on the mean values 

of each bin; the unweighted choice is coming from the fact that we want to 

assign the same importance to each bin, regardless the number of 

observation it contains. 

 

 

Figure 5.12 Scaling law among corner frequency and seismic moment; the grey points are 
the solutions per event; the red points are the solutions per bin (bin size = 0.03); the blue 
line is the best fit curve, with a scaling of -3.5; the green line is the -10 scaling and the 
magenta line is the -1 scaling; the parallel lines indicate the scaling with stress drops ranging 

from 0.1  KPa to 1  MPa. The represented error is the weighted standard 

deviation. 
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We chose to represent two different uncertainties associated to the mean 

value in the bin : the weighted standard deviation W  (Figure 5.12), which 

represents the observed corner frequency variability in each bin, and the 

standard error   (Figure 5.13), which is the error usually associated to the 

mean value of repeated measures (Taylor, 1997). 

These errors are defined as follows : 
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  (5.3) 

where N is the number of corner frequency estimates for each bin and i  is 

the standard deviation of each 
icf  estimate. 

Since the size of the uncertainties, both W  and   , is very similar among the 

bins, a weighted linear regression would give a result very close to the 

unweighted one. 

For each bin, from Figure 5.12 we still observed an important variability of 

cf . Nevertheless, the classical scaling becomes prominent. 
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Figure 5.13 Scaling law among corner frequency and seismic moment, as represented in 
Figure 5.12, with the difference that the represented error is the standard error.  

 

5.4. Discussion 

We characterized the source of a very-large number of LFEs occurred in 

Nankai region between 2012 and 2016. We observed the typical behavior of 

LFEs, that is durations much longer than expected for ordinary earthquakes 

sharing the same seismic moment, and very low stress drops (  KPa). 

We specifically analyzed the scaling among corner frequency and seismic 

moment. When considering all the events and looking at their average 

behavior, the scaling is close to the standard one within uncertainties (Figure 

5.12, Figure 5.13). The robustness of this result arises from the probabilistic 

method used to estimate the source parameters for single station (Chapter 

3), combined with the quality selection criteria used for the automatic 
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processing of the data (Section 5.2.1). Additionally, we explored a large 

magnitude interval (two decades) and the scaling relies on a very large 

number of events per magnitude bin. 

In Figure 5.12 we represented the two different scaling reported in literature 

for this kind of phenomena. To test the possibility that our dataset could be 

also described by any of these two models, we performed a bootstrap test. We 

extracted a single value of cf  per magnitude bin, to have a collection of corner 

frequency points as a function of the seismic moment. The probability to 

observe an almost flat behavior (green line, slope equal to 1/10 , as retrieved 

by Bostock et al., 2015) or a steeper slope (magenta line, slope equal to 1 , 

as retrieved by Ide et al., 2007) is very small, except in the case we extract 

data in a limited portion of the magnitude range (e.g. half a decade). 

Moreover, if we average the information from a large amount of data per bin 

(from 50 to 300), the uncertainty in the mean value becomes very small 

(Figure 5.13), indicating that a slope larger or smaller  than 1/ 3  is very 

unlikely even in a small magnitude interval. 

Hence, we can argue that the mechanism that rules the fracturing process of 

fault patches generating LFEs is the same as for ordinary earthquakes; it is 

characterized by a self-similarity which consists in a constant ratio among 

the seismic moment of the events and the cube of the radius of the ruptures. 

This ratio is proportional to the static stress drop. 

Finally, we checked the possibility that this trend could arise from the 

combination of clusters of events having different scaling with different 

slopes and different intercepts, such that their combination would show an 

apparent 3  scaling. Thus, we plotted the events divided in classes (Figure 

5.14).  
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Figure 5.14 Scaling among corner frequency and seismic moment, each symbol represents a 
different collection of LFEs. MTE_12, MTE_14, MTE_15, MTE_16 are referred to the 
collection of LFEs coming from the major tremor event of the year 2012,2014,2015 and 2016, 
respectively; BG is referred to the collection of all the events not clustered neither in space 

nor in time. The parallel lines indicate the scaling with stress drops ranging from 0.1 

KPa to 1  MPa 

 

We select as classes the collection of LFEs coming from a single, major 

tremor event in each analyzed year; these events are well grouped in space 

and time. Furthermore, we collected all the events - in the whole explored 

time interval  - that are not clustered neither in space nor in time and we refer 

to them as background activity (BG). From Figure 5.14 we observe that each 

class shows a slope similar to the average one, and almost covers the same 

range in magnitude. 
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If we represent the slope (with 2  confidence level uncertainty) per single 

class (Figure 5.15), we find that each slope is similar all along the classes and 

compatible with a 3  scaling. 

 

Figure 5.15 Scaling slopes per class of LFEs. MTE_12, MTE_14, MTE_15, MTE_16 are 
referred to the collection of LFEs coming from the major tremor event of the year 
2012,2014,2015 and 2016, respectively; BG is referred to the collection of all the events not 
clustered neither in space nor in time. 

 

Each class shows a different stress drop (Figure 5.16); although within a 

narrow interval (1 5 KPa), this could be a signature of the class. 
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Figure 5.16 Stress drop per class of LFEs. MTE_12, MTE_14, MTE_15, MTE_16 are referred 
to the collection of LFEs coming from the major tremor event of the year 2012,2014,2015 
and 2016, respectively; BG is referred to the collection of all the events not clustered neither 
in space nor in time. 

 

We used the Madariaga’s model to estimate the source radius from the corner 

frequency (2.45), and then the stress drop (2.31). The Madariaga’s model is 

averaging the expected directivity effect on the corner frequency; since in 

most cases only few stations ( 3 ) contribute to the source parameter 

estimation per  event without a complete azimuthal coverage, we believe that 

this choice should be preferred to the Brune interpretation (2.36). 

The coefficient 0.21k   in (2.45) linking the corner frequency to the ratio 

between the S-wave velocity and the radius of the source has been computed 

assuming 0.9Rv  . Ide (2014) found that slow earthquakes could be 

characterized by a Rv  much lower than the S-wave speed, lying in the interval 
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 0.1 10 m s-1. Decreasing the rupture speed implies a decrease in the k  

coefficient; since the stress drop estimate depends on the inverse of the cube 

of k  , even a factor 3  in k  would imply an increase of a factor 30  in the 

stress drop value. Thus, the estimate of the stress drop should be connected 

to an independent estimation of the rupture velocity. 
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6. Micro-seismicity in North Ibaraki 

The Northern Ibaraki region in Japan has been interested by a significant 

increase of the seismicity after the Tohoku earthquake (2011); thus, a very-

high sampling-rate network has been deployed by AIST (GSJ). 

We investigated the seismic source properties for more than 1000 

earthquakes occurred from 2016 to 2017 in this region; a selection on the full 

catalog (more than 10000 events) was made, based on geographic (6 

clusters) and local magnitude (0 4.5)  criteria. 

Thanks to the extremely high sampling rate of the dataset (1000 Hz), we were 

able to properly assess the characterization of the source parameters; in the 

explored magnitude range, expected corner frequencies usually fall beyond 

the  frequency resolution for standard sampling rates ( 40 80MAXf   Hz, 

100,200SAMPf  Hz). This network will thus provide a unique opportunity to 

evaluate earthquake source properties with proper resolution in the data 

space ( 400MAXf  Hz, 1000SAMPf  Hz). 

6.1. Data 

The dataset is composed by 1061 events occurred in the North Ibaraki region 

(Figure 6.1) in the time interval 2016-2017 and recorded by the high sampling 

rate (1000 Hz) AIST seismic network (GSJtemp). Instruments are 3-

component velocimeters with a flat response beyond 2 Hz; thus the a-priori 

frequency domain for spectral analysis is 2-400 Hz. This band could be 

modified during the processing, trace by trace, due to the signal-to-noise 

quality selection criterion (Section 6.2.1). 
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Figure 6.1 Map representing the location of the analyzed events (red dots), the overall 
seismicity (grey dots) and stations (yellow squares). 
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6.2. Processing 

For each station record we pre-processed signal and noise, obtaining the 

amplitude spectra, as described in Section 4.2. 

6.2.1. Quality control on automatic processing 

We again applied the two quality selection criteria defined in Section 4.2.1 . 

The first-one is based on the signal-to-noise ratio, evaluated point by point 

in the frequency domain  2 400  Hz. Contrarily to the frequency domain 

used for the Central Italy analysis, the minimum frequency is 2 Hz due to the 

velocimeter response curve, which is flat beyond 2 Hz, and the maximum 

frequency is still equal to 0.8 NYQUISTf . The second-one is based on the 

similarity of each solution to a Gaussian function. Examples of the signal-to-

noise ratio quality selection and of the solution quality selection are reported 

in Figure 6.3 and Figure 6.4, respectively. 
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Figure 6.2 A-priori (red rectangle) and a-posteriori (black rectangle) frequency band for the 
spectrum fit (red curve). The blue curve is the signal spectrum, the grey curve is the noise 
spectrum; there is a clear effect of the noise spectrum (change of decay slope beyond 150 Hz) 
that we are able to avoid thanks to the signal-to-noise ratio criterion. 

  

 

Figure 6.3 Rejected data (Event-ID 201608300809A, station STG) due to the signal-to-noise 
ratio criterion. On the left, the noise (grey window) and the signal (blue window); on the 
right, the noise (blue curve) and the signal (grey curve) spectrum. 
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Figure 6.4 Rejected (upper left) and accepted (upper right) data due to the gaussian 
similarity criterion for the solution (Event-ID 201703261756D). The rejected data is very 
different from the S-wave observed at other stations for the same event.  
Upper left : Signal (2.5 s, Station SRK); Middle left : signal spectrum (blue curve), noise 
spectrum (grey curve) and fit (red curve); Lower left : Rejected 1-D PDF for  ; Upper right 

: Signal (2 s) at a different station (KMD) for the same event; Middle right : signal spectrum 
(blue curve), noise spectrum (grey curve) and fit (red curve); Lower right : Accepted 1-D PDF 
for  . 
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6.3. Results 

First, we analyzed the dataset using a 4D model space; we thus inverted for 

the 3 source parameters, and the Q-factor.  

6.3.1. Q-value 

Q-values as obtained from the inversions are reported in Figure 6.5. A very 

low anelastic attenuation effect is observed (high Q values); this is consistent 

with the findings from literature for the explored region (Takahashi, 2012) 

(Figure 6.6). Moreover, the geological map of the area provided by the GSJ 

reports an Abukuma granitic rock in the depth interval 0-20 Km, which 

includes the rocks hosting the analyzed seismicity, located in the range 5-10 

Km. For this rock, a high Q-value is expected (Lebedev et al., 2003) (Figure 

6.7). 

When Q is large, the spectrum becomes less sensitive to the variations of Q; 

thus, in this domain of the anelastic attenuation both the inversion and the 

computation of the PDF for the estimation of the uncertainties become 

computationally expensive. On the other hand, since events are grouped in 

clusters, for all the events in one cluster analyzed at a single station we should 

not expect changes in the Q value. In Figure 6.8 we observe the distribution 

of the Q values for the station NDG for events in the same cluster. We observe 

that the 70 % of the retrieved values is above 1500, while other values fall in 

the range of 300<Q<1000, with an almost random distribution. Thus, we 

start by testing the hypothesis of fixing the Q value for couples of events in 

the same cluster and station. In Figure 6.9, we theoretically evaluate how the 

spectrum is affected by different values of Q. We see that up to 100 Hz there 

is almost no sensitivity to Q values larger than 1000. These spectra differ of 

half a magnitude order in the 0log( )M  scale from the spectrum characterized 
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by the same source parameters and a Q value of 300. Hence, we decided to 

compare a Q value of 1500 with Q values smaller than 1000.  

 

Figure 6.5 Histogram of the Q values obtained as solutions per event.  
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Figure 6.6 Q tomography in the frequency band 16-32 Hz, for a depth varying from 0 to 20 
Km. The area explored in this study is in the red circle. Figure from Takahashi, 2012. 

 

 

Figure 6.7 Q-factor estimates for granite. Empty and solid circles refer to two different 
measurement techniques. Figure from Lebedev et al., 2003. 
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Figure 6.8 Q-values from cluster analysis. On the left, map with the location of the selected 
cluster (white circle) and the selected station NDG (white square). On the right, the 
histogram of the Q values obtained at the station NDG for the events of the cluster. 
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Figure 6.9 Expected Brune’s spectra (3.4) for Q = 300, 1000, 1500, 2000. Even from a visual 
inspection, it is very difficult to distinguish between the expected spectra for the three high 
Q-values. 
 

The tests show the comparison  between the case with Q = 1500 and the case 

of Q = 300 (high anelastic attenuation effect). The results are clearly pointing 

in the direction of Q = 1500 as the best value for the spectrum modelling. 

In Figure 6.10 we report the histograms of the RMSE, defined as the square 

root of the MSE, for the two cases applied to all the source-receiver couples. 

We observe that the RMSE between observed and predicted amplitude 

spectra is significantly larger for Q = 300 (mean value  47 % larger). 

Furthermore, using the probabilistic framework, we evaluated the ratio 

between accepted and rejected solutions, and the estimated uncertainties. 

In the case Q = 300, the number of accepted solutions is decreased by 44 % 

(Figure 6.11), moving from 6148 to 3462; the number of available data (single 

station records) is 7360.  
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In the case of Q = 300, the error on the corner frequency estimates is 

increased of a factor of 107 % (Figure 6.12), while the error on the seismic 

moment estimates is increased by a factor of 39 % (Figure 6.13).  Thus, in the 

large majority of fits, a large Q value better describes the spectral decay as 

compared to Q=300. In Figure 6.14 we finally compare the solutions 

obtained for the two cases for the same observed spectrum. 

Thus, we decided to perform the inversion fixing the Q value to Q=1500.  

 

Figure 6.10 Histogram of the RMSE between the observed and predicted amplitude spectra. 
On the left, the RMSE is evaluated for the expected spectra with Q = 1500; on the right, Q = 
300. For the model with Q = 300 the RMSE is 47 % larger compared to Q = 1500, indicating 
a worst fit. 
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Figure 6.11 Statistics on the accepted and rejected solutions and data. Upper left : accepted 
solutions in dark green, available data (station records) in light green; Upper right : number 
of accepted solutions per event; Lower left : number of reject data, per event; Lower right : 
number of rejected solutions, per event. Panel A is referred to Q = 1500, panel B is referred 
to Q = 300. 

 

 

Figure 6.12 Histograms of the percentage error on the corner frequency. On the left, the 
errors retrieved with Q = 1500; on the right, Q = 300. In the case of Q = 300, the error on 
the corner frequency estimates is increased of a factor of 107 %, indicating a worst fit. 
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Figure 6.13 Histograms of the percentage error on the seismic moment. On the left, the 
errors retrieved with Q = 1500; on the right, Q = 300. In the case of Q = 300, the error on 
the corner frequency estimates is increased of a factor of 39 %, indicating a worst fit. 

 

 

Figure 6.14 Signal spectrum (blue curve) and noise spectrum (grey curve) for the station 
KMD, event-ID 201701081127C. On the left, the solution (red curve) for Q = 1500, on the 
right for Q = 300. The fit of the solution for Q = 300 is clearly worse than the fit of the 
solution retrieved for Q = 1500. 

 

6.3.2.  Standard versus generalized Brune’s model 

Most of the source inversion are performed using an omega-square model, 

as originally proposed by Brune (1970).  

We thus compared the results obtained without fixing gamma (generalized 

Brune’s model, Section 2.4.1) with the results corresponding to 2  .  Since 
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there is a trade-off between Q and gamma, we compared the inversion 

performed with the generalized Brune’s model and fixed Q-value to 1500 

with the inversion performed with 2   and Q-value as a free parameter. A 

comparison with a model with both   and Q fixed would be meaningless, 

since there would be no degree of freedom to model the high-frequency 

spectrum decay. 

When inverting for gamma with Q fixed, the histogram of the   values is 

reported in Figure 6.15; The median value is 3.5  , and the probability to 

observe 2   is very low. 

RMSE comparison shows a higher RMSE mean value for 2   (+ 26 %) 

(Figure 6.16). This is a clear indication for bad modeling. Once more, let us 

analyze the quality of the modeling using the statistics from the developed, 

probabilistic framework. 

In the case 2  , the number of accepted solution is decreased by 28 % 

(Figure 6.17), moving from 6148 to 4454; the number of available data (single 

station records) is 7360.  

In the case 2  , the error on the corner frequency estimates is increased by 

170 % (Figure 6.18), while the error on the seismic moment estimates is 

increased by 57 % (Figure 6.19).  All these comparisons show that the model 

with fixed Q and variable gamma better describes the data, as compared to 

the model with fixed gamma and variable Q. As an example, in Figure 6.20 

we compare the best fit solutions for the two models and the same 

displacement spectrum. The representation of the observed spectrum is 

significantly improved when fixing Q and inverting for gamma.  
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Figure 6.15   estimates per single events. In the left panel we plot the histogram for the 

parameter and in the right panel the retrieved values per event. The error bars are 
represented with a 3  confidence level. 

 

 

Figure 6.16 Histogram of the RMSE between the observed and predicted amplitude spectra. 
On the left, the RMSE is evaluated for the expected spectra with   as a free parameter; on 

the right, 2  . For the model with 2   the RMSE is 26 % larger compared to the free   

model, indicating a worst fit. 
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Figure 6.17 Statistics on the accepted and rejected solutions and data.  
Upper left : accepted solutions in dark green, available data (station records) in light green; 
Upper right : number of accepted solutions per event; Lower left : number of reject data, per 
event; Lower right : number of rejected solutions, per event. Panel A is referred to the 

generalized Brune’s model, panel B is referred to 2  . 

 

 

Figure 6.18 Histograms of the percentage error on the corner frequency. On the left, the 

errors retrieved with   as a free parameter; on the right, 2   . In the case of 2  , the 

error on the corner frequency estimates is increased of a factor of 170 %, indicating a worst 
fit. 

 
 



Micro-seismicity in North Ibaraki 

107 
 

 

Figure 6.19 Histograms of the percentage error on the seismic moment. On the left, the 

errors retrieved with   as a free parameter; on the right, 2   . In the case of 2  , the 

error on the corner frequency estimates is increased of a factor of 57 %, indicating a worst 
fit. 

 

 

Figure 6.20 On the left the solution for the generalized Brune’s model ( 13.6 0.8Cf   Hz) 

, on the right the solution for 2   ( 5.6 0.9Cf    Hz). We represent the signal spectrum 

(blue curve), the noise spectrum (grey curve) and the solution (red curve). Station OKD, 
event-ID 201606240055A. 

 

In addition, if we consider the distribution for the Q-values estimated with 

the omega-square model ( 2  ) we get a high anelastic attenuation effect for 

the entire dataset, with a median value for the quality factor Q= 250 (Figure 

6.21).  
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Since it is common to obtain Q tomographic images relying on the omega-

square assumption, this result puts a warning on correlation resolution 

among parameters.  

 

Figure 6.21 Q estimates per single events, assuming an omega-square model ( 2  ). In the 

left panel we plot the histogram for the parameter and in the right panel the retrieved values 
per event. The error bars are represented with a 3  confidence level. 

 

6.3.3.  Moment-corner frequency scaling law 

We analyzed the scaling law between the corner frequency and seismic 

moment.  

We found two very different behaviors in the explored seismic moment 

interval 10.5 14.5(10 10 ) N m (Figure 6.22). The self-similarity does not hold in 

the low seismic moment range 10.5 13.5(10 10 ) N m, where we observe an 

almost constant corner frequency despite the seismic moment; on the 

contrary, we observe a variability of the corner frequency as a function of the 

seismic moment in the upper range of the explored domain 13.5 14.5(10 10 )  N 

m. Here the scaling is compatible with a -1/3 slope, corresponding to an 

average static stress drop of 5.9 MPa (Figure 6.23). 
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In Figure 6.24 we represent the spectra of two events having different seismic 

moment values, at the boundaries of the flat domain; we also represent the 

best fit solutions superimposed to the observed spectra. In both cases, we can 

observe a plateau up to 10 Hz, and then a clear decay of the spectrum. The 

estimated corner frequencies are 11.1 0.6 Hz and 10.9 0.5 Hz. Assuming a 

-1/3 slope we expect a corner frequency of 44 Hz for the smaller magnitude 

event, while fixing 10cf  Hz for the larger magnitude event. 

Looking at the uncertainties in the corner frequency estimation, and at the 

discrepancies from the classical scaling relationship, the flattening of the 

corner frequencies around 10 Hz when decreasing the magnitude and the 

consequent deviation from the -3 scaling are a robust feature of the data. 

In the framework of a circular rupture model, an upper bound for the corner 

frequency implies a minimum rupture size ( 100r m) for the seismic 

sources in this area. Below this dimension, we  do not observe any rupture to 

nucleate. The analyzed seismicity could describe families of repeated 

earthquakes rupturing same patches with different slip/stress drop; these 

could be related to changes in the frictional conditions of the patches owing, 

for instance, to lubrication mechanisms induced by fluid diffusion. Assuming 

a constant rupture velocity, this means that lower energy ruptures provide 

smaller slip u on the fracturing fault patches; these ruptures behave 

differently from larger events ( )u r  . This behavior holds for stress drops 

lower than ∽ 1 4 MPa. Above these values, a transition in the mechanism of 

rupture generation is observed and standard self-similarity occurs. This 

behavior is not new, and it has been observed also in the Northern Nagano 

area (Imanishi and Uchide, 2017) as reported in (Figure 6.25), although for 

a different seismic moment range ( 9 13.510 10  N m). 
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Assuming2 the following slip-weakening model (Nielsen et al., 2016) : 
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  (1.1) 

where   is the sliding shear stress, 
p  is the peak stress, ss  is the minimum 

sliding stress and 0.5   , we would expect a stress drop gradually increasing 

with slip if wu u  or wu u  , and a constant stress drop 0 ss      if wu u  

. Since we observe this behavior, we can obtain an estimate of the 

characteristic slip distance wu  from the observed transition point in the 

scaling law (Figure 6.22) : from 0log 13.5M  , 100r   m and 103 10    Pa, 

we obtain 3wu   cm. 

 

                                                   
2 This interpretation has been suggested by one of the thesis reviewers, prof. S. Nielsen. 
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Figure 6.22 Scaling law between the corner frequency and the seismic moment. The red 
points are the solutions per event; the parallel lines indicate the scaling with stress drops 

ranging from 0.1  MPa to 100  MPa. 

 

 

Figure 6.23 Scaling law as represented in Figure 6.22; here we focus on the two different 
behaviors observed in the explored seismic moment domain. On the left, constant rupture 
size; the blue line is the best fit curve (scaling = -23). On the right, classical self-similarity 

with an average stress drop equal to 5.9 MPa; the blue line represents the classical scaling 

-3. 
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Figure 6.24 An example of the observed constant corner frequency, over two decades of 

seismic moment. On the left, 0log( ) 10.7 0.1M   , 11.1 0.6Cf    Hz. On the right, 

0log( ) 12.4 0.1M   , 10.9 0.5Cf    Hz. Event-ID 201705070913A (Station KMD) and 

201612290423B (Station OKD), respectively. 
 

 

Figure 6.25 Scaling law in the Northern Nagano area. Figure from Imanishi and Uchide, 
2017. 

 

When fixing 2   (omega-square model), the observed scaling law exhibits 

a mixed behavior (slope = - 1/7) among the constant corner frequency and 

the standard self-similarity (Figure 6.26). 
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Figure 6.26 Scaling law among corner frequency and seismic moment, with the solutions per 
event (red points) evaluated assuming an omega-square model. The best-fit line, in blue, 
represents a scaling of -7; ; the parallel lines indicate the scaling with stress drops ranging 

from 0.1  MPa to 100  MPa. 

 

6.3.4. Moment magnitude and JMA local magnitude 

For each event, we have a moment magnitude ( )WM  estimate coming from 

the seismic moment estimate (Hanks and Kanamori, 1979). We compared 

those magnitudes with the local magnitude ( )jM  estimates in the catalog, 

provided by JMA (Figure 6.27). 

We observe and underestimation of microearthquake size by the local 

magnitude scale. This result was already observed by Uchide and Imanishi ( 

2018) (Figure 6.28).  
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Figure 6.27 The retrieved moment magnitude, WM , per event as a function of the local 

(JMA) magnitude, 
jM . The color of the points indicates the stress drop evaluated for each 

event. The blue line represents the curve 
W jM M . 

 

 

Figure 6.28 Moment magnitude, WM , as a function of the local (JMA) magnitude, 
jM . 

Figure from Uchide and Imanishi, 2018. 
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6.3.5.  Directivity effect on corner frequency 

Our dataset includes 6 clusters; we thus analyzed the retrieved source 

parameters as a function of the azimuth and the hypocentral distance, cluster 

by cluster, looking for a directivity effect on the estimates. We analyze the 

data also as a function of the distance, to be sure to rule out any unexpected 

propagation effect on the parameter estimates.  

When collecting all data (Figure 6.29), we do not observe any specific trend.  

We then isolate the information per single cluster. Specifically, we analyze 

the cluster with the best azimuthal coverage. Results are shown in Figure 

6.30 and Figure 6.31, where the source parameters are represented only as a 

function of the azimuth, since we do not observe any trend as a function of 

the hypocentral distance. In this case, we clearly recognize a directivity effect 

on the corner frequencies since we observe a periodicity of   (Figure 6.30). 

Supposing that this is due to Doppler effect, we are observing bilateral 

ruptures approximately along the direction N-S, which is the direction along 

which the corner frequency is maximum on average.  Coherently, the 

minimum frequency emitted by the source is observed along the direction 

orthogonal to the rupture plane (station WGR, Azimuth = 90°). This 

interpretation is consistent with the focal mechanisms given by the NIED for 

the major events in the dataset, whose average strike is  164°.  

The seismic moment estimates do not show any dependence on the azimuth. 

On the other hand, we still observe a variability on the   parameter (Figure 

6.31), although it does not follow the same trend as the corner frequency. At 

this stage we are not able to understand if this effect is related to the source 

or to the site. However, we observe a minimum of the   function in 

correspondence of a minimum in the corner frequency. This indicates that 

the lateral station shows a smoother high frequency decay as compared to a 

directive station. Assuming that the source model has the same level of 
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complexity at scales smaller than the earthquake size, in the directive 

directions we have different apparent sizes, depending on the location of the 

small-scale asperities, if they are in the directive or anti-directive direction. 

These scales interfere negatively making the high-frequency decay steeper. 

This effect is minimized at a lateral stations, showing a smoother decay.  

However, this variability could be ascribed to a propagation effect; the high-

frequency decay has been obtained under the assumption of a frequency 

independent anelastic attenuation factor. Nevertheless, if such a dependence 

exists, Q should smoothly change with the frequency, since the spectra do not 

show a second slope (a k effect, Anderson and Hough, 1984) at high 

frequencies. 
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Figure 6.29 Seismic moment, corner frequency and high-frequency decay factor as a 
function of hypocentral distance (left column) and azimuth (right column), respectively. 
Here we represent all the retrieved solutions per station, for the whole dataset are 
represented. 
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Figure 6.30 Directivity effect on corner frequency. On the left, the selected cluster of events 
(white circle); on the right, the corner frequency solutions per events as a function of 
azimuth; we observe a periodicity of   as a directivity effect. 

 

 

Figure 6.31 Seismic moment and high-frequency decay factor as a function of azimuth for 
the selected cluster, as shown in Figure 6.30. There is no evidence for a directivity effect, 
although the   estimates show a variability. 
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7. Code implementation 

The described methodology has been implemented by the software SPAR 

(Source PARameter estimator) using Python language (Van Rossum, 1995). 

Computation relies on Numpy and Scipy libraries (Oliphant, 2007), signal 

processing on Obspy library (Megies et al., 2011), graphic output on 

Matplotlib library (Hunter, 2007). 

The core function of the method (PMCF, Probabilistic Markov Chain based 

Fit) and SPAR software are distributed under the GNU GPL v3 copyleft 

license; at the moment, the software can be obtained by contacting the 

author. 

A flowchart of the software is represented in Figure 7.1; details are given in 

the following sections. 

 

Figure 7.1 Flowchart of the SPAR software. 
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7.1. Input 

The software automatically processes a set of events (dataset), analyzing S- 

or P-waves. The dataset directory should contain a directory for each event; 

the name of the directory will be used by the software as the ID of the event. 

Each event folder should contain the 3-components records (data), that are 

accelerometric or velocimetric signals, for the available stations, the stations 

metadata and the event metadata. 

Although the software is specifically designed to read data and metadata in 

SAC file format, both of them are converted into Python’s objects through 

Obspy at the beginning of the processing.  Since Obspy can read multiple data 

and metadata formats (more than 20 file formats, among them MSEED, 

KNET, WIN, WAV), the software could easily process such file formats. 

As input for the processing, the user has to provide information about the 

propagation medium, indicating the S- or P-wave velocity model, density, 

crustal shear modulus and the free surface coefficient. 

Information on wave arrival times should be provided as metadata, but it is 

not strictly required : theoretical arrival times can be also computed by the 

software. 

7.2. Data parallelism 

Parallel computing allows to solve a large problem splitting it into smaller 

ones, solved simultaneously. This could dramatically reduce the computation 

time required by a software; this becomes more and more important as the 

data to be processed increases, that is, as the size of the problem to be solved 

increases. 

Data parallelism has been implemented in SPAR, as a consequence of the 

nature of the problem we want to solve: the software is able to process 
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separately and simultaneously each event of the dataset, assigning each event 

to a different CPU of a parallel computing system. 

We used the S-CAPAD platform of the IPGP (Institut de Physique du Globe 

de Paris) to perform the LFEs analysis described in Chapter 5. Thanks to data 

parallelism, we were able to process the entire dataset (43183 events, 718870 

traces) in 52 minutes, running the software simultaneously on 192 CPUs. The 

required computation time, using an INTEL i5 machine, is larger than 72 

hours.  

7.3. Output 

The output directory contains a subdirectory for each event, named with the 

event ID. For each station-source couple the produced output is the  

following : 

 

• Selected signal and noise in time domain (image) 

• Noise and signal spectra (image and Numpy object) 

• Solution as joint PDF (Numpy object) and marginal PDFs (1-D,2-D 

and 3-D, as images and Numpy object) 

• Results: source parameters and correlation matrix (ASCII table and 

Numpy object) 

 

For each event, the software produces: 

 

• Spectra for all the stations (image) 

• Results for all the station and weighted mean (ASCII table and Numpy 

object) 
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Performance of Earthquake Early Warning
Systems during the 2016–2017 Mw 5–6.5 Central
Italy Sequence
by Gaetano Festa, Matteo Picozzi, Alessandro Caruso, Simona
Colombelli, Marco Cattaneo, Lauro Chiaraluce, Luca Elia, Claudio
Martino, Simone Marzorati, Mariano Supino, and Aldo Zollo

ABSTRACT

Earthquake early warning systems (EEWSs) are nowadays con-
tributing to seismic risk mitigation actions, both in terms of
losses and societal resilience, by issuing an alert promptly after
the earthquake origin and before the ground-shaking impacts
the target to be protected. In this work, we analyze the perfor-
mance of network-based and stand-alone (on-site) early warn-
ing systems during the 2016–2017 central Italy sequence,
characterized by events with magnitude as large as 6.5. For the
largest magnitude event, both systems predict well the ground
shaking nearby the event source, with a rate of success in the
85%–90% range, within the potential earthquake damage zone.
However, the lead time, that is, the time available for security
actions, is significantly larger for the network-based system. For
the regional system, it increases to more than 10 s at 40 km
from the event epicenter. The stand-alone system performs bet-
ter in the near-source region, still showing a positive albeit
small lead time (<2 s). Far away from the source (>60 km),
the performances slightly degrade, mostly owing to the large
uncertainty in the attenuation relationships. This study opens
up the possibility for making an operational EEWS in Italy,
based on the available acceleration networks, provided that the
delay due to data telemetry has to be reduced.

INTRODUCTION

A devastating and long-lasting earthquake sequence shook cen-
tral Italy between August 2016 and January 2017, generating
about 300 causalities and diffuse damage estimated up to 1.4%
of Italy GDP and forcing more than 30,000 people to be
displaced from their home, as reported on the Italian civil
protection website (Chiaraluce et al., 2017). Until now, the
sequence generated more than 1000 events with moment mag-
nitude (Mw) larger than 3.0 (National Institute of Geophysics
and Volcanology [INGV] catalog; see Data and Resources). It
started with the Mw 6.0 Amatrice earthquake occurring on 24
August 2016, without being preceded by a significant foreshock
activity. Then, two months later, anMw 5.9 event (Visso earth-

quake) nucleated 20 km north of Norcia. These two earth-
quakes likely contributed to the development of the largest
magnitude event (Mw 6.5 Norcia earthquake), which occurred
on 30 October 2016. This event ruptured an about 40-km-
long fault bridging the seismic gap left from the previous
two earthquakes, partially extending over regions already hit by
the previous seismicity (Chiaraluce et al., 2017). The last event
of the sequence occurred south of Amatrice, on 18 January
2017 (Mw 5.5 Montereale earthquake).

This sequence affected a sector of the central Apennines
bounded at north by the 1997 Umbria–Marche sequence and
at south by the 2009 L'Aquila earthquake. The ruptures asso-
ciated with the seismic events almost covered the whole area
between the two regions except for a 15–20-km-long segment,
north of L'Aquila, that may still represent a seismic gap, thus
increasing the potential to generate in this area an Mw >5:5
event in the future. From the aftershock distribution, the se-
quence occurred along a segmented normal fault system with
an along-strike extension of about 70 km (Chiaraluce et al.,
2017). The rupture of the main events reached the surface with
a significant slip (larger than 30 cm for the Amatrice event and
2 m for the mainshock), along an about 20-km-long trace on
the Monte Vettore region (Livio et al., 2016; Emergeo W.G.
et al., 2016; Pucci et al., 2017). Kinematic inversions of the
main events obtained from geodetic and/or strong-motion
data revealed localized slip patches, with maximum slip reach-
ing 1 m for theMw 6.0 Amatrice event (Tinti et al., 2016; Liu
et al., 2017) and about 2 m for the Mw 6.5 Norcia earthquake
(Chiaraluce et al., 2017; Liu et al., 2017). The presence of
localized slip together with fast rupture propagation enhanced
both along-strike and up-dip directivity effects, as it can be
recognized in the ground-motion distribution (Liu et al.,
2017; Picozzi et al., 2017) and in the pulse-like signature of
the near-source waveforms (Iervolino et al., 2016).

For this study, we selected nine events, representing the
earthquakes with magnitude larger than 5.0; this threshold
yields good signal-to-noise ratio (SNR) at accelerometers
within ∼100 km from the hypocenters. The list of events is
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reported in Table 1. Although a regional earthquake early
warning system (EEWS) was under testing at the INGV during
the sequence, we cannot directly analyze the associated real-
time performances. Indeed, the current seismic networks in
central Italy are not designed to support an early warning
(EW), owing to latency in data packeting, to data transmission
without controlled delay, and to stations sending data in trigger
mode, after the event detection (for sake of comparison, the
telemetry at the Irpinia Seismic Network [ISNet] acceleromet-
ric network in southern Italy has been specifically designed for
real-time data transmission and the associated delay is smaller
than 1 s; e.g., Satriano et al., 2011). For this reason, we analyzed
the performances by playing backthe waveforms in the EEWS,
as they were acquired in real time, with a maximum latency,
due to data packeting, of 1 s and no transmission delay, thus
corresponding to a nearly optimal situation for evaluating the
system performances.

EEWSs are real-time-controlled systems that process the
seismic signals radiated by an earthquake rupture while it is
still evolving; they predict the ground shaking at selected target
sites and they possibly pilot automatic actions aimed at protect-
ing people and machineries, thus facilitating the postevent
resilience of struck communities or industrial plants. These
systems analyze the early portion of the P-wave to forecast
the S-wave shaking both at near-fault locations and at farther
sites. EEWSs are typically classified in two approaches: regional
(or network-based) and on-site (or stand-alone) systems. A
regional system uses dense strong-motion networks surround-
ing faults known as potential seismic threats, and it is aimed at
detecting, locating, and estimating the size of an earthquake
from the analysis of the first few seconds of the P-wave record.
Then, they predict the expected ground motion at targets
through empirical ground-motion prediction equations
(GMPEs; Allen and Kanamori, 2003; Zollo et al., 2006).
Earthquake size estimation from regional EEWS may saturate
when limiting the analysis to a fixed P-wave time window
(Zollo et al., 2006; Festa et al., 2008). Saturation can be
avoided when expanding the P-wave time window (Colom-
belli, Zollo, et al., 2012) or following the growth of the strong-
motion data from the P-wave onset (Colombelli et al., 2014).
A relevant EW parameter is the lead time, that is, the time

available for emergency actions after issuing the alert. It de-
pends on the distance between the earthquake source and the
site to protect. The lead time is negative for sites located nearby
the earthquake epicenter, defining the blind or no warning
zone, whose size depends on geometrical (i.e., network density
and epicenter-to-target distance) and technological (i.e., telem-
etry and computational time) parameters. It is as large as 25–
30 km for standard dense networks in near-fault observatories
(Satriano et al., 2011; Picozzi et al., 2015). Despite this limi-
tation, however, several network-based EEWSs are operational
worldwide (e.g., in Romania, United States, Mexico, and
Japan). The experimentation of seismic EW in Italy is limited
to a pilot testing phase in southern Italy, where the system uses
the ISNet (Iannaccone et al., 2010) as the backbone monitor-
ing infrastructure.

On-site systems are based on one or more seismic sensors
installed at the site to be protected, where early P-wave signals
are analyzed to predict the following shaking caused by S and
surface waves through empirical amplitude-scaling relation-
ships defined at a regional level (Kanamori, 2005; Zollo et al.,
2010). Although the estimation of source parameters from
stand-alone systems is less robust and accurate than for net-
work-based systems, they usually provide reliable predictions
for the peak ground-motion parameters, and they provide a
nonnegative lead time for targets located close to the fault.
Such systems usually operate in trigger mode, issuing the alert
based on predefined thresholds, calibrated on the ground-
motion intensity (Wu and Kanamori 2008; Zollo et al., 2010;
Colombelli et al., 2015).

In this study, we evaluated the performances of both the
network-based PRobabilistic and Evolutionary early warning
SysTem (PRESTo) v.1.0 (Satriano et al., 2010) and the stand-
alone on-Site-Alert-leVEl (SAVE) v.1.0 (Caruso et al., 2017)
EEWS on the main events of the central Italy sequence. In
the Data and Methods section, we describe the selected dataset
in terms of events and stations and summarize the primary
features of the two systems. Then, we discuss the performances
of the two EEWSs, both for theMw 6.5 Norcia earthquake and
considering all the selected events. The performance analysis is
based on the correct estimation of the strong-motion param-
eters and on the available lead time as a function of the distance

Table 1
Earthquake Parameters for the 2016–2017 Central Italy Dataset (see Data and Resources)

Event Number Mw Origin Time (yyyy/mm/dd hh:mm:ss) Latitude (°N) Longitude (°E) Depth (km) Number of Stations
1 6.0 2016/08/24 01:36:32 42.6983 13.2335 8.1 169
2 5.4 2016/08/24 02:33:29 42.7922 13.1507 8.0 146
3 5.4 2016/10/26 17:10:36 42.8802 13.1275 8.7 172
4 5.9 2016/10/26 19:18:06 42.9087 13.1288 7.5 181
5 6.5 2016/10/30 06:40:18 42.8322 13.1107 9.2 171
6 5.1 2017/01/18 09:25:42 42.5468 13.2623 9.2 138
7 5.5 2017/01/18 10:14:12 42.5293 13.2823 9.1 148
8 5.4 2017/01/18 10:25:26 42.4943 13.3112 8.9 136
9 5.0 2017/01/18 13:33:37 42.4773 13.2807 10 142
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from the earthquake epicenters. In the case of the network-
based system, we also compare the location and the magnitude
estimated by the EEWS with the reference values.

DATA AND METHODS

The dataset considered in this study consists of nine earth-
quakes with Mw larger than 5.0, occurred in the central Italy
region from 24 August 2016 to 18 January 2017 and recorded
by ∼200 accelerometric stations located at epicentral distances
in the 10–130 km range. The acceleration records were
retrieved from the Engineering Strong Motion database (Luzi
et al., 2016), which freely distributes strong-motion data
from earthquakes that have occurred in the European–
Mediterranean and the Middle East regions.

For each event, we selected unprocessed acceleration wave-
forms from all the available stations in the selected distance
range. The stations belong to the Italian Strong Motion
Network (Rete Accelerometrica Nazionale [RAN]), operated
by the Italian Department of Civil Protection, and to the
Italian National Seismic Network, operated by the INGV.
The list of events with the associated source parameters and
the number of stations that recorded these events is reported
in Table 1. In Figure 1, the areal distribution of events and sta-

tions is shown. In the epicentral area, the station coverage is very
dense, with an average interstation distance of about 10 km.

Network-Based EEWS
We used PRESTo as the network-based EEWS to evaluate the
performances. PRESTo is a free and open-source platform (see
Data and Resources; Iannaccone et al., 2010; Satriano et al.,
2011). The system processes in real time the continuous accel-
erometric data streams from a seismic network and, after the
event detection, it promptly provides probabilistic and evolu-
tionary estimates of location and magnitude, as well as the
ground-shaking prediction at target sites through GMPEs.
Furthermore, during an event, PRESTo v.1.0 delivers messages
to target sites containing all relevant earthquake parameters
before the arrival of destructive waves, to enable automatic
safety procedures, accomplishing the goal of an EEWS.

PRESTo v.1.0 implements the following components:
(1) the phase detector and picker algorithm Filter Picker
(Lomax et al., 2012), which picks the P-wave first arrival; it
is optimized for real-time seismic monitoring and EW;
(2) the location algorithm RTLoc (Satriano et al., 2008), which
locates earthquakes exploiting both triggered and not-yet-
triggered stations; it provides a fully probabilistic description
of the hypocenter coordinates and origin time; (3) the algo-

▴ Figure 1. Map of the accelerometric stations from Civil Protection Department and National Institute of Geophysics and Volcanology
(INGV, red triangles) and earthquakes of the 2016–2017 central Apennines sequence with Mw ≥5 considered in this study (blue stars).
In the upper inset, details about earthquake location, focal mechanism, and moment magnitude are shown (data from INGV network,
Engineering Strong Motion database; see Data and Resources).
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rithm for estimating the magnitude RTMag (Lancieri and
Zollo, 2008), which is based on a Bayesian approach and uses
the peak displacement measured on the first seconds (2 and 3 s
of P wave and 2 s of S wave) of the high-pass-filtered signal,
with a cutoff frequency of 0.075 Hz; the final earthquake mag-
nitude is obtained through empirical correlation laws based on
early P and S peak displacement values; and (4) GMPEs for
estimating the peak ground motion (i.e., peak ground velocity
[PGV] and peak ground acceleration) at target sites and at
seismic stations using the real-time evolutionary estimates of
location and magnitude.

PRESTo v.1.0 is currently running in real time, collecting
and analyzing data from ISNet since 2009 (Iannaccone et al.,
2010). Real-time testing is also underway in South Korea on
the Korean Institute for Geoscience and Mineral Resources
(KIGAM) network, in Romania on the Romanian Seismic
Network (RoNet; National Institute of Research and Develop-
ment for Earth Physics), in the Marmara region (Turkey) on
the Kandilli Observatory and Earthquake Research Institute
(KOERI) network, and in a transnational region including
northeast Italy, Slovenia, and Austria at the Istituto Nazionale
di Oceanografia e Geofisica Sperimentale center. The calibra-
tion of the empirical laws between peak displacement and
earthquake magnitude (Mw) used in this study has been carried
out using a dataset of about 5000 accelerometric records from
the RAN related to the largest earthquakes (Mw >4) that oc-
curred in Italy during the period 1997–2013 and available
through the ITalian ACcelerometric Archive 2.0 (Pacor et al.,
2011; see Data and Resources). The dataset includes recordings
that span hypocentral distances from 10 to 300 km, and mag-
nitudes Mw from 4.0 to 6.3, with most of the hypocentral dis-
tances smaller than 60 km. Furthermore, the dataset includes
the mainshock and the largest aftershocks of the Mw 6.3
L'Aquila and the Mw 5.9 Emilia earthquakes, which occurred
in April 2009 and May 2012, respectively. The results of the
best-fit regression analysis for the P waves (i.e., 2 and 3 s) and S
waves (i.e., 2 s) windows are as follows:

EQ-TARGET;temp:intralink-;;311;516

2 s�Pwave� : log�PdP� � −7:26��0:90� � 0:83��0:18�Mw

− 1:57��0:05� log�r=10�;
σ � 0:51;R2 � 0:96

EQ-TARGET;temp:intralink-;;311;456

3 s�Pwave� : log�PdP� � −7:17��0:83� � 0:89��0:17�Mw

− 1:91��0:05� log�r=10�;
σ � 0:47;R2 � 0:96

EQ-TARGET;temp:intralink-;;311;403

2 s�Swave� : log�PdS� � −7:18��0:55� � 0:98��0:12�Mw

− 1:19��0:03� log�r=10�;
σ � 0:36;R2 � 0:98;

in which r is the hypocentral distance in kilometers, PdP and
PdS are measured in meters, σ is the standard deviation on the
log�PdX � estimate, and R is the correlation coefficient. In
Figure 2, we show the best-fit curves superimposed to the data;
to compare observations collected at different hypocentral
distances, the peak displacement is reduced to an equivalent
distance of 10 km, according to the above relationships.
Figure 2a, 2b, and 2c corresponds to the best-fit solutions
for 2 and 3 s of P wave and 2 s of S wave, respectively.

Finally, the GMPEs are derived from strong-motion re-
cords of 131 earthquakes that occurred in Europe and in the
Middle East with moment magnitudes ranging fromMw 5 to 7
(Akkar and Bommer, 2007).

Stand-Alone EEWS
SAVE v.1.0 (Caruso et al., 2017) is used as the stand-alone
EEWS for this analysis. It is a P-wave-based EEWS that mea-
sures in real time the peak displacement (Pd) and the predomi-
nant period (τc) over time windows of variable length (i.e., 1, 2,
and 3 s) after the P-phase arrival (Wu and Kanamori, 2008).
Thus, it provides the expected ground-shaking intensity at the
monitored site, a local alert level (Colombelli, Amoroso, et al.,

▴ Figure 2. Scaling relationships between the peak displacement measured on (a) 2 s and (b) 3 s of P wave and (c) 2 s of S wave and the
final event magnitude. To compare all data in the same plot, the peak displacement values have been computed to the reference distance
of 10 km and they are referred in the graphs to as Pd*.
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2012), and a qualitative classification of the earthquake
magnitude and of the source–receiver distance. SAVE v.1.0
can operate either at a single station (i.e., a single sensor located
at the target site) or with a small set of collocated seismic nodes.
Independently of the number of sensors acquired by SAVE
v.1.0, the algorithm checks the quality of detected picks and
measures the EW parameters Pd and τc only if some criteria
are fulfilled. Specifically, we require that the SNR, defined as
SNR � 20 log10�Pd=PGDnoise�, is SNR > 14, the following
relationship −0:9 < log10�Pv=Pd� < −0:2 holds and the data
are not clipped (Caruso et al., 2017). In the formulas, PGDnoise
is the peak displacement measured in a 3 s time window before
the arrival of the P wave and, Pd and Pv are peak displacement
and velocity, respectively, recursively measured in time win-
dows of 1, 2, and 3 s after the P pick. These conditions ensure
that residual baselines in the displacement do not significantly
affect the measure of the EW parameters.

The empirical scaling relationships between Pd, τc, PGV,
Mw , and R used by SAVE v.1.0 also have been calibrated on the
Italian RAN dataset (Caruso et al., 2017). Similar to PRESTo
v.1.0, SAVE v.1.0 delivers alert messages via the Internet when-
ever a detected event exceeds user-configurable thresholds of
the output parameters (e.g., estimated intensity equal to VI or
above). The warning message includes the EW parameters
calculated by SAVE v.1.0 and their uncertainties. A new mes-
sage is sent at each change of outputs or whenever a second has
passed from the previous message.

RESULTS

Performance of the Network-Based EEWS
We investigated the performances of the regional EEWS by
injecting in playback mode the waveforms related to the central

Italy earthquakes in PRESTo v.1.0. Results of the analysis are
shown in Figure 3. The performance of the system is assessed
in terms of its capability to correctly provide the location,
the magnitude, and the time of the first alert (TFA), this latter
being defined as the instant from the event origin time when five
stations have triggered and the PRESTo v.1.0 provided the first
estimate of location and magnitude. The error associated with
the EW estimates is considered as the difference between the
results obtained by PRESTo v.1.0 and those provided by the
official INGV bulletin (see Data and Resources). Furthermore,
to investigate the stability of the EW estimates, we consider the
estimations at TFA, and at this latter quantity plus 2 and 4 s.

Figure 3a and Table 2 show that the error in epicentral
location at TFA ranges between 0.8 and 6.9 km, these values
being obtained for the Mw 6.5 Norcia and the Mw 6.0 Am-
atrice earthquakes, respectively. The location error does not
show any trend with magnitude and depth (i.e., differences in
hypocentral depth among the events are within 2.5 km), sug-
gesting that the observed errors are due to an inherent aleatory
variability in the arrival time of the P wave at the closest
stations. The number of stations for which arrival times were
available at TFA varies between 5 and 15 (Table 2). Two sec-
onds after the TFA, the epicentral errors are already very small
(i.e., below 2.5 km and on average of about 1.5 km), and they
remain almost constant when extending the time to 4 s after
the first alert (Table 3). The number of stations included in the
analysis 2 s after the TFA ranges between 14 and 30.

Figure 3b presents the results in terms of event magnitude.
At the TFA, the magnitude tends, in general, to overestimate
the reference values with an average difference of 0.4 magni-
tude units (mu). Specifically, the largest overestimations are
obtained for twoMw 5.0 events (events 6 and 9 with�0:8 and
�1:3 mu, respectively). These events show errors in hypocen-

▴ Figure 3. (a) Epicentral location error at the time of the first alert (TFA), 2 and 4 s after the TFA. (b) Residuals between observed and
predicted magnitude at TFA, 2 and 4 s plus TFA. The error for both location and magnitude is computed as the difference between the
estimations provided by PRobabilistic and Evolutionary early warning SysTem (PRESTo) v.1.0 and the values given by the official INGV
bulletin. (c) TFA in seconds. This value ranges between 4 and 8 s, with an average value of 6 s.
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tral location below 3 km. Therefore, we believe that the anoma-
lous magnitude overestimations could be originated either by
the S-wave contamination in the selected P-wave time window
at the closest stations and/or by source effects, such as the
radiation of large initial P-peak amplitudes generated by rela-
tively high fault slip or stress release in the regions of the fault
located nearby the nucleation area. The aftershocks of this seis-
mic sequence presented a quite large variability in the dynamic
properties (Picozzi et al., 2017; i.e., apparent stress between 1
and 20 MPa). Large apparent stress (i.e., large rupture speed,
large static stress drop, and large slip) might have led to 2 s P-
wave displacement amplitudes anomalously larger with respect
to those expected from the empirical relationships calibrated
for Italy. Concerning the three largest events of the sequence,
in the case of the Mw 6.0 Amatrice and Mw 5.9 Visso earth-
quakes, the EW estimates are 0.5 mu larger than the final mag-
nitude, while in the case of theMw 6.5 Norcia earthquake, the
EW estimate agrees very well with the final value, with a differ-

ence of −0:1 mu. Two seconds later, the number of stations
contributing to the magnitude estimate is greater than 10, and
we generally observed an error reduction of 0.2 mu on average
(Table 3). At this stage, stations closer to the epicenter contrib-
uted with the S wave, whereas farther stations provided 2 or 3 s
of P wave for the magnitude estimate. Finally, 4 s afterTFA, the
error associated with the magnitude decreases to 0.1 mu
(Table 3).

TheTFA varies from 4.2 s (i.e., event 3) to 7.7 s (i.e., event
2), with an average value of 5.8 s (Fig. 3c). These values can be
used to estimate the radius of the blind zone (BZ) assuming for
the S wave a constant velocity of 3:3 km=s, which leads to BZs’
radii between 14 and 25 km (19 km in average). These
estimates are consistent with the results of Picozzi et al.
(2015), who evaluated the BZ radius based on numerical sim-
ulations. Although the computation time is considered in the
playbacks, it is here assumed that no latency is due to data
telemetry, while a maximum of 1 s of delay is ascribed to data

Table 2
PRESTo v.1.0 Performance at the Time of the First Alert (TFA)

Event
Number Mw

Number of Triggered
Stations

Δ Time after Origin
Time (s)

Blind Zone
(km)

Δ Epicentral
Location (km)

Magnitude
by PRESTo

1 6.0 7 5.3 17.4900 6.9 6.5
2 5.4 5 7.7 25.4100 4.3 5.5
3 5.4 7 4.2 13.8600 4.5 5.0
4 5.9 11 5.5 18.1500 4.0 6.4
5 6.5 15 5.4 17.8200 0.8 6.4
6 5.1 13 6.1 20.1300 2.6 6.1
7 5.5 13 6.7 22.1100 2.4 6.3
8 5.4 5 5.9 19.4700 4.9 5.7
9 5.0 15 5.7 18.8100 2.2 6.3

The symbol Δ represents the absolute value of the difference between the estimation of PRESTo and the bulletin reference
values. PRESTo, PRobabilistic and Evolutionary early warning SysTem.

Table 3
PRESTo Performance at the Time of the First Alert (TFA) Plus 2 and 4 s

Event
Number Mw

Δ Epic.
TFA + 2 s (km)

Δ Epic.
TFA + 4 s (km)

Mw by PRESTo
TFA + 2 s

Mw by PRESTo
TFA + 4 s

1 6.0 2.3 0.8 6.4 6.3
2 5.4 1.5 1.4 5.8 5.6
3 5.4 1.1 1.0 5.7 6.0
4 5.9 1.0 1.0 5.5 5.7
5 6.5 0.6 0.0 6.6 6.3
6 5.1 1.9 1.7 5.3 5.3
7 5.5 2.1 1.5 5.8 5.7
8 5.4 2.2 2.2 5.8 5.5
9 5.0 0.8 0.3 5.5 5.2

The symbol Δ represents the absolute value of the difference between the estimation of PRESTo and the bulletin reference
values.
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packeting. Therefore, the derived values represent the lower
bound for the BZ size. They are, however, useful estimates for
guidance in assessing the performance of the EEWS given by
the integration of PRESTo v.1.0 on the Italian seismic net-
work. In real-time data acquisition mode, the BZ dimension
would progressively increase with the increase of delay in data
telemetry.

Furthermore, we also evaluated the capability of the system
to provide reliable alerts at sites located at an increasing dis-
tance from the epicenter. From the user point of view, indeed,
an EEWS should provide information about the incoming
ground shaking, the possible overcoming of a damage threshold
for the buildings, and how much lead time is available to secure
people, structures, and industrial machineries against the
potential earthquake damage.

To set the ground-motion level of interest, we considered
the PGV corresponding to the lower bound of the macroseis-
mic intensity degree VI in the Mercalli–Cancani–Sieberg
(MCS) scale (Sieberg, 1930) (light damage and strong per-
ceived shaking), and we exploited the relationships between
PGV and MCS intensity recently calibrated for Italy (Faenza
and Michelini, 2010) (lower bound of intensity VI corresponds
to a PGV of 2:4 cm=s ). For each event, we assumed all the
available accelerometric stations within 200 km from the epi-
center as potential target sites, and we compared the observed
PGVwith the PGVpredicted by PRESTo v.1.0 atTFA (i.e., on
the base of the first location and magnitude estimates and using
the selected GMPE). An alert is considered a successful alert
(SA) when both observed and predicted PGV values are larger
than the threshold; we get a successful no-alert (SNA) when
both values are below the selected threshold, a false alarm
(FA) when the predicted PGV is above while the observed

PGV is below the threshold, and finally, a missed alarm
(MA) when the observed PGV is above the threshold but
not the predicted PGV. It is worth noting that during the
playback of all the records, PRESTo v.1.0 never missed the
real-time detection of the events. Therefore, the users outside
the BZ would have never experienced a missed event detection
but eventually an underestimated prediction of the ground-
motion severity. Similarly, the meaning of false alert is only
caused by an overestimation of the ground shaking. Addition-
ally, because our real-time location and magnitude estimates are
consistent with those provided by the INGV bulletin, the per-
formance of the regional EEWS is critically influenced by the
prediction capability of the GMPEs.

Concerning the lead time, we computed it as the differ-
ence between the instant at which the ground velocity over-
comes for the first time the threshold value of 2:4 cm=s and
theTFA. It is worth noting that this definition of the lead time
is related to the effective arrival of the ground shaking of
interest for the EEWS; a more conservative definition, which
is also used by other EEWS, is based on the theoretical arrival
time of the S wave at the target site. Figure 4a shows the per-
formance of PRESTo v.1.0 for the Mw 6.5 Norcia earthquake
at TFA using 122 stations with a maximum epicentral distance
of 130 km. At this time, four stations with an epicentral dis-
tance smaller than 13 km were already hit by a PGV larger than
2:4 cm=s and were thus classified as missed alerts. Between 13
and 16 km, two stations were successfully alerted and two were
missed. Beyond 16 km and up to 60 km, where the instrumen-
tal intensities estimated by the INGV were between VI and IX
(see Data and Resources), all the stations (i.e., 55) received a
successful alert. Therefore, in the area experiencing a severe
ground motion, the EEWS rated 90.5% of successful alerts

▴ Figure 4. Performances of the network-based (PRESTo v.1.0) and stand-alone (on-Site-Alert-leVEl [SAVE] v.1.0) earthquake early warn-
ing system (EEWS) for the Mw 6.5 Norcia earthquake. (a) Areal distribution of successful alerts (SA), successful no-alerts (SNA), missed
alerts (MA), and false alerts (FA) by PRESTo v.1.0. Circles enclose stations within 20 and 60 km. (b) Areal distribution of SA, SNA, MA, and
FA using SAVE v.1.0. (c) Pie charts illustrating the percentage of SA, SNA, MA, and FA for the two systems. (d) Lead time as a function of
the distance for PRESTo v.1.0 (blue circles) and SAVE v.1.0 (green triangles). Stars indicate the median value for 10-km-wide distance bins.
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and 9.5% of missed alerts, the latter percentage representing the
stations within the BZ. Then, for larger epicentral distances
(i.e., between about 60 and 134 km), 33 stations were correctly
alerted and classified as SNA, whereas 32 stations resulted as
MA. For this external area, where the instrumental intensity
was estimated between V and VI, almost 50% of the MA can
be likely attributed to local site conditions which have led to
small fluctuations of the observed PGV, or to large amplitude
surface waves, in both cases resulting in jumps between inten-
sity V and VI with respect to the intensities predicted by the
GMPEs. A confirmation of our observations comes also from
the macroseismic survey of the epicentral area (Arcoraci et al.,
2016), which is not based on the PGV and shows intensities
equal or larger than VI limited to about 40 km from the
epicenter. Therefore, our performance rule is probably strongly
conservative, by assigning MA at large epicentral distances (i.e.,
beyond 60 km) if we consider that damages were not observed
at villages nearby these stations. Globally, the performance of
the system is: 47% of SA, 27% of SNA, and 26% MA, with a
total rate of success of 74% (i.e., SA plus SNA; Fig. 4c).

Figure 4d shows the lead time computed for the stations
with a predicted PGV larger than the selected threshold. We
observe that within 20 km from the epicenter the lead time is
very short (<1 s). However, beyond 20 km it rapidly increases

to values that would allow trained users to duck and cover: the
mean lead-time ranges from 3.5 s between 20 and 30 km to
14.5 s between 50 and 60 km. If we had computed the lead
time as the difference between the theoretical arrival time of
the S-wave arrival time and theTFA, we would have obtained a
decrease of the lead time of about 1 s at 45 km and 2 s at 60 km.

When the performance of PRESTo v.1.0 is evaluated over
all the selected events, the number of tested station–event pairs
raises to 1070, with about 70 pairs within 20 km from the
epicenter and an average of about 200 pairs for all the other
20 km wide bins up to 80 km from the epicenter (Fig. 5a). The
number of SA decreases with the epicentral distance (i.e., from
about 62% between 0 and 20 km to about 22% between 40 and
60 km; Fig. 5b), but the difference is mainly compensated by
the number of SNA. Considering SA plus SNA, the correct
alerts oscillate between 74% in the 20–40 km range and
88% in the 80–100 km range.

Concerning the false and missed ground-motion predic-
tions, we observe that most of the false detections occur
between 30 and 50 km from the epicenter, with a rate of 13%.
Instead, the largest portion of MA is concentrated within the
20 km from the epicenter (i.e., 32%), while it decreases to about
12% up to 140 km. The global performance as shown in
Figure 5d confirms these results, with correct alerts (i.e., SA

▴ Figure 5. Overall performances of the network-based (PRESTo v.1.0) and the stand-alone (SAVE v.1.0) EEWS. (a) Histogram of the
number of available stations as a function of the distance; (b) rate of SA, SNA, MA, and FA using PRESTo v.1.0 as a function of the
distance. (c) Rate of SA, SNA, MA, and FA using SAVE v.1.0 as a function of the distance. (d) Pie charts illustrating the percentage of SA,
SNA, MA, and FA for the two systems. (e) Lead time as a function of the distance for PRESTo v.1.0 (blue circles) and SAVE v.1.0 (green
triangles). Stars indicate the median value for different distance bins.
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plus SNA) in the 85% of cases, 11% of MA, and 4% of FA.
Again, outside the BZ, most of FA and MA owe to the large
uncertainty in the GMPEs. Similarly to the Norcia event, the
median value of the available lead time (Fig. 5d) is about 3.5 s
at 25 km, 7 s at 35 km, 10 s at 45 km, and more than 15 s
above 55 km.

Performance of the Stand-Alone EEWS
The performance of the stand-alone EEWS was evaluated by
running the software SAVE v.1.0 on the same strong-motion
dataset used for the regional analysis. The performance is
assessed through the capability of the system to correctly pre-
dict the expected ground motion at the sites to be secured. To
be directly comparable with the results from the network-based
system, we assume that the EEWS issues an alert when the pre-
dicted PGV > 2:4 cm=s. Then, we compared the predicted
intensity with the observed one and used the same four classes
as defined before (SA, SNA, MA, and FA) to assess the per-
formances. Playing back the strong-motion data, SAVE v.1.0
also recognized all the events in the database; again, the notion
of false and missed alerts is thus associated with a wrong esti-
mation of the strong-motion severity.

Figure 4b shows the performance of the on-site system for
the Mw 6.5 Norcia earthquake. Results are represented in a
map to be directly comparable with the outcomes of the
regional system, although predictions of the on-site system are
evaluated independently station by station. Up to 60 km, al-
most all stations received an SA, except for two stations located
within 15 km from the epicenter, where the ground velocity
overcomes the threshold (2:4 cm=s) before issuing the alert,
and for four stations located northward of the epicenter, along
the fault strike direction. These stations might have experi-
enced possible source effects, likely due to focal mechanism
and directivity, or near-field dominated waveforms, which
produced a deviation from the average Pd–PGV scaling.
Our hypothesis is corroborated by the macroseismic survey
(Arcoraci et al., 2016), which provided higher damage levels
for villages distributed along-strike direction than for villages
in other directions.

Close to the isoseismal VI curve, several targets experi-
enced both MA and FA, with a difference of one unit between
the predicted and observed intensities. Most of these results
can be attributed to fluctuations related to the discretized
intensity scale and to site and source effects around the PGV
threshold value of 2:4 cm=s. The final performance of the
on-site system is 53% of SA, 21% of SNA, 20% of MA, and
6% of FA. Comparing the percentage of SA and SNA, the
performance of the stand-alone system is comparable with that
of the regional system.

In Figure 4d, the lead time for the stand-alone system is
superimposed to the lead-time estimation for the network-
based system for the Mw 6.5 Norcia earthquake. A positive
lead time is still available for the closest stations within the first
20 km, albeit very short (<2 s). Then, its median value
increases from about 2 s between 20 and 30 km to about 7 s
between 50 and 60 km. The overall values of the lead time for

an on-site system are smaller than the ones for the regional
system, the former growing with the difference between the
S- and P-wave slowness, the latter increasing with S-wave
slowness.

Figure 5c finally summarizes the performances for all the
events in the sequence. Within 30 km from the epicenter, the
system reported the 77% of SA/SNA. The larger portion of
MA (i.e., 11%) is concentrated within 20 km from the epicen-
ter, whereas most of FA (i.e., 20%) occurs between 20 and
60 km. The statistics over the entire range of distances confirms
the high rate of SA/SNA (i.e., 81%), whereas MA and FA rates
are 7% and 12%, respectively (Fig. 5d). The lead time increases
from few seconds (<2 s) in the near-source range (<15 km),
to 4 s at 35 km, and above 7 s beyond 55 km (Fig. 5e).

DISCUSSION

The offline application of stand-alone and network-based
EEWS to the central Italy sequence enhanced several strong
points related to the usability and robustness of earthquake
EW in Italy; however, this analysis does not include latency due
to data telemetry. The high density of the accelerometric net-
work in the epicentral area enabled the rapid event detection
and characterization with regional alerts issued 4–8 s after the
event origin time. This corresponds to a BZ with a radius of
15–25 km centered at the epicenter. Outside the BZ, the net-
work-based system predicts well the impending ground shaking
by assessing the potential damage area with a rate of success
around 90%. While the earthquake location and magnitude are
accurately estimated by analyzing the early portion of the P
wave at the stations close to the epicenter, differences between
predicted and observed intensities and PGVmainly owe to the
uncertainty in the GMPEs. Although the epistemic variability
was already reduced using GMPEs calibrated for this specific
area, further improvement can come from accounting for
specific source and site effects.

The stand-alone system can provide event information
within a still positive lead time in the BZ of the network-based
system, although the available time is very short (<2 s).
Within this region, triggering security actions becomes chal-
lenging. The overall performance of the on-site system is
slightly worse than that of the regional system (rate of success
at about 80%). When looking at the alert maps of the Norcia
earthquake (Fig. 4a,b), both systems correctly predict the ex-
pected ground-shaking intensity within 60 km from the epi-
center, and the two maps also almost superimpose far away
from the event epicenter. Stand-alone systems show a large rate
of false alerts, while reducing the number of missed alerts at
large distances from the source. At large distances, the PGV is
associated with the arrival of surface waves, which are not taken
into account by the adopted GMPEs, while their amplitude
can be partially captured by analyzing the early evolution of
the P wave at the same site.

Although both systems provide equivalent results in terms
of rate of success of predicting the ground-shaking intensity,
the lead-time distribution shows significant differences and
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it increases faster for the network-based system, ranging from 5
to 15 s between 30 and 55 km from the event epicenter. The
lead time almost halves for the on-site system in the same dis-
tance range, making the latter system less effective on average
for this area. Considering the potential social benefit of an
EEWS, it is worth noting that, taking into consideration the
ring between 30 and 55 km from the epicenter, 5–15 s of avail-
able lead time could have been utilized for implementing seis-
mic risk and exposure mitigation actions in 168 municipalities
affecting about 700,000 inhabitants. The beneficial effects of
an EEWS in this area are even more evident if we consider that
the potential end users experienced a six-month-long seismic
sequence.

Improvement of site models can reduce epistemic variabil-
ity in the ground-shaking prediction of regional systems,
accounting for velocity, attenuation, and nonlinear rheology in
the shallow layers beneath the station, and offsets in the
ground-motion parameters at the site with respect to the
selected GMPEs (e.g., Abrahamson and Bommer, 2005).
Although site effects are intrinsically accounted for in the
on-site systems, local discrepancies at specific sites need to
be further investigated because the site response to the P wave
could not linearly change with the response to the S wave.

The real-time evaluation of source parameters such as fault
geometry, size, directivity, and focal mechanism requires the
development of new methodologies, for the evolutionary inver-
sion of the extended source properties. Some techniques were
already proposed to improve the source description while the
earthquake is still ongoing (Yamada and Heaton, 2008; Böse
et al., 2012; Colombelli et al., 2013). Stand-alone systems
account for some of the source parameters, such as reduced
Joyner–Boore distance due to rupture finiteness. They also
track the source directivity through the P wave, although it is
less enhanced than for S wave, because it depends on the ratio
between the earthquake rupture and the propagation wave
velocities. Finally, the effect of the focal mechanism is not ac-
counted for in the on-site systems, because at the same site
larger P-wave amplitudes are not always followed by larger
S-wave amplitudes. In this specific case, the Mw 6.5 Norcia
event grew along a 40-km-wide normal fault, with significant
slip release in the hypocentral area (a concentrated asperity
with slip larger than 2 m), a pretty fast rupture moving to the
surface (rupture speed of 2:7 km=s ) and large coseismic slip at
the surface (Chiaraluce et al., 2017). These features can be the
source of some missed alerts in the near-source domain, espe-
cially in the footwall of the fault.

A complementary data-driven approach for EEWS to im-
prove ground-shaking prediction is to integrate on-site and
regional EEWS in real time to produce an evolutionary
ground-shaking map. Such a system should initially combine
GMPE-based regional estimates of ground-motion parameters
with on-site predictions to define the areal distribution of the
ground-motion severity. Then, the maps should be continu-
ously updated as the effective ground motion starts to be
collected at the stations close to the epicenter. Integration of
network-based and stand-alone systems started to be developed

through the definition of the potential damage zone (Colom-
belli, Amoroso, et al., 2012) and the software QUAKEUP
(Zollo et al., 2017), although several issues remain open, such
as the separation of P- and S-wave contributions in the data.

Finally, all results presented here do not account for the de-
lays due to the actual dataloggers and telemetry currently de-
ployed in the seismic networks. Since July 2015, PRESTo
v.1.0 is running at the Near Fault Observatory TABOO, located
above the Alto Tiberina fault, about 60 km north of the region
interested by the sequence. This experimentation was promoted
in the framework of the European Plate Observing System -
Implementation Phase (EPOS-IP) project. In a parallel installa-
tion, PRESTo v.1.0 also run on a part of the INGV national
network located in the central Italy, whose data are streamed
in real time to the control center of Ancona. For this system,
an event is declared if six picks occur within 3 s. The system
also worked during the initial part of the sequence, before the
Mw 6.5 Norcia earthquake. It provided an alert during the Am-
atrice earthquake 11.4 s after the first P pick and 14.3 s after the
origin time. The first estimated location was very close to the one
released by the INGV bulletin (error in the epicentral location
<2 km), while the magnitude was underestimated by 0.2 mu,
the system provided an initialMw 5.8. The final estimation from
PRESTo v.1.0 was instead Mw 6.1. The large delay in the alert
was due to the latency in data packeting (2–3 s), in the data
transmission (up to 20 s for some stations connected to the con-
trol center via satellite), and in the data quality (signal clipping).

Diverse results were obtained for the two 26 October
2016 Visso earthquakes. For the Mw 5.4 event, location and
magnitude were close to the reference values from bulletin
ones, providing the first alert 6.3 s after the initial P pick, and
thus 9.0 s after the origin time. For the Mw 5.9 event, alert
release was comparable with the previous event, but the mag-
nitude was largely underestimated at theTFA. This was mainly
due to the clipping of velocimeter sensors near the epicenter
and to the underestimation of the hypocentral depth, which
prevented the system from using larger P-wave windows due
to a supposed S-wave contamination. The biased magnitudes
required several seconds to be partially balanced by the infor-
mation coming from the rest of the network. On the other
hand, the use of velocimeters was justified in the testing phase
needing as much station density as possible because the initial
plan was to process smaller size earthquakes during the exper-
imentation at the near-fault observatory.

CONCLUSIONS

In this study, we investigated the performances of the network-
based and the stand-alone EW systems on the central Italy
sequence, playing back accelerometric data into the systems as
they were recorded in real time. We found that the ground-
shaking intensity was well predicted by both systems. Within
60 km from the event epicenter, the success rate of both
EEWSs ranges between 85% and 90% for the main event of
the sequence and is ∼80% when considering all the events with
magnitude larger thanMw 5.0 in the whole epicentral distance
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range (<130 km). Some missed alerts correspond to sites lo-
cated within the BZ for which the radius on average is 20 km.
The size of the BZ is significantly smaller than the size of the
region where damages were reported for the Mw 6.5 earth-
quake (radius of about 40 km). The lead time for the regional
system increases from 5 s at 30 km to 15 s at 55 km, allowing to
trigger automatic security actions. These values halve for the
on-site system, making this latter less effective for the area.

With this study, we show that an operational EEWS in
central Italy might effectively contribute to mitigate the seismic
risk during an earthquake and enhance postevent resiliency,
provided that the delay due to telemetry and data packeting
is significantly reduced.

DATA AND RESOURCES

Accelerograms used in this study were collected from the Italian
Accelerometric Archive (ITACA) 2.0 (Pacor et al., 2011) at
http://itaca.mi.ingv.it (last accessed August 2017). Analysis
and plots were made using MATLAB (https://it.mathworks.
com/, last accessed August 2017). The Istituto Nazionale di Geo-
fisica e Vulcanologia [INGV] catalog is available at http://cnt.
rm.ingv.it (last accessed August 2017). PRESTo is a free and
open-source platform, available at www.prestoews.org (last ac-
cessed October 2017). For the instrumental intensities estimated
by the INGV, see http://shakemap.rm.ingv.it/shake/8863681/
intensity.html (last accessed July 2017). For INGV network,
see http://cnt.rm.ingv.it/instruments/network/IV (last accessed
September 2017); for Engineering Strong Motion (ESM) data-
base, see http://esm.mi.ingv.it/ (last accessed July 2017).
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9. Conclusions 

I developed a probabilistic method to characterize the source parameters of 

an earthquake and the anelastic attenuation of the propagation medium. 

My work is based on the probabilistic framework developed by Tarantola 

(2005), and specifically on the notion of conjunction of states of information 

that has been introduced in Chapter 3. I model the observed far field 

displacement spectrum assuming a circular rupture model (Brune, 1970) for 

the source and a Green function characterized by a frequency-independent 

Q-factor for the propagation. The forward operator is therefore defined on a 

set of 4 parameters: three parameters for the source – the seismic moment 

0M  , the corner frequency cf  and the high-frequency decay exponent   – 

and one parameter – the Q-factor – for the propagation. These parameters 

are strongly correlated among each other. I estimate the joint probability 

density function (PDF) over the 4-D parameter space to extract the 

correlation matrix of the parameters; this allows to obtain estimates and 

uncertainties from the PDF, taking into account the correlations. 

Since I model the observations with a non-linear operator, a global 

exploration of the model space is required in order to find the best solution 

to describe the data. 

The global optimization technique used here, relies on the building of a 

Markov chain in the parameter space and on the combination of a 

deterministic minimization with a random exploration of the space (Basin-

Hopping method). 

In order to validate the developed methodology, I performed synthetic tests 

on spectra with different signal to noise ratios, defined on different frequency 

domains (Section 3.7). The method proved its efficacy with all the synthetic 

spectra. As expected, the resolution of the estimates depends both on the S/N 
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and the frequency bandwidth available for the inversion; at least 0.1 decades 

on the left and 0.4 decades on the right of the cf  are required in the frequency 

domain to obtain reliable estimations for the inversion. Moreover, I showed 

that the uncertainty on the quality factor estimate depends on the value of Q 

itself. 

The method has been applied to three different datasets : 

• The Central Italy 2016/2017 sequence (Chapter 4) 

• The LFEs observed in the Nankai region (Japan) during the period 

2012-2016 (Chapter 5) 

• The micro-seismicity of the Northern Ibaraki region (Japan) during 

the period 2016-2017 (Chapter 6) 

From the study of the seismicity during the Central Italy 2016/2017 

sequence, we observed on average that the standard scaling 
0 3

1

c

M
f

   holds 

(Aki, 1967) with an average static stress drop 2.1 0.3   MPa (Section 

4.3).  

To analyze the stress drop retrieved in this study, we compared our findings 

with scaling relationships of the two major seismic sequences, that have 

interested the Central Italy region (Umbria-Marche 1997-1998, L’Aquila 

2009) in the last two decades. Different studies for these events show a stress 

drop fully consistent with our results : Bindi et al. (2004) found an average 

stress drop of 2 1 MPa for the Umbria-Marche sequence; For L’Aquila 

sequence, Pacor et al. (2015) retrieved a stress drop variability that spans two 

orders of magnitude  0.1 25 MPa, with an average value of 2.6 MPa.  

The Q  distribution had a mean value of 230, and a standard deviation of 50; 

this can be interpreted as a mean value for the S-wave anelastic attenuation 
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factor of the whole explored region. It is consistent - with a confidence level 

of 2   - with the estimate of Bindi et al. (2004) who found an average S wave 

anelastic attenuation factor of 318 for the Central Italy region. 

In the second application, we estimated the source parameters for 11076 

LFEs. We found the typical behavior of the slow earthquakes, observing 

corner frequencies that are much lower than what expected for ordinary 

earthquakes sharing the same seismic moment. Furthermore, the retrieved 

order of magnitude of the stress drop (KPa) is well in the range of what 

reported in literature (Ide, 2014). 

We specifically analyzed the scaling among corner frequency and seismic 

moment (Section 5.3). When considering all the events and looking at their 

average behavior, we found a scaling of 3.5 0.5   , which is compatible with 

to the standard one ( 3 ) within uncertainties. The robustness of this result 

arises from the probabilistic method used to estimate the source parameters 

for single station, combined with the quality selection criteria used for the 

automatic processing of the data (Section 5.2.1). Additionally, we explored a 

broad magnitude interval (two decades) and the scaling relies on a very large 

number of events per magnitude bin. 

Finally, we studied the micro-seismicity ( 0.0 4.5)jM    in the Northern 

Ibaraki area (976 events). A very low anelastic attenuation effect was 

observed ( 1000 2000)Q   , as expected from literature (Takahashi, 2012) 

and the geological map by GSJ. We proved that, for the explored area (20  x 

20 Km2), the best choice was to fix Q=1500 (Section 6.3.1). 

We compared the common assumption of omega-square model ( 2)   with 

a generalized Brune’s model (Section 6.3.2). The latter provided a normal 

distribution for   estimates with a mean value of to 3.6. We proved that the 

omega-square assumption led to a worse modeling than the generalized 
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Brune’s model (Section 2.4.1). Furthermore, we found that the 2   model 

produces a bias in the modelization of the anelastic attenuation: low Q-values 

( 100 500)Q    were estimated for all the events. 

We analyzed the scaling law among corner frequency and seismic moment 

(Section 6.3.3). We found two different behaviors in the explored seismic 

moment interval 10.5 14.5(10 10 ) N m. Self-similarity does not hold in the low 

region of the seismic moment range 10.5 13.5(10 10 ) N m, where we observed a 

constant corner frequency. On the contrary, standard self-similarity holds in 

the high seismic moment range 13.5 14.5(10 10 ) N m, with an estimated 

constant static stress drop equal to 5.9 MPa. 

Robustness of this result arises from the resolution in the frequency domain, 

related to the high sampling rate of the data ( 1000SAMPf  Hz), yielding a 

maximum estimable corner frequency beyond 300 Hz. We performed a 

cluster analysis, from which we were able to observe a directivity effect on 

the corner frequency estimates (Section 6.3.5). The estimations can be 

interpreted in terms of bilateral ruptures, propagating along an almost N-S 

fault plane whose orientation is coherent with the focal mechanisms 

provided by the NIED. 

The  developed methodology could allow to better investigate several features 

of the seismic source, and of  the propagation medium.   

The joint and marginal PDFs of the source parameters, evaluated station by 

station as the solution of the inverse problem, and combined as shown in 

Section 3.6 to obtain the event’s solution, could be combined in a different 

way such that the whole information available from the PDF is used, instead 

of using only the mean and the variance of the marginal PDF; one possibility 
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could be represented by the conflaction operation defined by Hill and Miller 

(2011). 

Moreover, the single station solutions could be used to analyze the directivity 

effect on the source parameters estimates. An example is already shown in 

Section 6.3.5; a systematic analysis of this kind of effect could lead to a 

modified forward operator that could take into account the direction of 

propagation of the seismic wave. 

Finally, the information about the Q-factor could be used to obtain a robust 

characterization of the propagation medium; the PDF of the quality factor 

could be coupled with the information coming from a probabilistic location 

of the earthquake (e.g. Myers et al., 2007), leading to a new, probabilistic 

approach for Q tomography.
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Appendix A 

In the time domain, the displacement u is the sum of the signal ( )s t  and the 

noise ( )n t  : 

 ( ) ( ) ( )u t s t n t    (A1) 

Here we prove that, for small 
n

s
, the displacement amplitude spectrum can 

be written as : 

 log( ) log( ) cos( )S N

n
u s

s
      (A2) 

where s  and n  are the amplitude spectra and S  and N  the phase spectra 

of the signal and the noise, respectively; they are all functions of the 

frequency. 

Applying the Fourier transform to the equation (A1), we have 

 ( ) ( ) ( )u f s f n f    (A3) 

It follows that : 
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2 2

2 2

2 2

Re( )
( )( ) 2Re( ) 1 2

Re( ) Re( ) Re( )
1 2 1

cos( )S N

nsn
u s n s n s sn n s

s s

sn sn sn
s s s

ss s

s n  

        

 
       

 
 

  

  (A4) 

where we neglected the term 

2

2

n

s
 , and we approximate 1 1

2

x
x    for 

small x. The logarithm of (A4) gives the equation (A2) : 

 log log log 1 cos( ) log cos( )S N S N

n n
u s s

s s
   

 
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  (A5) 

where  log 1 x x   for small x □. 
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